You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4165 lines
143KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MB_INTRA_VLC_BITS 9
  39. #define DC_VLC_BITS 9
  40. #define AC_VLC_BITS 9
  41. static const uint16_t table_mb_intra[64][2];
  42. static inline int decode210(GetBitContext *gb){
  43. if (get_bits1(gb))
  44. return 0;
  45. else
  46. return 2 - get_bits1(gb);
  47. }
  48. /**
  49. * Init VC-1 specific tables and VC1Context members
  50. * @param v The VC1Context to initialize
  51. * @return Status
  52. */
  53. static int vc1_init_common(VC1Context *v)
  54. {
  55. static int done = 0;
  56. int i = 0;
  57. v->hrd_rate = v->hrd_buffer = NULL;
  58. /* VLC tables */
  59. if(!done)
  60. {
  61. done = 1;
  62. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  63. ff_vc1_bfraction_bits, 1, 1,
  64. ff_vc1_bfraction_codes, 1, 1, 1);
  65. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  66. ff_vc1_norm2_bits, 1, 1,
  67. ff_vc1_norm2_codes, 1, 1, 1);
  68. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  69. ff_vc1_norm6_bits, 1, 1,
  70. ff_vc1_norm6_codes, 2, 2, 1);
  71. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  72. ff_vc1_imode_bits, 1, 1,
  73. ff_vc1_imode_codes, 1, 1, 1);
  74. for (i=0; i<3; i++)
  75. {
  76. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  77. ff_vc1_ttmb_bits[i], 1, 1,
  78. ff_vc1_ttmb_codes[i], 2, 2, 1);
  79. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  80. ff_vc1_ttblk_bits[i], 1, 1,
  81. ff_vc1_ttblk_codes[i], 1, 1, 1);
  82. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  83. ff_vc1_subblkpat_bits[i], 1, 1,
  84. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  85. }
  86. for(i=0; i<4; i++)
  87. {
  88. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  89. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  90. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  91. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  92. ff_vc1_cbpcy_p_bits[i], 1, 1,
  93. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  94. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  95. ff_vc1_mv_diff_bits[i], 1, 1,
  96. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  97. }
  98. for(i=0; i<8; i++)
  99. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  100. &vc1_ac_tables[i][0][1], 8, 4,
  101. &vc1_ac_tables[i][0][0], 8, 4, 1);
  102. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  103. &ff_msmp4_mb_i_table[0][1], 4, 2,
  104. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  105. }
  106. /* Other defaults */
  107. v->pq = -1;
  108. v->mvrange = 0; /* 7.1.1.18, p80 */
  109. return 0;
  110. }
  111. /***********************************************************************/
  112. /**
  113. * @defgroup bitplane VC9 Bitplane decoding
  114. * @see 8.7, p56
  115. * @{
  116. */
  117. /** @addtogroup bitplane
  118. * Imode types
  119. * @{
  120. */
  121. enum Imode {
  122. IMODE_RAW,
  123. IMODE_NORM2,
  124. IMODE_DIFF2,
  125. IMODE_NORM6,
  126. IMODE_DIFF6,
  127. IMODE_ROWSKIP,
  128. IMODE_COLSKIP
  129. };
  130. /** @} */ //imode defines
  131. /** Decode rows by checking if they are skipped
  132. * @param plane Buffer to store decoded bits
  133. * @param[in] width Width of this buffer
  134. * @param[in] height Height of this buffer
  135. * @param[in] stride of this buffer
  136. */
  137. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  138. int x, y;
  139. for (y=0; y<height; y++){
  140. if (!get_bits1(gb)) //rowskip
  141. memset(plane, 0, width);
  142. else
  143. for (x=0; x<width; x++)
  144. plane[x] = get_bits1(gb);
  145. plane += stride;
  146. }
  147. }
  148. /** Decode columns by checking if they are skipped
  149. * @param plane Buffer to store decoded bits
  150. * @param[in] width Width of this buffer
  151. * @param[in] height Height of this buffer
  152. * @param[in] stride of this buffer
  153. * @todo FIXME: Optimize
  154. */
  155. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  156. int x, y;
  157. for (x=0; x<width; x++){
  158. if (!get_bits1(gb)) //colskip
  159. for (y=0; y<height; y++)
  160. plane[y*stride] = 0;
  161. else
  162. for (y=0; y<height; y++)
  163. plane[y*stride] = get_bits1(gb);
  164. plane ++;
  165. }
  166. }
  167. /** Decode a bitplane's bits
  168. * @param bp Bitplane where to store the decode bits
  169. * @param v VC-1 context for bit reading and logging
  170. * @return Status
  171. * @todo FIXME: Optimize
  172. */
  173. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  174. {
  175. GetBitContext *gb = &v->s.gb;
  176. int imode, x, y, code, offset;
  177. uint8_t invert, *planep = data;
  178. int width, height, stride;
  179. width = v->s.mb_width;
  180. height = v->s.mb_height;
  181. stride = v->s.mb_stride;
  182. invert = get_bits1(gb);
  183. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  184. *raw_flag = 0;
  185. switch (imode)
  186. {
  187. case IMODE_RAW:
  188. //Data is actually read in the MB layer (same for all tests == "raw")
  189. *raw_flag = 1; //invert ignored
  190. return invert;
  191. case IMODE_DIFF2:
  192. case IMODE_NORM2:
  193. if ((height * width) & 1)
  194. {
  195. *planep++ = get_bits1(gb);
  196. offset = 1;
  197. }
  198. else offset = 0;
  199. // decode bitplane as one long line
  200. for (y = offset; y < height * width; y += 2) {
  201. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  202. *planep++ = code & 1;
  203. offset++;
  204. if(offset == width) {
  205. offset = 0;
  206. planep += stride - width;
  207. }
  208. *planep++ = code >> 1;
  209. offset++;
  210. if(offset == width) {
  211. offset = 0;
  212. planep += stride - width;
  213. }
  214. }
  215. break;
  216. case IMODE_DIFF6:
  217. case IMODE_NORM6:
  218. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  219. for(y = 0; y < height; y+= 3) {
  220. for(x = width & 1; x < width; x += 2) {
  221. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  222. if(code < 0){
  223. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  224. return -1;
  225. }
  226. planep[x + 0] = (code >> 0) & 1;
  227. planep[x + 1] = (code >> 1) & 1;
  228. planep[x + 0 + stride] = (code >> 2) & 1;
  229. planep[x + 1 + stride] = (code >> 3) & 1;
  230. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  231. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  232. }
  233. planep += stride * 3;
  234. }
  235. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  236. } else { // 3x2
  237. planep += (height & 1) * stride;
  238. for(y = height & 1; y < height; y += 2) {
  239. for(x = width % 3; x < width; x += 3) {
  240. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  241. if(code < 0){
  242. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  243. return -1;
  244. }
  245. planep[x + 0] = (code >> 0) & 1;
  246. planep[x + 1] = (code >> 1) & 1;
  247. planep[x + 2] = (code >> 2) & 1;
  248. planep[x + 0 + stride] = (code >> 3) & 1;
  249. planep[x + 1 + stride] = (code >> 4) & 1;
  250. planep[x + 2 + stride] = (code >> 5) & 1;
  251. }
  252. planep += stride * 2;
  253. }
  254. x = width % 3;
  255. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  256. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  257. }
  258. break;
  259. case IMODE_ROWSKIP:
  260. decode_rowskip(data, width, height, stride, &v->s.gb);
  261. break;
  262. case IMODE_COLSKIP:
  263. decode_colskip(data, width, height, stride, &v->s.gb);
  264. break;
  265. default: break;
  266. }
  267. /* Applying diff operator */
  268. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  269. {
  270. planep = data;
  271. planep[0] ^= invert;
  272. for (x=1; x<width; x++)
  273. planep[x] ^= planep[x-1];
  274. for (y=1; y<height; y++)
  275. {
  276. planep += stride;
  277. planep[0] ^= planep[-stride];
  278. for (x=1; x<width; x++)
  279. {
  280. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  281. else planep[x] ^= planep[x-1];
  282. }
  283. }
  284. }
  285. else if (invert)
  286. {
  287. planep = data;
  288. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  289. }
  290. return (imode<<1) + invert;
  291. }
  292. /** @} */ //Bitplane group
  293. /***********************************************************************/
  294. /** VOP Dquant decoding
  295. * @param v VC-1 Context
  296. */
  297. static int vop_dquant_decoding(VC1Context *v)
  298. {
  299. GetBitContext *gb = &v->s.gb;
  300. int pqdiff;
  301. //variable size
  302. if (v->dquant == 2)
  303. {
  304. pqdiff = get_bits(gb, 3);
  305. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  306. else v->altpq = v->pq + pqdiff + 1;
  307. }
  308. else
  309. {
  310. v->dquantfrm = get_bits1(gb);
  311. if ( v->dquantfrm )
  312. {
  313. v->dqprofile = get_bits(gb, 2);
  314. switch (v->dqprofile)
  315. {
  316. case DQPROFILE_SINGLE_EDGE:
  317. case DQPROFILE_DOUBLE_EDGES:
  318. v->dqsbedge = get_bits(gb, 2);
  319. break;
  320. case DQPROFILE_ALL_MBS:
  321. v->dqbilevel = get_bits1(gb);
  322. if(!v->dqbilevel)
  323. v->halfpq = 0;
  324. default: break; //Forbidden ?
  325. }
  326. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  327. {
  328. pqdiff = get_bits(gb, 3);
  329. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  330. else v->altpq = v->pq + pqdiff + 1;
  331. }
  332. }
  333. }
  334. return 0;
  335. }
  336. /** Put block onto picture
  337. */
  338. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  339. {
  340. uint8_t *Y;
  341. int ys, us, vs;
  342. DSPContext *dsp = &v->s.dsp;
  343. if(v->rangeredfrm) {
  344. int i, j, k;
  345. for(k = 0; k < 6; k++)
  346. for(j = 0; j < 8; j++)
  347. for(i = 0; i < 8; i++)
  348. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  349. }
  350. ys = v->s.current_picture.linesize[0];
  351. us = v->s.current_picture.linesize[1];
  352. vs = v->s.current_picture.linesize[2];
  353. Y = v->s.dest[0];
  354. dsp->put_pixels_clamped(block[0], Y, ys);
  355. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  356. Y += ys * 8;
  357. dsp->put_pixels_clamped(block[2], Y, ys);
  358. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  359. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  360. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  361. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  362. }
  363. }
  364. /** Do motion compensation over 1 macroblock
  365. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  366. */
  367. static void vc1_mc_1mv(VC1Context *v, int dir)
  368. {
  369. MpegEncContext *s = &v->s;
  370. DSPContext *dsp = &v->s.dsp;
  371. uint8_t *srcY, *srcU, *srcV;
  372. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  373. if(!v->s.last_picture.data[0])return;
  374. mx = s->mv[dir][0][0];
  375. my = s->mv[dir][0][1];
  376. // store motion vectors for further use in B frames
  377. if(s->pict_type == P_TYPE) {
  378. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  379. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  380. }
  381. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  382. uvmy = (my + ((my & 3) == 3)) >> 1;
  383. if(v->fastuvmc) {
  384. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  385. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  386. }
  387. if(!dir) {
  388. srcY = s->last_picture.data[0];
  389. srcU = s->last_picture.data[1];
  390. srcV = s->last_picture.data[2];
  391. } else {
  392. srcY = s->next_picture.data[0];
  393. srcU = s->next_picture.data[1];
  394. srcV = s->next_picture.data[2];
  395. }
  396. src_x = s->mb_x * 16 + (mx >> 2);
  397. src_y = s->mb_y * 16 + (my >> 2);
  398. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  399. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  400. if(v->profile != PROFILE_ADVANCED){
  401. src_x = av_clip( src_x, -16, s->mb_width * 16);
  402. src_y = av_clip( src_y, -16, s->mb_height * 16);
  403. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  404. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  405. }else{
  406. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  407. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  408. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  409. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  410. }
  411. srcY += src_y * s->linesize + src_x;
  412. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  413. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  414. /* for grayscale we should not try to read from unknown area */
  415. if(s->flags & CODEC_FLAG_GRAY) {
  416. srcU = s->edge_emu_buffer + 18 * s->linesize;
  417. srcV = s->edge_emu_buffer + 18 * s->linesize;
  418. }
  419. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  420. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  421. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  422. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  423. srcY -= s->mspel * (1 + s->linesize);
  424. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  425. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  426. srcY = s->edge_emu_buffer;
  427. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  428. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  429. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  430. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  431. srcU = uvbuf;
  432. srcV = uvbuf + 16;
  433. /* if we deal with range reduction we need to scale source blocks */
  434. if(v->rangeredfrm) {
  435. int i, j;
  436. uint8_t *src, *src2;
  437. src = srcY;
  438. for(j = 0; j < 17 + s->mspel*2; j++) {
  439. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  440. src += s->linesize;
  441. }
  442. src = srcU; src2 = srcV;
  443. for(j = 0; j < 9; j++) {
  444. for(i = 0; i < 9; i++) {
  445. src[i] = ((src[i] - 128) >> 1) + 128;
  446. src2[i] = ((src2[i] - 128) >> 1) + 128;
  447. }
  448. src += s->uvlinesize;
  449. src2 += s->uvlinesize;
  450. }
  451. }
  452. /* if we deal with intensity compensation we need to scale source blocks */
  453. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  454. int i, j;
  455. uint8_t *src, *src2;
  456. src = srcY;
  457. for(j = 0; j < 17 + s->mspel*2; j++) {
  458. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  459. src += s->linesize;
  460. }
  461. src = srcU; src2 = srcV;
  462. for(j = 0; j < 9; j++) {
  463. for(i = 0; i < 9; i++) {
  464. src[i] = v->lutuv[src[i]];
  465. src2[i] = v->lutuv[src2[i]];
  466. }
  467. src += s->uvlinesize;
  468. src2 += s->uvlinesize;
  469. }
  470. }
  471. srcY += s->mspel * (1 + s->linesize);
  472. }
  473. if(s->mspel) {
  474. dxy = ((my & 3) << 2) | (mx & 3);
  475. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  476. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  477. srcY += s->linesize * 8;
  478. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  479. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  480. } else { // hpel mc - always used for luma
  481. dxy = (my & 2) | ((mx & 2) >> 1);
  482. if(!v->rnd)
  483. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  484. else
  485. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  486. }
  487. if(s->flags & CODEC_FLAG_GRAY) return;
  488. /* Chroma MC always uses qpel bilinear */
  489. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  490. uvmx = (uvmx&3)<<1;
  491. uvmy = (uvmy&3)<<1;
  492. if(!v->rnd){
  493. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  494. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  495. }else{
  496. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  497. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  498. }
  499. }
  500. /** Do motion compensation for 4-MV macroblock - luminance block
  501. */
  502. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  503. {
  504. MpegEncContext *s = &v->s;
  505. DSPContext *dsp = &v->s.dsp;
  506. uint8_t *srcY;
  507. int dxy, mx, my, src_x, src_y;
  508. int off;
  509. if(!v->s.last_picture.data[0])return;
  510. mx = s->mv[0][n][0];
  511. my = s->mv[0][n][1];
  512. srcY = s->last_picture.data[0];
  513. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  514. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  515. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  516. if(v->profile != PROFILE_ADVANCED){
  517. src_x = av_clip( src_x, -16, s->mb_width * 16);
  518. src_y = av_clip( src_y, -16, s->mb_height * 16);
  519. }else{
  520. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  521. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  522. }
  523. srcY += src_y * s->linesize + src_x;
  524. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  525. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  526. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  527. srcY -= s->mspel * (1 + s->linesize);
  528. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  529. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  530. srcY = s->edge_emu_buffer;
  531. /* if we deal with range reduction we need to scale source blocks */
  532. if(v->rangeredfrm) {
  533. int i, j;
  534. uint8_t *src;
  535. src = srcY;
  536. for(j = 0; j < 9 + s->mspel*2; j++) {
  537. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  538. src += s->linesize;
  539. }
  540. }
  541. /* if we deal with intensity compensation we need to scale source blocks */
  542. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  543. int i, j;
  544. uint8_t *src;
  545. src = srcY;
  546. for(j = 0; j < 9 + s->mspel*2; j++) {
  547. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  548. src += s->linesize;
  549. }
  550. }
  551. srcY += s->mspel * (1 + s->linesize);
  552. }
  553. if(s->mspel) {
  554. dxy = ((my & 3) << 2) | (mx & 3);
  555. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  556. } else { // hpel mc - always used for luma
  557. dxy = (my & 2) | ((mx & 2) >> 1);
  558. if(!v->rnd)
  559. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  560. else
  561. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  562. }
  563. }
  564. static inline int median4(int a, int b, int c, int d)
  565. {
  566. if(a < b) {
  567. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  568. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  569. } else {
  570. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  571. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  572. }
  573. }
  574. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  575. */
