You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1497 lines
48KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file libavcodec/huffyuv.c
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "bitstream.h"
  31. #include "dsputil.h"
  32. #define VLC_BITS 11
  33. #ifdef WORDS_BIGENDIAN
  34. #define B 3
  35. #define G 2
  36. #define R 1
  37. #else
  38. #define B 0
  39. #define G 1
  40. #define R 2
  41. #endif
  42. typedef enum Predictor{
  43. LEFT= 0,
  44. PLANE,
  45. MEDIAN,
  46. } Predictor;
  47. typedef struct HYuvContext{
  48. AVCodecContext *avctx;
  49. Predictor predictor;
  50. GetBitContext gb;
  51. PutBitContext pb;
  52. int interlaced;
  53. int decorrelate;
  54. int bitstream_bpp;
  55. int version;
  56. int yuy2; //use yuy2 instead of 422P
  57. int bgr32; //use bgr32 instead of bgr24
  58. int width, height;
  59. int flags;
  60. int context;
  61. int picture_number;
  62. int last_slice_end;
  63. uint8_t *temp[3];
  64. uint64_t stats[3][256];
  65. uint8_t len[3][256];
  66. uint32_t bits[3][256];
  67. uint32_t pix_bgr_map[1<<VLC_BITS];
  68. VLC vlc[6]; //Y,U,V,YY,YU,YV
  69. AVFrame picture;
  70. uint8_t *bitstream_buffer;
  71. unsigned int bitstream_buffer_size;
  72. DSPContext dsp;
  73. }HYuvContext;
  74. static const unsigned char classic_shift_luma[] = {
  75. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  76. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  77. 69,68, 0
  78. };
  79. static const unsigned char classic_shift_chroma[] = {
  80. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  81. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  82. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  83. };
  84. static const unsigned char classic_add_luma[256] = {
  85. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  86. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  87. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  88. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  89. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  90. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  91. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  92. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  93. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  94. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  95. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  96. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  97. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  98. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  99. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  100. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  101. };
  102. static const unsigned char classic_add_chroma[256] = {
  103. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  104. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  105. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  106. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  107. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  108. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  109. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  110. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  111. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  112. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  113. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  114. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  115. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  116. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  117. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  118. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  119. };
  120. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  121. int i;
  122. for(i=0; i<w-1; i++){
  123. acc+= src[i];
  124. dst[i]= acc;
  125. i++;
  126. acc+= src[i];
  127. dst[i]= acc;
  128. }
  129. for(; i<w; i++){
  130. acc+= src[i];
  131. dst[i]= acc;
  132. }
  133. return acc;
  134. }
  135. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  136. int i;
  137. int r,g,b;
  138. r= *red;
  139. g= *green;
  140. b= *blue;
  141. for(i=0; i<w; i++){
  142. b+= src[4*i+B];
  143. g+= src[4*i+G];
  144. r+= src[4*i+R];
  145. dst[4*i+B]= b;
  146. dst[4*i+G]= g;
  147. dst[4*i+R]= r;
  148. }
  149. *red= r;
  150. *green= g;
  151. *blue= b;
  152. }
  153. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  154. int i;
