You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

900 lines
27KB

  1. /*
  2. * Copyright (C) 2017 Paul B Mahol
  3. * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <math.h>
  21. #include "libavutil/audio_fifo.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/float_dsp.h"
  25. #include "libavutil/intmath.h"
  26. #include "libavutil/opt.h"
  27. #include "libavcodec/avfft.h"
  28. #include "avfilter.h"
  29. #include "filters.h"
  30. #include "internal.h"
  31. #include "audio.h"
  32. #define TIME_DOMAIN 0
  33. #define FREQUENCY_DOMAIN 1
  34. #define HRIR_STEREO 0
  35. #define HRIR_MULTI 1
  36. typedef struct HeadphoneContext {
  37. const AVClass *class;
  38. char *map;
  39. int type;
  40. int lfe_channel;
  41. int have_hrirs;
  42. int eof_hrirs;
  43. int ir_len;
  44. int mapping[64];
  45. int nb_inputs;
  46. int nb_irs;
  47. float gain;
  48. float lfe_gain, gain_lfe;
  49. float *ringbuffer[2];
  50. int write[2];
  51. int buffer_length;
  52. int n_fft;
  53. int size;
  54. int hrir_fmt;
  55. int *delay[2];
  56. float *data_ir[2];
  57. float *temp_src[2];
  58. FFTComplex *temp_fft[2];
  59. FFTContext *fft[2], *ifft[2];
  60. FFTComplex *data_hrtf[2];
  61. AVFloatDSPContext *fdsp;
  62. struct headphone_inputs {
  63. AVAudioFifo *fifo;
  64. AVFrame *frame;
  65. int ir_len;
  66. int delay_l;
  67. int delay_r;
  68. int eof;
  69. } *in;
  70. } HeadphoneContext;
  71. static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf)
  72. {
  73. int len, i, channel_id = 0;
  74. int64_t layout, layout0;
  75. if (sscanf(*arg, "%7[A-Z]%n", buf, &len)) {
  76. layout0 = layout = av_get_channel_layout(buf);
  77. if (layout == AV_CH_LOW_FREQUENCY)
  78. s->lfe_channel = x;
  79. for (i = 32; i > 0; i >>= 1) {
  80. if (layout >= 1LL << i) {
  81. channel_id += i;
  82. layout >>= i;
  83. }
  84. }
  85. if (channel_id >= 64 || layout0 != 1LL << channel_id)
  86. return AVERROR(EINVAL);
  87. *rchannel = channel_id;
  88. *arg += len;
  89. return 0;
  90. }
  91. return AVERROR(EINVAL);
  92. }
  93. static void parse_map(AVFilterContext *ctx)
  94. {
  95. HeadphoneContext *s = ctx->priv;
  96. char *arg, *tokenizer, *p, *args = av_strdup(s->map);
  97. int i;
  98. if (!args)
  99. return;
  100. p = args;
  101. s->lfe_channel = -1;
  102. s->nb_inputs = 1;
  103. for (i = 0; i < 64; i++) {
  104. s->mapping[i] = -1;
  105. }
  106. while ((arg = av_strtok(p, "|", &tokenizer))) {
  107. int out_ch_id;
  108. char buf[8];
  109. p = NULL;
  110. if (parse_channel_name(s, s->nb_irs, &arg, &out_ch_id, buf)) {
  111. av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf);
  112. continue;
  113. }
  114. s->mapping[s->nb_irs] = out_ch_id;
  115. s->nb_irs++;
  116. }
  117. if (s->hrir_fmt == HRIR_MULTI)
  118. s->nb_inputs = 2;
  119. else
  120. s->nb_inputs = s->nb_irs + 1;
  121. av_free(args);
  122. }
  123. typedef struct ThreadData {
  124. AVFrame *in, *out;
  125. int *write;
  126. int **delay;
  127. float **ir;
  128. int *n_clippings;
  129. float **ringbuffer;
  130. float **temp_src;
  131. FFTComplex **temp_fft;
  132. } ThreadData;
  133. static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  134. {
