You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1187 lines
44KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 cavlc bitstream decoding.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #define CABAC(h) 0
  27. #include "internal.h"
  28. #include "avcodec.h"
  29. #include "h264.h"
  30. #include "h264data.h" // FIXME FIXME FIXME
  31. #include "h264_mvpred.h"
  32. #include "golomb.h"
  33. #include "mpegutils.h"
  34. #include <assert.h>
  35. static const uint8_t golomb_to_inter_cbp_gray[16]={
  36. 0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9,
  37. };
  38. static const uint8_t golomb_to_intra4x4_cbp_gray[16]={
  39. 15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9,
  40. };
  41. static const uint8_t chroma_dc_coeff_token_len[4*5]={
  42. 2, 0, 0, 0,
  43. 6, 1, 0, 0,
  44. 6, 6, 3, 0,
  45. 6, 7, 7, 6,
  46. 6, 8, 8, 7,
  47. };
  48. static const uint8_t chroma_dc_coeff_token_bits[4*5]={
  49. 1, 0, 0, 0,
  50. 7, 1, 0, 0,
  51. 4, 6, 1, 0,
  52. 3, 3, 2, 5,
  53. 2, 3, 2, 0,
  54. };
  55. static const uint8_t chroma422_dc_coeff_token_len[4*9]={
  56. 1, 0, 0, 0,
  57. 7, 2, 0, 0,
  58. 7, 7, 3, 0,
  59. 9, 7, 7, 5,
  60. 9, 9, 7, 6,
  61. 10, 10, 9, 7,
  62. 11, 11, 10, 7,
  63. 12, 12, 11, 10,
  64. 13, 12, 12, 11,
  65. };
  66. static const uint8_t chroma422_dc_coeff_token_bits[4*9]={
  67. 1, 0, 0, 0,
  68. 15, 1, 0, 0,
  69. 14, 13, 1, 0,
  70. 7, 12, 11, 1,
  71. 6, 5, 10, 1,
  72. 7, 6, 4, 9,
  73. 7, 6, 5, 8,
  74. 7, 6, 5, 4,
  75. 7, 5, 4, 4,
  76. };
  77. static const uint8_t coeff_token_len[4][4*17]={
  78. {
  79. 1, 0, 0, 0,
  80. 6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6,
  81. 11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10,
  82. 14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14,
  83. 16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16,
  84. },
  85. {
  86. 2, 0, 0, 0,
  87. 6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4,
  88. 8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7,
  89. 12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12,
  90. 13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14,
  91. },
  92. {
  93. 4, 0, 0, 0,
  94. 6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4,
  95. 7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5,
  96. 8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8,
  97. 10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10,
  98. },
  99. {
  100. 6, 0, 0, 0,
  101. 6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6,
  102. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  103. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  104. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  105. }
  106. };
  107. static const uint8_t coeff_token_bits[4][4*17]={
  108. {
  109. 1, 0, 0, 0,
  110. 5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3,
  111. 7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4,
  112. 15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8,
  113. 15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8,
  114. },
  115. {
  116. 3, 0, 0, 0,
  117. 11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4,
  118. 4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4,
  119. 15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12,
  120. 11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4,
  121. },
  122. {
  123. 15, 0, 0, 0,
  124. 15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11,
  125. 11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13,
  126. 11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8,
  127. 13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2,
  128. },
  129. {
  130. 3, 0, 0, 0,
  131. 0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15,
  132. 16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
  133. 32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47,
  134. 48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63,
  135. }
  136. };
  137. static const uint8_t total_zeros_len[16][16]= {
  138. {1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},
  139. {3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},
  140. {4,3,3,3,4,4,3,3,4,5,5,6,5,6},
  141. {5,3,4,4,3,3,3,4,3,4,5,5,5},
  142. {4,4,4,3,3,3,3,3,4,5,4,5},
  143. {6,5,3,3,3,3,3,3,4,3,6},
  144. {6,5,3,3,3,2,3,4,3,6},
  145. {6,4,5,3,2,2,3,3,6},
  146. {6,6,4,2,2,3,2,5},
  147. {5,5,3,2,2,2,4},
  148. {4,4,3,3,1,3},
  149. {4,4,2,1,3},
  150. {3,3,1,2},
  151. {2,2,1},
  152. {1,1},
  153. };
  154. static const uint8_t total_zeros_bits[16][16]= {
  155. {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},
  156. {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},
  157. {5,7,6,5,4,3,4,3,2,3,2,1,1,0},
  158. {3,7,5,4,6,5,4,3,3,2,2,1,0},
  159. {5,4,3,7,6,5,4,3,2,1,1,0},
  160. {1,1,7,6,5,4,3,2,1,1,0},
  161. {1,1,5,4,3,3,2,1,1,0},
  162. {1,1,1,3,3,2,2,1,0},
  163. {1,0,1,3,2,1,1,1},
  164. {1,0,1,3,2,1,1},
  165. {0,1,1,2,1,3},
  166. {0,1,1,1,1},
  167. {0,1,1,1},
  168. {0,1,1},
  169. {0,1},
  170. };
  171. static const uint8_t chroma_dc_total_zeros_len[3][4]= {
  172. { 1, 2, 3, 3,},
  173. { 1, 2, 2, 0,},
  174. { 1, 1, 0, 0,},
  175. };
  176. static const uint8_t chroma_dc_total_zeros_bits[3][4]= {
  177. { 1, 1, 1, 0,},
  178. { 1, 1, 0, 0,},
  179. { 1, 0, 0, 0,},
  180. };
  181. static const uint8_t chroma422_dc_total_zeros_len[7][8]= {
  182. { 1, 3, 3, 4, 4, 4, 5, 5 },
  183. { 3, 2, 3, 3, 3, 3, 3 },
  184. { 3, 3, 2, 2, 3, 3 },
  185. { 3, 2, 2, 2, 3 },