  155. if(w<32){
  156. for(i=0; i<w; i++){
  157. const int temp= src[i];
  158. dst[i]= temp - left;
  159. left= temp;
  160. }
  161. return left;
  162. }else{
  163. for(i=0; i<16; i++){
  164. const int temp= src[i];
  165. dst[i]= temp - left;
  166. left= temp;
  167. }
  168. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  169. return src[w-1];
  170. }
  171. }
  172. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  173. int i;
  174. int r,g,b;
  175. r= *red;
  176. g= *green;
  177. b= *blue;
  178. for(i=0; i<FFMIN(w,4); i++){
  179. const int rt= src[i*4+R];
  180. const int gt= src[i*4+G];
  181. const int bt= src[i*4+B];
  182. dst[i*4+R]= rt - r;
  183. dst[i*4+G]= gt - g;
  184. dst[i*4+B]= bt - b;
  185. r = rt;
  186. g = gt;
  187. b = bt;
  188. }
  189. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  190. *red= src[(w-1)*4+R];
  191. *green= src[(w-1)*4+G];
  192. *blue= src[(w-1)*4+B];
  193. }
  194. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  195. int i, val, repeat;
  196. for(i=0; i<256;){
  197. repeat= get_bits(gb, 3);
  198. val = get_bits(gb, 5);
  199. if(repeat==0)
  200. repeat= get_bits(gb, 8);
  201. //printf("%d %d\n", val, repeat);
  202. while (repeat--)
  203. dst[i++] = val;
  204. }
  205. }
  206. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  207. int len, index;
  208. uint32_t bits=0;
  209. for(len=32; len>0; len--){
  210. for(index=0; index<256; index++){
  211. if(len_table[index]==len)
  212. dst[index]= bits++;
  213. }
  214. if(bits & 1){
  215. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  216. return -1;
  217. }
  218. bits >>= 1;
  219. }
  220. return 0;
  221. }
  222. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  223. typedef struct {
  224. uint64_t val;
  225. int name;
  226. } HeapElem;
  227. static void heap_sift(HeapElem *h, int root, int size)
  228. {
  229. while(root*2+1 < size) {
  230. int child = root*2+1;
  231. if(child < size-1 && h[child].val > h[child+1].val)
  232. child++;
  233. if(h[root].val > h[child].val) {
  234. FFSWAP(HeapElem, h[root], h[child]);
  235. root = child;
  236. } else
  237. break;
  238. }
  239. }
  240. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  241. HeapElem h[size];
  242. int up[2*size];
  243. int len[2*size];
  244. int offset, i, next;
  245. for(offset=1; ; offset<<=1){
  246. for(i=0; i<size; i++){
  247. h[i].name = i;
  248. h[i].val = (stats[i] << 8) + offset;
  249. }
  250. for(i=size/2-1; i>=0; i--)
  251. heap_sift(h, i, size);
  252. for(next=size; next<size*2-1; next++){
  253. // merge the two smallest entries, and put it back in the heap
  254. uint64_t min1v = h[0].val;
  255. up[h[0].name] = next;
  256. h[0].val = INT64_MAX;
  257. heap_sift(h, 0, size);
  258. up[h[0].name] = next;
  259. h[0].name = next;
  260. h[0].val += min1v;
  261. heap_sift(h, 0, size);
  262. }
  263. len[2*size-2] = 0;
  264. for(i=2*size-3; i>=size; i--)
  265. len[i] = len[up[i]] + 1;
  266. for(i=0; i<size; i++) {
  267. dst[i] = len[up[i]] + 1;
  268. if(dst[i] >= 32) break;
  269. }
  270. if(i==size) break;
  271. }
  272. }
  273. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  274. static void generate_joint_tables(HYuvContext *s){
  275. uint16_t symbols[1<<VLC_BITS];
  276. uint16_t bits[1<<VLC_BITS];
  277. uint8_t len[1<<VLC_BITS];
  278. if(s->bitstream_bpp < 24){
  279. int p, i, y, u;
  280. for(p=0; p<3; p++){
  281. for(i=y=0; y<256; y++){
  282. int len0 = s->len[0][y];
  283. int limit = VLC_BITS - len0;
  284. if(limit <= 0 || !len0)
  285. continue;
  286. for(u=0; u<256; u++){
  287. int len1 = s->len[p][u];
  288. if (len1 > limit || !len1)
  289. continue;
  290. assert(i < (1 << VLC_BITS));
  291. len[i] = len0 + len1;
  292. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  293. symbols[i] = (y<<8) + u;
  294. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  295. i++;
  296. }
  297. }
  298. free_vlc(&s->vlc[3+p]);
  299. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  300. }
  301. }else{
  302. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  303. int i, b, g, r, code;
  304. int p0 = s->decorrelate;
  305. int p1 = !s->decorrelate;
  306. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  307. // cover all the combinations that fit in 11 bits total, and it doesn't
  308. // matter if we miss a few rare codes.