  135. HeadphoneContext *s = ctx->priv;
  136. ThreadData *td = arg;
  137. AVFrame *in = td->in, *out = td->out;
  138. int offset = jobnr;
  139. int *write = &td->write[jobnr];
  140. const int *const delay = td->delay[jobnr];
  141. const float *const ir = td->ir[jobnr];
  142. int *n_clippings = &td->n_clippings[jobnr];
  143. float *ringbuffer = td->ringbuffer[jobnr];
  144. float *temp_src = td->temp_src[jobnr];
  145. const int ir_len = s->ir_len;
  146. const float *src = (const float *)in->data[0];
  147. float *dst = (float *)out->data[0];
  148. const int in_channels = in->channels;
  149. const int buffer_length = s->buffer_length;
  150. const uint32_t modulo = (uint32_t)buffer_length - 1;
  151. float *buffer[16];
  152. int wr = *write;
  153. int read;
  154. int i, l;
  155. dst += offset;
  156. for (l = 0; l < in_channels; l++) {
  157. buffer[l] = ringbuffer + l * buffer_length;
  158. }
  159. for (i = 0; i < in->nb_samples; i++) {
  160. const float *temp_ir = ir;
  161. *dst = 0;
  162. for (l = 0; l < in_channels; l++) {
  163. *(buffer[l] + wr) = src[l];
  164. }
  165. for (l = 0; l < in_channels; l++) {
  166. const float *const bptr = buffer[l];
  167. if (l == s->lfe_channel) {
  168. *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
  169. temp_ir += FFALIGN(ir_len, 16);
  170. continue;
  171. }
  172. read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo;
  173. if (read + ir_len < buffer_length) {
  174. memcpy(temp_src, bptr + read, ir_len * sizeof(*temp_src));
  175. } else {
  176. int len = FFMIN(ir_len - (read % ir_len), buffer_length - read);
  177. memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
  178. memcpy(temp_src + len, bptr, (ir_len - len) * sizeof(*temp_src));
  179. }
  180. dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, ir_len);
  181. temp_ir += FFALIGN(ir_len, 16);
  182. }
  183. if (fabs(*dst) > 1)
  184. *n_clippings += 1;
  185. dst += 2;
  186. src += in_channels;
  187. wr = (wr + 1) & modulo;
  188. }
  189. *write = wr;
  190. return 0;
  191. }
  192. static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  193. {
  194. HeadphoneContext *s = ctx->priv;
  195. ThreadData *td = arg;
  196. AVFrame *in = td->in, *out = td->out;
  197. int offset = jobnr;
  198. int *write = &td->write[jobnr];
  199. FFTComplex *hrtf = s->data_hrtf[jobnr];
  200. int *n_clippings = &td->n_clippings[jobnr];
  201. float *ringbuffer = td->ringbuffer[jobnr];
  202. const int ir_len = s->ir_len;
  203. const float *src = (const float *)in->data[0];
  204. float *dst = (float *)out->data[0];
  205. const int in_channels = in->channels;
  206. const int buffer_length = s->buffer_length;
  207. const uint32_t modulo = (uint32_t)buffer_length - 1;
  208. FFTComplex *fft_in = s->temp_fft[jobnr];
  209. FFTContext *ifft = s->ifft[jobnr];
  210. FFTContext *fft = s->fft[jobnr];
  211. const int n_fft = s->n_fft;
  212. const float fft_scale = 1.0f / s->n_fft;
  213. FFTComplex *hrtf_offset;
  214. int wr = *write;
  215. int n_read;
  216. int i, j;
  217. dst += offset;
  218. n_read = FFMIN(s->ir_len, in->nb_samples);
  219. for (j = 0; j < n_read; j++) {