  576. static void vc1_mc_4mv_chroma(VC1Context *v)
  577. {
  578. MpegEncContext *s = &v->s;
  579. DSPContext *dsp = &v->s.dsp;
  580. uint8_t *srcU, *srcV;
  581. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  582. int i, idx, tx = 0, ty = 0;
  583. int mvx[4], mvy[4], intra[4];
  584. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  585. if(!v->s.last_picture.data[0])return;
  586. if(s->flags & CODEC_FLAG_GRAY) return;
  587. for(i = 0; i < 4; i++) {
  588. mvx[i] = s->mv[0][i][0];
  589. mvy[i] = s->mv[0][i][1];
  590. intra[i] = v->mb_type[0][s->block_index[i]];
  591. }
  592. /* calculate chroma MV vector from four luma MVs */
  593. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  594. if(!idx) { // all blocks are inter
  595. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  596. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  597. } else if(count[idx] == 1) { // 3 inter blocks
  598. switch(idx) {
  599. case 0x1:
  600. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  601. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  602. break;
  603. case 0x2:
  604. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  605. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  606. break;
  607. case 0x4:
  608. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  609. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  610. break;
  611. case 0x8:
  612. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  613. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  614. break;
  615. }
  616. } else if(count[idx] == 2) {
  617. int t1 = 0, t2 = 0;
  618. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  619. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  620. tx = (mvx[t1] + mvx[t2]) / 2;
  621. ty = (mvy[t1] + mvy[t2]) / 2;
  622. } else {
  623. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  624. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  625. return; //no need to do MC for inter blocks
  626. }
  627. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  628. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  629. uvmx = (tx + ((tx&3) == 3)) >> 1;
  630. uvmy = (ty + ((ty&3) == 3)) >> 1;
  631. if(v->fastuvmc) {
  632. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  633. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  634. }
  635. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  636. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  637. if(v->profile != PROFILE_ADVANCED){
  638. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  639. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  640. }else{
  641. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  642. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  643. }
  644. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  645. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  646. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  647. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  648. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  649. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  650. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  651. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  652. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  653. srcU = s->edge_emu_buffer;
  654. srcV = s->edge_emu_buffer + 16;
  655. /* if we deal with range reduction we need to scale source blocks */
  656. if(v->rangeredfrm) {
  657. int i, j;
  658. uint8_t *src, *src2;
  659. src = srcU; src2 = srcV;
  660. for(j = 0; j < 9; j++) {
  661. for(i = 0; i < 9; i++) {
  662. src[i] = ((src[i] - 128) >> 1) + 128;
  663. src2[i] = ((src2[i] - 128) >> 1) + 128;
  664. }
  665. src += s->uvlinesize;
  666. src2 += s->uvlinesize;
  667. }
  668. }
  669. /* if we deal with intensity compensation we need to scale source blocks */
  670. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  671. int i, j;
  672. uint8_t *src, *src2;
  673. src = srcU; src2 = srcV;
  674. for(j = 0; j < 9; j++) {
  675. for(i = 0; i < 9; i++) {
  676. src[i] = v->lutuv[src[i]];
  677. src2[i] = v->lutuv[src2[i]];
  678. }
  679. src += s->uvlinesize;
  680. src2 += s->uvlinesize;
  681. }
  682. }
  683. }
  684. /* Chroma MC always uses qpel bilinear */
  685. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  686. uvmx = (uvmx&3)<<1;
  687. uvmy = (uvmy&3)<<1;
  688. if(!v->rnd){
  689. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  690. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  691. }else{
  692. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  693. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  694. }
  695. }
  696. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  697. /**
  698. * Decode Simple/Main Profiles sequence header
  699. * @see Figure 7-8, p16-17
  700. * @param avctx Codec context
  701. * @param gb GetBit context initialized from Codec context extra_data
  702. * @return Status
  703. */
  704. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  705. {
  706. VC1Context *v = avctx->priv_data;
  707. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  708. v->profile = get_bits(gb, 2);
  709. if (v->profile == PROFILE_COMPLEX)
  710. {
  711. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  712. }
  713. if (v->profile == PROFILE_ADVANCED)
  714. {
  715. return decode_sequence_header_adv(v, gb);
  716. }
  717. else
  718. {
  719. v->res_sm = get_bits(gb, 2); //reserved
  720. if (v->res_sm)
  721. {
  722. av_log(avctx, AV_LOG_ERROR,
  723. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  724. return -1;
  725. }
  726. }
  727. // (fps-2)/4 (->30)
  728. v->frmrtq_postproc = get_bits(gb, 3); //common
  729. // (bitrate-32kbps)/64kbps
  730. v->bitrtq_postproc = get_bits(gb, 5); //common
  731. v->s.loop_filter = get_bits1(gb); //common
  732. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  733. {
  734. av_log(avctx, AV_LOG_ERROR,
  735. "LOOPFILTER shell not be enabled in simple profile\n");
  736. }
  737. v->res_x8 = get_bits1(gb); //reserved
  738. if (v->res_x8)
  739. {
  740. av_log(avctx, AV_LOG_ERROR,
  741. "1 for reserved RES_X8 is forbidden\n");
  742. //return -1;
  743. }
  744. v->multires = get_bits1(gb);
  745. v->res_fasttx = get_bits1(gb);
  746. if (!v->res_fasttx)
  747. {
  748. v->s.dsp.vc1_inv_trans_8x8 = simple_idct;
  749. }
  750. v->fastuvmc = get_bits1(gb); //common
  751. if (!v->profile && !v->fastuvmc)
  752. {
  753. av_log(avctx, AV_LOG_ERROR,
  754. "FASTUVMC unavailable in Simple Profile\n");
  755. return -1;
  756. }
  757. v->extended_mv = get_bits1(gb); //common
  758. if (!v->profile && v->extended_mv)
  759. {
  760. av_log(avctx, AV_LOG_ERROR,
  761. "Extended MVs unavailable in Simple Profile\n");
  762. return -1;
  763. }
  764. v->dquant = get_bits(gb, 2); //common
  765. v->vstransform = get_bits1(gb); //common
  766. v->res_transtab = get_bits1(gb);
  767. if (v->res_transtab)
  768. {
  769. av_log(avctx, AV_LOG_ERROR,
  770. "1 for reserved RES_TRANSTAB is forbidden\n");
  771. return -1;
  772. }
  773. v->overlap = get_bits1(gb); //common
  774. v->s.resync_marker = get_bits1(gb);
  775. v->rangered = get_bits1(gb);
  776. if (v->rangered && v->profile == PROFILE_SIMPLE)
  777. {
  778. av_log(avctx, AV_LOG_INFO,
  779. "RANGERED should be set to 0 in simple profile\n");
  780. }
  781. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  782. v->quantizer_mode = get_bits(gb, 2); //common
  783. v->finterpflag = get_bits1(gb); //common
  784. v->res_rtm_flag = get_bits1(gb); //reserved
  785. if (!v->res_rtm_flag)
  786. {
  787. // av_log(avctx, AV_LOG_ERROR,
  788. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  789. av_log(avctx, AV_LOG_ERROR,
  790. "Old WMV3 version detected, only I-frames will be decoded\n");
  791. //return -1;
  792. }
  793. //TODO: figure out what they mean (always 0x402F)
  794. if(!v->res_fasttx) skip_bits(gb, 16);
  795. av_log(avctx, AV_LOG_DEBUG,
  796. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  797. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  798. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  799. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  800. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  801. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  802. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  803. v->dquant, v->quantizer_mode, avctx->max_b_frames
  804. );
  805. return 0;
  806. }
  807. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  808. {
  809. v->res_rtm_flag = 1;
  810. v->level = get_bits(gb, 3);
  811. if(v->level >= 5)
  812. {
  813. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  814. }
  815. v->chromaformat = get_bits(gb, 2);
  816. if (v->chromaformat != 1)
  817. {
  818. av_log(v->s.avctx, AV_LOG_ERROR,
  819. "Only 4:2:0 chroma format supported\n");
  820. return -1;
  821. }
  822. // (fps-2)/4 (->30)
  823. v->frmrtq_postproc = get_bits(gb, 3); //common
  824. // (bitrate-32kbps)/64kbps
  825. v->bitrtq_postproc = get_bits(gb, 5); //common
  826. v->postprocflag = get_bits1(gb); //common
  827. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  828. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  829. v->s.avctx->width = v->s.avctx->coded_width;
  830. v->s.avctx->height = v->s.avctx->coded_height;
  831. v->broadcast = get_bits1(gb);
  832. v->interlace = get_bits1(gb);
  833. v->tfcntrflag = get_bits1(gb);
  834. v->finterpflag = get_bits1(gb);
  835. skip_bits1(gb); // reserved
  836. v->s.h_edge_pos = v->s.avctx->coded_width;
  837. v->s.v_edge_pos = v->s.avctx->coded_height;
  838. av_log(v->s.avctx, AV_LOG_DEBUG,
  839. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  840. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  841. "TFCTRflag=%i, FINTERPflag=%i\n",
  842. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  843. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  844. v->tfcntrflag, v->finterpflag
  845. );
  846. v->psf = get_bits1(gb);
  847. if(v->psf) { //PsF, 6.1.13
  848. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  849. return -1;
  850. }
  851. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  852. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  853. int w, h, ar = 0;
  854. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  855. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  856. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  857. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  858. if(get_bits1(gb))
  859. ar = get_bits(gb, 4);
  860. if(ar && ar < 14){
  861. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  862. }else if(ar == 15){
  863. w = get_bits(gb, 8);
  864. h = get_bits(gb, 8);
  865. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  866. }
  867. if(get_bits1(gb)){ //framerate stuff
  868. if(get_bits1(gb)) {
  869. v->s.avctx->time_base.num = 32;
  870. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  871. } else {
  872. int nr, dr;
  873. nr = get_bits(gb, 8);
  874. dr = get_bits(gb, 4);
  875. if(nr && nr < 8 && dr && dr < 3){
  876. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  877. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  878. }
  879. }
  880. }
  881. if(get_bits1(gb)){
  882. v->color_prim = get_bits(gb, 8);
  883. v->transfer_char = get_bits(gb, 8);
  884. v->matrix_coef = get_bits(gb, 8);
  885. }
  886. }
  887. v->hrd_param_flag = get_bits1(gb);
  888. if(v->hrd_param_flag) {
  889. int i;
  890. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  891. skip_bits(gb, 4); //bitrate exponent
  892. skip_bits(gb, 4); //buffer size exponent
  893. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  894. skip_bits(gb, 16); //hrd_rate[n]
  895. skip_bits(gb, 16); //hrd_buffer[n]
  896. }
  897. }
  898. return 0;
  899. }
  900. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  901. {
  902. VC1Context *v = avctx->priv_data;
  903. int i, blink, clentry, refdist;
  904. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  905. blink = get_bits1(gb); // broken link
  906. clentry = get_bits1(gb); // closed entry
  907. v->panscanflag = get_bits1(gb);
  908. refdist = get_bits1(gb); // refdist flag
  909. v->s.loop_filter = get_bits1(gb);
  910. v->fastuvmc = get_bits1(gb);
  911. v->extended_mv = get_bits1(gb);
  912. v->dquant = get_bits(gb, 2);
  913. v->vstransform = get_bits1(gb);
  914. v->overlap = get_bits1(gb);
  915. v->quantizer_mode = get_bits(gb, 2);
  916. if(v->hrd_param_flag){
  917. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  918. skip_bits(gb, 8); //hrd_full[n]
  919. }
  920. }
  921. if(get_bits1(gb)){
  922. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  923. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  924. }
  925. if(v->extended_mv)
  926. v->extended_dmv = get_bits1(gb);
  927. if(get_bits1(gb)) {
  928. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  929. skip_bits(gb, 3); // Y range, ignored for now
  930. }
  931. if(get_bits1(gb)) {
  932. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  933. skip_bits(gb, 3); // UV range, ignored for now
  934. }
  935. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  936. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  937. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  938. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  939. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  940. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  941. return 0;
  942. }
  943. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  944. {
  945. int pqindex, lowquant, status;
  946. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  947. skip_bits(gb, 2); //framecnt unused
  948. v->rangeredfrm = 0;
  949. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  950. v->s.pict_type = get_bits1(gb);
  951. if (v->s.avctx->max_b_frames) {
  952. if (!v->s.pict_type) {
  953. if (get_bits1(gb)) v->s.pict_type = I_TYPE;
  954. else v->s.pict_type = B_TYPE;
  955. } else v->s.pict_type = P_TYPE;
  956. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  957. v->bi_type = 0;
  958. if(v->s.pict_type == B_TYPE) {
  959. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  960. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  961. if(v->bfraction == 0) {
  962. v->s.pict_type = BI_TYPE;
  963. }
  964. }
  965. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  966. skip_bits(gb, 7); // skip buffer fullness
  967. /* calculate RND */
  968. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  969. v->rnd = 1;
  970. if(v->s.pict_type == P_TYPE)
  971. v->rnd ^= 1;
  972. /* Quantizer stuff */
  973. pqindex = get_bits(gb, 5);
  974. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  975. v->pq = ff_vc1_pquant_table[0][pqindex];
  976. else
  977. v->pq = ff_vc1_pquant_table[1][pqindex];
  978. v->pquantizer = 1;
  979. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  980. v->pquantizer = pqindex < 9;
  981. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  982. v->pquantizer = 0;
  983. v->pqindex = pqindex;
  984. if (pqindex < 9) v->halfpq = get_bits1(gb);
  985. else v->halfpq = 0;
  986. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  987. v->pquantizer = get_bits1(gb);
  988. v->dquantfrm = 0;
  989. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  990. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  991. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  992. v->range_x = 1 << (v->k_x - 1);
  993. v->range_y = 1 << (v->k_y - 1);
  994. if (v->profile == PROFILE_ADVANCED)
  995. {
  996. if (v->postprocflag) v->postproc = get_bits1(gb);
  997. }
  998. else
  999. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1000. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1001. v->x8_type = get_bits1(gb);
  1002. }else v->x8_type = 0;
  1003. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1004. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1005. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1006. switch(v->s.pict_type) {
  1007. case P_TYPE:
  1008. if (v->pq < 5) v->tt_index = 0;
  1009. else if(v->pq < 13) v->tt_index = 1;
  1010. else v->tt_index = 2;
  1011. lowquant = (v->pq > 12) ? 0 : 1;
  1012. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1013. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1014. {
  1015. int scale, shift, i;
  1016. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1017. v->lumscale = get_bits(gb, 6);
  1018. v->lumshift = get_bits(gb, 6);
  1019. v->use_ic = 1;
  1020. /* fill lookup tables for intensity compensation */
  1021. if(!v->lumscale) {
  1022. scale = -64;
  1023. shift = (255 - v->lumshift * 2) << 6;
  1024. if(v->lumshift > 31)
  1025. shift += 128 << 6;
  1026. } else {
  1027. scale = v->lumscale + 32;
  1028. if(v->lumshift > 31)
  1029. shift = (v->lumshift - 64) << 6;
  1030. else
  1031. shift = v->lumshift << 6;
  1032. }
  1033. for(i = 0; i < 256; i++) {
  1034. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1035. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1036. }
  1037. }
  1038. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1039. v->s.quarter_sample = 0;
  1040. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1041. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1042. v->s.quarter_sample = 0;
  1043. else
  1044. v->s.quarter_sample = 1;
  1045. } else
  1046. v->s.quarter_sample = 1;
  1047. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1048. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1049. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1050. || v->mv_mode == MV_PMODE_MIXED_MV)
  1051. {
  1052. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1053. if (status < 0) return -1;
  1054. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1055. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1056. } else {
  1057. v->mv_type_is_raw = 0;
  1058. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1059. }
  1060. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1061. if (status < 0) return -1;
  1062. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1063. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1064. /* Hopefully this is correct for P frames */
  1065. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1066. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1067. if (v->dquant)
  1068. {
  1069. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1070. vop_dquant_decoding(v);
  1071. }
  1072. v->ttfrm = 0; //FIXME Is that so ?