  186. { 2, 2, 2, 2 },
  187. { 2, 2, 1 },
  188. { 1, 1 },
  189. };
  190. static const uint8_t chroma422_dc_total_zeros_bits[7][8]= {
  191. { 1, 2, 3, 2, 3, 1, 1, 0 },
  192. { 0, 1, 1, 4, 5, 6, 7 },
  193. { 0, 1, 1, 2, 6, 7 },
  194. { 6, 0, 1, 2, 7 },
  195. { 0, 1, 2, 3 },
  196. { 0, 1, 1 },
  197. { 0, 1 },
  198. };
  199. static const uint8_t run_len[7][16]={
  200. {1,1},
  201. {1,2,2},
  202. {2,2,2,2},
  203. {2,2,2,3,3},
  204. {2,2,3,3,3,3},
  205. {2,3,3,3,3,3,3},
  206. {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},
  207. };
  208. static const uint8_t run_bits[7][16]={
  209. {1,0},
  210. {1,1,0},
  211. {3,2,1,0},
  212. {3,2,1,1,0},
  213. {3,2,3,2,1,0},
  214. {3,0,1,3,2,5,4},
  215. {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},
  216. };
  217. static VLC coeff_token_vlc[4];
  218. static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
  219. static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
  220. static VLC chroma_dc_coeff_token_vlc;
  221. static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
  222. static const int chroma_dc_coeff_token_vlc_table_size = 256;
  223. static VLC chroma422_dc_coeff_token_vlc;
  224. static VLC_TYPE chroma422_dc_coeff_token_vlc_table[8192][2];
  225. static const int chroma422_dc_coeff_token_vlc_table_size = 8192;
  226. static VLC total_zeros_vlc[15];
  227. static VLC_TYPE total_zeros_vlc_tables[15][512][2];
  228. static const int total_zeros_vlc_tables_size = 512;
  229. static VLC chroma_dc_total_zeros_vlc[3];
  230. static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
  231. static const int chroma_dc_total_zeros_vlc_tables_size = 8;
  232. static VLC chroma422_dc_total_zeros_vlc[7];
  233. static VLC_TYPE chroma422_dc_total_zeros_vlc_tables[7][32][2];
  234. static const int chroma422_dc_total_zeros_vlc_tables_size = 32;
  235. static VLC run_vlc[6];
  236. static VLC_TYPE run_vlc_tables[6][8][2];
  237. static const int run_vlc_tables_size = 8;
  238. static VLC run7_vlc;
  239. static VLC_TYPE run7_vlc_table[96][2];
  240. static const int run7_vlc_table_size = 96;
  241. #define LEVEL_TAB_BITS 8
  242. static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
  243. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  244. #define CHROMA422_DC_COEFF_TOKEN_VLC_BITS 13
  245. #define COEFF_TOKEN_VLC_BITS 8
  246. #define TOTAL_ZEROS_VLC_BITS 9
  247. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  248. #define CHROMA422_DC_TOTAL_ZEROS_VLC_BITS 5
  249. #define RUN_VLC_BITS 3
  250. #define RUN7_VLC_BITS 6
  251. /**
  252. * Get the predicted number of non-zero coefficients.
  253. * @param n block index
  254. */
  255. static inline int pred_non_zero_count(const H264Context *h, H264SliceContext *sl, int n)
  256. {
  257. const int index8= scan8[n];
  258. const int left = sl->non_zero_count_cache[index8 - 1];
  259. const int top = sl->non_zero_count_cache[index8 - 8];
  260. int i= left + top;
  261. if(i<64) i= (i+1)>>1;
  262. ff_tlog(h->avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  263. return i&31;
  264. }
  265. static av_cold void init_cavlc_level_tab(void){
  266. int suffix_length;
  267. unsigned int i;
  268. for(suffix_length=0; suffix_length<7; suffix_length++){
  269. for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
  270. int prefix= LEVEL_TAB_BITS - av_log2(2*i);
  271. if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
  272. int level_code = (prefix << suffix_length) +
  273. (i >> (av_log2(i) - suffix_length)) - (1 << suffix_length);
  274. int mask = -(level_code&1);
  275. level_code = (((2 + level_code) >> 1) ^ mask) - mask;
  276. cavlc_level_tab[suffix_length][i][0]= level_code;
  277. cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
  278. }else if(prefix + 1 <= LEVEL_TAB_BITS){
  279. cavlc_level_tab[suffix_length][i][0]= prefix+100;
  280. cavlc_level_tab[suffix_length][i][1]= prefix + 1;
  281. }else{
  282. cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
  283. cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
  284. }
  285. }
  286. }
  287. }
  288. av_cold void ff_h264_decode_init_vlc(void){
  289. static int done = 0;
  290. if (!done) {
  291. int i;
  292. int offset;
  293. done = 1;
  294. chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
  295. chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
  296. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  297. &chroma_dc_coeff_token_len [0], 1, 1,
  298. &chroma_dc_coeff_token_bits[0], 1, 1,
  299. INIT_VLC_USE_NEW_STATIC);
  300. chroma422_dc_coeff_token_vlc.table = chroma422_dc_coeff_token_vlc_table;
  301. chroma422_dc_coeff_token_vlc.table_allocated = chroma422_dc_coeff_token_vlc_table_size;
  302. init_vlc(&chroma422_dc_coeff_token_vlc, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4*9,
  303. &chroma422_dc_coeff_token_len [0], 1, 1,
  304. &chroma422_dc_coeff_token_bits[0], 1, 1,
  305. INIT_VLC_USE_NEW_STATIC);
  306. offset = 0;
  307. for(i=0; i<4; i++){
  308. coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
  309. coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
  310. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  311. &coeff_token_len [i][0], 1, 1,
  312. &coeff_token_bits[i][0], 1, 1,
  313. INIT_VLC_USE_NEW_STATIC);
  314. offset += coeff_token_vlc_tables_size[i];
  315. }
  316. /*
  317. * This is a one time safety check to make sure that
  318. * the packed static coeff_token_vlc table sizes
  319. * were initialized correctly.
