You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1163 lines
39KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. * Copyright (c) 2011 MirriAd Ltd
  5. *
  6. * VC-3 encoder funded by the British Broadcasting Corporation
  7. * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/internal.h"
  27. #include "libavutil/opt.h"
  28. #include "libavutil/timer.h"
  29. #include "avcodec.h"
  30. #include "blockdsp.h"
  31. #include "fdctdsp.h"
  32. #include "internal.h"
  33. #include "mpegvideo.h"
  34. #include "pixblockdsp.h"
  35. #include "dnxhdenc.h"
  36. // The largest value that will not lead to overflow for 10bit samples.
  37. #define DNX10BIT_QMAT_SHIFT 18
  38. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  39. #define LAMBDA_FRAC_BITS 10
  40. #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
  41. static const AVOption options[] = {
  42. { "nitris_compat", "encode with Avid Nitris compatibility",
  43. offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, VE },
  44. { "ibias", "intra quant bias",
  45. offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
  46. { .i64 = FF_DEFAULT_QUANT_BIAS }, INT_MIN, INT_MAX, VE },
  47. { NULL }
  48. };
  49. static const AVClass class = {
  50. "dnxhd",
  51. av_default_item_name,
  52. options,
  53. LIBAVUTIL_VERSION_INT
  54. };
  55. static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *restrict block,
  56. const uint8_t *pixels,
  57. ptrdiff_t line_size)
  58. {
  59. int i;
  60. for (i = 0; i < 4; i++) {
  61. block[0] = pixels[0];
  62. block[1] = pixels[1];
  63. block[2] = pixels[2];
  64. block[3] = pixels[3];
  65. block[4] = pixels[4];
  66. block[5] = pixels[5];
  67. block[6] = pixels[6];
  68. block[7] = pixels[7];
  69. pixels += line_size;
  70. block += 8;
  71. }
  72. memcpy(block, block - 8, sizeof(*block) * 8);
  73. memcpy(block + 8, block - 16, sizeof(*block) * 8);
  74. memcpy(block + 16, block - 24, sizeof(*block) * 8);
  75. memcpy(block + 24, block - 32, sizeof(*block) * 8);
  76. }
  77. static av_always_inline
  78. void dnxhd_10bit_get_pixels_8x4_sym(int16_t *restrict block,
  79. const uint8_t *pixels,
  80. ptrdiff_t line_size)
  81. {
  82. int i;
  83. block += 32;
  84. for (i = 0; i < 4; i++) {
  85. memcpy(block + i * 8, pixels + i * line_size, 8 * sizeof(*block));
  86. memcpy(block - (i + 1) * 8, pixels + i * line_size, 8 * sizeof(*block));
  87. }
  88. }
  89. static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
  90. int n, int qscale, int *overflow)
  91. {
  92. const uint8_t *scantable= ctx->intra_scantable.scantable;
  93. const int *qmat = ctx->q_intra_matrix[qscale];
  94. int last_non_zero = 0;
  95. int i;
  96. ctx->fdsp.fdct(block);
  97. // Divide by 4 with rounding, to compensate scaling of DCT coefficients
  98. block[0] = (block[0] + 2) >> 2;
  99. for (i = 1; i < 64; ++i) {
  100. int j = scantable[i];
  101. int sign = FF_SIGNBIT(block[j]);
  102. int level = (block[j] ^ sign) - sign;
  103. level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
  104. block[j] = (level ^ sign) - sign;
  105. if (level)
  106. last_non_zero = i;
  107. }
  108. return last_non_zero;
  109. }
  110. static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
  111. {
  112. int i, j, level, run;
  113. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  114. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes,
  115. max_level * 4 * sizeof(*ctx->vlc_codes), fail);
  116. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits,
  117. max_level * 4 * sizeof(*ctx->vlc_bits), fail);
  118. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes,
  119. 63 * 2, fail);
  120. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits,
  121. 63, fail);
  122. ctx->vlc_codes += max_level * 2;
  123. ctx->vlc_bits += max_level * 2;
  124. for (level = -max_level; level < max_level; level++) {
  125. for (run = 0; run < 2; run++) {
  126. int index = (level << 1) | run;
  127. int sign, offset = 0, alevel = level;
  128. MASK_ABS(sign, alevel);
  129. if (alevel > 64) {
  130. offset = (alevel - 1) >> 6;
  131. alevel -= offset << 6;
  132. }
  133. for (j = 0; j < 257; j++) {
  134. if (ctx->cid_table->ac_level[j] == alevel &&
  135. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  136. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  137. assert(!ctx->vlc_codes[index]);
  138. if (alevel) {
  139. ctx->vlc_codes[index] =
  140. (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
  141. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
  142. } else {
  143. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  144. ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j];
  145. }
  146. break;
  147. }
  148. }
  149. assert(!alevel || j < 257);
  150. if (offset) {
  151. ctx->vlc_codes[index] =
  152. (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
  153. ctx->vlc_bits[index] += ctx->cid_table->index_bits;