  1073. if (v->vstransform)
  1074. {
  1075. v->ttmbf = get_bits1(gb);
  1076. if (v->ttmbf)
  1077. {
  1078. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1079. }
  1080. } else {
  1081. v->ttmbf = 1;
  1082. v->ttfrm = TT_8X8;
  1083. }
  1084. break;
  1085. case B_TYPE:
  1086. if (v->pq < 5) v->tt_index = 0;
  1087. else if(v->pq < 13) v->tt_index = 1;
  1088. else v->tt_index = 2;
  1089. lowquant = (v->pq > 12) ? 0 : 1;
  1090. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1091. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1092. v->s.mspel = v->s.quarter_sample;
  1093. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1094. if (status < 0) return -1;
  1095. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1096. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1097. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1098. if (status < 0) return -1;
  1099. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1100. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1101. v->s.mv_table_index = get_bits(gb, 2);
  1102. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1103. if (v->dquant)
  1104. {
  1105. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1106. vop_dquant_decoding(v);
  1107. }
  1108. v->ttfrm = 0;
  1109. if (v->vstransform)
  1110. {
  1111. v->ttmbf = get_bits1(gb);
  1112. if (v->ttmbf)
  1113. {
  1114. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1115. }
  1116. } else {
  1117. v->ttmbf = 1;
  1118. v->ttfrm = TT_8X8;
  1119. }
  1120. break;
  1121. }
  1122. if(!v->x8_type)
  1123. {
  1124. /* AC Syntax */
  1125. v->c_ac_table_index = decode012(gb);
  1126. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1127. {
  1128. v->y_ac_table_index = decode012(gb);
  1129. }
  1130. /* DC Syntax */
  1131. v->s.dc_table_index = get_bits1(gb);
  1132. }
  1133. if(v->s.pict_type == BI_TYPE) {
  1134. v->s.pict_type = B_TYPE;
  1135. v->bi_type = 1;
  1136. }
  1137. return 0;
  1138. }
  1139. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1140. {
  1141. int pqindex, lowquant;
  1142. int status;
  1143. v->p_frame_skipped = 0;
  1144. if(v->interlace){
  1145. v->fcm = decode012(gb);
  1146. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1147. }
  1148. switch(get_unary(gb, 0, 4)) {
  1149. case 0:
  1150. v->s.pict_type = P_TYPE;
  1151. break;
  1152. case 1:
  1153. v->s.pict_type = B_TYPE;
  1154. break;
  1155. case 2:
  1156. v->s.pict_type = I_TYPE;
  1157. break;
  1158. case 3:
  1159. v->s.pict_type = BI_TYPE;
  1160. break;
  1161. case 4:
  1162. v->s.pict_type = P_TYPE; // skipped pic
  1163. v->p_frame_skipped = 1;
  1164. return 0;
  1165. }
  1166. if(v->tfcntrflag)
  1167. skip_bits(gb, 8);
  1168. if(v->broadcast) {
  1169. if(!v->interlace || v->psf) {
  1170. v->rptfrm = get_bits(gb, 2);
  1171. } else {
  1172. v->tff = get_bits1(gb);
  1173. v->rptfrm = get_bits1(gb);
  1174. }
  1175. }
  1176. if(v->panscanflag) {
  1177. //...
  1178. }
  1179. v->rnd = get_bits1(gb);
  1180. if(v->interlace)
  1181. v->uvsamp = get_bits1(gb);
  1182. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1183. if(v->s.pict_type == B_TYPE) {
  1184. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1185. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1186. if(v->bfraction == 0) {
  1187. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1188. }
  1189. }
  1190. pqindex = get_bits(gb, 5);
  1191. v->pqindex = pqindex;
  1192. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1193. v->pq = ff_vc1_pquant_table[0][pqindex];
  1194. else
  1195. v->pq = ff_vc1_pquant_table[1][pqindex];
  1196. v->pquantizer = 1;
  1197. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1198. v->pquantizer = pqindex < 9;
  1199. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1200. v->pquantizer = 0;
  1201. v->pqindex = pqindex;
  1202. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1203. else v->halfpq = 0;
  1204. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1205. v->pquantizer = get_bits1(gb);
  1206. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1207. switch(v->s.pict_type) {
  1208. case I_TYPE:
  1209. case BI_TYPE:
  1210. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1211. if (status < 0) return -1;
  1212. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1213. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1214. v->condover = CONDOVER_NONE;
  1215. if(v->overlap && v->pq <= 8) {
  1216. v->condover = decode012(gb);
  1217. if(v->condover == CONDOVER_SELECT) {
  1218. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1219. if (status < 0) return -1;
  1220. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1221. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1222. }
  1223. }
  1224. break;
  1225. case P_TYPE:
  1226. if(v->postprocflag)
  1227. v->postproc = get_bits1(gb);
  1228. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1229. else v->mvrange = 0;
  1230. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1231. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1232. v->range_x = 1 << (v->k_x - 1);
  1233. v->range_y = 1 << (v->k_y - 1);
  1234. if (v->pq < 5) v->tt_index = 0;
  1235. else if(v->pq < 13) v->tt_index = 1;
  1236. else v->tt_index = 2;
  1237. lowquant = (v->pq > 12) ? 0 : 1;
  1238. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1239. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1240. {
  1241. int scale, shift, i;
  1242. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1243. v->lumscale = get_bits(gb, 6);
  1244. v->lumshift = get_bits(gb, 6);
  1245. /* fill lookup tables for intensity compensation */
  1246. if(!v->lumscale) {
  1247. scale = -64;
  1248. shift = (255 - v->lumshift * 2) << 6;
  1249. if(v->lumshift > 31)
  1250. shift += 128 << 6;
  1251. } else {
  1252. scale = v->lumscale + 32;
  1253. if(v->lumshift > 31)
  1254. shift = (v->lumshift - 64) << 6;
  1255. else
  1256. shift = v->lumshift << 6;
  1257. }
  1258. for(i = 0; i < 256; i++) {
  1259. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1260. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1261. }
  1262. v->use_ic = 1;
  1263. }
  1264. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1265. v->s.quarter_sample = 0;
  1266. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1267. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1268. v->s.quarter_sample = 0;
  1269. else
  1270. v->s.quarter_sample = 1;
  1271. } else
  1272. v->s.quarter_sample = 1;
  1273. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1274. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1275. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1276. || v->mv_mode == MV_PMODE_MIXED_MV)
  1277. {
  1278. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1279. if (status < 0) return -1;
  1280. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1281. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1282. } else {
  1283. v->mv_type_is_raw = 0;
  1284. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1285. }
  1286. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1287. if (status < 0) return -1;
  1288. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1289. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1290. /* Hopefully this is correct for P frames */
  1291. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1292. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1293. if (v->dquant)
  1294. {
  1295. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1296. vop_dquant_decoding(v);
  1297. }
  1298. v->ttfrm = 0; //FIXME Is that so ?
  1299. if (v->vstransform)
  1300. {
  1301. v->ttmbf = get_bits1(gb);
  1302. if (v->ttmbf)
  1303. {
  1304. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1305. }
  1306. } else {
  1307. v->ttmbf = 1;
  1308. v->ttfrm = TT_8X8;
  1309. }
  1310. break;
  1311. case B_TYPE:
  1312. if(v->postprocflag)
  1313. v->postproc = get_bits1(gb);
  1314. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1315. else v->mvrange = 0;
  1316. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1317. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1318. v->range_x = 1 << (v->k_x - 1);
  1319. v->range_y = 1 << (v->k_y - 1);
  1320. if (v->pq < 5) v->tt_index = 0;
  1321. else if(v->pq < 13) v->tt_index = 1;
  1322. else v->tt_index = 2;
  1323. lowquant = (v->pq > 12) ? 0 : 1;
  1324. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1325. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1326. v->s.mspel = v->s.quarter_sample;
  1327. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1328. if (status < 0) return -1;
  1329. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1330. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1331. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1332. if (status < 0) return -1;
  1333. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1334. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1335. v->s.mv_table_index = get_bits(gb, 2);
  1336. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1337. if (v->dquant)
  1338. {
  1339. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1340. vop_dquant_decoding(v);
  1341. }
  1342. v->ttfrm = 0;
  1343. if (v->vstransform)
  1344. {
  1345. v->ttmbf = get_bits1(gb);
  1346. if (v->ttmbf)
  1347. {
  1348. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1349. }
  1350. } else {
  1351. v->ttmbf = 1;
  1352. v->ttfrm = TT_8X8;
  1353. }
  1354. break;
  1355. }
  1356. /* AC Syntax */
  1357. v->c_ac_table_index = decode012(gb);
  1358. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1359. {
  1360. v->y_ac_table_index = decode012(gb);
  1361. }
  1362. /* DC Syntax */
  1363. v->s.dc_table_index = get_bits1(gb);
  1364. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1365. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1366. vop_dquant_decoding(v);
  1367. }
  1368. v->bi_type = 0;
  1369. if(v->s.pict_type == BI_TYPE) {
  1370. v->s.pict_type = B_TYPE;
  1371. v->bi_type = 1;
  1372. }
  1373. return 0;
  1374. }
  1375. /***********************************************************************/
  1376. /**
  1377. * @defgroup block VC-1 Block-level functions
  1378. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1379. * @{
  1380. */
  1381. /**
  1382. * @def GET_MQUANT
  1383. * @brief Get macroblock-level quantizer scale
  1384. */
  1385. #define GET_MQUANT() \
  1386. if (v->dquantfrm) \
  1387. { \
  1388. int edges = 0; \
  1389. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1390. { \
  1391. if (v->dqbilevel) \
  1392. { \
  1393. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1394. } \
  1395. else \
  1396. { \
  1397. mqdiff = get_bits(gb, 3); \
  1398. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1399. else mquant = get_bits(gb, 5); \
  1400. } \
  1401. } \
  1402. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1403. edges = 1 << v->dqsbedge; \
  1404. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1405. edges = (3 << v->dqsbedge) % 15; \
  1406. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1407. edges = 15; \
  1408. if((edges&1) && !s->mb_x) \
  1409. mquant = v->altpq; \
  1410. if((edges&2) && s->first_slice_line) \
  1411. mquant = v->altpq; \
  1412. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1413. mquant = v->altpq; \
  1414. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1415. mquant = v->altpq; \
  1416. }
  1417. /**
  1418. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1419. * @brief Get MV differentials
  1420. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1421. * @param _dmv_x Horizontal differential for decoded MV
  1422. * @param _dmv_y Vertical differential for decoded MV
  1423. */
  1424. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1425. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1426. VC1_MV_DIFF_VLC_BITS, 2); \
  1427. if (index > 36) \
  1428. { \
  1429. mb_has_coeffs = 1; \
  1430. index -= 37; \
  1431. } \
  1432. else mb_has_coeffs = 0; \
  1433. s->mb_intra = 0; \
  1434. if (!index) { _dmv_x = _dmv_y = 0; } \
  1435. else if (index == 35) \
  1436. { \
  1437. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1438. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1439. } \
  1440. else if (index == 36) \
  1441. { \
  1442. _dmv_x = 0; \
  1443. _dmv_y = 0; \
  1444. s->mb_intra = 1; \
  1445. } \
  1446. else \
  1447. { \
  1448. index1 = index%6; \
  1449. if (!s->quarter_sample && index1 == 5) val = 1; \
  1450. else val = 0; \
  1451. if(size_table[index1] - val > 0) \
  1452. val = get_bits(gb, size_table[index1] - val); \
  1453. else val = 0; \
  1454. sign = 0 - (val&1); \
  1455. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1456. \
  1457. index1 = index/6; \
  1458. if (!s->quarter_sample && index1 == 5) val = 1; \
  1459. else val = 0; \
  1460. if(size_table[index1] - val > 0) \
  1461. val = get_bits(gb, size_table[index1] - val); \
  1462. else val = 0; \
  1463. sign = 0 - (val&1); \
  1464. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1465. }
  1466. /** Predict and set motion vector
  1467. */
  1468. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1469. {
  1470. int xy, wrap, off = 0;
  1471. int16_t *A, *B, *C;
  1472. int px, py;
  1473. int sum;
  1474. /* scale MV difference to be quad-pel */
  1475. dmv_x <<= 1 - s->quarter_sample;
  1476. dmv_y <<= 1 - s->quarter_sample;
  1477. wrap = s->b8_stride;
  1478. xy = s->block_index[n];
  1479. if(s->mb_intra){
  1480. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1481. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1482. s->current_picture.motion_val[1][xy][0] = 0;
  1483. s->current_picture.motion_val[1][xy][1] = 0;
  1484. if(mv1) { /* duplicate motion data for 1-MV block */
  1485. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1486. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1487. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1488. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1489. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1490. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1491. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1492. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1493. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1494. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1495. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1496. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1497. }
  1498. return;
  1499. }
  1500. C = s->current_picture.motion_val[0][xy - 1];
  1501. A = s->current_picture.motion_val[0][xy - wrap];
  1502. if(mv1)
  1503. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1504. else {
  1505. //in 4-MV mode different blocks have different B predictor position
  1506. switch(n){
  1507. case 0:
  1508. off = (s->mb_x > 0) ? -1 : 1;
  1509. break;
  1510. case 1:
  1511. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1512. break;
  1513. case 2:
  1514. off = 1;
  1515. break;
  1516. case 3:
  1517. off = -1;
  1518. }
  1519. }
  1520. B = s->current_picture.motion_val[0][xy - wrap + off];
  1521. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1522. if(s->mb_width == 1) {
  1523. px = A[0];
  1524. py = A[1];
  1525. } else {