  320. */
  321. assert(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
  322. for(i=0; i<3; i++){
  323. chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
  324. chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
  325. init_vlc(&chroma_dc_total_zeros_vlc[i],
  326. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  327. &chroma_dc_total_zeros_len [i][0], 1, 1,
  328. &chroma_dc_total_zeros_bits[i][0], 1, 1,
  329. INIT_VLC_USE_NEW_STATIC);
  330. }
  331. for(i=0; i<7; i++){
  332. chroma422_dc_total_zeros_vlc[i].table = chroma422_dc_total_zeros_vlc_tables[i];
  333. chroma422_dc_total_zeros_vlc[i].table_allocated = chroma422_dc_total_zeros_vlc_tables_size;
  334. init_vlc(&chroma422_dc_total_zeros_vlc[i],
  335. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8,
  336. &chroma422_dc_total_zeros_len [i][0], 1, 1,
  337. &chroma422_dc_total_zeros_bits[i][0], 1, 1,
  338. INIT_VLC_USE_NEW_STATIC);
  339. }
  340. for(i=0; i<15; i++){
  341. total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
  342. total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
  343. init_vlc(&total_zeros_vlc[i],
  344. TOTAL_ZEROS_VLC_BITS, 16,
  345. &total_zeros_len [i][0], 1, 1,
  346. &total_zeros_bits[i][0], 1, 1,
  347. INIT_VLC_USE_NEW_STATIC);
  348. }
  349. for(i=0; i<6; i++){
  350. run_vlc[i].table = run_vlc_tables[i];
  351. run_vlc[i].table_allocated = run_vlc_tables_size;
  352. init_vlc(&run_vlc[i],
  353. RUN_VLC_BITS, 7,
  354. &run_len [i][0], 1, 1,
  355. &run_bits[i][0], 1, 1,
  356. INIT_VLC_USE_NEW_STATIC);
  357. }
  358. run7_vlc.table = run7_vlc_table,
  359. run7_vlc.table_allocated = run7_vlc_table_size;
  360. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  361. &run_len [6][0], 1, 1,
  362. &run_bits[6][0], 1, 1,
  363. INIT_VLC_USE_NEW_STATIC);
  364. init_cavlc_level_tab();
  365. }
  366. }
  367. static inline int get_level_prefix(GetBitContext *gb){
  368. unsigned int buf;
  369. int log;
  370. OPEN_READER(re, gb);
  371. UPDATE_CACHE(re, gb);
  372. buf=GET_CACHE(re, gb);
  373. log= 32 - av_log2(buf);
  374. #ifdef TRACE
  375. print_bin(buf>>(32-log), log);
  376. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  377. #endif
  378. LAST_SKIP_BITS(re, gb, log);
  379. CLOSE_READER(re, gb);
  380. return log-1;
  381. }
  382. /**
  383. * Decode a residual block.
  384. * @param n block index
  385. * @param scantable scantable
  386. * @param max_coeff number of coefficients in the block
  387. * @return <0 if an error occurred
  388. */
  389. static int decode_residual(const H264Context *h, H264SliceContext *sl,
  390. GetBitContext *gb, int16_t *block, int n,
  391. const uint8_t *scantable, const uint32_t *qmul,
  392. int max_coeff)
  393. {
  394. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  395. int level[16];
  396. int zeros_left, coeff_token, total_coeff, i, trailing_ones, run_before;
  397. //FIXME put trailing_onex into the context
  398. if(max_coeff <= 8){
  399. if (max_coeff == 4)
  400. coeff_token = get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  401. else
  402. coeff_token = get_vlc2(gb, chroma422_dc_coeff_token_vlc.table, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 1);
  403. total_coeff= coeff_token>>2;
  404. }else{
  405. if(n >= LUMA_DC_BLOCK_INDEX){
  406. total_coeff= pred_non_zero_count(h, sl, (n - LUMA_DC_BLOCK_INDEX)*16);
  407. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  408. total_coeff= coeff_token>>2;
  409. }else{
  410. total_coeff= pred_non_zero_count(h, sl, n);
  411. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  412. total_coeff= coeff_token>>2;
  413. }
  414. }
  415. sl->non_zero_count_cache[scan8[n]] = total_coeff;
  416. //FIXME set last_non_zero?