  309. for(i=0, g=-16; g<16; g++){
  310. int len0 = s->len[p0][g&255];
  311. int limit0 = VLC_BITS - len0;
  312. if (limit0 < 2 || !len0)
  313. continue;
  314. for(b=-16; b<16; b++){
  315. int len1 = s->len[p1][b&255];
  316. int limit1 = limit0 - len1;
  317. if (limit1 < 1 || !len1)
  318. continue;
  319. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  320. for(r=-16; r<16; r++){
  321. int len2 = s->len[2][r&255];
  322. if (len2 > limit1 || !len2)
  323. continue;
  324. assert(i < (1 << VLC_BITS));
  325. len[i] = len0 + len1 + len2;
  326. bits[i] = (code << len2) + s->bits[2][r&255];
  327. if(s->decorrelate){
  328. map[i][G] = g;
  329. map[i][B] = g+b;
  330. map[i][R] = g+r;
  331. }else{
  332. map[i][B] = g;
  333. map[i][G] = b;
  334. map[i][R] = r;
  335. }
  336. i++;
  337. }
  338. }
  339. }
  340. free_vlc(&s->vlc[3]);
  341. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  342. }
  343. }
  344. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  345. GetBitContext gb;
  346. int i;
  347. int ret;
  348. init_get_bits(&gb, src, length*8);
  349. for(i=0; i<3; i++){
  350. read_len_table(s->len[i], &gb);
  351. if(generate_bits_table(s->bits[i], s->len[i])<0){
  352. return -1;
  353. }
  354. #if 0
  355. for(j=0; j<256; j++){
  356. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  357. }
  358. #endif
  359. free_vlc(&s->vlc[i]);
  360. if ((ret = init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0)) < 0)
  361. return ret;
  362. }
  363. generate_joint_tables(s);
  364. return (get_bits_count(&gb)+7)/8;
  365. }
  366. static int read_old_huffman_tables(HYuvContext *s){
  367. #if 1
  368. GetBitContext gb;
  369. int i;
  370. int ret;
  371. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  372. read_len_table(s->len[0], &gb);
  373. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  374. read_len_table(s->len[1], &gb);
  375. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  376. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  377. if(s->bitstream_bpp >= 24){
  378. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  379. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  380. }
  381. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  382. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  383. for(i=0; i<3; i++){
  384. free_vlc(&s->vlc[i]);
  385. if ((ret = init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0)) < 0)
  386. return ret;
  387. }
  388. generate_joint_tables(s);
  389. return 0;
  390. #else
  391. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  392. return -1;
  393. #endif
  394. }
  395. static av_cold void alloc_temp(HYuvContext *s){
  396. int i;
  397. if(s->bitstream_bpp<24){
  398. for(i=0; i<3; i++){
  399. s->temp[i]= av_malloc(s->width + 16);
  400. }
  401. }else{
  402. for(i=0; i<2; i++){
  403. s->temp[i]= av_malloc(4*s->width + 16);
  404. }
  405. }
  406. }
  407. static av_cold int common_init(AVCodecContext *avctx){
  408. HYuvContext *s = avctx->priv_data;
  409. s->avctx= avctx;
  410. s->flags= avctx->flags;
  411. dsputil_init(&s->dsp, avctx);
  412. s->width= avctx->width;
  413. s->height= avctx->height;
  414. assert(s->width>0 && s->height>0);
  415. return 0;
  416. }
  417. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  418. static av_cold int decode_init(AVCodecContext *avctx)
  419. {
  420. HYuvContext *s = avctx->priv_data;
  421. common_init(avctx);
  422. memset(s->vlc, 0, 3*sizeof(VLC));
  423. avctx->coded_frame= &s->picture;
  424. s->interlaced= s->height > 288;
  425. s->bgr32=1;
  426. //if(avctx->extradata)
  427. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  428. if(avctx->extradata_size){
  429. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  430. s->version=1; // do such files exist at all?
  431. else
  432. s->version=2;
  433. }else
  434. s->version=0;
  435. if(s->version==2){
  436. int method, interlace;
  437. method= ((uint8_t*)avctx->extradata)[0];
  438. s->decorrelate= method&64 ? 1 : 0;
  439. s->predictor= method&63;
  440. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  441. if(s->bitstream_bpp==0)
  442. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  443. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  444. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  445. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  446. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  447. return -1;
  448. }else{
  449. switch(avctx->bits_per_coded_sample&7){
  450. case 1:
  451. s->predictor= LEFT;
  452. s->decorrelate= 0;
  453. break;
  454. case 2:
  455. s->predictor= LEFT;
  456. s->decorrelate= 1;
  457. break;
  458. case 3:
  459. s->predictor= PLANE;
  460. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  461. break;
  462. case 4:
  463. s->predictor= MEDIAN;
  464. s->decorrelate= 0;
  465. break;
  466. default:
  467. s->predictor= LEFT; //OLD
  468. s->decorrelate= 0;
  469. break;
  470. }
  471. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  472. s->context= 0;
  473. if(read_old_huffman_tables(s) < 0)
  474. return -1;
  475. }
  476. switch(s->bitstream_bpp){
  477. case 12:
  478. avctx->pix_fmt = PIX_FMT_YUV420P;
  479. break;
  480. case 16:
  481. if(s->yuy2){
  482. avctx->pix_fmt = PIX_FMT_YUYV422;
  483. }else{
  484. avctx->pix_fmt = PIX_FMT_YUV422P;
  485. }
  486. break;