  1526. px = mid_pred(A[0], B[0], C[0]);
  1527. py = mid_pred(A[1], B[1], C[1]);
  1528. }
  1529. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1530. px = C[0];
  1531. py = C[1];
  1532. } else {
  1533. px = py = 0;
  1534. }
  1535. /* Pullback MV as specified in 8.3.5.3.4 */
  1536. {
  1537. int qx, qy, X, Y;
  1538. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1539. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1540. X = (s->mb_width << 6) - 4;
  1541. Y = (s->mb_height << 6) - 4;
  1542. if(mv1) {
  1543. if(qx + px < -60) px = -60 - qx;
  1544. if(qy + py < -60) py = -60 - qy;
  1545. } else {
  1546. if(qx + px < -28) px = -28 - qx;
  1547. if(qy + py < -28) py = -28 - qy;
  1548. }
  1549. if(qx + px > X) px = X - qx;
  1550. if(qy + py > Y) py = Y - qy;
  1551. }
  1552. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1553. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1554. if(is_intra[xy - wrap])
  1555. sum = FFABS(px) + FFABS(py);
  1556. else
  1557. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1558. if(sum > 32) {
  1559. if(get_bits1(&s->gb)) {
  1560. px = A[0];
  1561. py = A[1];
  1562. } else {
  1563. px = C[0];
  1564. py = C[1];
  1565. }
  1566. } else {
  1567. if(is_intra[xy - 1])
  1568. sum = FFABS(px) + FFABS(py);
  1569. else
  1570. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1571. if(sum > 32) {
  1572. if(get_bits1(&s->gb)) {
  1573. px = A[0];
  1574. py = A[1];
  1575. } else {
  1576. px = C[0];
  1577. py = C[1];
  1578. }
  1579. }
  1580. }
  1581. }
  1582. /* store MV using signed modulus of MV range defined in 4.11 */
  1583. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1584. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1585. if(mv1) { /* duplicate motion data for 1-MV block */
  1586. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1587. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1588. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1589. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1590. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1591. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1592. }
  1593. }
  1594. /** Motion compensation for direct or interpolated blocks in B-frames
  1595. */
  1596. static void vc1_interp_mc(VC1Context *v)
  1597. {
  1598. MpegEncContext *s = &v->s;
  1599. DSPContext *dsp = &v->s.dsp;
  1600. uint8_t *srcY, *srcU, *srcV;
  1601. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1602. if(!v->s.next_picture.data[0])return;
  1603. mx = s->mv[1][0][0];
  1604. my = s->mv[1][0][1];
  1605. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1606. uvmy = (my + ((my & 3) == 3)) >> 1;
  1607. if(v->fastuvmc) {
  1608. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1609. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1610. }
  1611. srcY = s->next_picture.data[0];
  1612. srcU = s->next_picture.data[1];
  1613. srcV = s->next_picture.data[2];
  1614. src_x = s->mb_x * 16 + (mx >> 2);
  1615. src_y = s->mb_y * 16 + (my >> 2);
  1616. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1617. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1618. if(v->profile != PROFILE_ADVANCED){
  1619. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1620. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1621. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1622. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1623. }else{
  1624. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1625. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1626. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1627. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1628. }
  1629. srcY += src_y * s->linesize + src_x;
  1630. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1631. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1632. /* for grayscale we should not try to read from unknown area */
  1633. if(s->flags & CODEC_FLAG_GRAY) {
  1634. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1635. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1636. }
  1637. if(v->rangeredfrm
  1638. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1639. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1640. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1641. srcY -= s->mspel * (1 + s->linesize);
  1642. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1643. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1644. srcY = s->edge_emu_buffer;
  1645. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1646. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1647. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1648. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1649. srcU = uvbuf;
  1650. srcV = uvbuf + 16;
  1651. /* if we deal with range reduction we need to scale source blocks */
  1652. if(v->rangeredfrm) {
  1653. int i, j;
  1654. uint8_t *src, *src2;
  1655. src = srcY;
  1656. for(j = 0; j < 17 + s->mspel*2; j++) {
  1657. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1658. src += s->linesize;
  1659. }
  1660. src = srcU; src2 = srcV;
  1661. for(j = 0; j < 9; j++) {
  1662. for(i = 0; i < 9; i++) {
  1663. src[i] = ((src[i] - 128) >> 1) + 128;
  1664. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1665. }
  1666. src += s->uvlinesize;
  1667. src2 += s->uvlinesize;
  1668. }
  1669. }
  1670. srcY += s->mspel * (1 + s->linesize);
  1671. }
  1672. mx >>= 1;
  1673. my >>= 1;
  1674. dxy = ((my & 1) << 1) | (mx & 1);
  1675. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1676. if(s->flags & CODEC_FLAG_GRAY) return;
  1677. /* Chroma MC always uses qpel blilinear */
  1678. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1679. uvmx = (uvmx&3)<<1;
  1680. uvmy = (uvmy&3)<<1;
  1681. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1682. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1683. }
  1684. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1685. {
  1686. int n = bfrac;
  1687. #if B_FRACTION_DEN==256
  1688. if(inv)
  1689. n -= 256;
  1690. if(!qs)
  1691. return 2 * ((value * n + 255) >> 9);
  1692. return (value * n + 128) >> 8;
  1693. #else
  1694. if(inv)
  1695. n -= B_FRACTION_DEN;
  1696. if(!qs)
  1697. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1698. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1699. #endif
  1700. }
  1701. /** Reconstruct motion vector for B-frame and do motion compensation
  1702. */
  1703. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1704. {
  1705. if(v->use_ic) {
  1706. v->mv_mode2 = v->mv_mode;
  1707. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1708. }
  1709. if(direct) {
  1710. vc1_mc_1mv(v, 0);
  1711. vc1_interp_mc(v);
  1712. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1713. return;
  1714. }
  1715. if(mode == BMV_TYPE_INTERPOLATED) {
  1716. vc1_mc_1mv(v, 0);
  1717. vc1_interp_mc(v);
  1718. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1719. return;
  1720. }
  1721. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1722. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1723. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1724. }
  1725. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1726. {
  1727. MpegEncContext *s = &v->s;
  1728. int xy, wrap, off = 0;
  1729. int16_t *A, *B, *C;
  1730. int px, py;
  1731. int sum;
  1732. int r_x, r_y;
  1733. const uint8_t *is_intra = v->mb_type[0];
  1734. r_x = v->range_x;
  1735. r_y = v->range_y;
  1736. /* scale MV difference to be quad-pel */
  1737. dmv_x[0] <<= 1 - s->quarter_sample;
  1738. dmv_y[0] <<= 1 - s->quarter_sample;
  1739. dmv_x[1] <<= 1 - s->quarter_sample;
  1740. dmv_y[1] <<= 1 - s->quarter_sample;
  1741. wrap = s->b8_stride;
  1742. xy = s->block_index[0];
  1743. if(s->mb_intra) {
  1744. s->current_picture.motion_val[0][xy][0] =
  1745. s->current_picture.motion_val[0][xy][1] =
  1746. s->current_picture.motion_val[1][xy][0] =
  1747. s->current_picture.motion_val[1][xy][1] = 0;
  1748. return;
  1749. }
  1750. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1751. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1752. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1753. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1754. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1755. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1756. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1757. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1758. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1759. if(direct) {
  1760. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1761. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1762. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1763. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1764. return;
  1765. }
  1766. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1767. C = s->current_picture.motion_val[0][xy - 2];
  1768. A = s->current_picture.motion_val[0][xy - wrap*2];
  1769. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1770. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1771. if(!s->mb_x) C[0] = C[1] = 0;
  1772. if(!s->first_slice_line) { // predictor A is not out of bounds
  1773. if(s->mb_width == 1) {
  1774. px = A[0];
  1775. py = A[1];
  1776. } else {
  1777. px = mid_pred(A[0], B[0], C[0]);
  1778. py = mid_pred(A[1], B[1], C[1]);
  1779. }
  1780. } else if(s->mb_x) { // predictor C is not out of bounds
  1781. px = C[0];
  1782. py = C[1];
  1783. } else {
  1784. px = py = 0;
  1785. }
  1786. /* Pullback MV as specified in 8.3.5.3.4 */
  1787. {
  1788. int qx, qy, X, Y;
  1789. if(v->profile < PROFILE_ADVANCED) {
  1790. qx = (s->mb_x << 5);
  1791. qy = (s->mb_y << 5);
  1792. X = (s->mb_width << 5) - 4;
  1793. Y = (s->mb_height << 5) - 4;
  1794. if(qx + px < -28) px = -28 - qx;
  1795. if(qy + py < -28) py = -28 - qy;
  1796. if(qx + px > X) px = X - qx;
  1797. if(qy + py > Y) py = Y - qy;
  1798. } else {
  1799. qx = (s->mb_x << 6);
  1800. qy = (s->mb_y << 6);
  1801. X = (s->mb_width << 6) - 4;
  1802. Y = (s->mb_height << 6) - 4;
  1803. if(qx + px < -60) px = -60 - qx;
  1804. if(qy + py < -60) py = -60 - qy;
  1805. if(qx + px > X) px = X - qx;
  1806. if(qy + py > Y) py = Y - qy;
  1807. }
  1808. }
  1809. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1810. if(0 && !s->first_slice_line && s->mb_x) {
  1811. if(is_intra[xy - wrap])
  1812. sum = FFABS(px) + FFABS(py);
  1813. else
  1814. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1815. if(sum > 32) {
  1816. if(get_bits1(&s->gb)) {
  1817. px = A[0];
  1818. py = A[1];
  1819. } else {
  1820. px = C[0];
  1821. py = C[1];
  1822. }
  1823. } else {
  1824. if(is_intra[xy - 2])
  1825. sum = FFABS(px) + FFABS(py);
  1826. else
  1827. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1828. if(sum > 32) {
  1829. if(get_bits1(&s->gb)) {
  1830. px = A[0];
  1831. py = A[1];
  1832. } else {
  1833. px = C[0];
  1834. py = C[1];
  1835. }
  1836. }
  1837. }
  1838. }
  1839. /* store MV using signed modulus of MV range defined in 4.11 */
  1840. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1841. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1842. }
  1843. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1844. C = s->current_picture.motion_val[1][xy - 2];
  1845. A = s->current_picture.motion_val[1][xy - wrap*2];
  1846. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1847. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1848. if(!s->mb_x) C[0] = C[1] = 0;
  1849. if(!s->first_slice_line) { // predictor A is not out of bounds
  1850. if(s->mb_width == 1) {
  1851. px = A[0];
  1852. py = A[1];
  1853. } else {
  1854. px = mid_pred(A[0], B[0], C[0]);
  1855. py = mid_pred(A[1], B[1], C[1]);
  1856. }
  1857. } else if(s->mb_x) { // predictor C is not out of bounds
  1858. px = C[0];
  1859. py = C[1];
  1860. } else {
  1861. px = py = 0;
  1862. }
  1863. /* Pullback MV as specified in 8.3.5.3.4 */
  1864. {
  1865. int qx, qy, X, Y;
  1866. if(v->profile < PROFILE_ADVANCED) {
  1867. qx = (s->mb_x << 5);
  1868. qy = (s->mb_y << 5);
  1869. X = (s->mb_width << 5) - 4;
  1870. Y = (s->mb_height << 5) - 4;
  1871. if(qx + px < -28) px = -28 - qx;
  1872. if(qy + py < -28) py = -28 - qy;
  1873. if(qx + px > X) px = X - qx;
  1874. if(qy + py > Y) py = Y - qy;
  1875. } else {
  1876. qx = (s->mb_x << 6);
  1877. qy = (s->mb_y << 6);
  1878. X = (s->mb_width << 6) - 4;
  1879. Y = (s->mb_height << 6) - 4;
  1880. if(qx + px < -60) px = -60 - qx;
  1881. if(qy + py < -60) py = -60 - qy;
  1882. if(qx + px > X) px = X - qx;
  1883. if(qy + py > Y) py = Y - qy;
  1884. }
  1885. }
  1886. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1887. if(0 && !s->first_slice_line && s->mb_x) {
  1888. if(is_intra[xy - wrap])
  1889. sum = FFABS(px) + FFABS(py);
  1890. else
  1891. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1892. if(sum > 32) {
  1893. if(get_bits1(&s->gb)) {
  1894. px = A[0];
  1895. py = A[1];
  1896. } else {
  1897. px = C[0];
  1898. py = C[1];
  1899. }
  1900. } else {
  1901. if(is_intra[xy - 2])
  1902. sum = FFABS(px) + FFABS(py);
  1903. else
  1904. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1905. if(sum > 32) {
  1906. if(get_bits1(&s->gb)) {
  1907. px = A[0];
  1908. py = A[1];
  1909. } else {
  1910. px = C[0];
  1911. py = C[1];
  1912. }
  1913. }
  1914. }
  1915. }
  1916. /* store MV using signed modulus of MV range defined in 4.11 */
  1917. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1918. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1919. }
  1920. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1921. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1922. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1923. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1924. }
  1925. /** Get predicted DC value for I-frames only
  1926. * prediction dir: left=0, top=1
  1927. * @param s MpegEncContext
  1928. * @param[in] n block index in the current MB
  1929. * @param dc_val_ptr Pointer to DC predictor
  1930. * @param dir_ptr Prediction direction for use in AC prediction
  1931. */
  1932. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1933. int16_t **dc_val_ptr, int *dir_ptr)
  1934. {
  1935. int a, b, c, wrap, pred, scale;
  1936. int16_t *dc_val;
  1937. static const uint16_t dcpred[32] = {
  1938. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1939. 114, 102, 93, 85, 79, 73, 68, 64,
  1940. 60, 57, 54, 51, 49, 47, 45, 43,
  1941. 41, 39, 38, 37, 35, 34, 33
  1942. };
  1943. /* find prediction - wmv3_dc_scale always used here in fact */
  1944. if (n < 4) scale = s->y_dc_scale;
  1945. else scale = s->c_dc_scale;
  1946. wrap = s->block_wrap[n];
  1947. dc_val= s->dc_val[0] + s->block_index[n];
  1948. /* B A
  1949. * C X
  1950. */
  1951. c = dc_val[ - 1];
  1952. b = dc_val[ - 1 - wrap];
  1953. a = dc_val[ - wrap];
  1954. if (pq < 9 || !overlap)
  1955. {
  1956. /* Set outer values */
  1957. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1958. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1959. }
  1960. else
  1961. {
  1962. /* Set outer values */
  1963. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1964. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1965. }
