You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

256 lines
7.7KB

  1. /*
  2. * rational numbers
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * rational numbers
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "avassert.h"
  27. #include <limits.h>
  28. #include "common.h"
  29. #include "mathematics.h"
  30. #include "rational.h"
  31. int av_reduce(int *dst_num, int *dst_den,
  32. int64_t num, int64_t den, int64_t max)
  33. {
  34. AVRational a0 = { 0, 1 }, a1 = { 1, 0 };
  35. int sign = (num < 0) ^ (den < 0);
  36. int64_t gcd = av_gcd(FFABS(num), FFABS(den));
  37. if (gcd) {
  38. num = FFABS(num) / gcd;
  39. den = FFABS(den) / gcd;
  40. }
  41. if (num <= max && den <= max) {
  42. a1 = (AVRational) { num, den };
  43. den = 0;
  44. }
  45. while (den) {
  46. uint64_t x = num / den;
  47. int64_t next_den = num - den * x;
  48. int64_t a2n = x * a1.num + a0.num;
  49. int64_t a2d = x * a1.den + a0.den;
  50. if (a2n > max || a2d > max) {
  51. if (a1.num) x = (max - a0.num) / a1.num;
  52. if (a1.den) x = FFMIN(x, (max - a0.den) / a1.den);
  53. if (den * (2 * x * a1.den + a0.den) > num * a1.den)
  54. a1 = (AVRational) { x * a1.num + a0.num, x * a1.den + a0.den };
  55. break;
  56. }
  57. a0 = a1;
  58. a1 = (AVRational) { a2n, a2d };
  59. num = den;
  60. den = next_den;
  61. }
  62. av_assert2(av_gcd(a1.num, a1.den) <= 1U);
  63. av_assert2(a1.num <= max && a1.den <= max);
  64. *dst_num = sign ? -a1.num : a1.num;
  65. *dst_den = a1.den;
  66. return den == 0;
  67. }
  68. AVRational av_mul_q(AVRational b, AVRational c)
  69. {
  70. av_reduce(&b.num, &b.den,
  71. b.num * (int64_t) c.num,
  72. b.den * (int64_t) c.den, INT_MAX);
  73. return b;
  74. }
  75. AVRational av_div_q(AVRational b, AVRational c)
  76. {
  77. return av_mul_q(b, (AVRational) { c.den, c.num });
  78. }
  79. AVRational av_add_q(AVRational b, AVRational c) {
  80. av_reduce(&b.num, &b.den,
  81. b.num * (int64_t) c.den +
  82. c.num * (int64_t) b.den,
  83. b.den * (int64_t) c.den, INT_MAX);
  84. return b;
  85. }
  86. AVRational av_sub_q(AVRational b, AVRational c)
  87. {
  88. return av_add_q(b, (AVRational) { -c.num, c.den });
  89. }
  90. AVRational av_d2q(double d, int max)
  91. {
  92. AVRational a;
  93. #define LOG2 0.69314718055994530941723212145817656807550013436025
  94. int exponent;
  95. int64_t den;
  96. if (isnan(d))
  97. return (AVRational) { 0,0 };
  98. if (fabs(d) > INT_MAX + 3LL)
  99. return (AVRational) { d < 0 ? -1 : 1, 0 };
  100. exponent = FFMAX( (int)(log(fabs(d) + 1e-20)/LOG2), 0);
  101. den = 1LL << (61 - exponent);
  102. // (int64_t)rint() and llrint() do not work with gcc on ia64 and sparc64
  103. av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, max);
  104. if ((!a.num || !a.den) && d && max>0 && max<INT_MAX)
  105. av_reduce(&a.num, &a.den, floor(d * den + 0.5), den, INT_MAX);
  106. return a;
  107. }
  108. int av_nearer_q(AVRational q, AVRational q1, AVRational q2)
  109. {
  110. /* n/d is q, a/b is the median between q1 and q2 */
  111. int64_t a = q1.num * (int64_t)q2.den + q2.num * (int64_t)q1.den;
  112. int64_t b = 2 * (int64_t)q1.den * q2.den;
  113. /* rnd_up(a*d/b) > n => a*d/b > n */
  114. int64_t x_up = av_rescale_rnd(a, q.den, b, AV_ROUND_UP);
  115. /* rnd_down(a*d/b) < n => a*d/b < n */