  220. dst[2 * j] = ringbuffer[wr];
  221. ringbuffer[wr] = 0.0;
  222. wr = (wr + 1) & modulo;
  223. }
  224. for (j = n_read; j < in->nb_samples; j++) {
  225. dst[2 * j] = 0;
  226. }
  227. for (i = 0; i < in_channels; i++) {
  228. if (i == s->lfe_channel) {
  229. for (j = 0; j < in->nb_samples; j++) {
  230. dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
  231. }
  232. continue;
  233. }
  234. offset = i * n_fft;
  235. hrtf_offset = hrtf + offset;
  236. memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
  237. for (j = 0; j < in->nb_samples; j++) {
  238. fft_in[j].re = src[j * in_channels + i];
  239. }
  240. av_fft_permute(fft, fft_in);
  241. av_fft_calc(fft, fft_in);
  242. for (j = 0; j < n_fft; j++) {
  243. const FFTComplex *hcomplex = hrtf_offset + j;
  244. const float re = fft_in[j].re;
  245. const float im = fft_in[j].im;
  246. fft_in[j].re = re * hcomplex->re - im * hcomplex->im;
  247. fft_in[j].im = re * hcomplex->im + im * hcomplex->re;
  248. }
  249. av_fft_permute(ifft, fft_in);
  250. av_fft_calc(ifft, fft_in);
  251. for (j = 0; j < in->nb_samples; j++) {
  252. dst[2 * j] += fft_in[j].re * fft_scale;
  253. }
  254. for (j = 0; j < ir_len - 1; j++) {
  255. int write_pos = (wr + j) & modulo;
  256. *(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re * fft_scale;
  257. }
  258. }
  259. for (i = 0; i < out->nb_samples; i++) {
  260. if (fabs(*dst) > 1) {
  261. n_clippings[0]++;
  262. }
  263. dst += 2;
  264. }
  265. *write = wr;
  266. return 0;
  267. }
  268. static int read_ir(AVFilterLink *inlink, int input_number, AVFrame *frame)
  269. {
  270. AVFilterContext *ctx = inlink->dst;
  271. HeadphoneContext *s = ctx->priv;
  272. int ir_len, max_ir_len, ret;
  273. ret = av_audio_fifo_write(s->in[input_number].fifo, (void **)frame->extended_data,
  274. frame->nb_samples);
  275. av_frame_free(&frame);
  276. if (ret < 0)
  277. return ret;
  278. ir_len = av_audio_fifo_size(s->in[input_number].fifo);
  279. max_ir_len = 65536;
  280. if (ir_len > max_ir_len) {
  281. av_log(ctx, AV_LOG_ERROR, "Too big length of IRs: %d > %d.\n", ir_len, max_ir_len);
  282. return AVERROR(EINVAL);
  283. }
  284. s->in[input_number].ir_len = ir_len;
  285. s->ir_len = FFMAX(ir_len, s->ir_len);
  286. return 0;
  287. }
  288. static int headphone_frame(HeadphoneContext *s, AVFrame *in, AVFilterLink *outlink)
  289. {
  290. AVFilterContext *ctx = outlink->src;
  291. int n_clippings[2] = { 0 };
  292. ThreadData td;
  293. AVFrame *out;
  294. out = ff_get_audio_buffer(outlink, in->nb_samples);
  295. if (!out) {
  296. av_frame_free(&in);
  297. return AVERROR(ENOMEM);
  298. }
  299. out->pts = in->pts;
  300. td.in = in; td.out = out; td.write = s->write;
  301. td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
  302. td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
  303. td.temp_fft = s->temp_fft;
  304. if (s->type == TIME_DOMAIN) {
  305. ctx->internal->execute(ctx, headphone_convolute, &td, NULL, 2);
  306. } else {
  307. ctx->internal->execute(ctx, headphone_fast_convolute, &td, NULL, 2);
  308. }
  309. emms_c();
  310. if (n_clippings[0] + n_clippings[1] > 0) {
