You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

450 lines
14KB

  1. /*
  2. * AC-3 DSP functions
  3. * Copyright (c) 2011 Justin Ruggles
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/mem_internal.h"
  22. #include "avcodec.h"
  23. #include "ac3.h"
  24. #include "ac3dsp.h"
  25. #include "mathops.h"
  26. static void ac3_exponent_min_c(uint8_t *exp, int num_reuse_blocks, int nb_coefs)
  27. {
  28. int blk, i;
  29. if (!num_reuse_blocks)
  30. return;
  31. for (i = 0; i < nb_coefs; i++) {
  32. uint8_t min_exp = *exp;
  33. uint8_t *exp1 = exp + 256;
  34. for (blk = 0; blk < num_reuse_blocks; blk++) {
  35. uint8_t next_exp = *exp1;
  36. if (next_exp < min_exp)
  37. min_exp = next_exp;
  38. exp1 += 256;
  39. }
  40. *exp++ = min_exp;
  41. }
  42. }
  43. static int ac3_max_msb_abs_int16_c(const int16_t *src, int len)
  44. {
  45. int i, v = 0;
  46. for (i = 0; i < len; i++)
  47. v |= abs(src[i]);
  48. return v;
  49. }
  50. static void ac3_lshift_int16_c(int16_t *src, unsigned int len,
  51. unsigned int shift)
  52. {
  53. uint32_t *src32 = (uint32_t *)src;
  54. const uint32_t mask = ~(((1 << shift) - 1) << 16);
  55. int i;
  56. len >>= 1;
  57. for (i = 0; i < len; i += 8) {
  58. src32[i ] = (src32[i ] << shift) & mask;
  59. src32[i+1] = (src32[i+1] << shift) & mask;
  60. src32[i+2] = (src32[i+2] << shift) & mask;
  61. src32[i+3] = (src32[i+3] << shift) & mask;
  62. src32[i+4] = (src32[i+4] << shift) & mask;
  63. src32[i+5] = (src32[i+5] << shift) & mask;
  64. src32[i+6] = (src32[i+6] << shift) & mask;
  65. src32[i+7] = (src32[i+7] << shift) & mask;
  66. }
  67. }
  68. static void ac3_rshift_int32_c(int32_t *src, unsigned int len,
  69. unsigned int shift)
  70. {
  71. do {
  72. *src++ >>= shift;
  73. *src++ >>= shift;
  74. *src++ >>= shift;
  75. *src++ >>= shift;
  76. *src++ >>= shift;
  77. *src++ >>= shift;
  78. *src++ >>= shift;
  79. *src++ >>= shift;
  80. len -= 8;
  81. } while (len > 0);
  82. }
  83. static void float_to_fixed24_c(int32_t *dst, const float *src, unsigned int len)
  84. {
  85. const float scale = 1 << 24;
  86. do {
  87. *dst++ = lrintf(*src++ * scale);
  88. *dst++ = lrintf(*src++ * scale);
  89. *dst++ = lrintf(*src++ * scale);
  90. *dst++ = lrintf(*src++ * scale);
  91. *dst++ = lrintf(*src++ * scale);
  92. *dst++ = lrintf(*src++ * scale);
  93. *dst++ = lrintf(*src++ * scale);
  94. *dst++ = lrintf(*src++ * scale);
  95. len -= 8;
  96. } while (len > 0);
  97. }
  98. static void ac3_bit_alloc_calc_bap_c(int16_t *mask, int16_t *psd,
  99. int start, int end,
  100. int snr_offset, int floor,
  101. const uint8_t *bap_tab, uint8_t *bap)
  102. {
  103. int bin, band, band_end;
  104. /* special case, if snr offset is -960, set all bap's to zero */
  105. if (snr_offset == -960) {
  106. memset(bap, 0, AC3_MAX_COEFS);
  107. return;
  108. }
  109. bin = start;
  110. band = ff_ac3_bin_to_band_tab[start];
  111. do {
  112. int m = (FFMAX(mask[band] - snr_offset - floor, 0) & 0x1FE0) + floor;
  113. band_end = ff_ac3_band_start_tab[++band];
  114. band_end = FFMIN(band_end, end);
  115. for (; bin < band_end; bin++) {
