You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3097 lines
117KB

  1. /*
  2. * HEVC video decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of Libav.
  10. *
  11. * Libav is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * Libav is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with Libav; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/md5.h"
  30. #include "libavutil/opt.h"
  31. #include "libavutil/pixdesc.h"
  32. #include "libavutil/stereo3d.h"
  33. #include "bswapdsp.h"
  34. #include "bytestream.h"
  35. #include "cabac_functions.h"
  36. #include "golomb_legacy.h"
  37. #include "hevc.h"
  38. #include "hevc_data.h"
  39. #include "hevcdec.h"
  40. #include "profiles.h"
  41. const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 3 };
  42. const uint8_t ff_hevc_qpel_extra_after[4] = { 0, 4, 4, 4 };
  43. const uint8_t ff_hevc_qpel_extra[4] = { 0, 7, 7, 7 };
  44. static const uint8_t scan_1x1[1] = { 0 };
  45. static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
  46. static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
  47. static const uint8_t horiz_scan4x4_x[16] = {
  48. 0, 1, 2, 3,
  49. 0, 1, 2, 3,
  50. 0, 1, 2, 3,
  51. 0, 1, 2, 3,
  52. };
  53. static const uint8_t horiz_scan4x4_y[16] = {
  54. 0, 0, 0, 0,
  55. 1, 1, 1, 1,
  56. 2, 2, 2, 2,
  57. 3, 3, 3, 3,
  58. };
  59. static const uint8_t horiz_scan8x8_inv[8][8] = {
  60. { 0, 1, 2, 3, 16, 17, 18, 19, },
  61. { 4, 5, 6, 7, 20, 21, 22, 23, },
  62. { 8, 9, 10, 11, 24, 25, 26, 27, },
  63. { 12, 13, 14, 15, 28, 29, 30, 31, },
  64. { 32, 33, 34, 35, 48, 49, 50, 51, },
  65. { 36, 37, 38, 39, 52, 53, 54, 55, },
  66. { 40, 41, 42, 43, 56, 57, 58, 59, },
  67. { 44, 45, 46, 47, 60, 61, 62, 63, },
  68. };
  69. static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
  70. static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
  71. static const uint8_t diag_scan2x2_inv[2][2] = {
  72. { 0, 2, },
  73. { 1, 3, },
  74. };
  75. static const uint8_t diag_scan4x4_inv[4][4] = {
  76. { 0, 2, 5, 9, },
  77. { 1, 4, 8, 12, },
  78. { 3, 7, 11, 14, },
  79. { 6, 10, 13, 15, },
  80. };
  81. static const uint8_t diag_scan8x8_inv[8][8] = {
  82. { 0, 2, 5, 9, 14, 20, 27, 35, },
  83. { 1, 4, 8, 13, 19, 26, 34, 42, },
  84. { 3, 7, 12, 18, 25, 33, 41, 48, },
  85. { 6, 11, 17, 24, 32, 40, 47, 53, },
  86. { 10, 16, 23, 31, 39, 46, 52, 57, },
  87. { 15, 22, 30, 38, 45, 51, 56, 60, },
  88. { 21, 29, 37, 44, 50, 55, 59, 62, },
  89. { 28, 36, 43, 49, 54, 58, 61, 63, },
  90. };
  91. /**
  92. * NOTE: Each function hls_foo correspond to the function foo in the
  93. * specification (HLS stands for High Level Syntax).