  311. av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
  312. n_clippings[0] + n_clippings[1], out->nb_samples * 2);
  313. }
  314. av_frame_free(&in);
  315. return ff_filter_frame(outlink, out);
  316. }
  317. static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
  318. {
  319. struct HeadphoneContext *s = ctx->priv;
  320. const int ir_len = s->ir_len;
  321. int nb_irs = s->nb_irs;
  322. int nb_input_channels = ctx->inputs[0]->channels;
  323. float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10);
  324. FFTComplex *data_hrtf_l = NULL;
  325. FFTComplex *data_hrtf_r = NULL;
  326. FFTComplex *fft_in_l = NULL;
  327. FFTComplex *fft_in_r = NULL;
  328. float *data_ir_l = NULL;
  329. float *data_ir_r = NULL;
  330. int offset = 0, ret = 0;
  331. int n_fft;
  332. int i, j, k;
  333. s->buffer_length = 1 << (32 - ff_clz(s->ir_len));
  334. s->n_fft = n_fft = 1 << (32 - ff_clz(s->ir_len + s->size));
  335. if (s->type == FREQUENCY_DOMAIN) {
  336. fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
  337. fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
  338. if (!fft_in_l || !fft_in_r) {
  339. ret = AVERROR(ENOMEM);
  340. goto fail;
  341. }
  342. av_fft_end(s->fft[0]);
  343. av_fft_end(s->fft[1]);
  344. s->fft[0] = av_fft_init(log2(s->n_fft), 0);
  345. s->fft[1] = av_fft_init(log2(s->n_fft), 0);
  346. av_fft_end(s->ifft[0]);
  347. av_fft_end(s->ifft[1]);
  348. s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
  349. s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
  350. if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
  351. av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
  352. ret = AVERROR(ENOMEM);
  353. goto fail;
  354. }
  355. }
  356. s->data_ir[0] = av_calloc(FFALIGN(s->ir_len, 16), sizeof(float) * s->nb_irs);
  357. s->data_ir[1] = av_calloc(FFALIGN(s->ir_len, 16), sizeof(float) * s->nb_irs);
  358. s->delay[0] = av_calloc(s->nb_irs, sizeof(float));
  359. s->delay[1] = av_calloc(s->nb_irs, sizeof(float));
  360. if (s->type == TIME_DOMAIN) {
  361. s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
  362. s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
  363. } else {
  364. s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
  365. s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
  366. s->temp_fft[0] = av_calloc(s->n_fft, sizeof(FFTComplex));
  367. s->temp_fft[1] = av_calloc(s->n_fft, sizeof(FFTComplex));
  368. if (!s->temp_fft[0] || !s->temp_fft[1]) {
  369. ret = AVERROR(ENOMEM);
  370. goto fail;
  371. }
  372. }
  373. if (!s->data_ir[0] || !s->data_ir[1] ||
  374. !s->ringbuffer[0] || !s->ringbuffer[1]) {
  375. ret = AVERROR(ENOMEM);
  376. goto fail;
  377. }
  378. for (i = 0; i < s->nb_inputs - 1; i++) {
  379. s->in[i + 1].frame = ff_get_audio_buffer(ctx->inputs[i + 1], s->ir_len);
  380. if (!s->in[i + 1].frame) {
  381. ret = AVERROR(ENOMEM);
  382. goto fail;
  383. }
  384. }
  385. if (s->type == TIME_DOMAIN) {
  386. s->temp_src[0] = av_calloc(FFALIGN(ir_len, 16), sizeof(float));
  387. s->temp_src[1] = av_calloc(FFALIGN(ir_len, 16), sizeof(float));
  388. data_ir_l = av_calloc(nb_irs * FFALIGN(ir_len, 16), sizeof(*data_ir_l));