  116. int address = av_clip_uintp2((psd[bin] - m) >> 5, 6);
  117. bap[bin] = bap_tab[address];
  118. }
  119. } while (end > band_end);
  120. }
  121. static void ac3_update_bap_counts_c(uint16_t mant_cnt[16], uint8_t *bap,
  122. int len)
  123. {
  124. while (len-- > 0)
  125. mant_cnt[bap[len]]++;
  126. }
  127. DECLARE_ALIGNED(16, const uint16_t, ff_ac3_bap_bits)[16] = {
  128. 0, 0, 0, 3, 0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  129. };
  130. static int ac3_compute_mantissa_size_c(uint16_t mant_cnt[6][16])
  131. {
  132. int blk, bap;
  133. int bits = 0;
  134. for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
  135. // bap=1 : 3 mantissas in 5 bits
  136. bits += (mant_cnt[blk][1] / 3) * 5;
  137. // bap=2 : 3 mantissas in 7 bits
  138. // bap=4 : 2 mantissas in 7 bits
  139. bits += ((mant_cnt[blk][2] / 3) + (mant_cnt[blk][4] >> 1)) * 7;
  140. // bap=3 : 1 mantissa in 3 bits
  141. bits += mant_cnt[blk][3] * 3;
  142. // bap=5 to 15 : get bits per mantissa from table
  143. for (bap = 5; bap < 16; bap++)
  144. bits += mant_cnt[blk][bap] * ff_ac3_bap_bits[bap];
  145. }
  146. return bits;
  147. }
  148. static void ac3_extract_exponents_c(uint8_t *exp, int32_t *coef, int nb_coefs)
  149. {
  150. int i;
  151. for (i = 0; i < nb_coefs; i++) {
  152. int v = abs(coef[i]);
  153. exp[i] = v ? 23 - av_log2(v) : 24;
  154. }
  155. }
  156. static void ac3_sum_square_butterfly_int32_c(int64_t sum[4],
  157. const int32_t *coef0,
  158. const int32_t *coef1,
  159. int len)
  160. {
  161. int i;
  162. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  163. for (i = 0; i < len; i++) {
  164. int lt = coef0[i];
  165. int rt = coef1[i];
  166. int md = lt + rt;
  167. int sd = lt - rt;
  168. MAC64(sum[0], lt, lt);
  169. MAC64(sum[1], rt, rt);
  170. MAC64(sum[2], md, md);
  171. MAC64(sum[3], sd, sd);
  172. }
  173. }
  174. static void ac3_sum_square_butterfly_float_c(float sum[4],
  175. const float *coef0,
  176. const float *coef1,
  177. int len)
  178. {
  179. int i;
  180. sum[0] = sum[1] = sum[2] = sum[3] = 0;
  181. for (i = 0; i < len; i++) {
  182. float lt = coef0[i];
  183. float rt = coef1[i];
  184. float md = lt + rt;
  185. float sd = lt - rt;
  186. sum[0] += lt * lt;
  187. sum[1] += rt * rt;
  188. sum[2] += md * md;
  189. sum[3] += sd * sd;
  190. }
  191. }
  192. static void ac3_downmix_5_to_2_symmetric_c(float **samples, float **matrix,
  193. int len)
  194. {
  195. int i;
  196. float v0, v1;
  197. float front_mix = matrix[0][0];
  198. float center_mix = matrix[0][1];
  199. float surround_mix = matrix[0][3];
  200. for (i = 0; i < len; i++) {
  201. v0 = samples[0][i] * front_mix +
  202. samples[1][i] * center_mix +
  203. samples[3][i] * surround_mix;
  204. v1 = samples[1][i] * center_mix +
  205. samples[2][i] * front_mix +
  206. samples[4][i] * surround_mix;
  207. samples[0][i] = v0;
  208. samples[1][i] = v1;
  209. }
  210. }
  211. static void ac3_downmix_5_to_1_symmetric_c(float **samples, float **matrix,
  212. int len)
  213. {
  214. int i;
  215. float front_mix = matrix[0][0];
  216. float center_mix = matrix[0][1];