  487. case 24:
  488. case 32:
  489. if(s->bgr32){
  490. avctx->pix_fmt = PIX_FMT_RGB32;
  491. }else{
  492. avctx->pix_fmt = PIX_FMT_BGR24;
  493. }
  494. break;
  495. default:
  496. assert(0);
  497. }
  498. alloc_temp(s);
  499. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  500. return 0;
  501. }
  502. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  503. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  504. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  505. int i;
  506. int index= 0;
  507. for(i=0; i<256;){
  508. int val= len[i];
  509. int repeat=0;
  510. for(; i<256 && len[i]==val && repeat<255; i++)
  511. repeat++;
  512. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  513. if(repeat>7){
  514. buf[index++]= val;
  515. buf[index++]= repeat;
  516. }else{
  517. buf[index++]= val | (repeat<<5);
  518. }
  519. }
  520. return index;
  521. }
  522. static av_cold int encode_init(AVCodecContext *avctx)
  523. {
  524. HYuvContext *s = avctx->priv_data;
  525. int i, j;
  526. common_init(avctx);
  527. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  528. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  529. s->version=2;
  530. avctx->coded_frame= &s->picture;
  531. switch(avctx->pix_fmt){
  532. case PIX_FMT_YUV420P:
  533. s->bitstream_bpp= 12;
  534. break;
  535. case PIX_FMT_YUV422P:
  536. s->bitstream_bpp= 16;
  537. break;
  538. case PIX_FMT_RGB32:
  539. s->bitstream_bpp= 24;
  540. break;
  541. default:
  542. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  543. return -1;
  544. }
  545. avctx->bits_per_coded_sample= s->bitstream_bpp;
  546. s->decorrelate= s->bitstream_bpp >= 24;
  547. s->predictor= avctx->prediction_method;
  548. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  549. if(avctx->context_model==1){
  550. s->context= avctx->context_model;
  551. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  552. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  553. return -1;
  554. }
  555. }else s->context= 0;
  556. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  557. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  558. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  559. return -1;
  560. }
  561. if(avctx->context_model){
  562. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  563. return -1;
  564. }
  565. if(s->interlaced != ( s->height > 288 ))
  566. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  567. }
  568. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  569. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  570. return -1;
  571. }
  572. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  573. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  574. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  575. if(s->context)
  576. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  577. ((uint8_t*)avctx->extradata)[3]= 0;
  578. s->avctx->extradata_size= 4;
  579. if(avctx->stats_in){
  580. char *p= avctx->stats_in;
  581. for(i=0; i<3; i++)
  582. for(j=0; j<256; j++)
  583. s->stats[i][j]= 1;
  584. for(;;){
  585. for(i=0; i<3; i++){
  586. char *next;
  587. for(j=0; j<256; j++){
  588. s->stats[i][j]+= strtol(p, &next, 0);
  589. if(next==p) return -1;
  590. p=next;
  591. }
  592. }
  593. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  594. }
  595. }else{
  596. for(i=0; i<3; i++)
  597. for(j=0; j<256; j++){
  598. int d= FFMIN(j, 256-j);
  599. s->stats[i][j]= 100000000/(d+1);
  600. }
  601. }
  602. for(i=0; i<3; i++){
  603. generate_len_table(s->len[i], s->stats[i], 256);
  604. if(generate_bits_table(s->bits[i], s->len[i])<0){
  605. return -1;
  606. }
  607. s->avctx->extradata_size+=
  608. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  609. }
  610. if(s->context){
  611. for(i=0; i<3; i++){
  612. int pels = s->width*s->height / (i?40:10);
  613. for(j=0; j<256; j++){
  614. int d= FFMIN(j, 256-j);
  615. s->stats[i][j]= pels/(d+1);
  616. }
  617. }
  618. }else{
  619. for(i=0; i<3; i++)
  620. for(j=0; j<256; j++)
  621. s->stats[i][j]= 0;
  622. }
  623. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  624. alloc_temp(s);
  625. s->picture_number=0;
  626. return 0;
  627. }
  628. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  629. /* TODO instead of restarting the read when the code isn't in the first level
  630. * of the joint table, jump into the 2nd level of the individual table. */
  631. #define READ_2PIX(dst0, dst1, plane1){\
  632. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  633. if(code != 0xffff){\
  634. dst0 = code>>8;\
  635. dst1 = code;\
  636. }else{\
  637. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  638. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  639. }\
  640. }
  641. static void decode_422_bitstream(HYuvContext *s, int count){
  642. int i;
  643. count/=2;
  644. if(count >= (s->gb.size_in_bits - get_bits_count(&s->gb))/(31*4)){
  645. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  646. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  647. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  648. }
  649. }else{
  650. for(i=0; i<count; i++){
  651. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  652. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  653. }
  654. }
  655. }
  656. static void decode_gray_bitstream(HYuvContext *s, int count){