  1966. if (abs(a - b) <= abs(b - c)) {
  1967. pred = c;
  1968. *dir_ptr = 1;//left
  1969. } else {
  1970. pred = a;
  1971. *dir_ptr = 0;//top
  1972. }
  1973. /* update predictor */
  1974. *dc_val_ptr = &dc_val[0];
  1975. return pred;
  1976. }
  1977. /** Get predicted DC value
  1978. * prediction dir: left=0, top=1
  1979. * @param s MpegEncContext
  1980. * @param[in] n block index in the current MB
  1981. * @param dc_val_ptr Pointer to DC predictor
  1982. * @param dir_ptr Prediction direction for use in AC prediction
  1983. */
  1984. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1985. int a_avail, int c_avail,
  1986. int16_t **dc_val_ptr, int *dir_ptr)
  1987. {
  1988. int a, b, c, wrap, pred, scale;
  1989. int16_t *dc_val;
  1990. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1991. int q1, q2 = 0;
  1992. /* find prediction - wmv3_dc_scale always used here in fact */
  1993. if (n < 4) scale = s->y_dc_scale;
  1994. else scale = s->c_dc_scale;
  1995. wrap = s->block_wrap[n];
  1996. dc_val= s->dc_val[0] + s->block_index[n];
  1997. /* B A
  1998. * C X
  1999. */
  2000. c = dc_val[ - 1];
  2001. b = dc_val[ - 1 - wrap];
  2002. a = dc_val[ - wrap];
  2003. /* scale predictors if needed */
  2004. q1 = s->current_picture.qscale_table[mb_pos];
  2005. if(c_avail && (n!= 1 && n!=3)) {
  2006. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2007. if(q2 && q2 != q1)
  2008. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2009. }
  2010. if(a_avail && (n!= 2 && n!=3)) {
  2011. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2012. if(q2 && q2 != q1)
  2013. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2014. }
  2015. if(a_avail && c_avail && (n!=3)) {
  2016. int off = mb_pos;
  2017. if(n != 1) off--;
  2018. if(n != 2) off -= s->mb_stride;
  2019. q2 = s->current_picture.qscale_table[off];
  2020. if(q2 && q2 != q1)
  2021. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2022. }
  2023. if(a_avail && c_avail) {
  2024. if(abs(a - b) <= abs(b - c)) {
  2025. pred = c;
  2026. *dir_ptr = 1;//left
  2027. } else {
  2028. pred = a;
  2029. *dir_ptr = 0;//top
  2030. }
  2031. } else if(a_avail) {
  2032. pred = a;
  2033. *dir_ptr = 0;//top
  2034. } else if(c_avail) {
  2035. pred = c;
  2036. *dir_ptr = 1;//left
  2037. } else {
  2038. pred = 0;
  2039. *dir_ptr = 1;//left
  2040. }
  2041. /* update predictor */
  2042. *dc_val_ptr = &dc_val[0];
  2043. return pred;
  2044. }
  2045. /**
  2046. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2047. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2048. * @{
  2049. */
  2050. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2051. {
  2052. int xy, wrap, pred, a, b, c;
  2053. xy = s->block_index[n];
  2054. wrap = s->b8_stride;
  2055. /* B C
  2056. * A X
  2057. */
  2058. a = s->coded_block[xy - 1 ];
  2059. b = s->coded_block[xy - 1 - wrap];
  2060. c = s->coded_block[xy - wrap];
  2061. if (b == c) {
  2062. pred = a;
  2063. } else {
  2064. pred = c;
  2065. }
  2066. /* store value */
  2067. *coded_block_ptr = &s->coded_block[xy];
  2068. return pred;
  2069. }
  2070. /**
  2071. * Decode one AC coefficient
  2072. * @param v The VC1 context
  2073. * @param last Last coefficient
  2074. * @param skip How much zero coefficients to skip
  2075. * @param value Decoded AC coefficient value
  2076. * @see 8.1.3.4
  2077. */
  2078. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2079. {
  2080. GetBitContext *gb = &v->s.gb;
  2081. int index, escape, run = 0, level = 0, lst = 0;
  2082. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2083. if (index != vc1_ac_sizes[codingset] - 1) {
  2084. run = vc1_index_decode_table[codingset][index][0];
  2085. level = vc1_index_decode_table[codingset][index][1];
  2086. lst = index >= vc1_last_decode_table[codingset];
  2087. if(get_bits1(gb))
  2088. level = -level;
  2089. } else {
  2090. escape = decode210(gb);
  2091. if (escape != 2) {
  2092. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2093. run = vc1_index_decode_table[codingset][index][0];
  2094. level = vc1_index_decode_table[codingset][index][1];
  2095. lst = index >= vc1_last_decode_table[codingset];
  2096. if(escape == 0) {
  2097. if(lst)
  2098. level += vc1_last_delta_level_table[codingset][run];
  2099. else
  2100. level += vc1_delta_level_table[codingset][run];
  2101. } else {
  2102. if(lst)
  2103. run += vc1_last_delta_run_table[codingset][level] + 1;
  2104. else
  2105. run += vc1_delta_run_table[codingset][level] + 1;
  2106. }
  2107. if(get_bits1(gb))
  2108. level = -level;
  2109. } else {
  2110. int sign;
  2111. lst = get_bits1(gb);
  2112. if(v->s.esc3_level_length == 0) {
  2113. if(v->pq < 8 || v->dquantfrm) { // table 59
  2114. v->s.esc3_level_length = get_bits(gb, 3);
  2115. if(!v->s.esc3_level_length)
  2116. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2117. } else { //table 60
  2118. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2119. }
  2120. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2121. }
  2122. run = get_bits(gb, v->s.esc3_run_length);
  2123. sign = get_bits1(gb);
  2124. level = get_bits(gb, v->s.esc3_level_length);
  2125. if(sign)
  2126. level = -level;
  2127. }
  2128. }
  2129. *last = lst;
  2130. *skip = run;
  2131. *value = level;
  2132. }
  2133. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2134. * @param v VC1Context
  2135. * @param block block to decode
  2136. * @param coded are AC coeffs present or not
  2137. * @param codingset set of VLC to decode data
  2138. */
  2139. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2140. {
  2141. GetBitContext *gb = &v->s.gb;
  2142. MpegEncContext *s = &v->s;
  2143. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2144. int run_diff, i;
  2145. int16_t *dc_val;
  2146. int16_t *ac_val, *ac_val2;
  2147. int dcdiff;
  2148. /* Get DC differential */
  2149. if (n < 4) {
  2150. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2151. } else {
  2152. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2153. }
  2154. if (dcdiff < 0){
  2155. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2156. return -1;
  2157. }
  2158. if (dcdiff)
  2159. {
  2160. if (dcdiff == 119 /* ESC index value */)
  2161. {
  2162. /* TODO: Optimize */
  2163. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2164. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2165. else dcdiff = get_bits(gb, 8);
  2166. }
  2167. else
  2168. {
  2169. if (v->pq == 1)
  2170. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2171. else if (v->pq == 2)
  2172. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2173. }
  2174. if (get_bits1(gb))
  2175. dcdiff = -dcdiff;
  2176. }
  2177. /* Prediction */
  2178. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2179. *dc_val = dcdiff;
  2180. /* Store the quantized DC coeff, used for prediction */
  2181. if (n < 4) {
  2182. block[0] = dcdiff * s->y_dc_scale;
  2183. } else {
  2184. block[0] = dcdiff * s->c_dc_scale;
  2185. }
  2186. /* Skip ? */
  2187. run_diff = 0;
  2188. i = 0;
  2189. if (!coded) {
  2190. goto not_coded;
  2191. }
  2192. //AC Decoding
  2193. i = 1;
  2194. {
  2195. int last = 0, skip, value;
  2196. const int8_t *zz_table;
  2197. int scale;
  2198. int k;
  2199. scale = v->pq * 2 + v->halfpq;
  2200. if(v->s.ac_pred) {
  2201. if(!dc_pred_dir)
  2202. zz_table = ff_vc1_horizontal_zz;
  2203. else
  2204. zz_table = ff_vc1_vertical_zz;
  2205. } else
  2206. zz_table = ff_vc1_normal_zz;
  2207. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2208. ac_val2 = ac_val;
  2209. if(dc_pred_dir) //left
  2210. ac_val -= 16;
  2211. else //top
  2212. ac_val -= 16 * s->block_wrap[n];
  2213. while (!last) {
  2214. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2215. i += skip;
  2216. if(i > 63)
  2217. break;
  2218. block[zz_table[i++]] = value;
  2219. }
  2220. /* apply AC prediction if needed */
  2221. if(s->ac_pred) {
  2222. if(dc_pred_dir) { //left
  2223. for(k = 1; k < 8; k++)
  2224. block[k << 3] += ac_val[k];
  2225. } else { //top
  2226. for(k = 1; k < 8; k++)
  2227. block[k] += ac_val[k + 8];
  2228. }
  2229. }
  2230. /* save AC coeffs for further prediction */
  2231. for(k = 1; k < 8; k++) {
  2232. ac_val2[k] = block[k << 3];
  2233. ac_val2[k + 8] = block[k];
  2234. }
  2235. /* scale AC coeffs */
  2236. for(k = 1; k < 64; k++)
  2237. if(block[k]) {
  2238. block[k] *= scale;
  2239. if(!v->pquantizer)
  2240. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2241. }
  2242. if(s->ac_pred) i = 63;
  2243. }
  2244. not_coded:
  2245. if(!coded) {
  2246. int k, scale;
  2247. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2248. ac_val2 = ac_val;
  2249. scale = v->pq * 2 + v->halfpq;
  2250. memset(ac_val2, 0, 16 * 2);
  2251. if(dc_pred_dir) {//left
  2252. ac_val -= 16;
  2253. if(s->ac_pred)
  2254. memcpy(ac_val2, ac_val, 8 * 2);
  2255. } else {//top
  2256. ac_val -= 16 * s->block_wrap[n];
  2257. if(s->ac_pred)
  2258. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2259. }
  2260. /* apply AC prediction if needed */
  2261. if(s->ac_pred) {
  2262. if(dc_pred_dir) { //left
  2263. for(k = 1; k < 8; k++) {
  2264. block[k << 3] = ac_val[k] * scale;
  2265. if(!v->pquantizer && block[k << 3])
  2266. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2267. }
  2268. } else { //top
  2269. for(k = 1; k < 8; k++) {
  2270. block[k] = ac_val[k + 8] * scale;
  2271. if(!v->pquantizer && block[k])
  2272. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2273. }
  2274. }
  2275. i = 63;
  2276. }
  2277. }
  2278. s->block_last_index[n] = i;
  2279. return 0;
  2280. }
  2281. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2282. * @param v VC1Context
  2283. * @param block block to decode
  2284. * @param coded are AC coeffs present or not
  2285. * @param codingset set of VLC to decode data
  2286. */
  2287. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2288. {
  2289. GetBitContext *gb = &v->s.gb;
  2290. MpegEncContext *s = &v->s;
  2291. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2292. int run_diff, i;
  2293. int16_t *dc_val;
  2294. int16_t *ac_val, *ac_val2;
  2295. int dcdiff;
  2296. int a_avail = v->a_avail, c_avail = v->c_avail;
  2297. int use_pred = s->ac_pred;
  2298. int scale;
  2299. int q1, q2 = 0;
  2300. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2301. /* Get DC differential */
  2302. if (n < 4) {
  2303. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2304. } else {
  2305. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2306. }
  2307. if (dcdiff < 0){
  2308. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2309. return -1;
  2310. }
  2311. if (dcdiff)
  2312. {
  2313. if (dcdiff == 119 /* ESC index value */)
  2314. {
  2315. /* TODO: Optimize */
  2316. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2317. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2318. else dcdiff = get_bits(gb, 8);
  2319. }
  2320. else
  2321. {
  2322. if (mquant == 1)
  2323. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2324. else if (mquant == 2)
  2325. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2326. }
  2327. if (get_bits1(gb))
  2328. dcdiff = -dcdiff;
  2329. }
  2330. /* Prediction */
  2331. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2332. *dc_val = dcdiff;
  2333. /* Store the quantized DC coeff, used for prediction */
  2334. if (n < 4) {
  2335. block[0] = dcdiff * s->y_dc_scale;
  2336. } else {
  2337. block[0] = dcdiff * s->c_dc_scale;
  2338. }
  2339. /* Skip ? */
  2340. run_diff = 0;
  2341. i = 0;
  2342. //AC Decoding
  2343. i = 1;
  2344. /* check if AC is needed at all */
  2345. if(!a_avail && !c_avail) use_pred = 0;
  2346. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2347. ac_val2 = ac_val;
  2348. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2349. if(dc_pred_dir) //left
  2350. ac_val -= 16;
  2351. else //top
  2352. ac_val -= 16 * s->block_wrap[n];
  2353. q1 = s->current_picture.qscale_table[mb_pos];
  2354. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2355. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2356. if(dc_pred_dir && n==1) q2 = q1;
  2357. if(!dc_pred_dir && n==2) q2 = q1;
  2358. if(n==3) q2 = q1;
  2359. if(coded) {
  2360. int last = 0, skip, value;
  2361. const int8_t *zz_table;
  2362. int k;
  2363. if(v->s.ac_pred) {
  2364. if(!dc_pred_dir)
  2365. zz_table = ff_vc1_horizontal_zz;
  2366. else
  2367. zz_table = ff_vc1_vertical_zz;
  2368. } else
  2369. zz_table = ff_vc1_normal_zz;
  2370. while (!last) {
  2371. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2372. i += skip;
  2373. if(i > 63)
  2374. break;
  2375. block[zz_table[i++]] = value;
  2376. }
  2377. /* apply AC prediction if needed */
  2378. if(use_pred) {
  2379. /* scale predictors if needed*/
  2380. if(q2 && q1!=q2) {
  2381. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2382. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2383. if(dc_pred_dir) { //left
  2384. for(k = 1; k < 8; k++)
  2385. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2386. } else { //top
  2387. for(k = 1; k < 8; k++)
  2388. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2389. }
  2390. } else {
  2391. if(dc_pred_dir) { //left
  2392. for(k = 1; k < 8; k++)
  2393. block[k << 3] += ac_val[k];
  2394. } else { //top
  2395. for(k = 1; k < 8; k++)
  2396. block[k] += ac_val[k + 8];
  2397. }
  2398. }
  2399. }
  2400. /* save AC coeffs for further prediction */
  2401. for(k = 1; k < 8; k++) {
  2402. ac_val2[k] = block[k << 3];
  2403. ac_val2[k + 8] = block[k];
  2404. }
  2405. /* scale AC coeffs */
  2406. for(k = 1; k < 64; k++)
  2407. if(block[k]) {
  2408. block[k] *= scale;
  2409. if(!v->pquantizer)
  2410. block[k] += (block[k] < 0) ? -mquant : mquant;
  2411. }
  2412. if(use_pred) i = 63;
  2413. } else { // no AC coeffs
  2414. int k;
  2415. memset(ac_val2, 0, 16 * 2);
  2416. if(dc_pred_dir) {//left
  2417. if(use_pred) {
  2418. memcpy(ac_val2, ac_val, 8 * 2);
  2419. if(q2 && q1!=q2) {
  2420. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2421. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2422. for(k = 1; k < 8; k++)
  2423. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2424. }
  2425. }
  2426. } else {//top
  2427. if(use_pred) {
  2428. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2429. if(q2 && q1!=q2) {
  2430. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2431. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2432. for(k = 1; k < 8; k++)
  2433. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2434. }
  2435. }
  2436. }
  2437. /* apply AC prediction if needed */
  2438. if(use_pred) {
  2439. if(dc_pred_dir) { //left
  2440. for(k = 1; k < 8; k++) {
  2441. block[k << 3] = ac_val2[k] * scale;
  2442. if(!v->pquantizer && block[k << 3])
  2443. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2444. }
  2445. } else { //top
  2446. for(k = 1; k < 8; k++) {
  2447. block[k] = ac_val2[k + 8] * scale;
  2448. if(!v->pquantizer && block[k])
  2449. block[k] += (block[k] < 0) ? -mquant : mquant;
  2450. }
  2451. }
  2452. i = 63;
  2453. }
  2454. }
  2455. s->block_last_index[n] = i;
  2456. return 0;
  2457. }