  154. }
  155. }
  156. }
  157. for (i = 0; i < 62; i++) {
  158. int run = ctx->cid_table->run[i];
  159. assert(run < 63);
  160. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  161. ctx->run_bits[run] = ctx->cid_table->run_bits[i];
  162. }
  163. return 0;
  164. fail:
  165. return AVERROR(ENOMEM);
  166. }
  167. static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  168. {
  169. // init first elem to 1 to avoid div by 0 in convert_matrix
  170. uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
  171. int qscale, i;
  172. const uint8_t *luma_weight_table = ctx->cid_table->luma_weight;
  173. const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
  174. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l,
  175. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  176. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c,
  177. (ctx->m.avctx->qmax + 1) * 64 * sizeof(int), fail);
  178. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16,
  179. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  180. fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16,
  182. (ctx->m.avctx->qmax + 1) * 64 * 2 * sizeof(uint16_t),
  183. fail);
  184. if (ctx->cid_table->bit_depth == 8) {
  185. for (i = 1; i < 64; i++) {
  186. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  187. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  188. }
  189. ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
  190. weight_matrix, ctx->intra_quant_bias, 1,
  191. ctx->m.avctx->qmax, 1);
  192. for (i = 1; i < 64; i++) {
  193. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  194. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  195. }
  196. ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
  197. weight_matrix, ctx->intra_quant_bias, 1,
  198. ctx->m.avctx->qmax, 1);
  199. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  200. for (i = 0; i < 64; i++) {
  201. ctx->qmatrix_l[qscale][i] <<= 2;
  202. ctx->qmatrix_c[qscale][i] <<= 2;
  203. ctx->qmatrix_l16[qscale][0][i] <<= 2;
  204. ctx->qmatrix_l16[qscale][1][i] <<= 2;
  205. ctx->qmatrix_c16[qscale][0][i] <<= 2;
  206. ctx->qmatrix_c16[qscale][1][i] <<= 2;
  207. }
  208. }
  209. } else {
  210. // 10-bit
  211. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  212. for (i = 1; i < 64; i++) {
  213. int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
  214. /* The quantization formula from the VC-3 standard is:
  215. * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
  216. * (qscale * weight_table[i]))
  217. * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
  218. * The s factor compensates scaling of DCT coefficients done by
  219. * the DCT routines, and therefore is not present in standard.
  220. * It's 8 for 8-bit samples and 4 for 10-bit ones.
  221. * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
  222. * ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
  223. * (qscale * weight_table[i])
  224. * For 10-bit samples, p / s == 2 */
  225. ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  226. (qscale * luma_weight_table[i]);
  227. ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
  228. (qscale * chroma_weight_table[i]);
  229. }
  230. }
  231. }
  232. return 0;
  233. fail:
  234. return AVERROR(ENOMEM);
  235. }
  236. static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
  237. {
  238. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc,
  239. 8160 * ctx->m.avctx->qmax * sizeof(RCEntry), fail);
  240. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  241. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp,
  242. ctx->m.mb_num * sizeof(RCCMPEntry), fail);
  243. ctx->frame_bits = (ctx->cid_table->coding_unit_size -
  244. 640 - 4 - ctx->min_padding) * 8;
  245. ctx->qscale = 1;
  246. ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
  247. return 0;
  248. fail:
  249. return AVERROR(ENOMEM);
  250. }
  251. static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
  252. {
  253. DNXHDEncContext *ctx = avctx->priv_data;
  254. int i, index, bit_depth, ret;
  255. switch (avctx->pix_fmt) {
  256. case AV_PIX_FMT_YUV422P:
  257. bit_depth = 8;
  258. break;
  259. case AV_PIX_FMT_YUV422P10:
  260. bit_depth = 10;
  261. break;
  262. default:
  263. av_log(avctx, AV_LOG_ERROR,
  264. "Pixel format is incompatible with DNxHD, use yuv422p or yuv422p10.\n");
  265. return AVERROR(EINVAL);
  266. }
  267. ctx->cid = ff_dnxhd_find_cid(avctx, bit_depth);
  268. if (!ctx->cid) {
  269. av_log(avctx, AV_LOG_ERROR,
  270. "Video parameters incompatible with DNxHD, available CIDs:\n");
  271. ff_dnxhd_list_cid(avctx);
  272. return AVERROR(EINVAL);
  273. }
  274. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  275. index = ff_dnxhd_get_cid_table(ctx->cid);
  276. if (index < 0)
  277. return index;
  278. ctx->cid_table = &ff_dnxhd_cid_table[index];
  279. ctx->m.avctx = avctx;
  280. ctx->m.mb_intra = 1;