  389. data_ir_r = av_calloc(nb_irs * FFALIGN(ir_len, 16), sizeof(*data_ir_r));
  390. if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
  391. ret = AVERROR(ENOMEM);
  392. goto fail;
  393. }
  394. } else {
  395. data_hrtf_l = av_calloc(n_fft, sizeof(*data_hrtf_l) * nb_irs);
  396. data_hrtf_r = av_calloc(n_fft, sizeof(*data_hrtf_r) * nb_irs);
  397. if (!data_hrtf_r || !data_hrtf_l) {
  398. ret = AVERROR(ENOMEM);
  399. goto fail;
  400. }
  401. }
  402. for (i = 0; i < s->nb_inputs - 1; i++) {
  403. int len = s->in[i + 1].ir_len;
  404. int delay_l = s->in[i + 1].delay_l;
  405. int delay_r = s->in[i + 1].delay_r;
  406. float *ptr;
  407. av_audio_fifo_read(s->in[i + 1].fifo, (void **)s->in[i + 1].frame->extended_data, len);
  408. ptr = (float *)s->in[i + 1].frame->extended_data[0];
  409. if (s->hrir_fmt == HRIR_STEREO) {
  410. int idx = -1;
  411. for (j = 0; j < inlink->channels; j++) {
  412. if (s->mapping[i] < 0) {
  413. continue;
  414. }
  415. if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[i])) {
  416. idx = i;
  417. break;
  418. }
  419. }
  420. if (idx == -1)
  421. continue;
  422. if (s->type == TIME_DOMAIN) {
  423. offset = idx * FFALIGN(len, 16);
  424. for (j = 0; j < len; j++) {
  425. data_ir_l[offset + j] = ptr[len * 2 - j * 2 - 2] * gain_lin;
  426. data_ir_r[offset + j] = ptr[len * 2 - j * 2 - 1] * gain_lin;
  427. }
  428. } else {
  429. memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
  430. memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
  431. offset = idx * n_fft;
  432. for (j = 0; j < len; j++) {
  433. fft_in_l[delay_l + j].re = ptr[j * 2 ] * gain_lin;
  434. fft_in_r[delay_r + j].re = ptr[j * 2 + 1] * gain_lin;
  435. }
  436. av_fft_permute(s->fft[0], fft_in_l);
  437. av_fft_calc(s->fft[0], fft_in_l);
  438. memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
  439. av_fft_permute(s->fft[0], fft_in_r);
  440. av_fft_calc(s->fft[0], fft_in_r);
  441. memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
  442. }
  443. } else {
  444. int I, N = ctx->inputs[1]->channels;
  445. for (k = 0; k < N / 2; k++) {
  446. int idx = -1;
  447. for (j = 0; j < inlink->channels; j++) {
  448. if (s->mapping[k] < 0) {
  449. continue;
  450. }
  451. if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[k])) {
  452. idx = k;
  453. break;
  454. }
  455. }
  456. if (idx == -1)
  457. continue;
  458. I = idx * 2;
  459. if (s->type == TIME_DOMAIN) {
  460. offset = idx * FFALIGN(len, 16);
  461. for (j = 0; j < len; j++) {
  462. data_ir_l[offset + j] = ptr[len * N - j * N - N + I ] * gain_lin;
  463. data_ir_r[offset + j] = ptr[len * N - j * N - N + I + 1] * gain_lin;
  464. }
  465. } else {
  466. memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
  467. memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
  468. offset = idx * n_fft;
  469. for (j = 0; j < len; j++) {
  470. fft_in_l[delay_l + j].re = ptr[j * N + I ] * gain_lin;
  471. fft_in_r[delay_r + j].re = ptr[j * N + I + 1] * gain_lin;
  472. }
  473. av_fft_permute(s->fft[0], fft_in_l);
  474. av_fft_calc(s->fft[0], fft_in_l);
  475. memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