  2458. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2459. * @param v VC1Context
  2460. * @param block block to decode
  2461. * @param coded are AC coeffs present or not
  2462. * @param mquant block quantizer
  2463. * @param codingset set of VLC to decode data
  2464. */
  2465. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2466. {
  2467. GetBitContext *gb = &v->s.gb;
  2468. MpegEncContext *s = &v->s;
  2469. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2470. int run_diff, i;
  2471. int16_t *dc_val;
  2472. int16_t *ac_val, *ac_val2;
  2473. int dcdiff;
  2474. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2475. int a_avail = v->a_avail, c_avail = v->c_avail;
  2476. int use_pred = s->ac_pred;
  2477. int scale;
  2478. int q1, q2 = 0;
  2479. /* XXX: Guard against dumb values of mquant */
  2480. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2481. /* Set DC scale - y and c use the same */
  2482. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2483. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2484. /* Get DC differential */
  2485. if (n < 4) {
  2486. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2487. } else {
  2488. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2489. }
  2490. if (dcdiff < 0){
  2491. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2492. return -1;
  2493. }
  2494. if (dcdiff)
  2495. {
  2496. if (dcdiff == 119 /* ESC index value */)
  2497. {
  2498. /* TODO: Optimize */
  2499. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2500. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2501. else dcdiff = get_bits(gb, 8);
  2502. }
  2503. else
  2504. {
  2505. if (mquant == 1)
  2506. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2507. else if (mquant == 2)
  2508. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2509. }
  2510. if (get_bits1(gb))
  2511. dcdiff = -dcdiff;
  2512. }
  2513. /* Prediction */
  2514. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2515. *dc_val = dcdiff;
  2516. /* Store the quantized DC coeff, used for prediction */
  2517. if (n < 4) {
  2518. block[0] = dcdiff * s->y_dc_scale;
  2519. } else {
  2520. block[0] = dcdiff * s->c_dc_scale;
  2521. }
  2522. /* Skip ? */
  2523. run_diff = 0;
  2524. i = 0;
  2525. //AC Decoding
  2526. i = 1;
  2527. /* check if AC is needed at all and adjust direction if needed */
  2528. if(!a_avail) dc_pred_dir = 1;
  2529. if(!c_avail) dc_pred_dir = 0;
  2530. if(!a_avail && !c_avail) use_pred = 0;
  2531. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2532. ac_val2 = ac_val;
  2533. scale = mquant * 2 + v->halfpq;
  2534. if(dc_pred_dir) //left
  2535. ac_val -= 16;
  2536. else //top
  2537. ac_val -= 16 * s->block_wrap[n];
  2538. q1 = s->current_picture.qscale_table[mb_pos];
  2539. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2540. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2541. if(dc_pred_dir && n==1) q2 = q1;
  2542. if(!dc_pred_dir && n==2) q2 = q1;
  2543. if(n==3) q2 = q1;
  2544. if(coded) {
  2545. int last = 0, skip, value;
  2546. const int8_t *zz_table;
  2547. int k;
  2548. zz_table = ff_vc1_simple_progressive_8x8_zz;
  2549. while (!last) {
  2550. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2551. i += skip;
  2552. if(i > 63)
  2553. break;
  2554. block[zz_table[i++]] = value;
  2555. }
  2556. /* apply AC prediction if needed */
  2557. if(use_pred) {
  2558. /* scale predictors if needed*/
  2559. if(q2 && q1!=q2) {
  2560. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2561. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2562. if(dc_pred_dir) { //left
  2563. for(k = 1; k < 8; k++)
  2564. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2565. } else { //top
  2566. for(k = 1; k < 8; k++)
  2567. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2568. }
  2569. } else {
  2570. if(dc_pred_dir) { //left
  2571. for(k = 1; k < 8; k++)
  2572. block[k << 3] += ac_val[k];
  2573. } else { //top
  2574. for(k = 1; k < 8; k++)
  2575. block[k] += ac_val[k + 8];
  2576. }
  2577. }
  2578. }
  2579. /* save AC coeffs for further prediction */
  2580. for(k = 1; k < 8; k++) {
  2581. ac_val2[k] = block[k << 3];
  2582. ac_val2[k + 8] = block[k];
  2583. }
  2584. /* scale AC coeffs */
  2585. for(k = 1; k < 64; k++)
  2586. if(block[k]) {
  2587. block[k] *= scale;
  2588. if(!v->pquantizer)
  2589. block[k] += (block[k] < 0) ? -mquant : mquant;
  2590. }
  2591. if(use_pred) i = 63;
  2592. } else { // no AC coeffs
  2593. int k;
  2594. memset(ac_val2, 0, 16 * 2);
  2595. if(dc_pred_dir) {//left
  2596. if(use_pred) {
  2597. memcpy(ac_val2, ac_val, 8 * 2);
  2598. if(q2 && q1!=q2) {
  2599. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2600. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2601. for(k = 1; k < 8; k++)
  2602. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2603. }
  2604. }
  2605. } else {//top
  2606. if(use_pred) {
  2607. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2608. if(q2 && q1!=q2) {
  2609. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2610. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2611. for(k = 1; k < 8; k++)
  2612. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2613. }
  2614. }
  2615. }
  2616. /* apply AC prediction if needed */
  2617. if(use_pred) {
  2618. if(dc_pred_dir) { //left
  2619. for(k = 1; k < 8; k++) {
  2620. block[k << 3] = ac_val2[k] * scale;
  2621. if(!v->pquantizer && block[k << 3])
  2622. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2623. }
  2624. } else { //top
  2625. for(k = 1; k < 8; k++) {
  2626. block[k] = ac_val2[k + 8] * scale;
  2627. if(!v->pquantizer && block[k])
  2628. block[k] += (block[k] < 0) ? -mquant : mquant;
  2629. }
  2630. }
  2631. i = 63;
  2632. }
  2633. }
  2634. s->block_last_index[n] = i;
  2635. return 0;
  2636. }
  2637. /** Decode P block
  2638. */
  2639. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2640. {
  2641. MpegEncContext *s = &v->s;
  2642. GetBitContext *gb = &s->gb;
  2643. int i, j;
  2644. int subblkpat = 0;
  2645. int scale, off, idx, last, skip, value;
  2646. int ttblk = ttmb & 7;
  2647. if(ttmb == -1) {
  2648. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2649. }
  2650. if(ttblk == TT_4X4) {
  2651. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2652. }
  2653. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2654. subblkpat = decode012(gb);
  2655. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2656. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2657. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2658. }
  2659. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2660. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2661. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2662. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2663. ttblk = TT_8X4;
  2664. }
  2665. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2666. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2667. ttblk = TT_4X8;
  2668. }
  2669. switch(ttblk) {
  2670. case TT_8X8:
  2671. i = 0;
  2672. last = 0;
  2673. while (!last) {
  2674. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2675. i += skip;
  2676. if(i > 63)
  2677. break;
  2678. idx = ff_vc1_simple_progressive_8x8_zz[i++];
  2679. block[idx] = value * scale;
  2680. if(!v->pquantizer)
  2681. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2682. }
  2683. s->dsp.vc1_inv_trans_8x8(block);
  2684. break;
  2685. case TT_4X4:
  2686. for(j = 0; j < 4; j++) {
  2687. last = subblkpat & (1 << (3 - j));
  2688. i = 0;
  2689. off = (j & 1) * 4 + (j & 2) * 16;
  2690. while (!last) {
  2691. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2692. i += skip;
  2693. if(i > 15)
  2694. break;
  2695. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2696. block[idx + off] = value * scale;
  2697. if(!v->pquantizer)
  2698. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2699. }
  2700. if(!(subblkpat & (1 << (3 - j))))
  2701. s->dsp.vc1_inv_trans_4x4(block, j);
  2702. }
  2703. break;
  2704. case TT_8X4:
  2705. for(j = 0; j < 2; j++) {
  2706. last = subblkpat & (1 << (1 - j));
  2707. i = 0;
  2708. off = j * 32;
  2709. while (!last) {
  2710. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2711. i += skip;
  2712. if(i > 31)
  2713. break;
  2714. if(v->profile < PROFILE_ADVANCED)
  2715. idx = ff_vc1_simple_progressive_8x4_zz[i++];
  2716. else
  2717. idx = ff_vc1_adv_progressive_8x4_zz[i++];
  2718. block[idx + off] = value * scale;
  2719. if(!v->pquantizer)
  2720. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2721. }
  2722. if(!(subblkpat & (1 << (1 - j))))
  2723. s->dsp.vc1_inv_trans_8x4(block, j);
  2724. }
  2725. break;
  2726. case TT_4X8:
  2727. for(j = 0; j < 2; j++) {
  2728. last = subblkpat & (1 << (1 - j));
  2729. i = 0;
  2730. off = j * 4;
  2731. while (!last) {
  2732. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2733. i += skip;
  2734. if(i > 31)
  2735. break;
  2736. if(v->profile < PROFILE_ADVANCED)
  2737. idx = ff_vc1_simple_progressive_4x8_zz[i++];
  2738. else
  2739. idx = ff_vc1_adv_progressive_4x8_zz[i++];
  2740. block[idx + off] = value * scale;
  2741. if(!v->pquantizer)
  2742. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2743. }
  2744. if(!(subblkpat & (1 << (1 - j))))
  2745. s->dsp.vc1_inv_trans_4x8(block, j);
  2746. }
  2747. break;
  2748. }
  2749. return 0;
  2750. }
  2751. /** Decode one P-frame MB (in Simple/Main profile)
  2752. */
  2753. static int vc1_decode_p_mb(VC1Context *v)
  2754. {
  2755. MpegEncContext *s = &v->s;
  2756. GetBitContext *gb = &s->gb;
  2757. int i, j;
  2758. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2759. int cbp; /* cbp decoding stuff */
  2760. int mqdiff, mquant; /* MB quantization */
  2761. int ttmb = v->ttfrm; /* MB Transform type */
  2762. int status;
  2763. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2764. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2765. int mb_has_coeffs = 1; /* last_flag */
  2766. int dmv_x, dmv_y; /* Differential MV components */
  2767. int index, index1; /* LUT indices */
  2768. int val, sign; /* temp values */
  2769. int first_block = 1;
  2770. int dst_idx, off;
  2771. int skipped, fourmv;
  2772. mquant = v->pq; /* Loosy initialization */
  2773. if (v->mv_type_is_raw)
  2774. fourmv = get_bits1(gb);
  2775. else
  2776. fourmv = v->mv_type_mb_plane[mb_pos];
  2777. if (v->skip_is_raw)
  2778. skipped = get_bits1(gb);
  2779. else
  2780. skipped = v->s.mbskip_table[mb_pos];
  2781. s->dsp.clear_blocks(s->block[0]);
  2782. if (!fourmv) /* 1MV mode */
  2783. {
  2784. if (!skipped)
  2785. {
  2786. GET_MVDATA(dmv_x, dmv_y);
  2787. if (s->mb_intra) {
  2788. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2789. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2790. }
  2791. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2792. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2793. /* FIXME Set DC val for inter block ? */
  2794. if (s->mb_intra && !mb_has_coeffs)
  2795. {
  2796. GET_MQUANT();
  2797. s->ac_pred = get_bits1(gb);
  2798. cbp = 0;
  2799. }
  2800. else if (mb_has_coeffs)
  2801. {
  2802. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2803. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2804. GET_MQUANT();
  2805. }
  2806. else
  2807. {
  2808. mquant = v->pq;
  2809. cbp = 0;
  2810. }
  2811. s->current_picture.qscale_table[mb_pos] = mquant;
  2812. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2813. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2814. VC1_TTMB_VLC_BITS, 2);
  2815. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2816. dst_idx = 0;
  2817. for (i=0; i<6; i++)
  2818. {
  2819. s->dc_val[0][s->block_index[i]] = 0;
  2820. dst_idx += i >> 2;
  2821. val = ((cbp >> (5 - i)) & 1);
  2822. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2823. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2824. if(s->mb_intra) {
  2825. /* check if prediction blocks A and C are available */
  2826. v->a_avail = v->c_avail = 0;
  2827. if(i == 2 || i == 3 || !s->first_slice_line)
  2828. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2829. if(i == 1 || i == 3 || s->mb_x)
  2830. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2831. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2832. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2833. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2834. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2835. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2836. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2837. if(v->pq >= 9 && v->overlap) {
  2838. if(v->c_avail)
  2839. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2840. if(v->a_avail)
  2841. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2842. }
  2843. } else if(val) {
  2844. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2845. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2846. first_block = 0;
  2847. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2848. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2849. }
  2850. }
  2851. }
  2852. else //Skipped
  2853. {
  2854. s->mb_intra = 0;
  2855. for(i = 0; i < 6; i++) {
  2856. v->mb_type[0][s->block_index[i]] = 0;
  2857. s->dc_val[0][s->block_index[i]] = 0;
  2858. }
  2859. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2860. s->current_picture.qscale_table[mb_pos] = 0;
  2861. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2862. vc1_mc_1mv(v, 0);
  2863. return 0;
  2864. }
  2865. } //1MV mode
  2866. else //4MV mode
  2867. {
  2868. if (!skipped /* unskipped MB */)
  2869. {
  2870. int intra_count = 0, coded_inter = 0;
  2871. int is_intra[6], is_coded[6];
  2872. /* Get CBPCY */
  2873. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2874. for (i=0; i<6; i++)
  2875. {
  2876. val = ((cbp >> (5 - i)) & 1);
  2877. s->dc_val[0][s->block_index[i]] = 0;
  2878. s->mb_intra = 0;
  2879. if(i < 4) {
  2880. dmv_x = dmv_y = 0;
  2881. s->mb_intra = 0;
  2882. mb_has_coeffs = 0;
  2883. if(val) {
  2884. GET_MVDATA(dmv_x, dmv_y);
  2885. }
  2886. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2887. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2888. intra_count += s->mb_intra;
  2889. is_intra[i] = s->mb_intra;
  2890. is_coded[i] = mb_has_coeffs;
  2891. }
  2892. if(i&4){
  2893. is_intra[i] = (intra_count >= 3);
  2894. is_coded[i] = val;
  2895. }
  2896. if(i == 4) vc1_mc_4mv_chroma(v);
  2897. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2898. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2899. }
  2900. // if there are no coded blocks then don't do anything more
  2901. if(!intra_count && !coded_inter) return 0;
  2902. dst_idx = 0;
  2903. GET_MQUANT();
  2904. s->current_picture.qscale_table[mb_pos] = mquant;
  2905. /* test if block is intra and has pred */
  2906. {
  2907. int intrapred = 0;
  2908. for(i=0; i<6; i++)
  2909. if(is_intra[i]) {
  2910. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2911. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2912. intrapred = 1;
  2913. break;
  2914. }
  2915. }
  2916. if(intrapred)s->ac_pred = get_bits1(gb);
  2917. else s->ac_pred = 0;
  2918. }