  657. int i;
  658. count/=2;
  659. if(count >= (s->gb.size_in_bits - get_bits_count(&s->gb))/(31*2)){
  660. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  661. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  662. }
  663. }else{
  664. for(i=0; i<count; i++){
  665. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  666. }
  667. }
  668. }
  669. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  670. static int encode_422_bitstream(HYuvContext *s, int count){
  671. int i;
  672. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  673. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  674. return -1;
  675. }
  676. #define LOAD4\
  677. int y0 = s->temp[0][2*i];\
  678. int y1 = s->temp[0][2*i+1];\
  679. int u0 = s->temp[1][i];\
  680. int v0 = s->temp[2][i];
  681. count/=2;
  682. if(s->flags&CODEC_FLAG_PASS1){
  683. for(i=0; i<count; i++){
  684. LOAD4;
  685. s->stats[0][y0]++;
  686. s->stats[1][u0]++;
  687. s->stats[0][y1]++;
  688. s->stats[2][v0]++;
  689. }
  690. }
  691. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  692. return 0;
  693. if(s->context){
  694. for(i=0; i<count; i++){
  695. LOAD4;
  696. s->stats[0][y0]++;
  697. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  698. s->stats[1][u0]++;
  699. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  700. s->stats[0][y1]++;
  701. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  702. s->stats[2][v0]++;
  703. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  704. }
  705. }else{
  706. for(i=0; i<count; i++){
  707. LOAD4;
  708. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  709. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  710. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  711. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  712. }
  713. }
  714. return 0;
  715. }
  716. static int encode_gray_bitstream(HYuvContext *s, int count){
  717. int i;
  718. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  719. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  720. return -1;
  721. }
  722. #define LOAD2\
  723. int y0 = s->temp[0][2*i];\
  724. int y1 = s->temp[0][2*i+1];
  725. #define STAT2\
  726. s->stats[0][y0]++;\
  727. s->stats[0][y1]++;
  728. #define WRITE2\
  729. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  730. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  731. count/=2;
  732. if(s->flags&CODEC_FLAG_PASS1){
  733. for(i=0; i<count; i++){
  734. LOAD2;
  735. STAT2;
  736. }
  737. }
  738. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  739. return 0;
  740. if(s->context){
  741. for(i=0; i<count; i++){
  742. LOAD2;
  743. STAT2;
  744. WRITE2;
  745. }
  746. }else{
  747. for(i=0; i<count; i++){
  748. LOAD2;
  749. WRITE2;
  750. }
  751. }
  752. return 0;
  753. }
  754. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  755. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  756. int i;
  757. for(i=0; i<count; i++){
  758. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  759. if(code != -1){
  760. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  761. }else if(decorrelate){
  762. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  763. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  764. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  765. }else{
  766. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  767. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  768. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  769. }
  770. if(alpha)
  771. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  772. }
  773. }
  774. static void decode_bgr_bitstream(HYuvContext *s, int count){
  775. if(s->decorrelate){
  776. if(s->bitstream_bpp==24)
  777. decode_bgr_1(s, count, 1, 0);
  778. else
  779. decode_bgr_1(s, count, 1, 1);
  780. }else{
  781. if(s->bitstream_bpp==24)
  782. decode_bgr_1(s, count, 0, 0);
  783. else
  784. decode_bgr_1(s, count, 0, 1);
  785. }
  786. }
  787. static int encode_bgr_bitstream(HYuvContext *s, int count){
  788. int i;
  789. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  790. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  791. return -1;
  792. }
  793. #define LOAD3\
  794. int g= s->temp[0][4*i+G];\
  795. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  796. int r= (s->temp[0][4*i+R] - g) & 0xff;
  797. #define STAT3\
  798. s->stats[0][b]++;\
  799. s->stats[1][g]++;\
  800. s->stats[2][r]++;
  801. #define WRITE3\
  802. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  803. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  804. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  805. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  806. for(i=0; i<count; i++){
  807. LOAD3;
  808. STAT3;
  809. }
  810. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  811. for(i=0; i<count; i++){
  812. LOAD3;
  813. STAT3;
  814. WRITE3;
  815. }
  816. }else{
  817. for(i=0; i<count; i++){
  818. LOAD3;
  819. WRITE3;
  820. }
  821. }
  822. return 0;
  823. }
  824. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  825. static void draw_slice(HYuvContext *s, int y){
  826. int h, cy;
  827. int offset[4];
  828. if(s->avctx->draw_horiz_band==NULL)
  829. return;
  830. h= y - s->last_slice_end;
  831. y -= h;
  832. if(s->bitstream_bpp==12){
  833. cy= y>>1;
  834. }else{
  835. cy= y;
  836. }