  116. int64_t x_down = av_rescale_rnd(a, q.den, b, AV_ROUND_DOWN);
  117. return ((x_up > q.num) - (x_down < q.num)) * av_cmp_q(q2, q1);
  118. }
  119. int av_find_nearest_q_idx(AVRational q, const AVRational* q_list)
  120. {
  121. int i, nearest_q_idx = 0;
  122. for (i = 0; q_list[i].den; i++)
  123. if (av_nearer_q(q, q_list[i], q_list[nearest_q_idx]) > 0)
  124. nearest_q_idx = i;
  125. return nearest_q_idx;
  126. }
  127. uint32_t av_q2intfloat(AVRational q) {
  128. int64_t n;
  129. int shift;
  130. int sign = 0;
  131. if (q.den < 0) {
  132. q.den *= -1;
  133. q.num *= -1;
  134. }
  135. if (q.num < 0) {
  136. q.num *= -1;
  137. sign = 1;
  138. }
  139. if (!q.num && !q.den) return 0xFFC00000;
  140. if (!q.num) return 0;
  141. if (!q.den) return 0x7F800000 | (q.num & 0x80000000);
  142. shift = 23 + av_log2(q.den) - av_log2(q.num);
  143. if (shift >= 0) n = av_rescale(q.num, 1LL<<shift, q.den);
  144. else n = av_rescale(q.num, 1, ((int64_t)q.den) << -shift);
  145. shift -= n >= (1<<24);
  146. shift += n < (1<<23);
  147. if (shift >= 0) n = av_rescale(q.num, 1LL<<shift, q.den);
  148. else n = av_rescale(q.num, 1, ((int64_t)q.den) << -shift);
  149. av_assert1(n < (1<<24));
  150. av_assert1(n >= (1<<23));
  151. return sign<<31 | (150-shift)<<23 | (n - (1<<23));
  152. }
  153. #ifdef TEST
  154. int main(void)
  155. {
  156. AVRational a,b,r;
  157. for (a.num = -2; a.num <= 2; a.num++) {
  158. for (a.den = -2; a.den <= 2; a.den++) {
  159. for (b.num = -2; b.num <= 2; b.num++) {
  160. for (b.den = -2; b.den <= 2; b.den++) {
  161. int c = av_cmp_q(a,b);
  162. double d = av_q2d(a) == av_q2d(b) ?
  163. 0 : (av_q2d(a) - av_q2d(b));
  164. if (d > 0) d = 1;
  165. else if (d < 0) d = -1;
  166. else if (d != d) d = INT_MIN;
  167. if (c != d)
  168. av_log(NULL, AV_LOG_ERROR, "%d/%d %d/%d, %d %f\n", a.num,
  169. a.den, b.num, b.den, c,d);
  170. r = av_sub_q(av_add_q(b,a), b);
  171. if(b.den && (r.num*a.den != a.num*r.den || !r.num != !a.num || !r.den != !a.den))
  172. av_log(NULL, AV_LOG_ERROR, "%d/%d ", r.num, r.den);
  173. }
  174. }
  175. }
  176. }
  177. for (a.num = 1; a.num <= 10; a.num++) {
  178. for (a.den = 1; a.den <= 10; a.den++) {
  179. if (av_gcd(a.num, a.den) > 1)
  180. continue;
  181. for (b.num = 1; b.num <= 10; b.num++) {
  182. for (b.den = 1; b.den <= 10; b.den++) {
  183. int start;
  184. if (av_gcd(b.num, b.den) > 1)
  185. continue;
  186. if (av_cmp_q(b, a) < 0)
  187. continue;
  188. for (start = 0; start < 10 ; start++) {
  189. int acc= start;
  190. int i;
  191. for (i = 0; i<100; i++) {
  192. int exact = start + av_rescale_q(i+1, b, a);
  193. acc = av_add_stable(a, acc, b, 1);
  194. if (FFABS(acc - exact) > 2) {
  195. av_log(NULL, AV_LOG_ERROR, "%d/%d %d/%d, %d %d\n", a.num,
  196. a.den, b.num, b.den, acc, exact);
  197. return 1;
  198. }
  199. }
  200. }
  201. }
  202. }
  203. }
  204. }
  205. for (a.den = 1; a.den < 0x100000000U/3; a.den*=3) {
  206. for (a.num = -1; a.num < (1<<27); a.num += 1 + a.num/100) {
  207. float f = av_int2float(av_q2intfloat(a));
  208. float f2 = av_q2d(a);
  209. if (fabs(f - f2) > fabs(f)/5000000) {
  210. av_log(NULL, AV_LOG_ERROR, "%d/%d %f %f\n", a.num,
  211. a.den, f, f2);
  212. return 1;
  213. }
  214. }
  215. }
  216. return 0;
  217. }
  218. #endif