  94. */
  95. /**
  96. * Section 5.7
  97. */
  98. /* free everything allocated by pic_arrays_init() */
  99. static void pic_arrays_free(HEVCContext *s)
  100. {
  101. av_freep(&s->sao);
  102. av_freep(&s->deblock);
  103. av_freep(&s->skip_flag);
  104. av_freep(&s->tab_ct_depth);
  105. av_freep(&s->tab_ipm);
  106. av_freep(&s->cbf_luma);
  107. av_freep(&s->is_pcm);
  108. av_freep(&s->qp_y_tab);
  109. av_freep(&s->tab_slice_address);
  110. av_freep(&s->filter_slice_edges);
  111. av_freep(&s->horizontal_bs);
  112. av_freep(&s->vertical_bs);
  113. av_buffer_pool_uninit(&s->tab_mvf_pool);
  114. av_buffer_pool_uninit(&s->rpl_tab_pool);
  115. }
  116. /* allocate arrays that depend on frame dimensions */
  117. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  118. {
  119. int log2_min_cb_size = sps->log2_min_cb_size;
  120. int width = sps->width;
  121. int height = sps->height;
  122. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  123. ((height >> log2_min_cb_size) + 1);
  124. int ctb_count = sps->ctb_width * sps->ctb_height;
  125. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  126. s->bs_width = width >> 3;
  127. s->bs_height = height >> 3;
  128. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  129. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  130. if (!s->sao || !s->deblock)
  131. goto fail;
  132. s->skip_flag = av_malloc(pic_size_in_ctb);
  133. s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
  134. if (!s->skip_flag || !s->tab_ct_depth)
  135. goto fail;
  136. s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
  137. s->tab_ipm = av_mallocz(min_pu_size);
  138. s->is_pcm = av_malloc(min_pu_size);
  139. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  140. goto fail;
  141. s->filter_slice_edges = av_malloc(ctb_count);
  142. s->tab_slice_address = av_malloc(pic_size_in_ctb *
  143. sizeof(*s->tab_slice_address));
  144. s->qp_y_tab = av_malloc(pic_size_in_ctb *
  145. sizeof(*s->qp_y_tab));
  146. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  147. goto fail;
  148. s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
  149. s->vertical_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
  150. if (!s->horizontal_bs || !s->vertical_bs)
  151. goto fail;
  152. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  153. av_buffer_alloc);
  154. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  155. av_buffer_allocz);
  156. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  157. goto fail;
  158. return 0;
  159. fail:
  160. pic_arrays_free(s);
  161. return AVERROR(ENOMEM);
  162. }
  163. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  164. {
  165. int i = 0;
  166. int j = 0;
  167. uint8_t luma_weight_l0_flag[16];
  168. uint8_t chroma_weight_l0_flag[16];
  169. uint8_t luma_weight_l1_flag[16];
  170. uint8_t chroma_weight_l1_flag[16];
  171. s->sh.luma_log2_weight_denom = av_clip(get_ue_golomb_long(gb), 0, 7);
  172. if (s->ps.sps->chroma_format_idc != 0) {
  173. int delta = get_se_golomb(gb);
  174. s->sh.chroma_log2_weight_denom = av_clip(s->sh.luma_log2_weight_denom + delta, 0, 7);
  175. }
  176. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  177. luma_weight_l0_flag[i] = get_bits1(gb);
  178. if (!luma_weight_l0_flag[i]) {
  179. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  180. s->sh.luma_offset_l0[i] = 0;
  181. }
  182. }
  183. if (s->ps.sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
  184. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  185. chroma_weight_l0_flag[i] = get_bits1(gb);
  186. } else {
  187. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  188. chroma_weight_l0_flag[i] = 0;
  189. }
  190. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  191. if (luma_weight_l0_flag[i]) {
  192. int delta_luma_weight_l0 = get_se_golomb(gb);
  193. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  194. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  195. }
  196. if (chroma_weight_l0_flag[i]) {
  197. for (j = 0; j < 2; j++) {
  198. int delta_chroma_weight_l0 = get_se_golomb(gb);
  199. int delta_chroma_offset_l0 = get_se_golomb(gb);