  837. offset[0] = s->picture.linesize[0]*y;
  838. offset[1] = s->picture.linesize[1]*cy;
  839. offset[2] = s->picture.linesize[2]*cy;
  840. offset[3] = 0;
  841. emms_c();
  842. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  843. s->last_slice_end= y + h;
  844. }
  845. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, const uint8_t *buf, int buf_size){
  846. HYuvContext *s = avctx->priv_data;
  847. const int width= s->width;
  848. const int width2= s->width>>1;
  849. const int height= s->height;
  850. int fake_ystride, fake_ustride, fake_vstride;
  851. AVFrame * const p= &s->picture;
  852. int table_size= 0;
  853. AVFrame *picture = data;
  854. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  855. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  856. if(p->data[0])
  857. avctx->release_buffer(avctx, p);
  858. p->reference= 0;
  859. if(avctx->get_buffer(avctx, p) < 0){
  860. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  861. return -1;
  862. }
  863. if(s->context){
  864. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  865. if(table_size < 0)
  866. return -1;
  867. }
  868. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  869. return -1;
  870. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  871. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  872. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  873. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  874. s->last_slice_end= 0;
  875. if(s->bitstream_bpp<24){
  876. int y, cy;
  877. int lefty, leftu, leftv;
  878. int lefttopy, lefttopu, lefttopv;
  879. if(s->yuy2){
  880. p->data[0][3]= get_bits(&s->gb, 8);
  881. p->data[0][2]= get_bits(&s->gb, 8);
  882. p->data[0][1]= get_bits(&s->gb, 8);
  883. p->data[0][0]= get_bits(&s->gb, 8);
  884. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  885. return -1;
  886. }else{
  887. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  888. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  889. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  890. p->data[0][0]= get_bits(&s->gb, 8);
  891. switch(s->predictor){
  892. case LEFT:
  893. case PLANE:
  894. decode_422_bitstream(s, width-2);
  895. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  896. if(!(s->flags&CODEC_FLAG_GRAY)){
  897. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  898. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  899. }
  900. for(cy=y=1; y<s->height; y++,cy++){
  901. uint8_t *ydst, *udst, *vdst;
  902. if(s->bitstream_bpp==12){
  903. decode_gray_bitstream(s, width);
  904. ydst= p->data[0] + p->linesize[0]*y;
  905. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  906. if(s->predictor == PLANE){
  907. if(y>s->interlaced)
  908. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  909. }
  910. y++;
  911. if(y>=s->height) break;
  912. }
  913. draw_slice(s, y);
  914. ydst= p->data[0] + p->linesize[0]*y;
  915. udst= p->data[1] + p->linesize[1]*cy;
  916. vdst= p->data[2] + p->linesize[2]*cy;
  917. decode_422_bitstream(s, width);
  918. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  919. if(!(s->flags&CODEC_FLAG_GRAY)){
  920. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  921. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  922. }
  923. if(s->predictor == PLANE){
  924. if(cy>s->interlaced){
  925. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  926. if(!(s->flags&CODEC_FLAG_GRAY)){
  927. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  928. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  929. }
  930. }
  931. }
  932. }
  933. draw_slice(s, height);
  934. break;
  935. case MEDIAN:
  936. /* first line except first 2 pixels is left predicted */
  937. decode_422_bitstream(s, width-2);
  938. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  939. if(!(s->flags&CODEC_FLAG_GRAY)){
  940. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  941. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  942. }
  943. cy=y=1;
  944. /* second line is left predicted for interlaced case */
  945. if(s->interlaced){
  946. decode_422_bitstream(s, width);
  947. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  948. if(!(s->flags&CODEC_FLAG_GRAY)){
  949. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  950. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  951. }
  952. y++; cy++;
  953. }
  954. /* next 4 pixels are left predicted too */
  955. decode_422_bitstream(s, 4);
  956. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  957. if(!(s->flags&CODEC_FLAG_GRAY)){
  958. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  959. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  960. }
  961. /* next line except the first 4 pixels is median predicted */
  962. lefttopy= p->data[0][3];
  963. decode_422_bitstream(s, width-4);
  964. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  965. if(!(s->flags&CODEC_FLAG_GRAY)){
  966. lefttopu= p->data[1][1];
  967. lefttopv= p->data[2][1];
  968. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  969. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  970. }
  971. y++; cy++;
  972. for(; y<height; y++,cy++){
  973. uint8_t *ydst, *udst, *vdst;
  974. if(s->bitstream_bpp==12){
  975. while(2*cy > y){
  976. decode_gray_bitstream(s, width);
  977. ydst= p->data[0] + p->linesize[0]*y;
  978. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  979. y++;