  417. if(total_coeff==0)
  418. return 0;
  419. if(total_coeff > (unsigned)max_coeff) {
  420. av_log(h->avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", sl->mb_x, sl->mb_y, total_coeff);
  421. return -1;
  422. }
  423. trailing_ones= coeff_token&3;
  424. ff_tlog(h->avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  425. assert(total_coeff<=16);
  426. i = show_bits(gb, 3);
  427. skip_bits(gb, trailing_ones);
  428. level[0] = 1-((i&4)>>1);
  429. level[1] = 1-((i&2) );
  430. level[2] = 1-((i&1)<<1);
  431. if(trailing_ones<total_coeff) {
  432. int mask, prefix;
  433. int suffix_length = total_coeff > 10 & trailing_ones < 3;
  434. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  435. int level_code= cavlc_level_tab[suffix_length][bitsi][0];
  436. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  437. if(level_code >= 100){
  438. prefix= level_code - 100;
  439. if(prefix == LEVEL_TAB_BITS)
  440. prefix += get_level_prefix(gb);
  441. //first coefficient has suffix_length equal to 0 or 1
  442. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  443. if(suffix_length)
  444. level_code= (prefix<<1) + get_bits1(gb); //part
  445. else
  446. level_code= prefix; //part
  447. }else if(prefix==14){
  448. if(suffix_length)
  449. level_code= (prefix<<1) + get_bits1(gb); //part
  450. else
  451. level_code= prefix + get_bits(gb, 4); //part
  452. }else{
  453. level_code= 30 + get_bits(gb, prefix-3); //part
  454. if(prefix>=16){
  455. if(prefix > 25+3){
  456. av_log(h->avctx, AV_LOG_ERROR, "Invalid level prefix\n");
  457. return -1;
  458. }
  459. level_code += (1<<(prefix-3))-4096;
  460. }
  461. }
  462. if(trailing_ones < 3) level_code += 2;
  463. suffix_length = 2;
  464. mask= -(level_code&1);
  465. level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
  466. }else{
  467. level_code += ((level_code>>31)|1) & -(trailing_ones < 3);
  468. suffix_length = 1 + (level_code + 3U > 6U);
  469. level[trailing_ones]= level_code;
  470. }
  471. //remaining coefficients have suffix_length > 0
  472. for(i=trailing_ones+1;i<total_coeff;i++) {
  473. static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX };
  474. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  475. level_code= cavlc_level_tab[suffix_length][bitsi][0];
  476. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  477. if(level_code >= 100){
  478. prefix= level_code - 100;
  479. if(prefix == LEVEL_TAB_BITS){
  480. prefix += get_level_prefix(gb);
  481. }
  482. if(prefix<15){
  483. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  484. }else{
  485. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  486. if(prefix>=16)
  487. level_code += (1<<(prefix-3))-4096;
  488. }
  489. mask= -(level_code&1);
  490. level_code= (((2+level_code)>>1) ^ mask) - mask;
  491. }
  492. level[i]= level_code;
  493. suffix_length+= suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length];
  494. }
  495. }
  496. if(total_coeff == max_coeff)
  497. zeros_left=0;
  498. else{
  499. if (max_coeff <= 8) {
  500. if (max_coeff == 4)
  501. zeros_left = get_vlc2(gb, chroma_dc_total_zeros_vlc[total_coeff - 1].table,
  502. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  503. else
  504. zeros_left = get_vlc2(gb, chroma422_dc_total_zeros_vlc[total_coeff - 1].table,
  505. CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 1);
  506. } else {
  507. zeros_left= get_vlc2(gb, total_zeros_vlc[total_coeff - 1].table, TOTAL_ZEROS_VLC_BITS, 1);
  508. }
  509. }
  510. #define STORE_BLOCK(type) \
  511. scantable += zeros_left + total_coeff - 1; \
  512. if(n >= LUMA_DC_BLOCK_INDEX){ \
  513. ((type*)block)[*scantable] = level[0]; \
  514. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  515. if(zeros_left < 7) \
  516. run_before= get_vlc2(gb, run_vlc[zeros_left - 1].table, RUN_VLC_BITS, 1); \
  517. else \
  518. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  519. zeros_left -= run_before; \
  520. scantable -= 1 + run_before; \
  521. ((type*)block)[*scantable]= level[i]; \
  522. } \
  523. for(;i<total_coeff;i++) { \
  524. scantable--; \
  525. ((type*)block)[*scantable]= level[i]; \
  526. } \
  527. }else{ \
  528. ((type*)block)[*scantable] = ((int)(level[0] * qmul[*scantable] + 32))>>6; \
  529. for(i=1;i<total_coeff && zeros_left > 0;i++) { \
  530. if(zeros_left < 7) \
  531. run_before= get_vlc2(gb, run_vlc[zeros_left - 1].table, RUN_VLC_BITS, 1); \
  532. else \
  533. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2); \
  534. zeros_left -= run_before; \
  535. scantable -= 1 + run_before; \
  536. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  537. } \
  538. for(;i<total_coeff;i++) { \
  539. scantable--; \
  540. ((type*)block)[*scantable]= ((int)(level[i] * qmul[*scantable] + 32))>>6; \
  541. } \
  542. }
  543. if (zeros_left < 0) {
  544. av_log(h->avctx, AV_LOG_ERROR,
  545. "negative number of zero coeffs at %d %d\n", sl->mb_x, sl->mb_y);
  546. return AVERROR_INVALIDDATA;
  547. }
  548. if (h->pixel_shift) {
  549. STORE_BLOCK(int32_t)
  550. } else {
  551. STORE_BLOCK(int16_t)