  281. ctx->m.h263_aic = 1;
  282. avctx->bits_per_raw_sample = ctx->cid_table->bit_depth;
  283. ff_blockdsp_init(&ctx->bdsp, avctx);
  284. ff_fdctdsp_init(&ctx->m.fdsp, avctx);
  285. ff_mpv_idct_init(&ctx->m);
  286. ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
  287. ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
  288. if (!ctx->m.dct_quantize)
  289. ctx->m.dct_quantize = ff_dct_quantize_c;
  290. if (ctx->cid_table->bit_depth == 10) {
  291. ctx->m.dct_quantize = dnxhd_10bit_dct_quantize;
  292. ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
  293. ctx->block_width_l2 = 4;
  294. } else {
  295. ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
  296. ctx->block_width_l2 = 3;
  297. }
  298. if (ARCH_X86)
  299. ff_dnxhdenc_init_x86(ctx);
  300. ctx->m.mb_height = (avctx->height + 15) / 16;
  301. ctx->m.mb_width = (avctx->width + 15) / 16;
  302. if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
  303. ctx->interlaced = 1;
  304. ctx->m.mb_height /= 2;
  305. }
  306. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  307. #if FF_API_QUANT_BIAS
  308. FF_DISABLE_DEPRECATION_WARNINGS
  309. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  310. ctx->intra_quant_bias = avctx->intra_quant_bias;
  311. FF_ENABLE_DEPRECATION_WARNINGS
  312. #endif
  313. // XXX tune lbias/cbias
  314. if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
  315. return ret;
  316. /* Avid Nitris hardware decoder requires a minimum amount of padding
  317. * in the coding unit payload */
  318. if (ctx->nitris_compat)
  319. ctx->min_padding = 1600;
  320. if ((ret = dnxhd_init_vlc(ctx)) < 0)
  321. return ret;
  322. if ((ret = dnxhd_init_rc(ctx)) < 0)
  323. return ret;
  324. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size,
  325. ctx->m.mb_height * sizeof(uint32_t), fail);
  326. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs,
  327. ctx->m.mb_height * sizeof(uint32_t), fail);
  328. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits,
  329. ctx->m.mb_num * sizeof(uint16_t), fail);
  330. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale,
  331. ctx->m.mb_num * sizeof(uint8_t), fail);
  332. #if FF_API_CODED_FRAME
  333. FF_DISABLE_DEPRECATION_WARNINGS
  334. avctx->coded_frame->key_frame = 1;
  335. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  336. FF_ENABLE_DEPRECATION_WARNINGS
  337. #endif
  338. if (avctx->thread_count > MAX_THREADS) {
  339. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  340. return AVERROR(EINVAL);
  341. }
  342. ctx->thread[0] = ctx;
  343. for (i = 1; i < avctx->thread_count; i++) {
  344. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  345. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  346. }
  347. return 0;
  348. fail: // for FF_ALLOCZ_OR_GOTO
  349. return AVERROR(ENOMEM);
  350. }
  351. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  352. {
  353. DNXHDEncContext *ctx = avctx->priv_data;
  354. const uint8_t header_prefix[5] = { 0x00, 0x00, 0x02, 0x80, 0x01 };
  355. memset(buf, 0, 640);
  356. memcpy(buf, header_prefix, 5);
  357. buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
  358. buf[6] = 0x80; // crc flag off
  359. buf[7] = 0xa0; // reserved
  360. AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
  361. AV_WB16(buf + 0x1a, avctx->width); // SPL
  362. AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
  363. buf[0x21] = ctx->cid_table->bit_depth == 10 ? 0x58 : 0x38;
  364. buf[0x22] = 0x88 + (ctx->interlaced << 2);
  365. AV_WB32(buf + 0x28, ctx->cid); // CID
  366. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  367. buf[0x5f] = 0x01; // UDL
  368. buf[0x167] = 0x02; // reserved
  369. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  370. buf[0x16d] = ctx->m.mb_height; // Ns
  371. buf[0x16f] = 0x10; // reserved
  372. ctx->msip = buf + 0x170;
  373. return 0;
  374. }
  375. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  376. {
  377. int nbits;
  378. if (diff < 0) {
  379. nbits = av_log2_16bit(-2 * diff);
  380. diff--;
  381. } else {
  382. nbits = av_log2_16bit(2 * diff);
  383. }
  384. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  385. (ctx->cid_table->dc_codes[nbits] << nbits) +
  386. (diff & ((1 << nbits) - 1)));
  387. }
  388. static av_always_inline
  389. void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
  390. int last_index, int n)
  391. {
  392. int last_non_zero = 0;
  393. int slevel, i, j;
  394. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  395. ctx->m.last_dc[n] = block[0];
  396. for (i = 1; i <= last_index; i++) {
  397. j = ctx->m.intra_scantable.permutated[i];
  398. slevel = block[j];
  399. if (slevel) {
  400. int run_level = i - last_non_zero - 1;
  401. int rlevel = (slevel << 1) | !!run_level;
  402. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  403. if (run_level)
  404. put_bits(&ctx->m.pb, ctx->run_bits[run_level],