  200. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  201. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  202. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  203. }
  204. } else {
  205. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  206. s->sh.chroma_offset_l0[i][0] = 0;
  207. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  208. s->sh.chroma_offset_l0[i][1] = 0;
  209. }
  210. }
  211. if (s->sh.slice_type == HEVC_SLICE_B) {
  212. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  213. luma_weight_l1_flag[i] = get_bits1(gb);
  214. if (!luma_weight_l1_flag[i]) {
  215. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  216. s->sh.luma_offset_l1[i] = 0;
  217. }
  218. }
  219. if (s->ps.sps->chroma_format_idc != 0) {
  220. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  221. chroma_weight_l1_flag[i] = get_bits1(gb);
  222. } else {
  223. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  224. chroma_weight_l1_flag[i] = 0;
  225. }
  226. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  227. if (luma_weight_l1_flag[i]) {
  228. int delta_luma_weight_l1 = get_se_golomb(gb);
  229. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  230. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  231. }
  232. if (chroma_weight_l1_flag[i]) {
  233. for (j = 0; j < 2; j++) {
  234. int delta_chroma_weight_l1 = get_se_golomb(gb);
  235. int delta_chroma_offset_l1 = get_se_golomb(gb);
  236. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  237. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  238. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  239. }
  240. } else {
  241. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  242. s->sh.chroma_offset_l1[i][0] = 0;
  243. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  244. s->sh.chroma_offset_l1[i][1] = 0;
  245. }
  246. }
  247. }
  248. }
  249. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  250. {
  251. const HEVCSPS *sps = s->ps.sps;
  252. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  253. int prev_delta_msb = 0;
  254. unsigned int nb_sps = 0, nb_sh;
  255. int i;
  256. rps->nb_refs = 0;
  257. if (!sps->long_term_ref_pics_present_flag)
  258. return 0;
  259. if (sps->num_long_term_ref_pics_sps > 0)
  260. nb_sps = get_ue_golomb_long(gb);
  261. nb_sh = get_ue_golomb_long(gb);
  262. if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
  263. return AVERROR_INVALIDDATA;
  264. rps->nb_refs = nb_sh + nb_sps;
  265. for (i = 0; i < rps->nb_refs; i++) {
  266. uint8_t delta_poc_msb_present;
  267. if (i < nb_sps) {
  268. uint8_t lt_idx_sps = 0;
  269. if (sps->num_long_term_ref_pics_sps > 1)
  270. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  271. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  272. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  273. } else {
  274. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  275. rps->used[i] = get_bits1(gb);
  276. }
  277. delta_poc_msb_present = get_bits1(gb);
  278. if (delta_poc_msb_present) {
  279. int delta = get_ue_golomb_long(gb);
  280. if (i && i != nb_sps)
  281. delta += prev_delta_msb;
  282. rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  283. prev_delta_msb = delta;
  284. }
  285. }
  286. return 0;
  287. }
  288. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  289. const HEVCSPS *sps)
  290. {
  291. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  292. const HEVCWindow *ow = &sps->output_window;
  293. unsigned int num = 0, den = 0;
  294. avctx->pix_fmt = sps->pix_fmt;
  295. avctx->coded_width = sps->width;
  296. avctx->coded_height = sps->height;
  297. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  298. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  299. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  300. avctx->profile = sps->ptl.general_ptl.profile_idc;
  301. avctx->level = sps->ptl.general_ptl.level_idc;
  302. ff_set_sar(avctx, sps->vui.sar);
  303. if (sps->vui.video_signal_type_present_flag)
  304. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  305. : AVCOL_RANGE_MPEG;
  306. else
  307. avctx->color_range = AVCOL_RANGE_MPEG;
  308. if (sps->vui.colour_description_present_flag) {
  309. avctx->color_primaries = sps->vui.colour_primaries;