  217. float surround_mix = matrix[0][3];
  218. for (i = 0; i < len; i++) {
  219. samples[0][i] = samples[0][i] * front_mix +
  220. samples[1][i] * center_mix +
  221. samples[2][i] * front_mix +
  222. samples[3][i] * surround_mix +
  223. samples[4][i] * surround_mix;
  224. }
  225. }
  226. static void ac3_downmix_c(float **samples, float **matrix,
  227. int out_ch, int in_ch, int len)
  228. {
  229. int i, j;
  230. float v0, v1;
  231. if (out_ch == 2) {
  232. for (i = 0; i < len; i++) {
  233. v0 = v1 = 0.0f;
  234. for (j = 0; j < in_ch; j++) {
  235. v0 += samples[j][i] * matrix[0][j];
  236. v1 += samples[j][i] * matrix[1][j];
  237. }
  238. samples[0][i] = v0;
  239. samples[1][i] = v1;
  240. }
  241. } else if (out_ch == 1) {
  242. for (i = 0; i < len; i++) {
  243. v0 = 0.0f;
  244. for (j = 0; j < in_ch; j++)
  245. v0 += samples[j][i] * matrix[0][j];
  246. samples[0][i] = v0;
  247. }
  248. }
  249. }
  250. static void ac3_downmix_5_to_2_symmetric_c_fixed(int32_t **samples, int16_t **matrix,
  251. int len)
  252. {
  253. int i;
  254. int64_t v0, v1;
  255. int16_t front_mix = matrix[0][0];
  256. int16_t center_mix = matrix[0][1];
  257. int16_t surround_mix = matrix[0][3];
  258. for (i = 0; i < len; i++) {
  259. v0 = (int64_t)samples[0][i] * front_mix +
  260. (int64_t)samples[1][i] * center_mix +
  261. (int64_t)samples[3][i] * surround_mix;
  262. v1 = (int64_t)samples[1][i] * center_mix +
  263. (int64_t)samples[2][i] * front_mix +
  264. (int64_t)samples[4][i] * surround_mix;
  265. samples[0][i] = (v0+2048)>>12;
  266. samples[1][i] = (v1+2048)>>12;
  267. }
  268. }
  269. static void ac3_downmix_5_to_1_symmetric_c_fixed(int32_t **samples, int16_t **matrix,
  270. int len)
  271. {
  272. int i;
  273. int64_t v0;
  274. int16_t front_mix = matrix[0][0];
  275. int16_t center_mix = matrix[0][1];
  276. int16_t surround_mix = matrix[0][3];
  277. for (i = 0; i < len; i++) {
  278. v0 = (int64_t)samples[0][i] * front_mix +
  279. (int64_t)samples[1][i] * center_mix +
  280. (int64_t)samples[2][i] * front_mix +
  281. (int64_t)samples[3][i] * surround_mix +
  282. (int64_t)samples[4][i] * surround_mix;
  283. samples[0][i] = (v0+2048)>>12;
  284. }
  285. }
  286. static void ac3_downmix_c_fixed(int32_t **samples, int16_t **matrix,
  287. int out_ch, int in_ch, int len)
  288. {
  289. int i, j;
  290. int64_t v0, v1;
  291. if (out_ch == 2) {
  292. for (i = 0; i < len; i++) {
  293. v0 = v1 = 0;
  294. for (j = 0; j < in_ch; j++) {
  295. v0 += (int64_t)samples[j][i] * matrix[0][j];
  296. v1 += (int64_t)samples[j][i] * matrix[1][j];
  297. }
  298. samples[0][i] = (v0+2048)>>12;
  299. samples[1][i] = (v1+2048)>>12;
  300. }
  301. } else if (out_ch == 1) {
  302. for (i = 0; i < len; i++) {
  303. v0 = 0;
  304. for (j = 0; j < in_ch; j++)
  305. v0 += (int64_t)samples[j][i] * matrix[0][j];
  306. samples[0][i] = (v0+2048)>>12;
  307. }
  308. }
  309. }
  310. void ff_ac3dsp_downmix_fixed(AC3DSPContext *c, int32_t **samples, int16_t **matrix,
  311. int out_ch, int in_ch, int len)
  312. {
  313. if (c->in_channels != in_ch || c->out_channels != out_ch) {
  314. c->in_channels = in_ch;