  405. ctx->run_codes[run_level]);
  406. last_non_zero = i;
  407. }
  408. }
  409. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  410. }
  411. static av_always_inline
  412. void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
  413. int qscale, int last_index)
  414. {
  415. const uint8_t *weight_matrix;
  416. int level;
  417. int i;
  418. weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
  419. : ctx->cid_table->luma_weight;
  420. for (i = 1; i <= last_index; i++) {
  421. int j = ctx->m.intra_scantable.permutated[i];
  422. level = block[j];
  423. if (level) {
  424. if (level < 0) {
  425. level = (1 - 2 * level) * qscale * weight_matrix[i];
  426. if (ctx->cid_table->bit_depth == 10) {
  427. if (weight_matrix[i] != 8)
  428. level += 8;
  429. level >>= 4;
  430. } else {
  431. if (weight_matrix[i] != 32)
  432. level += 32;
  433. level >>= 6;
  434. }
  435. level = -level;
  436. } else {
  437. level = (2 * level + 1) * qscale * weight_matrix[i];
  438. if (ctx->cid_table->bit_depth == 10) {
  439. if (weight_matrix[i] != 8)
  440. level += 8;
  441. level >>= 4;
  442. } else {
  443. if (weight_matrix[i] != 32)
  444. level += 32;
  445. level >>= 6;
  446. }
  447. }
  448. block[j] = level;
  449. }
  450. }
  451. }
  452. static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
  453. {
  454. int score = 0;
  455. int i;
  456. for (i = 0; i < 64; i++)
  457. score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
  458. return score;
  459. }
  460. static av_always_inline
  461. int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
  462. {
  463. int last_non_zero = 0;
  464. int bits = 0;
  465. int i, j, level;
  466. for (i = 1; i <= last_index; i++) {
  467. j = ctx->m.intra_scantable.permutated[i];
  468. level = block[j];
  469. if (level) {
  470. int run_level = i - last_non_zero - 1;
  471. bits += ctx->vlc_bits[(level << 1) |
  472. !!run_level] + ctx->run_bits[run_level];
  473. last_non_zero = i;
  474. }
  475. }
  476. return bits;
  477. }
  478. static av_always_inline
  479. void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  480. {
  481. const int bs = ctx->block_width_l2;
  482. const int bw = 1 << bs;
  483. const uint8_t *ptr_y = ctx->thread[0]->src[0] +
  484. ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
  485. const uint8_t *ptr_u = ctx->thread[0]->src[1] +
  486. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  487. const uint8_t *ptr_v = ctx->thread[0]->src[2] +
  488. ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs);
  489. PixblockDSPContext *pdsp = &ctx->m.pdsp;
  490. pdsp->get_pixels(ctx->blocks[0], ptr_y, ctx->m.linesize);
  491. pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, ctx->m.linesize);
  492. pdsp->get_pixels(ctx->blocks[2], ptr_u, ctx->m.uvlinesize);
  493. pdsp->get_pixels(ctx->blocks[3], ptr_v, ctx->m.uvlinesize);
  494. if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  495. if (ctx->interlaced) {
  496. ctx->get_pixels_8x4_sym(ctx->blocks[4],
  497. ptr_y + ctx->dct_y_offset,
  498. ctx->m.linesize);
  499. ctx->get_pixels_8x4_sym(ctx->blocks[5],
  500. ptr_y + ctx->dct_y_offset + bw,
  501. ctx->m.linesize);
  502. ctx->get_pixels_8x4_sym(ctx->blocks[6],
  503. ptr_u + ctx->dct_uv_offset,
  504. ctx->m.uvlinesize);
  505. ctx->get_pixels_8x4_sym(ctx->blocks[7],
  506. ptr_v + ctx->dct_uv_offset,
  507. ctx->m.uvlinesize);
  508. } else {
  509. ctx->bdsp.clear_block(ctx->blocks[4]);
  510. ctx->bdsp.clear_block(ctx->blocks[5]);
  511. ctx->bdsp.clear_block(ctx->blocks[6]);
  512. ctx->bdsp.clear_block(ctx->blocks[7]);
  513. }
  514. } else {
  515. pdsp->get_pixels(ctx->blocks[4],
  516. ptr_y + ctx->dct_y_offset, ctx->m.linesize);
  517. pdsp->get_pixels(ctx->blocks[5],
  518. ptr_y + ctx->dct_y_offset + bw, ctx->m.linesize);
  519. pdsp->get_pixels(ctx->blocks[6],
  520. ptr_u + ctx->dct_uv_offset, ctx->m.uvlinesize);
  521. pdsp->get_pixels(ctx->blocks[7],
  522. ptr_v + ctx->dct_uv_offset, ctx->m.uvlinesize);
  523. }
  524. }
  525. static av_always_inline
  526. int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  527. {
  528. if (i & 2) {
  529. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  530. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  531. return 1 + (i & 1);
  532. } else {
  533. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  534. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  535. return 0;
  536. }
  537. }
  538. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
  539. int jobnr, int threadnr)
  540. {
  541. DNXHDEncContext *ctx = avctx->priv_data;
  542. int mb_y = jobnr, mb_x;
  543. int qscale = ctx->qscale;
  544. LOCAL_ALIGNED_16(int16_t, block, [64]);
  545. ctx = ctx->thread[threadnr];
  546. ctx->m.last_dc[0] =
  547. ctx->m.last_dc[1] =
  548. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  549. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  550. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  551. int ssd = 0;