  980. }
  981. if(y>=height) break;
  982. }
  983. draw_slice(s, y);
  984. decode_422_bitstream(s, width);
  985. ydst= p->data[0] + p->linesize[0]*y;
  986. udst= p->data[1] + p->linesize[1]*cy;
  987. vdst= p->data[2] + p->linesize[2]*cy;
  988. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  989. if(!(s->flags&CODEC_FLAG_GRAY)){
  990. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  991. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  992. }
  993. }
  994. draw_slice(s, height);
  995. break;
  996. }
  997. }
  998. }else{
  999. int y;
  1000. int leftr, leftg, leftb;
  1001. const int last_line= (height-1)*p->linesize[0];
  1002. if(s->bitstream_bpp==32){
  1003. skip_bits(&s->gb, 8);
  1004. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1005. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1006. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1007. }else{
  1008. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1009. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1010. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1011. skip_bits(&s->gb, 8);
  1012. }
  1013. if(s->bgr32){
  1014. switch(s->predictor){
  1015. case LEFT:
  1016. case PLANE:
  1017. decode_bgr_bitstream(s, width-1);
  1018. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  1019. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1020. decode_bgr_bitstream(s, width);
  1021. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  1022. if(s->predictor == PLANE){
  1023. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1024. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1025. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1026. }
  1027. }
  1028. }
  1029. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1030. break;
  1031. default:
  1032. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1033. }
  1034. }else{
  1035. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1036. return -1;
  1037. }
  1038. }
  1039. emms_c();
  1040. *picture= *p;
  1041. *data_size = sizeof(AVFrame);
  1042. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1043. }
  1044. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1045. static int common_end(HYuvContext *s){
  1046. int i;
  1047. for(i=0; i<3; i++){
  1048. av_freep(&s->temp[i]);
  1049. }
  1050. return 0;
  1051. }
  1052. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1053. static av_cold int decode_end(AVCodecContext *avctx)
  1054. {
  1055. HYuvContext *s = avctx->priv_data;
  1056. int i;
  1057. common_end(s);
  1058. av_freep(&s->bitstream_buffer);
  1059. for(i=0; i<6; i++){
  1060. free_vlc(&s->vlc[i]);
  1061. }
  1062. return 0;
  1063. }
  1064. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1065. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1066. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1067. HYuvContext *s = avctx->priv_data;
  1068. AVFrame *pict = data;
  1069. const int width= s->width;
  1070. const int width2= s->width>>1;
  1071. const int height= s->height;
  1072. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1073. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1074. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1075. AVFrame * const p= &s->picture;
  1076. int i, j, size=0;
  1077. *p = *pict;
  1078. p->pict_type= FF_I_TYPE;
  1079. p->key_frame= 1;
  1080. if(s->context){
  1081. for(i=0; i<3; i++){
  1082. generate_len_table(s->len[i], s->stats[i], 256);
  1083. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1084. return -1;
  1085. size+= store_table(s, s->len[i], &buf[size]);
  1086. }
  1087. for(i=0; i<3; i++)
  1088. for(j=0; j<256; j++)
  1089. s->stats[i][j] >>= 1;
  1090. }
  1091. init_put_bits(&s->pb, buf+size, buf_size-size);
  1092. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1093. int lefty, leftu, leftv, y, cy;
  1094. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1095. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1096. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1097. put_bits(&s->pb, 8, p->data[0][0]);
  1098. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  1099. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  1100. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  1101. encode_422_bitstream(s, width-2);
  1102. if(s->predictor==MEDIAN){
  1103. int lefttopy, lefttopu, lefttopv;
  1104. cy=y=1;
  1105. if(s->interlaced){
  1106. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1107. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1108. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1109. encode_422_bitstream(s, width);
  1110. y++; cy++;
  1111. }
  1112. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1113. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1114. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1115. encode_422_bitstream(s, 4);
  1116. lefttopy= p->data[0][3];
  1117. lefttopu= p->data[1][1];
  1118. lefttopv= p->data[2][1];
  1119. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1120. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1121. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1122. encode_422_bitstream(s, width-4);
  1123. y++; cy++;
  1124. for(; y<height; y++,cy++){
  1125. uint8_t *ydst, *udst, *vdst;
  1126. if(s->bitstream_bpp==12){
  1127. while(2*cy > y){
  1128. ydst= p->data[0] + p->linesize[0]*y;