  552. }
  553. return 0;
  554. }
  555. static av_always_inline
  556. int decode_luma_residual(const H264Context *h, H264SliceContext *sl,
  557. GetBitContext *gb, const uint8_t *scan,
  558. const uint8_t *scan8x8, int pixel_shift,
  559. int mb_type, int cbp, int p)
  560. {
  561. int i4x4, i8x8;
  562. int qscale = p == 0 ? sl->qscale : sl->chroma_qp[p - 1];
  563. if(IS_INTRA16x16(mb_type)){
  564. AV_ZERO128(sl->mb_luma_dc[p]+0);
  565. AV_ZERO128(sl->mb_luma_dc[p]+8);
  566. AV_ZERO128(sl->mb_luma_dc[p]+16);
  567. AV_ZERO128(sl->mb_luma_dc[p]+24);
  568. if (decode_residual(h, sl, gb, sl->mb_luma_dc[p], LUMA_DC_BLOCK_INDEX + p, scan, NULL, 16) < 0) {
  569. return -1; //FIXME continue if partitioned and other return -1 too
  570. }
  571. assert((cbp&15) == 0 || (cbp&15) == 15);
  572. if(cbp&15){
  573. for(i8x8=0; i8x8<4; i8x8++){
  574. for(i4x4=0; i4x4<4; i4x4++){
  575. const int index= i4x4 + 4*i8x8 + p*16;
  576. if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift),
  577. index, scan + 1, h->dequant4_coeff[p][qscale], 15) < 0 ){
  578. return -1;
  579. }
  580. }
  581. }
  582. return 0xf;
  583. }else{
  584. fill_rectangle(&sl->non_zero_count_cache[scan8[p*16]], 4, 4, 8, 0, 1);
  585. return 0;
  586. }
  587. }else{
  588. int cqm = (IS_INTRA( mb_type ) ? 0:3)+p;
  589. /* For CAVLC 4:4:4, we need to keep track of the luma 8x8 CBP for deblocking nnz purposes. */
  590. int new_cbp = 0;
  591. for(i8x8=0; i8x8<4; i8x8++){
  592. if(cbp & (1<<i8x8)){
  593. if(IS_8x8DCT(mb_type)){
  594. int16_t *buf = &sl->mb[64*i8x8+256*p << pixel_shift];
  595. uint8_t *nnz;
  596. for(i4x4=0; i4x4<4; i4x4++){
  597. const int index= i4x4 + 4*i8x8 + p*16;
  598. if( decode_residual(h, sl, gb, buf, index, scan8x8+16*i4x4,
  599. h->dequant8_coeff[cqm][qscale], 16) < 0 )
  600. return -1;
  601. }
  602. nnz = &sl->non_zero_count_cache[scan8[4 * i8x8 + p * 16]];
  603. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  604. new_cbp |= !!nnz[0] << i8x8;
  605. }else{
  606. for(i4x4=0; i4x4<4; i4x4++){
  607. const int index= i4x4 + 4*i8x8 + p*16;
  608. if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift), index,
  609. scan, h->dequant4_coeff[cqm][qscale], 16) < 0 ){
  610. return -1;
  611. }
  612. new_cbp |= sl->non_zero_count_cache[scan8[index]] << i8x8;
  613. }
  614. }
  615. }else{
  616. uint8_t * const nnz = &sl->non_zero_count_cache[scan8[4 * i8x8 + p * 16]];
  617. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  618. }
  619. }
  620. return new_cbp;
  621. }
  622. }
  623. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
  624. {
  625. int mb_xy;
  626. int partition_count;
  627. unsigned int mb_type, cbp;
  628. int dct8x8_allowed= h->pps.transform_8x8_mode;
  629. int decode_chroma = h->sps.chroma_format_idc == 1 || h->sps.chroma_format_idc == 2;
  630. const int pixel_shift = h->pixel_shift;
  631. mb_xy = sl->mb_xy = sl->mb_x + sl->mb_y*h->mb_stride;
  632. ff_tlog(h->avctx, "pic:%d mb:%d/%d\n", h->frame_num, sl->mb_x, sl->mb_y);
  633. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  634. down the code */
  635. if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
  636. if (sl->mb_skip_run == -1)
  637. sl->mb_skip_run = get_ue_golomb(&sl->gb);
  638. if (sl->mb_skip_run--) {
  639. if (FRAME_MBAFF(h) && (sl->mb_y & 1) == 0) {
  640. if (sl->mb_skip_run == 0)
  641. sl->mb_mbaff = sl->mb_field_decoding_flag = get_bits1(&sl->gb);
  642. }
  643. decode_mb_skip(h, sl);
  644. return 0;
  645. }
  646. }
  647. if (FRAME_MBAFF(h)) {
  648. if ((sl->mb_y & 1) == 0)
  649. sl->mb_mbaff = sl->mb_field_decoding_flag = get_bits1(&sl->gb);
  650. }
  651. sl->prev_mb_skipped = 0;
  652. mb_type= get_ue_golomb(&sl->gb);
  653. if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
  654. if(mb_type < 23){
  655. partition_count= b_mb_type_info[mb_type].partition_count;
  656. mb_type= b_mb_type_info[mb_type].type;
  657. }else{
  658. mb_type -= 23;
  659. goto decode_intra_mb;
  660. }
  661. } else if (sl->slice_type_nos == AV_PICTURE_TYPE_P) {
  662. if(mb_type < 5){
  663. partition_count= p_mb_type_info[mb_type].partition_count;
  664. mb_type= p_mb_type_info[mb_type].type;
  665. }else{
  666. mb_type -= 5;
  667. goto decode_intra_mb;
  668. }
  669. }else{
  670. assert(sl->slice_type_nos == AV_PICTURE_TYPE_I);
  671. if (sl->slice_type == AV_PICTURE_TYPE_SI && mb_type)
  672. mb_type--;
  673. decode_intra_mb:
  674. if(mb_type > 25){
  675. av_log(h->avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_picture_type_char(sl->slice_type), sl->mb_x, sl->mb_y);
  676. return -1;
  677. }
  678. partition_count=0;
  679. cbp= i_mb_type_info[mb_type].cbp;
  680. sl->intra16x16_pred_mode = i_mb_type_info[mb_type].pred_mode;
  681. mb_type= i_mb_type_info[mb_type].type;
  682. }
  683. if (MB_FIELD(sl))
  684. mb_type |= MB_TYPE_INTERLACED;
  685. h->slice_table[mb_xy] = sl->slice_num;
  686. if(IS_INTRA_PCM(mb_type)){
  687. const int mb_size = ff_h264_mb_sizes[h->sps.chroma_format_idc] *
  688. h->sps.bit_depth_luma;
  689. // We assume these blocks are very rare so we do not optimize it.