  310. avctx->color_trc = sps->vui.transfer_characteristic;
  311. avctx->colorspace = sps->vui.matrix_coeffs;
  312. } else {
  313. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  314. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  315. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  316. }
  317. if (vps->vps_timing_info_present_flag) {
  318. num = vps->vps_num_units_in_tick;
  319. den = vps->vps_time_scale;
  320. } else if (sps->vui.vui_timing_info_present_flag) {
  321. num = sps->vui.vui_num_units_in_tick;
  322. den = sps->vui.vui_time_scale;
  323. }
  324. if (num != 0 && den != 0)
  325. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  326. num, den, 1 << 30);
  327. }
  328. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  329. {
  330. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + \
  331. CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  332. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  333. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P ||
  334. sps->pix_fmt == AV_PIX_FMT_YUV420P10) {
  335. #if CONFIG_HEVC_D3D11VA_HWACCEL
  336. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  337. #endif
  338. #if CONFIG_HEVC_DXVA2_HWACCEL
  339. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  340. #endif
  341. #if CONFIG_HEVC_VAAPI_HWACCEL
  342. *fmt++ = AV_PIX_FMT_VAAPI;
  343. #endif
  344. }
  345. if (sps->pix_fmt == AV_PIX_FMT_YUV420P || sps->pix_fmt == AV_PIX_FMT_YUVJ420P) {
  346. #if CONFIG_HEVC_VDPAU_HWACCEL
  347. *fmt++ = AV_PIX_FMT_VDPAU;
  348. #endif
  349. }
  350. *fmt++ = sps->pix_fmt;
  351. *fmt = AV_PIX_FMT_NONE;
  352. return ff_get_format(s->avctx, pix_fmts);
  353. }
  354. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  355. enum AVPixelFormat pix_fmt)
  356. {
  357. int ret;
  358. pic_arrays_free(s);
  359. s->ps.sps = NULL;
  360. s->ps.vps = NULL;
  361. if (!sps)
  362. return 0;
  363. ret = pic_arrays_init(s, sps);
  364. if (ret < 0)
  365. goto fail;
  366. export_stream_params(s->avctx, &s->ps, sps);
  367. s->avctx->pix_fmt = pix_fmt;
  368. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  369. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  370. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  371. if (sps->sao_enabled && !s->avctx->hwaccel) {
  372. av_frame_unref(s->tmp_frame);
  373. ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
  374. if (ret < 0)
  375. goto fail;
  376. s->frame = s->tmp_frame;
  377. }
  378. s->ps.sps = sps;
  379. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  380. return 0;
  381. fail:
  382. pic_arrays_free(s);
  383. s->ps.sps = NULL;
  384. return ret;
  385. }
  386. static int hls_slice_header(HEVCContext *s)
  387. {
  388. GetBitContext *gb = &s->HEVClc.gb;
  389. SliceHeader *sh = &s->sh;
  390. int i, ret;
  391. // Coded parameters
  392. sh->first_slice_in_pic_flag = get_bits1(gb);
  393. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  394. s->seq_decode = (s->seq_decode + 1) & 0xff;
  395. s->max_ra = INT_MAX;
  396. if (IS_IDR(s))
  397. ff_hevc_clear_refs(s);
  398. }
  399. if (IS_IRAP(s))
  400. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  401. sh->pps_id = get_ue_golomb_long(gb);
  402. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  403. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  404. return AVERROR_INVALIDDATA;
  405. }
  406. if (!sh->first_slice_in_pic_flag &&
  407. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  408. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  409. return AVERROR_INVALIDDATA;
  410. }
  411. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  412. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  413. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  414. enum AVPixelFormat pix_fmt;
  415. ff_hevc_clear_refs(s);
  416. pix_fmt = get_format(s, sps);
  417. if (pix_fmt < 0)
  418. return pix_fmt;
  419. ret = set_sps(s, sps, pix_fmt);
  420. if (ret < 0)
  421. return ret;
  422. s->seq_decode = (s->seq_decode + 1) & 0xff;
  423. s->max_ra = INT_MAX;
  424. }
  425. sh->dependent_slice_segment_flag = 0;
  426. if (!sh->first_slice_in_pic_flag) {
  427. int slice_address_length;