  315. c->out_channels = out_ch;
  316. c->downmix_fixed = NULL;
  317. if (in_ch == 5 && out_ch == 2 &&
  318. !(matrix[1][0] | matrix[0][2] |
  319. matrix[1][3] | matrix[0][4] |
  320. (matrix[0][1] ^ matrix[1][1]) |
  321. (matrix[0][0] ^ matrix[1][2]))) {
  322. c->downmix_fixed = ac3_downmix_5_to_2_symmetric_c_fixed;
  323. } else if (in_ch == 5 && out_ch == 1 &&
  324. matrix[0][0] == matrix[0][2] &&
  325. matrix[0][3] == matrix[0][4]) {
  326. c->downmix_fixed = ac3_downmix_5_to_1_symmetric_c_fixed;
  327. }
  328. }
  329. if (c->downmix_fixed)
  330. c->downmix_fixed(samples, matrix, len);
  331. else
  332. ac3_downmix_c_fixed(samples, matrix, out_ch, in_ch, len);
  333. }
  334. static void apply_window_int16_c(int16_t *output, const int16_t *input,
  335. const int16_t *window, unsigned int len)
  336. {
  337. int i;
  338. int len2 = len >> 1;
  339. for (i = 0; i < len2; i++) {
  340. int16_t w = window[i];
  341. output[i] = (MUL16(input[i], w) + (1 << 14)) >> 15;
  342. output[len-i-1] = (MUL16(input[len-i-1], w) + (1 << 14)) >> 15;
  343. }
  344. }
  345. void ff_ac3dsp_downmix(AC3DSPContext *c, float **samples, float **matrix,
  346. int out_ch, int in_ch, int len)
  347. {
  348. if (c->in_channels != in_ch || c->out_channels != out_ch) {
  349. int **matrix_cmp = (int **)matrix;
  350. c->in_channels = in_ch;
  351. c->out_channels = out_ch;
  352. c->downmix = NULL;
  353. if (in_ch == 5 && out_ch == 2 &&
  354. !(matrix_cmp[1][0] | matrix_cmp[0][2] |
  355. matrix_cmp[1][3] | matrix_cmp[0][4] |
  356. (matrix_cmp[0][1] ^ matrix_cmp[1][1]) |
  357. (matrix_cmp[0][0] ^ matrix_cmp[1][2]))) {
  358. c->downmix = ac3_downmix_5_to_2_symmetric_c;
  359. } else if (in_ch == 5 && out_ch == 1 &&
  360. matrix_cmp[0][0] == matrix_cmp[0][2] &&
  361. matrix_cmp[0][3] == matrix_cmp[0][4]) {
  362. c->downmix = ac3_downmix_5_to_1_symmetric_c;
  363. }
  364. if (ARCH_X86)
  365. ff_ac3dsp_set_downmix_x86(c);
  366. }
  367. if (c->downmix)
  368. c->downmix(samples, matrix, len);
  369. else
  370. ac3_downmix_c(samples, matrix, out_ch, in_ch, len);
  371. }
  372. av_cold void ff_ac3dsp_init(AC3DSPContext *c, int bit_exact)
  373. {
  374. c->ac3_exponent_min = ac3_exponent_min_c;
  375. c->ac3_max_msb_abs_int16 = ac3_max_msb_abs_int16_c;
  376. c->ac3_lshift_int16 = ac3_lshift_int16_c;
  377. c->ac3_rshift_int32 = ac3_rshift_int32_c;
  378. c->float_to_fixed24 = float_to_fixed24_c;
  379. c->bit_alloc_calc_bap = ac3_bit_alloc_calc_bap_c;
  380. c->update_bap_counts = ac3_update_bap_counts_c;
  381. c->compute_mantissa_size = ac3_compute_mantissa_size_c;
  382. c->extract_exponents = ac3_extract_exponents_c;
  383. c->sum_square_butterfly_int32 = ac3_sum_square_butterfly_int32_c;
  384. c->sum_square_butterfly_float = ac3_sum_square_butterfly_float_c;
  385. c->in_channels = 0;
  386. c->out_channels = 0;
  387. c->downmix = NULL;
  388. c->downmix_fixed = NULL;
  389. c->apply_window_int16 = apply_window_int16_c;
  390. if (ARCH_ARM)
  391. ff_ac3dsp_init_arm(c, bit_exact);
  392. if (ARCH_X86)
  393. ff_ac3dsp_init_x86(c, bit_exact);
  394. if (ARCH_MIPS)
  395. ff_ac3dsp_init_mips(c, bit_exact);
  396. }