  1129. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1130. encode_gray_bitstream(s, width);
  1131. y++;
  1132. }
  1133. if(y>=height) break;
  1134. }
  1135. ydst= p->data[0] + p->linesize[0]*y;
  1136. udst= p->data[1] + p->linesize[1]*cy;
  1137. vdst= p->data[2] + p->linesize[2]*cy;
  1138. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1139. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1140. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1141. encode_422_bitstream(s, width);
  1142. }
  1143. }else{
  1144. for(cy=y=1; y<height; y++,cy++){
  1145. uint8_t *ydst, *udst, *vdst;
  1146. /* encode a luma only line & y++ */
  1147. if(s->bitstream_bpp==12){
  1148. ydst= p->data[0] + p->linesize[0]*y;
  1149. if(s->predictor == PLANE && s->interlaced < y){
  1150. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1151. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1152. }else{
  1153. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1154. }
  1155. encode_gray_bitstream(s, width);
  1156. y++;
  1157. if(y>=height) break;
  1158. }
  1159. ydst= p->data[0] + p->linesize[0]*y;
  1160. udst= p->data[1] + p->linesize[1]*cy;
  1161. vdst= p->data[2] + p->linesize[2]*cy;
  1162. if(s->predictor == PLANE && s->interlaced < cy){
  1163. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1164. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1165. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1166. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1167. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1168. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1169. }else{
  1170. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1171. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1172. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1173. }
  1174. encode_422_bitstream(s, width);
  1175. }
  1176. }
  1177. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1178. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1179. const int stride = -p->linesize[0];
  1180. const int fake_stride = -fake_ystride;
  1181. int y;
  1182. int leftr, leftg, leftb;
  1183. put_bits(&s->pb, 8, leftr= data[R]);
  1184. put_bits(&s->pb, 8, leftg= data[G]);
  1185. put_bits(&s->pb, 8, leftb= data[B]);
  1186. put_bits(&s->pb, 8, 0);
  1187. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1188. encode_bgr_bitstream(s, width-1);
  1189. for(y=1; y<s->height; y++){
  1190. uint8_t *dst = data + y*stride;
  1191. if(s->predictor == PLANE && s->interlaced < y){
  1192. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1193. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1194. }else{
  1195. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1196. }
  1197. encode_bgr_bitstream(s, width);
  1198. }
  1199. }else{
  1200. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1201. }
  1202. emms_c();
  1203. size+= (put_bits_count(&s->pb)+31)/8;
  1204. size/= 4;
  1205. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1206. int j;
  1207. char *p= avctx->stats_out;
  1208. char *end= p + 1024*30;
  1209. for(i=0; i<3; i++){
  1210. for(j=0; j<256; j++){
  1211. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1212. p+= strlen(p);
  1213. s->stats[i][j]= 0;
  1214. }
  1215. snprintf(p, end-p, "\n");
  1216. p++;
  1217. }
  1218. } else
  1219. avctx->stats_out[0] = '\0';
  1220. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1221. flush_put_bits(&s->pb);
  1222. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1223. }
  1224. s->picture_number++;
  1225. return size*4;
  1226. }
  1227. static av_cold int encode_end(AVCodecContext *avctx)
  1228. {
  1229. HYuvContext *s = avctx->priv_data;
  1230. common_end(s);
  1231. av_freep(&avctx->extradata);
  1232. av_freep(&avctx->stats_out);
  1233. return 0;
  1234. }
  1235. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1236. #if CONFIG_HUFFYUV_DECODER
  1237. AVCodec huffyuv_decoder = {
  1238. "huffyuv",
  1239. CODEC_TYPE_VIDEO,
  1240. CODEC_ID_HUFFYUV,
  1241. sizeof(HYuvContext),
  1242. decode_init,
  1243. NULL,
  1244. decode_end,
  1245. decode_frame,
  1246. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1247. NULL,
  1248. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1249. };
  1250. #endif
  1251. #if CONFIG_FFVHUFF_DECODER
  1252. AVCodec ffvhuff_decoder = {
  1253. "ffvhuff",
  1254. CODEC_TYPE_VIDEO,
  1255. CODEC_ID_FFVHUFF,
  1256. sizeof(HYuvContext),
  1257. decode_init,
  1258. NULL,
  1259. decode_end,
  1260. decode_frame,
  1261. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1262. NULL,
  1263. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1264. };
  1265. #endif
  1266. #if CONFIG_HUFFYUV_ENCODER
  1267. AVCodec huffyuv_encoder = {
  1268. "huffyuv",
  1269. CODEC_TYPE_VIDEO,
  1270. CODEC_ID_HUFFYUV,
  1271. sizeof(HYuvContext),
  1272. encode_init,
  1273. encode_frame,
  1274. encode_end,
  1275. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1276. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1277. };
  1278. #endif
  1279. #if CONFIG_FFVHUFF_ENCODER
  1280. AVCodec ffvhuff_encoder = {
  1281. "ffvhuff",
  1282. CODEC_TYPE_VIDEO,
  1283. CODEC_ID_FFVHUFF,
  1284. sizeof(HYuvContext),
  1285. encode_init,
  1286. encode_frame,
  1287. encode_end,
  1288. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1289. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1290. };
  1291. #endif