  552. int ac_bits = 0;
  553. int dc_bits = 0;
  554. int i;
  555. dnxhd_get_blocks(ctx, mb_x, mb_y);
  556. for (i = 0; i < 8; i++) {
  557. int16_t *src_block = ctx->blocks[i];
  558. int overflow, nbits, diff, last_index;
  559. int n = dnxhd_switch_matrix(ctx, i);
  560. memcpy(block, src_block, 64 * sizeof(*block));
  561. last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  562. qscale, &overflow);
  563. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  564. diff = block[0] - ctx->m.last_dc[n];
  565. if (diff < 0)
  566. nbits = av_log2_16bit(-2 * diff);
  567. else
  568. nbits = av_log2_16bit(2 * diff);
  569. assert(nbits < ctx->cid_table->bit_depth + 4);
  570. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  571. ctx->m.last_dc[n] = block[0];
  572. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  573. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  574. ctx->m.idsp.idct(block);
  575. ssd += dnxhd_ssd_block(block, src_block);
  576. }
  577. }
  578. ctx->mb_rc[qscale][mb].ssd = ssd;
  579. ctx->mb_rc[qscale][mb].bits = ac_bits + dc_bits + 12 +
  580. 8 * ctx->vlc_bits[0];
  581. }
  582. return 0;
  583. }
  584. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
  585. int jobnr, int threadnr)
  586. {
  587. DNXHDEncContext *ctx = avctx->priv_data;
  588. int mb_y = jobnr, mb_x;
  589. ctx = ctx->thread[threadnr];
  590. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr],
  591. ctx->slice_size[jobnr]);
  592. ctx->m.last_dc[0] =
  593. ctx->m.last_dc[1] =
  594. ctx->m.last_dc[2] = 1 << (ctx->cid_table->bit_depth + 2);
  595. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  596. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  597. int qscale = ctx->mb_qscale[mb];
  598. int i;
  599. put_bits(&ctx->m.pb, 12, qscale << 1);
  600. dnxhd_get_blocks(ctx, mb_x, mb_y);
  601. for (i = 0; i < 8; i++) {
  602. int16_t *block = ctx->blocks[i];
  603. int overflow, n = dnxhd_switch_matrix(ctx, i);
  604. int last_index = ctx->m.dct_quantize(&ctx->m, block, i,
  605. qscale, &overflow);
  606. // START_TIMER;
  607. dnxhd_encode_block(ctx, block, last_index, n);
  608. // STOP_TIMER("encode_block");
  609. }
  610. }
  611. if (put_bits_count(&ctx->m.pb) & 31)
  612. put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
  613. flush_put_bits(&ctx->m.pb);
  614. return 0;
  615. }
  616. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  617. {
  618. int mb_y, mb_x;
  619. int offset = 0;
  620. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  621. int thread_size;
  622. ctx->slice_offs[mb_y] = offset;
  623. ctx->slice_size[mb_y] = 0;
  624. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  625. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  626. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  627. }
  628. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y] + 31) & ~31;
  629. ctx->slice_size[mb_y] >>= 3;
  630. thread_size = ctx->slice_size[mb_y];
  631. offset += thread_size;
  632. }
  633. }
  634. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
  635. int jobnr, int threadnr)
  636. {
  637. DNXHDEncContext *ctx = avctx->priv_data;
  638. int mb_y = jobnr, mb_x, x, y;
  639. int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
  640. ((avctx->height >> ctx->interlaced) & 0xF);
  641. ctx = ctx->thread[threadnr];
  642. if (ctx->cid_table->bit_depth == 8) {
  643. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
  644. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
  645. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  646. int sum;
  647. int varc;
  648. if (!partial_last_row && mb_x * 16 <= avctx->width - 16) {
  649. sum = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
  650. varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
  651. } else {
  652. int bw = FFMIN(avctx->width - 16 * mb_x, 16);
  653. int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
  654. sum = varc = 0;
  655. for (y = 0; y < bh; y++) {
  656. for (x = 0; x < bw; x++) {
  657. uint8_t val = pix[x + y * ctx->m.linesize];
  658. sum += val;
  659. varc += val * val;
  660. }
  661. }
  662. }
  663. varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
  664. ctx->mb_cmp[mb].value = varc;
  665. ctx->mb_cmp[mb].mb = mb;
  666. }
  667. } else { // 10-bit
  668. int const linesize = ctx->m.linesize >> 1;
  669. for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
  670. uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
  671. ((mb_y << 4) * linesize) + (mb_x << 4);
  672. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  673. int sum = 0;
  674. int sqsum = 0;
  675. int mean, sqmean;
  676. int i, j;
  677. // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
  678. for (i = 0; i < 16; ++i) {
  679. for (j = 0; j < 16; ++j) {
  680. // Turn 16-bit pixels into 10-bit ones.