  690. sl->intra_pcm_ptr = align_get_bits(&sl->gb);
  691. if (get_bits_left(&sl->gb) < mb_size) {
  692. av_log(h->avctx, AV_LOG_ERROR, "Not enough data for an intra PCM block.\n");
  693. return AVERROR_INVALIDDATA;
  694. }
  695. skip_bits_long(&sl->gb, mb_size);
  696. // In deblocking, the quantizer is 0
  697. h->cur_pic.qscale_table[mb_xy] = 0;
  698. // All coeffs are present
  699. memset(h->non_zero_count[mb_xy], 16, 48);
  700. h->cur_pic.mb_type[mb_xy] = mb_type;
  701. return 0;
  702. }
  703. fill_decode_neighbors(h, sl, mb_type);
  704. fill_decode_caches(h, sl, mb_type);
  705. //mb_pred
  706. if(IS_INTRA(mb_type)){
  707. int pred_mode;
  708. // init_top_left_availability(h);
  709. if(IS_INTRA4x4(mb_type)){
  710. int i;
  711. int di = 1;
  712. if(dct8x8_allowed && get_bits1(&sl->gb)){
  713. mb_type |= MB_TYPE_8x8DCT;
  714. di = 4;
  715. }
  716. // fill_intra4x4_pred_table(h);
  717. for(i=0; i<16; i+=di){
  718. int mode = pred_intra_mode(h, sl, i);
  719. if(!get_bits1(&sl->gb)){
  720. const int rem_mode= get_bits(&sl->gb, 3);
  721. mode = rem_mode + (rem_mode >= mode);
  722. }
  723. if(di==4)
  724. fill_rectangle(&sl->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1);
  725. else
  726. sl->intra4x4_pred_mode_cache[scan8[i]] = mode;
  727. }
  728. write_back_intra_pred_mode(h, sl);
  729. if (ff_h264_check_intra4x4_pred_mode(h, sl) < 0)
  730. return -1;
  731. }else{
  732. sl->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, sl, sl->intra16x16_pred_mode, 0);
  733. if (sl->intra16x16_pred_mode < 0)
  734. return -1;
  735. }
  736. if(decode_chroma){
  737. pred_mode= ff_h264_check_intra_pred_mode(h, sl, get_ue_golomb_31(&sl->gb), 1);
  738. if(pred_mode < 0)
  739. return -1;
  740. sl->chroma_pred_mode = pred_mode;
  741. } else {
  742. sl->chroma_pred_mode = DC_128_PRED8x8;
  743. }
  744. }else if(partition_count==4){
  745. int i, j, sub_partition_count[4], list, ref[2][4];
  746. if (sl->slice_type_nos == AV_PICTURE_TYPE_B) {
  747. for(i=0; i<4; i++){
  748. sl->sub_mb_type[i]= get_ue_golomb_31(&sl->gb);
  749. if(sl->sub_mb_type[i] >=13){
  750. av_log(h->avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", sl->sub_mb_type[i], sl->mb_x, sl->mb_y);
  751. return -1;
  752. }
  753. sub_partition_count[i]= b_sub_mb_type_info[ sl->sub_mb_type[i] ].partition_count;
  754. sl->sub_mb_type[i]= b_sub_mb_type_info[ sl->sub_mb_type[i] ].type;
  755. }
  756. if( IS_DIRECT(sl->sub_mb_type[0]|sl->sub_mb_type[1]|sl->sub_mb_type[2]|sl->sub_mb_type[3])) {
  757. ff_h264_pred_direct_motion(h, sl, &mb_type);
  758. sl->ref_cache[0][scan8[4]] =
  759. sl->ref_cache[1][scan8[4]] =
  760. sl->ref_cache[0][scan8[12]] =
  761. sl->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  762. }
  763. }else{
  764. assert(sl->slice_type_nos == AV_PICTURE_TYPE_P); //FIXME SP correct ?
  765. for(i=0; i<4; i++){
  766. sl->sub_mb_type[i]= get_ue_golomb_31(&sl->gb);
  767. if(sl->sub_mb_type[i] >=4){
  768. av_log(h->avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", sl->sub_mb_type[i], sl->mb_x, sl->mb_y);
  769. return -1;
  770. }
  771. sub_partition_count[i]= p_sub_mb_type_info[ sl->sub_mb_type[i] ].partition_count;
  772. sl->sub_mb_type[i]= p_sub_mb_type_info[ sl->sub_mb_type[i] ].type;
  773. }
  774. }
  775. for (list = 0; list < sl->list_count; list++) {
  776. int ref_count = IS_REF0(mb_type) ? 1 : sl->ref_count[list] << MB_MBAFF(sl);
  777. for(i=0; i<4; i++){
  778. if(IS_DIRECT(sl->sub_mb_type[i])) continue;
  779. if(IS_DIR(sl->sub_mb_type[i], 0, list)){
  780. unsigned int tmp;
  781. if(ref_count == 1){
  782. tmp= 0;
  783. }else if(ref_count == 2){
  784. tmp= get_bits1(&sl->gb)^1;
  785. }else{
  786. tmp= get_ue_golomb_31(&sl->gb);
  787. if(tmp>=ref_count){
  788. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  789. return -1;
  790. }
  791. }
  792. ref[list][i]= tmp;
  793. }else{
  794. //FIXME
  795. ref[list][i] = -1;
  796. }
  797. }
  798. }
  799. if(dct8x8_allowed)
  800. dct8x8_allowed = get_dct8x8_allowed(h, sl);
  801. for (list = 0; list < sl->list_count; list++) {
  802. for(i=0; i<4; i++){
  803. if(IS_DIRECT(sl->sub_mb_type[i])) {
  804. sl->ref_cache[list][ scan8[4*i] ] = sl->ref_cache[list][ scan8[4*i]+1 ];
  805. continue;
  806. }
  807. sl->ref_cache[list][ scan8[4*i] ]=sl->ref_cache[list][ scan8[4*i]+1 ]=
  808. sl->ref_cache[list][ scan8[4*i]+8 ]=sl->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  809. if(IS_DIR(sl->sub_mb_type[i], 0, list)){
  810. const int sub_mb_type= sl->sub_mb_type[i];
  811. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  812. for(j=0; j<sub_partition_count[i]; j++){