  476. av_fft_permute(s->fft[0], fft_in_r);
  477. av_fft_calc(s->fft[0], fft_in_r);
  478. memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
  479. }
  480. }
  481. }
  482. }
  483. if (s->type == TIME_DOMAIN) {
  484. memcpy(s->data_ir[0], data_ir_l, sizeof(float) * nb_irs * FFALIGN(ir_len, 16));
  485. memcpy(s->data_ir[1], data_ir_r, sizeof(float) * nb_irs * FFALIGN(ir_len, 16));
  486. } else {
  487. s->data_hrtf[0] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
  488. s->data_hrtf[1] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
  489. if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
  490. ret = AVERROR(ENOMEM);
  491. goto fail;
  492. }
  493. memcpy(s->data_hrtf[0], data_hrtf_l,
  494. sizeof(FFTComplex) * nb_irs * n_fft);
  495. memcpy(s->data_hrtf[1], data_hrtf_r,
  496. sizeof(FFTComplex) * nb_irs * n_fft);
  497. }
  498. s->have_hrirs = 1;
  499. fail:
  500. av_freep(&data_ir_l);
  501. av_freep(&data_ir_r);
  502. av_freep(&data_hrtf_l);
  503. av_freep(&data_hrtf_r);
  504. av_freep(&fft_in_l);
  505. av_freep(&fft_in_r);
  506. return ret;
  507. }
  508. static int activate(AVFilterContext *ctx)
  509. {
  510. HeadphoneContext *s = ctx->priv;
  511. AVFilterLink *inlink = ctx->inputs[0];
  512. AVFilterLink *outlink = ctx->outputs[0];
  513. AVFrame *in = NULL;
  514. int i, ret;
  515. FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx);
  516. if (!s->eof_hrirs) {
  517. for (i = 1; i < s->nb_inputs; i++) {
  518. AVFrame *ir = NULL;
  519. int64_t pts;
  520. int status;
  521. if (s->in[i].eof)
  522. continue;
  523. if ((ret = ff_inlink_consume_frame(ctx->inputs[i], &ir)) > 0) {
  524. ret = read_ir(ctx->inputs[i], i, ir);
  525. if (ret < 0)
  526. return ret;
  527. }
  528. if (ret < 0)
  529. return ret;
  530. if (!s->in[i].eof) {
  531. if (ff_inlink_acknowledge_status(ctx->inputs[i], &status, &pts)) {
  532. if (status == AVERROR_EOF) {
  533. s->in[i].eof = 1;
  534. }
  535. }
  536. }
  537. }
  538. for (i = 1; i < s->nb_inputs; i++) {
  539. if (!s->in[i].eof)
  540. break;
  541. }
  542. if (i != s->nb_inputs) {
  543. if (ff_outlink_frame_wanted(ctx->outputs[0])) {
  544. for (i = 1; i < s->nb_inputs; i++) {
  545. if (!s->in[i].eof)
  546. ff_inlink_request_frame(ctx->inputs[i]);
  547. }
  548. }
  549. return 0;
  550. } else {
  551. s->eof_hrirs = 1;
  552. }
  553. }
  554. if (!s->have_hrirs && s->eof_hrirs) {
  555. ret = convert_coeffs(ctx, inlink);
  556. if (ret < 0)
  557. return ret;
  558. }
  559. if ((ret = ff_inlink_consume_samples(ctx->inputs[0], s->size, s->size, &in)) > 0) {
  560. ret = headphone_frame(s, in, outlink);
  561. if (ret < 0)
  562. return ret;
  563. }
  564. if (ret < 0)
  565. return ret;
  566. FF_FILTER_FORWARD_STATUS(ctx->inputs[0], ctx->outputs[0]);
  567. if (ff_outlink_frame_wanted(ctx->outputs[0]))
  568. ff_inlink_request_frame(ctx->inputs[0]);
  569. return 0;
  570. }
  571. static int query_formats(AVFilterContext *ctx)
  572. {
  573. struct HeadphoneContext *s = ctx->priv;
  574. AVFilterFormats *formats = NULL;
  575. AVFilterChannelLayouts *layouts = NULL;
  576. AVFilterChannelLayouts *stereo_layout = NULL;