  2919. if (!v->ttmbf && coded_inter)
  2920. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2921. for (i=0; i<6; i++)
  2922. {
  2923. dst_idx += i >> 2;
  2924. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2925. s->mb_intra = is_intra[i];
  2926. if (is_intra[i]) {
  2927. /* check if prediction blocks A and C are available */
  2928. v->a_avail = v->c_avail = 0;
  2929. if(i == 2 || i == 3 || !s->first_slice_line)
  2930. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2931. if(i == 1 || i == 3 || s->mb_x)
  2932. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2933. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2934. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2935. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2936. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2937. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2938. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2939. if(v->pq >= 9 && v->overlap) {
  2940. if(v->c_avail)
  2941. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2942. if(v->a_avail)
  2943. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2944. }
  2945. } else if(is_coded[i]) {
  2946. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2947. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2948. first_block = 0;
  2949. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2950. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2951. }
  2952. }
  2953. return status;
  2954. }
  2955. else //Skipped MB
  2956. {
  2957. s->mb_intra = 0;
  2958. s->current_picture.qscale_table[mb_pos] = 0;
  2959. for (i=0; i<6; i++) {
  2960. v->mb_type[0][s->block_index[i]] = 0;
  2961. s->dc_val[0][s->block_index[i]] = 0;
  2962. }
  2963. for (i=0; i<4; i++)
  2964. {
  2965. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2966. vc1_mc_4mv_luma(v, i);
  2967. }
  2968. vc1_mc_4mv_chroma(v);
  2969. s->current_picture.qscale_table[mb_pos] = 0;
  2970. return 0;
  2971. }
  2972. }
  2973. /* Should never happen */
  2974. return -1;
  2975. }
  2976. /** Decode one B-frame MB (in Main profile)
  2977. */
  2978. static void vc1_decode_b_mb(VC1Context *v)
  2979. {
  2980. MpegEncContext *s = &v->s;
  2981. GetBitContext *gb = &s->gb;
  2982. int i, j;
  2983. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2984. int cbp = 0; /* cbp decoding stuff */
  2985. int mqdiff, mquant; /* MB quantization */
  2986. int ttmb = v->ttfrm; /* MB Transform type */
  2987. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2988. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2989. int mb_has_coeffs = 0; /* last_flag */
  2990. int index, index1; /* LUT indices */
  2991. int val, sign; /* temp values */
  2992. int first_block = 1;
  2993. int dst_idx, off;
  2994. int skipped, direct;
  2995. int dmv_x[2], dmv_y[2];
  2996. int bmvtype = BMV_TYPE_BACKWARD;
  2997. mquant = v->pq; /* Loosy initialization */
  2998. s->mb_intra = 0;
  2999. if (v->dmb_is_raw)
  3000. direct = get_bits1(gb);
  3001. else
  3002. direct = v->direct_mb_plane[mb_pos];
  3003. if (v->skip_is_raw)
  3004. skipped = get_bits1(gb);
  3005. else
  3006. skipped = v->s.mbskip_table[mb_pos];
  3007. s->dsp.clear_blocks(s->block[0]);
  3008. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3009. for(i = 0; i < 6; i++) {
  3010. v->mb_type[0][s->block_index[i]] = 0;
  3011. s->dc_val[0][s->block_index[i]] = 0;
  3012. }
  3013. s->current_picture.qscale_table[mb_pos] = 0;
  3014. if (!direct) {
  3015. if (!skipped) {
  3016. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3017. dmv_x[1] = dmv_x[0];
  3018. dmv_y[1] = dmv_y[0];
  3019. }
  3020. if(skipped || !s->mb_intra) {
  3021. bmvtype = decode012(gb);
  3022. switch(bmvtype) {
  3023. case 0:
  3024. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3025. break;
  3026. case 1:
  3027. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3028. break;
  3029. case 2:
  3030. bmvtype = BMV_TYPE_INTERPOLATED;
  3031. dmv_x[0] = dmv_y[0] = 0;
  3032. }
  3033. }
  3034. }
  3035. for(i = 0; i < 6; i++)
  3036. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3037. if (skipped) {
  3038. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3039. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3040. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3041. return;
  3042. }
  3043. if (direct) {
  3044. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3045. GET_MQUANT();
  3046. s->mb_intra = 0;
  3047. mb_has_coeffs = 0;
  3048. s->current_picture.qscale_table[mb_pos] = mquant;
  3049. if(!v->ttmbf)
  3050. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3051. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3052. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3053. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3054. } else {
  3055. if(!mb_has_coeffs && !s->mb_intra) {
  3056. /* no coded blocks - effectively skipped */
  3057. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3058. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3059. return;
  3060. }
  3061. if(s->mb_intra && !mb_has_coeffs) {
  3062. GET_MQUANT();
  3063. s->current_picture.qscale_table[mb_pos] = mquant;
  3064. s->ac_pred = get_bits1(gb);
  3065. cbp = 0;
  3066. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3067. } else {
  3068. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3069. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3070. if(!mb_has_coeffs) {
  3071. /* interpolated skipped block */
  3072. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3073. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3074. return;
  3075. }
  3076. }
  3077. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3078. if(!s->mb_intra) {
  3079. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3080. }
  3081. if(s->mb_intra)
  3082. s->ac_pred = get_bits1(gb);
  3083. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3084. GET_MQUANT();
  3085. s->current_picture.qscale_table[mb_pos] = mquant;
  3086. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3087. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3088. }
  3089. }
  3090. dst_idx = 0;
  3091. for (i=0; i<6; i++)
  3092. {
  3093. s->dc_val[0][s->block_index[i]] = 0;
  3094. dst_idx += i >> 2;
  3095. val = ((cbp >> (5 - i)) & 1);
  3096. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3097. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3098. if(s->mb_intra) {
  3099. /* check if prediction blocks A and C are available */
  3100. v->a_avail = v->c_avail = 0;
  3101. if(i == 2 || i == 3 || !s->first_slice_line)
  3102. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3103. if(i == 1 || i == 3 || s->mb_x)
  3104. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3105. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3106. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3107. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3108. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3109. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3110. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3111. } else if(val) {
  3112. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3113. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3114. first_block = 0;
  3115. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3116. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3117. }
  3118. }
  3119. }
  3120. /** Decode blocks of I-frame
  3121. */
  3122. static void vc1_decode_i_blocks(VC1Context *v)
  3123. {
  3124. int k, j;
  3125. MpegEncContext *s = &v->s;
  3126. int cbp, val;
  3127. uint8_t *coded_val;
  3128. int mb_pos;
  3129. /* select codingmode used for VLC tables selection */
  3130. switch(v->y_ac_table_index){
  3131. case 0:
  3132. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3133. break;
  3134. case 1:
  3135. v->codingset = CS_HIGH_MOT_INTRA;
  3136. break;
  3137. case 2:
  3138. v->codingset = CS_MID_RATE_INTRA;
  3139. break;
  3140. }
  3141. switch(v->c_ac_table_index){
  3142. case 0:
  3143. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3144. break;
  3145. case 1:
  3146. v->codingset2 = CS_HIGH_MOT_INTER;
  3147. break;
  3148. case 2:
  3149. v->codingset2 = CS_MID_RATE_INTER;
  3150. break;
  3151. }
  3152. /* Set DC scale - y and c use the same */
  3153. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3154. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3155. //do frame decode
  3156. s->mb_x = s->mb_y = 0;
  3157. s->mb_intra = 1;
  3158. s->first_slice_line = 1;
  3159. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3160. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3161. ff_init_block_index(s);
  3162. ff_update_block_index(s);
  3163. s->dsp.clear_blocks(s->block[0]);
  3164. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3165. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3166. s->current_picture.qscale_table[mb_pos] = v->pq;
  3167. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3168. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3169. // do actual MB decoding and displaying
  3170. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3171. v->s.ac_pred = get_bits1(&v->s.gb);
  3172. for(k = 0; k < 6; k++) {
  3173. val = ((cbp >> (5 - k)) & 1);
  3174. if (k < 4) {
  3175. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3176. val = val ^ pred;
  3177. *coded_val = val;
  3178. }
  3179. cbp |= val << (5 - k);
  3180. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3181. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3182. if(v->pq >= 9 && v->overlap) {
  3183. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3184. }
  3185. }
  3186. vc1_put_block(v, s->block);
  3187. if(v->pq >= 9 && v->overlap) {
  3188. if(s->mb_x) {
  3189. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3190. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3191. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3192. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3193. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3194. }
  3195. }
  3196. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3197. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3198. if(!s->first_slice_line) {
  3199. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3200. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3201. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3202. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3203. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3204. }
  3205. }
  3206. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3207. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3208. }
  3209. if(get_bits_count(&s->gb) > v->bits) {
  3210. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3211. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3212. return;
  3213. }
  3214. }
  3215. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3216. s->first_slice_line = 0;
  3217. }
  3218. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3219. }
  3220. /** Decode blocks of I-frame for advanced profile
  3221. */
  3222. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3223. {
  3224. int k, j;
  3225. MpegEncContext *s = &v->s;
  3226. int cbp, val;
  3227. uint8_t *coded_val;
  3228. int mb_pos;
  3229. int mquant = v->pq;
  3230. int mqdiff;
  3231. int overlap;
  3232. GetBitContext *gb = &s->gb;
  3233. /* select codingmode used for VLC tables selection */
  3234. switch(v->y_ac_table_index){
  3235. case 0:
  3236. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3237. break;
  3238. case 1:
  3239. v->codingset = CS_HIGH_MOT_INTRA;
  3240. break;
  3241. case 2:
  3242. v->codingset = CS_MID_RATE_INTRA;
  3243. break;
  3244. }
  3245. switch(v->c_ac_table_index){
  3246. case 0:
  3247. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3248. break;
  3249. case 1:
  3250. v->codingset2 = CS_HIGH_MOT_INTER;
  3251. break;
  3252. case 2:
  3253. v->codingset2 = CS_MID_RATE_INTER;
  3254. break;
  3255. }
  3256. //do frame decode
  3257. s->mb_x = s->mb_y = 0;
  3258. s->mb_intra = 1;
  3259. s->first_slice_line = 1;
  3260. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3261. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3262. ff_init_block_index(s);
  3263. ff_update_block_index(s);
  3264. s->dsp.clear_blocks(s->block[0]);
  3265. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3266. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3267. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3268. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3269. // do actual MB decoding and displaying
  3270. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3271. if(v->acpred_is_raw)
  3272. v->s.ac_pred = get_bits1(&v->s.gb);
  3273. else
  3274. v->s.ac_pred = v->acpred_plane[mb_pos];
  3275. if(v->condover == CONDOVER_SELECT) {
  3276. if(v->overflg_is_raw)
  3277. overlap = get_bits1(&v->s.gb);
  3278. else
  3279. overlap = v->over_flags_plane[mb_pos];
  3280. } else
  3281. overlap = (v->condover == CONDOVER_ALL);
  3282. GET_MQUANT();
  3283. s->current_picture.qscale_table[mb_pos] = mquant;
  3284. /* Set DC scale - y and c use the same */
  3285. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3286. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3287. for(k = 0; k < 6; k++) {
  3288. val = ((cbp >> (5 - k)) & 1);
  3289. if (k < 4) {
  3290. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3291. val = val ^ pred;
  3292. *coded_val = val;
  3293. }
  3294. cbp |= val << (5 - k);
  3295. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3296. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3297. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3298. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3299. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3300. }
  3301. vc1_put_block(v, s->block);
  3302. if(overlap) {
  3303. if(s->mb_x) {
  3304. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3305. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3306. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3307. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3308. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3309. }
  3310. }
  3311. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3312. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3313. if(!s->first_slice_line) {
  3314. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3315. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3316. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3317. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3318. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3319. }
  3320. }
  3321. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3322. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3323. }
  3324. if(get_bits_count(&s->gb) > v->bits) {
  3325. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3326. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3327. return;
  3328. }
  3329. }
  3330. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3331. s->first_slice_line = 0;
  3332. }
  3333. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3334. }
  3335. static void vc1_decode_p_blocks(VC1Context *v)
  3336. {
  3337. MpegEncContext *s = &v->s;