  681. int const sample = (unsigned) pix[j] >> 6;
  682. sum += sample;
  683. sqsum += sample * sample;
  684. // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
  685. }
  686. pix += linesize;
  687. }
  688. mean = sum >> 8; // 16*16 == 2^8
  689. sqmean = sqsum >> 8;
  690. ctx->mb_cmp[mb].value = sqmean - mean * mean;
  691. ctx->mb_cmp[mb].mb = mb;
  692. }
  693. }
  694. return 0;
  695. }
  696. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  697. {
  698. int lambda, up_step, down_step;
  699. int last_lower = INT_MAX, last_higher = 0;
  700. int x, y, q;
  701. for (q = 1; q < avctx->qmax; q++) {
  702. ctx->qscale = q;
  703. avctx->execute2(avctx, dnxhd_calc_bits_thread,
  704. NULL, NULL, ctx->m.mb_height);
  705. }
  706. up_step = down_step = 2 << LAMBDA_FRAC_BITS;
  707. lambda = ctx->lambda;
  708. for (;;) {
  709. int bits = 0;
  710. int end = 0;
  711. if (lambda == last_higher) {
  712. lambda++;
  713. end = 1; // need to set final qscales/bits
  714. }
  715. for (y = 0; y < ctx->m.mb_height; y++) {
  716. for (x = 0; x < ctx->m.mb_width; x++) {
  717. unsigned min = UINT_MAX;
  718. int qscale = 1;
  719. int mb = y * ctx->m.mb_width + x;
  720. for (q = 1; q < avctx->qmax; q++) {
  721. unsigned score = ctx->mb_rc[q][mb].bits * lambda +
  722. ((unsigned) ctx->mb_rc[q][mb].ssd << LAMBDA_FRAC_BITS);
  723. if (score < min) {
  724. min = score;
  725. qscale = q;
  726. }
  727. }
  728. bits += ctx->mb_rc[qscale][mb].bits;
  729. ctx->mb_qscale[mb] = qscale;
  730. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  731. }
  732. bits = (bits + 31) & ~31; // padding
  733. if (bits > ctx->frame_bits)
  734. break;
  735. }
  736. // ff_dlog(ctx->m.avctx,
  737. // "lambda %d, up %u, down %u, bits %d, frame %d\n",
  738. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  739. if (end) {
  740. if (bits > ctx->frame_bits)
  741. return AVERROR(EINVAL);
  742. break;
  743. }
  744. if (bits < ctx->frame_bits) {
  745. last_lower = FFMIN(lambda, last_lower);
  746. if (last_higher != 0)
  747. lambda = (lambda+last_higher)>>1;
  748. else
  749. lambda -= down_step;
  750. down_step = FFMIN((int64_t)down_step*5, INT_MAX);
  751. up_step = 1<<LAMBDA_FRAC_BITS;
  752. lambda = FFMAX(1, lambda);
  753. if (lambda == last_lower)
  754. break;
  755. } else {
  756. last_higher = FFMAX(lambda, last_higher);
  757. if (last_lower != INT_MAX)
  758. lambda = (lambda+last_lower)>>1;
  759. else if ((int64_t)lambda + up_step > INT_MAX)
  760. return AVERROR(EINVAL);
  761. else
  762. lambda += up_step;
  763. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  764. down_step = 1<<LAMBDA_FRAC_BITS;
  765. }
  766. }
  767. //ff_dlog(ctx->m.avctx, "out lambda %d\n", lambda);
  768. ctx->lambda = lambda;
  769. return 0;
  770. }
  771. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  772. {
  773. int bits = 0;
  774. int up_step = 1;
  775. int down_step = 1;
  776. int last_higher = 0;
  777. int last_lower = INT_MAX;
  778. int qscale;
  779. int x, y;
  780. qscale = ctx->qscale;
  781. for (;;) {
  782. bits = 0;
  783. ctx->qscale = qscale;
  784. // XXX avoid recalculating bits
  785. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
  786. NULL, NULL, ctx->m.mb_height);
  787. for (y = 0; y < ctx->m.mb_height; y++) {
  788. for (x = 0; x < ctx->m.mb_width; x++)
  789. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  790. bits = (bits+31)&~31; // padding
  791. if (bits > ctx->frame_bits)
  792. break;
  793. }
  794. // ff_dlog(ctx->m.avctx,
  795. // "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  796. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits,
  797. // last_higher, last_lower);
  798. if (bits < ctx->frame_bits) {
  799. if (qscale == 1)
  800. return 1;
  801. if (last_higher == qscale - 1) {
  802. qscale = last_higher;
  803. break;
  804. }
  805. last_lower = FFMIN(qscale, last_lower);
  806. if (last_higher != 0)
  807. qscale = (qscale + last_higher) >> 1;
  808. else
  809. qscale -= down_step++;