  577. AVFilterChannelLayouts *hrir_layouts = NULL;
  578. int ret, i;
  579. ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
  580. if (ret)
  581. return ret;
  582. ret = ff_set_common_formats(ctx, formats);
  583. if (ret)
  584. return ret;
  585. layouts = ff_all_channel_layouts();
  586. if (!layouts)
  587. return AVERROR(ENOMEM);
  588. ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
  589. if (ret)
  590. return ret;
  591. ret = ff_add_channel_layout(&stereo_layout, AV_CH_LAYOUT_STEREO);
  592. if (ret)
  593. return ret;
  594. if (s->hrir_fmt == HRIR_MULTI) {
  595. hrir_layouts = ff_all_channel_counts();
  596. if (!hrir_layouts)
  597. ret = AVERROR(ENOMEM);
  598. ret = ff_channel_layouts_ref(hrir_layouts, &ctx->inputs[1]->out_channel_layouts);
  599. if (ret)
  600. return ret;
  601. } else {
  602. for (i = 1; i < s->nb_inputs; i++) {
  603. ret = ff_channel_layouts_ref(stereo_layout, &ctx->inputs[i]->out_channel_layouts);
  604. if (ret)
  605. return ret;
  606. }
  607. }
  608. ret = ff_channel_layouts_ref(stereo_layout, &ctx->outputs[0]->in_channel_layouts);
  609. if (ret)
  610. return ret;
  611. formats = ff_all_samplerates();
  612. if (!formats)
  613. return AVERROR(ENOMEM);
  614. return ff_set_common_samplerates(ctx, formats);
  615. }
  616. static int config_input(AVFilterLink *inlink)
  617. {
  618. AVFilterContext *ctx = inlink->dst;
  619. HeadphoneContext *s = ctx->priv;
  620. if (s->nb_irs < inlink->channels) {
  621. av_log(ctx, AV_LOG_ERROR, "Number of HRIRs must be >= %d.\n", inlink->channels);
  622. return AVERROR(EINVAL);
  623. }
  624. return 0;
  625. }
  626. static av_cold int init(AVFilterContext *ctx)
  627. {
  628. HeadphoneContext *s = ctx->priv;
  629. int i, ret;
  630. AVFilterPad pad = {
  631. .name = "in0",
  632. .type = AVMEDIA_TYPE_AUDIO,
  633. .config_props = config_input,
  634. };
  635. if ((ret = ff_insert_inpad(ctx, 0, &pad)) < 0)
  636. return ret;
  637. if (!s->map) {
  638. av_log(ctx, AV_LOG_ERROR, "Valid mapping must be set.\n");
  639. return AVERROR(EINVAL);
  640. }
  641. parse_map(ctx);
  642. s->in = av_calloc(s->nb_inputs, sizeof(*s->in));
  643. if (!s->in)
  644. return AVERROR(ENOMEM);
  645. for (i = 1; i < s->nb_inputs; i++) {
  646. char *name = av_asprintf("hrir%d", i - 1);
  647. AVFilterPad pad = {
  648. .name = name,
  649. .type = AVMEDIA_TYPE_AUDIO,
  650. };
  651. if (!name)
  652. return AVERROR(ENOMEM);
  653. if ((ret = ff_insert_inpad(ctx, i, &pad)) < 0) {
  654. av_freep(&pad.name);
  655. return ret;
  656. }
  657. }
  658. s->fdsp = avpriv_float_dsp_alloc(0);
  659. if (!s->fdsp)
  660. return AVERROR(ENOMEM);
  661. return 0;
  662. }
  663. static int config_output(AVFilterLink *outlink)
  664. {
  665. AVFilterContext *ctx = outlink->src;
  666. HeadphoneContext *s = ctx->priv;
  667. AVFilterLink *inlink = ctx->inputs[0];
  668. int i;
  669. if (s->hrir_fmt == HRIR_MULTI) {
  670. AVFilterLink *hrir_link = ctx->inputs[1];
  671. if (hrir_link->channels < inlink->channels * 2) {
  672. av_log(ctx, AV_LOG_ERROR, "Number of channels in HRIR stream must be >= %d.\n", inlink->channels * 2);