  813. int mx, my;
  814. const int index= 4*i + block_width*j;
  815. int16_t (* mv_cache)[2]= &sl->mv_cache[list][ scan8[index] ];
  816. pred_motion(h, sl, index, block_width, list, sl->ref_cache[list][ scan8[index] ], &mx, &my);
  817. mx += get_se_golomb(&sl->gb);
  818. my += get_se_golomb(&sl->gb);
  819. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  820. if(IS_SUB_8X8(sub_mb_type)){
  821. mv_cache[ 1 ][0]=
  822. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  823. mv_cache[ 1 ][1]=
  824. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  825. }else if(IS_SUB_8X4(sub_mb_type)){
  826. mv_cache[ 1 ][0]= mx;
  827. mv_cache[ 1 ][1]= my;
  828. }else if(IS_SUB_4X8(sub_mb_type)){
  829. mv_cache[ 8 ][0]= mx;
  830. mv_cache[ 8 ][1]= my;
  831. }
  832. mv_cache[ 0 ][0]= mx;
  833. mv_cache[ 0 ][1]= my;
  834. }
  835. }else{
  836. uint32_t *p= (uint32_t *)&sl->mv_cache[list][ scan8[4*i] ][0];
  837. p[0] = p[1]=
  838. p[8] = p[9]= 0;
  839. }
  840. }
  841. }
  842. }else if(IS_DIRECT(mb_type)){
  843. ff_h264_pred_direct_motion(h, sl, &mb_type);
  844. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  845. }else{
  846. int list, mx, my, i;
  847. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  848. if(IS_16X16(mb_type)){
  849. for (list = 0; list < sl->list_count; list++) {
  850. unsigned int val;
  851. if(IS_DIR(mb_type, 0, list)){
  852. int rc = sl->ref_count[list] << MB_MBAFF(sl);
  853. if (rc == 1) {
  854. val= 0;
  855. } else if (rc == 2) {
  856. val= get_bits1(&sl->gb)^1;
  857. }else{
  858. val= get_ue_golomb_31(&sl->gb);
  859. if (val >= rc) {
  860. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  861. return -1;
  862. }
  863. }
  864. fill_rectangle(&sl->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  865. }
  866. }
  867. for (list = 0; list < sl->list_count; list++) {
  868. if(IS_DIR(mb_type, 0, list)){
  869. pred_motion(h, sl, 0, 4, list, sl->ref_cache[list][ scan8[0] ], &mx, &my);
  870. mx += get_se_golomb(&sl->gb);
  871. my += get_se_golomb(&sl->gb);
  872. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  873. fill_rectangle(sl->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  874. }
  875. }
  876. }
  877. else if(IS_16X8(mb_type)){
  878. for (list = 0; list < sl->list_count; list++) {
  879. for(i=0; i<2; i++){
  880. unsigned int val;
  881. if(IS_DIR(mb_type, i, list)){
  882. int rc = sl->ref_count[list] << MB_MBAFF(sl);
  883. if (rc == 1) {
  884. val= 0;
  885. } else if (rc == 2) {
  886. val= get_bits1(&sl->gb)^1;
  887. }else{
  888. val= get_ue_golomb_31(&sl->gb);
  889. if (val >= rc) {
  890. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  891. return -1;
  892. }
  893. }
  894. }else
  895. val= LIST_NOT_USED&0xFF;
  896. fill_rectangle(&sl->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  897. }
  898. }
  899. for (list = 0; list < sl->list_count; list++) {
  900. for(i=0; i<2; i++){
  901. unsigned int val;
  902. if(IS_DIR(mb_type, i, list)){
  903. pred_16x8_motion(h, sl, 8*i, list, sl->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  904. mx += get_se_golomb(&sl->gb);
  905. my += get_se_golomb(&sl->gb);
  906. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  907. val= pack16to32(mx,my);
  908. }else
  909. val=0;
  910. fill_rectangle(sl->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  911. }
  912. }
  913. }else{
  914. assert(IS_8X16(mb_type));
  915. for (list = 0; list < sl->list_count; list++) {
  916. for(i=0; i<2; i++){
  917. unsigned int val;
  918. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  919. int rc = sl->ref_count[list] << MB_MBAFF(sl);
  920. if (rc == 1) {
  921. val= 0;
  922. } else if (rc == 2) {
  923. val= get_bits1(&sl->gb)^1;
  924. }else{
  925. val= get_ue_golomb_31(&sl->gb);
  926. if (val >= rc) {
  927. av_log(h->avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  928. return -1;
  929. }
  930. }
  931. }else
  932. val= LIST_NOT_USED&0xFF;
  933. fill_rectangle(&sl->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  934. }
  935. }
  936. for (list = 0; list < sl->list_count; list++) {
  937. for(i=0; i<2; i++){
  938. unsigned int val;
  939. if(IS_DIR(mb_type, i, list)){
  940. pred_8x16_motion(h, sl, i*4, list, sl->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  941. mx += get_se_golomb(&sl->gb);
  942. my += get_se_golomb(&sl->gb);
  943. ff_tlog(h->avctx, "final mv:%d %d\n", mx, my);
  944. val= pack16to32(mx,my);
  945. }else
  946. val=0;
  947. fill_rectangle(sl->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  948. }
  949. }
  950. }
  951. }
  952. if(IS_INTER(mb_type))