  810. if (qscale < 1)
  811. qscale = 1;
  812. up_step = 1;
  813. } else {
  814. if (last_lower == qscale + 1)
  815. break;
  816. last_higher = FFMAX(qscale, last_higher);
  817. if (last_lower != INT_MAX)
  818. qscale = (qscale + last_lower) >> 1;
  819. else
  820. qscale += up_step++;
  821. down_step = 1;
  822. if (qscale >= ctx->m.avctx->qmax)
  823. return AVERROR(EINVAL);
  824. }
  825. }
  826. //ff_dlog(ctx->m.avctx, "out qscale %d\n", qscale);
  827. ctx->qscale = qscale;
  828. return 0;
  829. }
  830. #define BUCKET_BITS 8
  831. #define RADIX_PASSES 4
  832. #define NBUCKETS (1 << BUCKET_BITS)
  833. static inline int get_bucket(int value, int shift)
  834. {
  835. value >>= shift;
  836. value &= NBUCKETS - 1;
  837. return NBUCKETS - 1 - value;
  838. }
  839. static void radix_count(const RCCMPEntry *data, int size,
  840. int buckets[RADIX_PASSES][NBUCKETS])
  841. {
  842. int i, j;
  843. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  844. for (i = 0; i < size; i++) {
  845. int v = data[i].value;
  846. for (j = 0; j < RADIX_PASSES; j++) {
  847. buckets[j][get_bucket(v, 0)]++;
  848. v >>= BUCKET_BITS;
  849. }
  850. assert(!v);
  851. }
  852. for (j = 0; j < RADIX_PASSES; j++) {
  853. int offset = size;
  854. for (i = NBUCKETS - 1; i >= 0; i--)
  855. buckets[j][i] = offset -= buckets[j][i];
  856. assert(!buckets[j][0]);
  857. }
  858. }
  859. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
  860. int size, int buckets[NBUCKETS], int pass)
  861. {
  862. int shift = pass * BUCKET_BITS;
  863. int i;
  864. for (i = 0; i < size; i++) {
  865. int v = get_bucket(data[i].value, shift);
  866. int pos = buckets[v]++;
  867. dst[pos] = data[i];
  868. }
  869. }
  870. static void radix_sort(RCCMPEntry *data, int size)
  871. {
  872. int buckets[RADIX_PASSES][NBUCKETS];
  873. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  874. radix_count(data, size, buckets);
  875. radix_sort_pass(tmp, data, size, buckets[0], 0);
  876. radix_sort_pass(data, tmp, size, buckets[1], 1);
  877. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  878. radix_sort_pass(tmp, data, size, buckets[2], 2);
  879. radix_sort_pass(data, tmp, size, buckets[3], 3);
  880. }
  881. av_free(tmp);
  882. }
  883. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  884. {
  885. int max_bits = 0;
  886. int ret, x, y;
  887. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  888. return ret;
  889. for (y = 0; y < ctx->m.mb_height; y++) {
  890. for (x = 0; x < ctx->m.mb_width; x++) {
  891. int mb = y * ctx->m.mb_width + x;
  892. int delta_bits;
  893. ctx->mb_qscale[mb] = ctx->qscale;
  894. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  895. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  896. if (!RC_VARIANCE) {
  897. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits -
  898. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  899. ctx->mb_cmp[mb].mb = mb;
  900. ctx->mb_cmp[mb].value =
  901. delta_bits ? ((ctx->mb_rc[ctx->qscale][mb].ssd -
  902. ctx->mb_rc[ctx->qscale + 1][mb].ssd) * 100) /
  903. delta_bits
  904. : INT_MIN; // avoid increasing qscale
  905. }
  906. }
  907. max_bits += 31; // worst padding
  908. }
  909. if (!ret) {
  910. if (RC_VARIANCE)
  911. avctx->execute2(avctx, dnxhd_mb_var_thread,
  912. NULL, NULL, ctx->m.mb_height);
  913. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  914. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  915. int mb = ctx->mb_cmp[x].mb;
  916. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits -
  917. ctx->mb_rc[ctx->qscale + 1][mb].bits;
  918. ctx->mb_qscale[mb] = ctx->qscale + 1;
  919. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale + 1][mb].bits;
  920. }
  921. }
  922. return 0;
  923. }
  924. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  925. {
  926. int i;
  927. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  928. ctx->thread[i]->m.linesize = frame->linesize[0] << ctx->interlaced;