  428. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  429. sh->dependent_slice_segment_flag = get_bits1(gb);
  430. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  431. s->ps.sps->ctb_height);
  432. sh->slice_segment_addr = slice_address_length ? get_bits(gb, slice_address_length) : 0;
  433. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  434. av_log(s->avctx, AV_LOG_ERROR,
  435. "Invalid slice segment address: %u.\n",
  436. sh->slice_segment_addr);
  437. return AVERROR_INVALIDDATA;
  438. }
  439. if (!sh->dependent_slice_segment_flag) {
  440. sh->slice_addr = sh->slice_segment_addr;
  441. s->slice_idx++;
  442. }
  443. } else {
  444. sh->slice_segment_addr = sh->slice_addr = 0;
  445. s->slice_idx = 0;
  446. s->slice_initialized = 0;
  447. }
  448. if (!sh->dependent_slice_segment_flag) {
  449. s->slice_initialized = 0;
  450. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  451. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  452. sh->slice_type = get_ue_golomb_long(gb);
  453. if (!(sh->slice_type == HEVC_SLICE_I ||
  454. sh->slice_type == HEVC_SLICE_P ||
  455. sh->slice_type == HEVC_SLICE_B)) {
  456. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  457. sh->slice_type);
  458. return AVERROR_INVALIDDATA;
  459. }
  460. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  461. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  462. return AVERROR_INVALIDDATA;
  463. }
  464. // when flag is not present, picture is inferred to be output
  465. sh->pic_output_flag = 1;
  466. if (s->ps.pps->output_flag_present_flag)
  467. sh->pic_output_flag = get_bits1(gb);
  468. if (s->ps.sps->separate_colour_plane_flag)
  469. sh->colour_plane_id = get_bits(gb, 2);
  470. if (!IS_IDR(s)) {
  471. int poc, pos;
  472. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  473. poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
  474. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  475. av_log(s->avctx, AV_LOG_WARNING,
  476. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  477. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  478. return AVERROR_INVALIDDATA;
  479. poc = s->poc;
  480. }
  481. s->poc = poc;
  482. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  483. pos = get_bits_left(gb);
  484. if (!sh->short_term_ref_pic_set_sps_flag) {
  485. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  486. if (ret < 0)
  487. return ret;
  488. sh->short_term_rps = &sh->slice_rps;
  489. } else {
  490. int numbits, rps_idx;
  491. if (!s->ps.sps->nb_st_rps) {
  492. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  493. return AVERROR_INVALIDDATA;
  494. }
  495. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  496. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  497. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  498. }
  499. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  500. pos = get_bits_left(gb);
  501. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  502. if (ret < 0) {
  503. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  504. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  505. return AVERROR_INVALIDDATA;
  506. }
  507. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  508. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  509. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  510. else
  511. sh->slice_temporal_mvp_enabled_flag = 0;
  512. } else {
  513. s->sh.short_term_rps = NULL;
  514. s->poc = 0;
  515. }
  516. /* 8.3.1 */
  517. if (s->temporal_id == 0 &&
  518. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  519. s->nal_unit_type != HEVC_NAL_TSA_N &&
  520. s->nal_unit_type != HEVC_NAL_STSA_N &&
  521. s->nal_unit_type != HEVC_NAL_RADL_N &&
  522. s->nal_unit_type != HEVC_NAL_RADL_R &&
  523. s->nal_unit_type != HEVC_NAL_RASL_N &&
  524. s->nal_unit_type != HEVC_NAL_RASL_R)
  525. s->pocTid0 = s->poc;
  526. if (s->ps.sps->sao_enabled) {
  527. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  528. sh->slice_sample_adaptive_offset_flag[1] =
  529. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  530. } else {
  531. sh->slice_sample_adaptive_offset_flag[0] = 0;
  532. sh->slice_sample_adaptive_offset_flag[1] = 0;
  533. sh->slice_sample_adaptive_offset_flag[2] = 0;