  953. write_back_motion(h, sl, mb_type);
  954. if(!IS_INTRA16x16(mb_type)){
  955. cbp= get_ue_golomb(&sl->gb);
  956. if(decode_chroma){
  957. if(cbp > 47){
  958. av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, sl->mb_x, sl->mb_y);
  959. return -1;
  960. }
  961. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp];
  962. else cbp= golomb_to_inter_cbp [cbp];
  963. }else{
  964. if(cbp > 15){
  965. av_log(h->avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, sl->mb_x, sl->mb_y);
  966. return -1;
  967. }
  968. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
  969. else cbp= golomb_to_inter_cbp_gray[cbp];
  970. }
  971. }
  972. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  973. mb_type |= MB_TYPE_8x8DCT*get_bits1(&sl->gb);
  974. }
  975. sl->cbp=
  976. h->cbp_table[mb_xy]= cbp;
  977. h->cur_pic.mb_type[mb_xy] = mb_type;
  978. if(cbp || IS_INTRA16x16(mb_type)){
  979. int i4x4, i8x8, chroma_idx;
  980. int dquant;
  981. int ret;
  982. GetBitContext *gb = &sl->gb;
  983. const uint8_t *scan, *scan8x8;
  984. const int max_qp = 51 + 6*(h->sps.bit_depth_luma-8);
  985. if(IS_INTERLACED(mb_type)){
  986. scan8x8 = sl->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  987. scan = sl->qscale ? h->field_scan : h->field_scan_q0;
  988. }else{
  989. scan8x8 = sl->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  990. scan = sl->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  991. }
  992. dquant= get_se_golomb(&sl->gb);
  993. sl->qscale += dquant;
  994. if (((unsigned)sl->qscale) > max_qp){
  995. if (sl->qscale < 0) sl->qscale += max_qp + 1;
  996. else sl->qscale -= max_qp+1;
  997. if (((unsigned)sl->qscale) > max_qp){
  998. av_log(h->avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, sl->mb_x, sl->mb_y);
  999. return -1;
  1000. }
  1001. }
  1002. sl->chroma_qp[0] = get_chroma_qp(h, 0, sl->qscale);
  1003. sl->chroma_qp[1] = get_chroma_qp(h, 1, sl->qscale);
  1004. if ((ret = decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 0)) < 0 ) {
  1005. return -1;
  1006. }
  1007. h->cbp_table[mb_xy] |= ret << 12;
  1008. if (CHROMA444(h)) {
  1009. if (decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 1) < 0 ) {
  1010. return -1;
  1011. }
  1012. if (decode_luma_residual(h, sl, gb, scan, scan8x8, pixel_shift, mb_type, cbp, 2) < 0 ) {
  1013. return -1;
  1014. }
  1015. } else if (CHROMA422(h)) {
  1016. if(cbp&0x30){
  1017. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  1018. if (decode_residual(h, sl, gb, sl->mb + ((256 + 16*16*chroma_idx) << pixel_shift),
  1019. CHROMA_DC_BLOCK_INDEX+chroma_idx, chroma422_dc_scan,
  1020. NULL, 8) < 0) {
  1021. return -1;
  1022. }
  1023. }
  1024. if(cbp&0x20){
  1025. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  1026. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][sl->chroma_qp[chroma_idx]];
  1027. int16_t *mb = sl->mb + (16*(16 + 16*chroma_idx) << pixel_shift);
  1028. for (i8x8 = 0; i8x8 < 2; i8x8++) {
  1029. for (i4x4 = 0; i4x4 < 4; i4x4++) {
  1030. const int index = 16 + 16*chroma_idx + 8*i8x8 + i4x4;
  1031. if (decode_residual(h, sl, gb, mb, index, scan + 1, qmul, 15) < 0)
  1032. return -1;
  1033. mb += 16 << pixel_shift;
  1034. }
  1035. }
  1036. }
  1037. }else{
  1038. fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1039. fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1040. }
  1041. } else /* yuv420 */ {
  1042. if(cbp&0x30){
  1043. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  1044. if( decode_residual(h, sl, gb, sl->mb + ((256 + 16*16*chroma_idx) << pixel_shift), CHROMA_DC_BLOCK_INDEX+chroma_idx, chroma_dc_scan, NULL, 4) < 0){
  1045. return -1;
  1046. }
  1047. }
  1048. if(cbp&0x20){
  1049. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  1050. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][sl->chroma_qp[chroma_idx]];
  1051. for(i4x4=0; i4x4<4; i4x4++){
  1052. const int index= 16 + 16*chroma_idx + i4x4;
  1053. if( decode_residual(h, sl, gb, sl->mb + (16*index << pixel_shift), index, scan + 1, qmul, 15) < 0){
  1054. return -1;
  1055. }
  1056. }
  1057. }
  1058. }else{
  1059. fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1060. fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1061. }
  1062. }
  1063. }else{
  1064. fill_rectangle(&sl->non_zero_count_cache[scan8[ 0]], 4, 4, 8, 0, 1);
  1065. fill_rectangle(&sl->non_zero_count_cache[scan8[16]], 4, 4, 8, 0, 1);
  1066. fill_rectangle(&sl->non_zero_count_cache[scan8[32]], 4, 4, 8, 0, 1);
  1067. }
  1068. h->cur_pic.qscale_table[mb_xy] = sl->qscale;
  1069. write_back_non_zero_count(h, sl);
  1070. return 0;
  1071. }