  929. ctx->thread[i]->m.uvlinesize = frame->linesize[1] << ctx->interlaced;
  930. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  931. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  932. }
  933. #if FF_API_CODED_FRAME
  934. FF_DISABLE_DEPRECATION_WARNINGS
  935. ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
  936. FF_ENABLE_DEPRECATION_WARNINGS
  937. #endif
  938. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  939. }
  940. static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
  941. const AVFrame *frame, int *got_packet)
  942. {
  943. DNXHDEncContext *ctx = avctx->priv_data;
  944. int first_field = 1;
  945. int offset, i, ret;
  946. uint8_t *buf, *sd;
  947. if ((ret = ff_alloc_packet(pkt, ctx->cid_table->frame_size)) < 0) {
  948. av_log(avctx, AV_LOG_ERROR,
  949. "output buffer is too small to compress picture\n");
  950. return ret;
  951. }
  952. buf = pkt->data;
  953. dnxhd_load_picture(ctx, frame);
  954. encode_coding_unit:
  955. for (i = 0; i < 3; i++) {
  956. ctx->src[i] = frame->data[i];
  957. if (ctx->interlaced && ctx->cur_field)
  958. ctx->src[i] += frame->linesize[i];
  959. }
  960. dnxhd_write_header(avctx, buf);
  961. if (avctx->mb_decision == FF_MB_DECISION_RD)
  962. ret = dnxhd_encode_rdo(avctx, ctx);
  963. else
  964. ret = dnxhd_encode_fast(avctx, ctx);
  965. if (ret < 0) {
  966. av_log(avctx, AV_LOG_ERROR,
  967. "picture could not fit ratecontrol constraints, increase qmax\n");
  968. return ret;
  969. }
  970. dnxhd_setup_threads_slices(ctx);
  971. offset = 0;
  972. for (i = 0; i < ctx->m.mb_height; i++) {
  973. AV_WB32(ctx->msip + i * 4, offset);
  974. offset += ctx->slice_size[i];
  975. assert(!(ctx->slice_size[i] & 3));
  976. }
  977. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  978. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  979. memset(buf + 640 + offset, 0,
  980. ctx->cid_table->coding_unit_size - 4 - offset - 640);
  981. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  982. if (ctx->interlaced && first_field) {
  983. first_field = 0;
  984. ctx->cur_field ^= 1;
  985. buf += ctx->cid_table->coding_unit_size;
  986. goto encode_coding_unit;
  987. }
  988. #if FF_API_CODED_FRAME
  989. FF_DISABLE_DEPRECATION_WARNINGS
  990. avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
  991. FF_ENABLE_DEPRECATION_WARNINGS
  992. #endif
  993. sd = av_packet_new_side_data(pkt, AV_PKT_DATA_QUALITY_FACTOR, sizeof(int));
  994. if (!sd)
  995. return AVERROR(ENOMEM);
  996. *(int *)sd = ctx->qscale * FF_QP2LAMBDA;
  997. pkt->flags |= AV_PKT_FLAG_KEY;
  998. *got_packet = 1;
  999. return 0;
  1000. }
  1001. static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
  1002. {
  1003. DNXHDEncContext *ctx = avctx->priv_data;
  1004. int max_level = 1 << (ctx->cid_table->bit_depth + 2);
  1005. int i;
  1006. av_free(ctx->vlc_codes - max_level * 2);
  1007. av_free(ctx->vlc_bits - max_level * 2);
  1008. av_freep(&ctx->run_codes);
  1009. av_freep(&ctx->run_bits);
  1010. av_freep(&ctx->mb_bits);
  1011. av_freep(&ctx->mb_qscale);
  1012. av_freep(&ctx->mb_rc);
  1013. av_freep(&ctx->mb_cmp);
  1014. av_freep(&ctx->slice_size);
  1015. av_freep(&ctx->slice_offs);
  1016. av_freep(&ctx->qmatrix_c);
  1017. av_freep(&ctx->qmatrix_l);
  1018. av_freep(&ctx->qmatrix_c16);
  1019. av_freep(&ctx->qmatrix_l16);
  1020. for (i = 1; i < avctx->thread_count; i++)
  1021. av_freep(&ctx->thread[i]);
  1022. return 0;
  1023. }
  1024. AVCodec ff_dnxhd_encoder = {
  1025. .name = "dnxhd",
  1026. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  1027. .type = AVMEDIA_TYPE_VIDEO,
  1028. .id = AV_CODEC_ID_DNXHD,
  1029. .priv_data_size = sizeof(DNXHDEncContext),
  1030. .init = dnxhd_encode_init,
  1031. .encode2 = dnxhd_encode_picture,
  1032. .close = dnxhd_encode_end,
  1033. .capabilities = AV_CODEC_CAP_SLICE_THREADS,
  1034. .pix_fmts = (const enum AVPixelFormat[]) {
  1035. AV_PIX_FMT_YUV422P,
  1036. AV_PIX_FMT_YUV422P10,
  1037. AV_PIX_FMT_NONE
  1038. },
  1039. .priv_class = &class,
  1040. };