  673. return AVERROR(EINVAL);
  674. }
  675. }
  676. for (i = 0; i < s->nb_inputs; i++) {
  677. s->in[i].fifo = av_audio_fifo_alloc(ctx->inputs[i]->format, ctx->inputs[i]->channels, 1024);
  678. if (!s->in[i].fifo)
  679. return AVERROR(ENOMEM);
  680. }
  681. s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6 + s->lfe_gain) / 20 * M_LN10);
  682. return 0;
  683. }
  684. static av_cold void uninit(AVFilterContext *ctx)
  685. {
  686. HeadphoneContext *s = ctx->priv;
  687. int i;
  688. av_fft_end(s->ifft[0]);
  689. av_fft_end(s->ifft[1]);
  690. av_fft_end(s->fft[0]);
  691. av_fft_end(s->fft[1]);
  692. av_freep(&s->delay[0]);
  693. av_freep(&s->delay[1]);
  694. av_freep(&s->data_ir[0]);
  695. av_freep(&s->data_ir[1]);
  696. av_freep(&s->ringbuffer[0]);
  697. av_freep(&s->ringbuffer[1]);
  698. av_freep(&s->temp_src[0]);
  699. av_freep(&s->temp_src[1]);
  700. av_freep(&s->temp_fft[0]);
  701. av_freep(&s->temp_fft[1]);
  702. av_freep(&s->data_hrtf[0]);
  703. av_freep(&s->data_hrtf[1]);
  704. av_freep(&s->fdsp);
  705. for (i = 0; i < s->nb_inputs; i++) {
  706. av_frame_free(&s->in[i].frame);
  707. av_audio_fifo_free(s->in[i].fifo);
  708. if (ctx->input_pads && i)
  709. av_freep(&ctx->input_pads[i].name);
  710. }
  711. av_freep(&s->in);
  712. }
  713. #define OFFSET(x) offsetof(HeadphoneContext, x)
  714. #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  715. static const AVOption headphone_options[] = {
  716. { "map", "set channels convolution mappings", OFFSET(map), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
  717. { "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
  718. { "lfe", "set lfe gain in dB", OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
  719. { "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" },
  720. { "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" },
  721. { "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" },
  722. { "size", "set frame size", OFFSET(size), AV_OPT_TYPE_INT, {.i64=1024},1024,96000, .flags = FLAGS },
  723. { "hrir", "set hrir format", OFFSET(hrir_fmt), AV_OPT_TYPE_INT, {.i64=HRIR_STEREO}, 0, 1, .flags = FLAGS, "hrir" },
  724. { "stereo", "hrir files have exactly 2 channels", 0, AV_OPT_TYPE_CONST, {.i64=HRIR_STEREO}, 0, 0, .flags = FLAGS, "hrir" },
  725. { "multich", "single multichannel hrir file", 0, AV_OPT_TYPE_CONST, {.i64=HRIR_MULTI}, 0, 0, .flags = FLAGS, "hrir" },
  726. { NULL }
  727. };
  728. AVFILTER_DEFINE_CLASS(headphone);
  729. static const AVFilterPad outputs[] = {
  730. {
  731. .name = "default",
  732. .type = AVMEDIA_TYPE_AUDIO,
  733. .config_props = config_output,
  734. },
  735. { NULL }
  736. };
  737. AVFilter ff_af_headphone = {
  738. .name = "headphone",
  739. .description = NULL_IF_CONFIG_SMALL("Apply headphone binaural spatialization with HRTFs in additional streams."),
  740. .priv_size = sizeof(HeadphoneContext),
  741. .priv_class = &headphone_class,
  742. .init = init,
  743. .uninit = uninit,
  744. .query_formats = query_formats,
  745. .activate = activate,
  746. .inputs = NULL,
  747. .outputs = outputs,
  748. .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_DYNAMIC_INPUTS,
  749. };