  3338. /* select codingmode used for VLC tables selection */
  3339. switch(v->c_ac_table_index){
  3340. case 0:
  3341. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3342. break;
  3343. case 1:
  3344. v->codingset = CS_HIGH_MOT_INTRA;
  3345. break;
  3346. case 2:
  3347. v->codingset = CS_MID_RATE_INTRA;
  3348. break;
  3349. }
  3350. switch(v->c_ac_table_index){
  3351. case 0:
  3352. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3353. break;
  3354. case 1:
  3355. v->codingset2 = CS_HIGH_MOT_INTER;
  3356. break;
  3357. case 2:
  3358. v->codingset2 = CS_MID_RATE_INTER;
  3359. break;
  3360. }
  3361. s->first_slice_line = 1;
  3362. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3363. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3364. ff_init_block_index(s);
  3365. ff_update_block_index(s);
  3366. s->dsp.clear_blocks(s->block[0]);
  3367. vc1_decode_p_mb(v);
  3368. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3369. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3370. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3371. return;
  3372. }
  3373. }
  3374. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3375. s->first_slice_line = 0;
  3376. }
  3377. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3378. }
  3379. static void vc1_decode_b_blocks(VC1Context *v)
  3380. {
  3381. MpegEncContext *s = &v->s;
  3382. /* select codingmode used for VLC tables selection */
  3383. switch(v->c_ac_table_index){
  3384. case 0:
  3385. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3386. break;
  3387. case 1:
  3388. v->codingset = CS_HIGH_MOT_INTRA;
  3389. break;
  3390. case 2:
  3391. v->codingset = CS_MID_RATE_INTRA;
  3392. break;
  3393. }
  3394. switch(v->c_ac_table_index){
  3395. case 0:
  3396. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3397. break;
  3398. case 1:
  3399. v->codingset2 = CS_HIGH_MOT_INTER;
  3400. break;
  3401. case 2:
  3402. v->codingset2 = CS_MID_RATE_INTER;
  3403. break;
  3404. }
  3405. s->first_slice_line = 1;
  3406. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3407. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3408. ff_init_block_index(s);
  3409. ff_update_block_index(s);
  3410. s->dsp.clear_blocks(s->block[0]);
  3411. vc1_decode_b_mb(v);
  3412. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3413. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3414. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3415. return;
  3416. }
  3417. }
  3418. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3419. s->first_slice_line = 0;
  3420. }
  3421. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3422. }
  3423. static void vc1_decode_skip_blocks(VC1Context *v)
  3424. {
  3425. MpegEncContext *s = &v->s;
  3426. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3427. s->first_slice_line = 1;
  3428. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3429. s->mb_x = 0;
  3430. ff_init_block_index(s);
  3431. ff_update_block_index(s);
  3432. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3433. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3434. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3435. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3436. s->first_slice_line = 0;
  3437. }
  3438. s->pict_type = P_TYPE;
  3439. }
  3440. static void vc1_decode_blocks(VC1Context *v)
  3441. {
  3442. v->s.esc3_level_length = 0;
  3443. if(v->x8_type){
  3444. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3445. }else
  3446. switch(v->s.pict_type) {
  3447. case I_TYPE:
  3448. if(v->profile == PROFILE_ADVANCED)
  3449. vc1_decode_i_blocks_adv(v);
  3450. else
  3451. vc1_decode_i_blocks(v);
  3452. break;
  3453. case P_TYPE:
  3454. if(v->p_frame_skipped)
  3455. vc1_decode_skip_blocks(v);
  3456. else
  3457. vc1_decode_p_blocks(v);
  3458. break;
  3459. case B_TYPE:
  3460. if(v->bi_type){
  3461. if(v->profile == PROFILE_ADVANCED)
  3462. vc1_decode_i_blocks_adv(v);
  3463. else
  3464. vc1_decode_i_blocks(v);
  3465. }else
  3466. vc1_decode_b_blocks(v);
  3467. break;
  3468. }
  3469. }
  3470. /** Find VC-1 marker in buffer
  3471. * @return position where next marker starts or end of buffer if no marker found
  3472. */
  3473. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3474. {
  3475. uint32_t mrk = 0xFFFFFFFF;
  3476. if(end-src < 4) return end;
  3477. while(src < end){
  3478. mrk = (mrk << 8) | *src++;
  3479. if(IS_MARKER(mrk))
  3480. return src-4;
  3481. }
  3482. return end;
  3483. }
  3484. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3485. {
  3486. int dsize = 0, i;
  3487. if(size < 4){
  3488. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3489. return size;
  3490. }
  3491. for(i = 0; i < size; i++, src++) {
  3492. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3493. dst[dsize++] = src[1];
  3494. src++;
  3495. i++;
  3496. } else
  3497. dst[dsize++] = *src;
  3498. }
  3499. return dsize;
  3500. }
  3501. /** Initialize a VC1/WMV3 decoder
  3502. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3503. * @todo TODO: Decypher remaining bits in extra_data
  3504. */
  3505. static int vc1_decode_init(AVCodecContext *avctx)
  3506. {
  3507. VC1Context *v = avctx->priv_data;
  3508. MpegEncContext *s = &v->s;
  3509. GetBitContext gb;
  3510. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3511. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3512. avctx->pix_fmt = PIX_FMT_YUV420P;
  3513. else
  3514. avctx->pix_fmt = PIX_FMT_GRAY8;
  3515. v->s.avctx = avctx;
  3516. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3517. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3518. if(avctx->idct_algo==FF_IDCT_AUTO){
  3519. avctx->idct_algo=FF_IDCT_WMV2;
  3520. }
  3521. if(ff_h263_decode_init(avctx) < 0)
  3522. return -1;
  3523. if (vc1_init_common(v) < 0) return -1;
  3524. avctx->coded_width = avctx->width;
  3525. avctx->coded_height = avctx->height;
  3526. if (avctx->codec_id == CODEC_ID_WMV3)
  3527. {
  3528. int count = 0;
  3529. // looks like WMV3 has a sequence header stored in the extradata
  3530. // advanced sequence header may be before the first frame
  3531. // the last byte of the extradata is a version number, 1 for the
  3532. // samples we can decode
  3533. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3534. if (decode_sequence_header(avctx, &gb) < 0)
  3535. return -1;
  3536. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3537. if (count>0)
  3538. {
  3539. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3540. count, get_bits(&gb, count));
  3541. }
  3542. else if (count < 0)
  3543. {
  3544. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3545. }
  3546. } else { // VC1/WVC1
  3547. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3548. uint8_t *next; int size, buf2_size;
  3549. uint8_t *buf2 = NULL;
  3550. int seq_inited = 0, ep_inited = 0;
  3551. if(avctx->extradata_size < 16) {
  3552. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3553. return -1;
  3554. }
  3555. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3556. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3557. next = start;
  3558. for(; next < end; start = next){
  3559. next = find_next_marker(start + 4, end);
  3560. size = next - start - 4;
  3561. if(size <= 0) continue;
  3562. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3563. init_get_bits(&gb, buf2, buf2_size * 8);
  3564. switch(AV_RB32(start)){
  3565. case VC1_CODE_SEQHDR:
  3566. if(decode_sequence_header(avctx, &gb) < 0){
  3567. av_free(buf2);
  3568. return -1;
  3569. }
  3570. seq_inited = 1;
  3571. break;
  3572. case VC1_CODE_ENTRYPOINT:
  3573. if(decode_entry_point(avctx, &gb) < 0){
  3574. av_free(buf2);
  3575. return -1;
  3576. }
  3577. ep_inited = 1;
  3578. break;
  3579. }
  3580. }
  3581. av_free(buf2);
  3582. if(!seq_inited || !ep_inited){
  3583. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3584. return -1;
  3585. }
  3586. }
  3587. avctx->has_b_frames= !!(avctx->max_b_frames);
  3588. s->low_delay = !avctx->has_b_frames;
  3589. s->mb_width = (avctx->coded_width+15)>>4;
  3590. s->mb_height = (avctx->coded_height+15)>>4;
  3591. /* Allocate mb bitplanes */
  3592. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3593. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3594. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3595. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3596. /* allocate block type info in that way so it could be used with s->block_index[] */
  3597. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3598. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3599. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3600. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3601. /* Init coded blocks info */
  3602. if (v->profile == PROFILE_ADVANCED)
  3603. {
  3604. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3605. // return -1;
  3606. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3607. // return -1;
  3608. }
  3609. ff_intrax8_common_init(&v->x8,s);
  3610. return 0;
  3611. }
  3612. /** Decode a VC1/WMV3 frame
  3613. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3614. */
  3615. static int vc1_decode_frame(AVCodecContext *avctx,
  3616. void *data, int *data_size,
  3617. uint8_t *buf, int buf_size)
  3618. {
  3619. VC1Context *v = avctx->priv_data;
  3620. MpegEncContext *s = &v->s;
  3621. AVFrame *pict = data;
  3622. uint8_t *buf2 = NULL;
  3623. /* no supplementary picture */
  3624. if (buf_size == 0) {
  3625. /* special case for last picture */
  3626. if (s->low_delay==0 && s->next_picture_ptr) {
  3627. *pict= *(AVFrame*)s->next_picture_ptr;
  3628. s->next_picture_ptr= NULL;
  3629. *data_size = sizeof(AVFrame);
  3630. }
  3631. return 0;
  3632. }
  3633. /* We need to set current_picture_ptr before reading the header,
  3634. * otherwise we cannot store anything in there. */
  3635. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3636. int i= ff_find_unused_picture(s, 0);
  3637. s->current_picture_ptr= &s->picture[i];
  3638. }
  3639. //for advanced profile we may need to parse and unescape data
  3640. if (avctx->codec_id == CODEC_ID_VC1) {
  3641. int buf_size2 = 0;
  3642. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3643. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3644. uint8_t *start, *end, *next;
  3645. int size;
  3646. next = buf;
  3647. for(start = buf, end = buf + buf_size; next < end; start = next){
  3648. next = find_next_marker(start + 4, end);
  3649. size = next - start - 4;
  3650. if(size <= 0) continue;
  3651. switch(AV_RB32(start)){
  3652. case VC1_CODE_FRAME:
  3653. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3654. break;
  3655. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3656. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3657. init_get_bits(&s->gb, buf2, buf_size2*8);
  3658. decode_entry_point(avctx, &s->gb);
  3659. break;
  3660. case VC1_CODE_SLICE:
  3661. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3662. av_free(buf2);
  3663. return -1;
  3664. }
  3665. }
  3666. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3667. uint8_t *divider;
  3668. divider = find_next_marker(buf, buf + buf_size);
  3669. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3670. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3671. return -1;
  3672. }
  3673. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3674. // TODO
  3675. av_free(buf2);return -1;
  3676. }else{
  3677. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3678. }
  3679. init_get_bits(&s->gb, buf2, buf_size2*8);
  3680. } else
  3681. init_get_bits(&s->gb, buf, buf_size*8);
  3682. // do parse frame header
  3683. if(v->profile < PROFILE_ADVANCED) {
  3684. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3685. av_free(buf2);
  3686. return -1;
  3687. }
  3688. } else {
  3689. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3690. av_free(buf2);
  3691. return -1;
  3692. }
  3693. }
  3694. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3695. av_free(buf2);
  3696. return -1;
  3697. }
  3698. // for hurry_up==5
  3699. s->current_picture.pict_type= s->pict_type;
  3700. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3701. /* skip B-frames if we don't have reference frames */
  3702. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3703. av_free(buf2);
  3704. return -1;//buf_size;
  3705. }
  3706. /* skip b frames if we are in a hurry */
  3707. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3708. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3709. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3710. || avctx->skip_frame >= AVDISCARD_ALL) {
  3711. av_free(buf2);
  3712. return buf_size;
  3713. }
  3714. /* skip everything if we are in a hurry>=5 */
  3715. if(avctx->hurry_up>=5) {
  3716. av_free(buf2);
  3717. return -1;//buf_size;
  3718. }
  3719. if(s->next_p_frame_damaged){
  3720. if(s->pict_type==B_TYPE)
  3721. return buf_size;
  3722. else
  3723. s->next_p_frame_damaged=0;
  3724. }
  3725. if(MPV_frame_start(s, avctx) < 0) {
  3726. av_free(buf2);
  3727. return -1;
  3728. }
  3729. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3730. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3731. ff_er_frame_start(s);
  3732. v->bits = buf_size * 8;
  3733. vc1_decode_blocks(v);
  3734. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3735. // if(get_bits_count(&s->gb) > buf_size * 8)
  3736. // return -1;
  3737. ff_er_frame_end(s);
  3738. MPV_frame_end(s);
  3739. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3740. assert(s->current_picture.pict_type == s->pict_type);
  3741. if (s->pict_type == B_TYPE || s->low_delay) {
  3742. *pict= *(AVFrame*)s->current_picture_ptr;
  3743. } else if (s->last_picture_ptr != NULL) {
  3744. *pict= *(AVFrame*)s->last_picture_ptr;
  3745. }
  3746. if(s->last_picture_ptr || s->low_delay){
  3747. *data_size = sizeof(AVFrame);
  3748. ff_print_debug_info(s, pict);
  3749. }
  3750. /* Return the Picture timestamp as the frame number */
  3751. /* we substract 1 because it is added on utils.c */
  3752. avctx->frame_number = s->picture_number - 1;
  3753. av_free(buf2);
  3754. return buf_size;
  3755. }
  3756. /** Close a VC1/WMV3 decoder
  3757. * @warning Initial try at using MpegEncContext stuff
  3758. */
  3759. static int vc1_decode_end(AVCodecContext *avctx)
  3760. {
  3761. VC1Context *v = avctx->priv_data;
  3762. av_freep(&v->hrd_rate);
  3763. av_freep(&v->hrd_buffer);
  3764. MPV_common_end(&v->s);
  3765. av_freep(&v->mv_type_mb_plane);
  3766. av_freep(&v->direct_mb_plane);
  3767. av_freep(&v->acpred_plane);
  3768. av_freep(&v->over_flags_plane);
  3769. av_freep(&v->mb_type_base);
  3770. return 0;
  3771. }
  3772. AVCodec vc1_decoder = {
  3773. "vc1",
  3774. CODEC_TYPE_VIDEO,
  3775. CODEC_ID_VC1,
  3776. sizeof(VC1Context),
  3777. vc1_decode_init,
  3778. NULL,
  3779. vc1_decode_end,
  3780. vc1_decode_frame,
  3781. CODEC_CAP_DELAY,
  3782. NULL
  3783. };
  3784. AVCodec wmv3_decoder = {
  3785. "wmv3",
  3786. CODEC_TYPE_VIDEO,
  3787. CODEC_ID_WMV3,
  3788. sizeof(VC1Context),
  3789. vc1_decode_init,
  3790. NULL,
  3791. vc1_decode_end,
  3792. vc1_decode_frame,
  3793. CODEC_CAP_DELAY,
  3794. NULL
  3795. };