  534. }
  535. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  536. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  537. int nb_refs;
  538. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  539. if (sh->slice_type == HEVC_SLICE_B)
  540. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  541. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  542. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  543. if (sh->slice_type == HEVC_SLICE_B)
  544. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  545. }
  546. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  547. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  548. sh->nb_refs[L0], sh->nb_refs[L1]);
  549. return AVERROR_INVALIDDATA;
  550. }
  551. sh->rpl_modification_flag[0] = 0;
  552. sh->rpl_modification_flag[1] = 0;
  553. nb_refs = ff_hevc_frame_nb_refs(s);
  554. if (!nb_refs) {
  555. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  556. return AVERROR_INVALIDDATA;
  557. }
  558. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  559. sh->rpl_modification_flag[0] = get_bits1(gb);
  560. if (sh->rpl_modification_flag[0]) {
  561. for (i = 0; i < sh->nb_refs[L0]; i++)
  562. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  563. }
  564. if (sh->slice_type == HEVC_SLICE_B) {
  565. sh->rpl_modification_flag[1] = get_bits1(gb);
  566. if (sh->rpl_modification_flag[1] == 1)
  567. for (i = 0; i < sh->nb_refs[L1]; i++)
  568. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  569. }
  570. }
  571. if (sh->slice_type == HEVC_SLICE_B)
  572. sh->mvd_l1_zero_flag = get_bits1(gb);
  573. if (s->ps.pps->cabac_init_present_flag)
  574. sh->cabac_init_flag = get_bits1(gb);
  575. else
  576. sh->cabac_init_flag = 0;
  577. sh->collocated_ref_idx = 0;
  578. if (sh->slice_temporal_mvp_enabled_flag) {
  579. sh->collocated_list = L0;
  580. if (sh->slice_type == HEVC_SLICE_B)
  581. sh->collocated_list = !get_bits1(gb);
  582. if (sh->nb_refs[sh->collocated_list] > 1) {
  583. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  584. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  585. av_log(s->avctx, AV_LOG_ERROR,
  586. "Invalid collocated_ref_idx: %d.\n",
  587. sh->collocated_ref_idx);
  588. return AVERROR_INVALIDDATA;
  589. }
  590. }
  591. }
  592. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  593. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  594. pred_weight_table(s, gb);
  595. }
  596. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  597. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  598. av_log(s->avctx, AV_LOG_ERROR,
  599. "Invalid number of merging MVP candidates: %d.\n",
  600. sh->max_num_merge_cand);
  601. return AVERROR_INVALIDDATA;
  602. }
  603. }
  604. sh->slice_qp_delta = get_se_golomb(gb);
  605. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  606. sh->slice_cb_qp_offset = get_se_golomb(gb);
  607. sh->slice_cr_qp_offset = get_se_golomb(gb);
  608. } else {
  609. sh->slice_cb_qp_offset = 0;
  610. sh->slice_cr_qp_offset = 0;
  611. }
  612. if (s->ps.pps->deblocking_filter_control_present_flag) {
  613. int deblocking_filter_override_flag = 0;
  614. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  615. deblocking_filter_override_flag = get_bits1(gb);
  616. if (deblocking_filter_override_flag) {
  617. sh->disable_deblocking_filter_flag = get_bits1(gb);
  618. if (!sh->disable_deblocking_filter_flag) {
  619. sh->beta_offset = get_se_golomb(gb) * 2;
  620. sh->tc_offset = get_se_golomb(gb) * 2;
  621. }
  622. } else {
  623. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  624. sh->beta_offset = s->ps.pps->beta_offset;
  625. sh->tc_offset = s->ps.pps->tc_offset;
  626. }
  627. } else {
  628. sh->disable_deblocking_filter_flag = 0;
  629. sh->beta_offset = 0;
  630. sh->tc_offset = 0;
  631. }
  632. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  633. (sh->slice_sample_adaptive_offset_flag[0] ||
  634. sh->slice_sample_adaptive_offset_flag[1] ||
  635. !sh->disable_deblocking_filter_flag)) {
  636. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  637. } else {
  638. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  639. }
  640. } else if (!s->slice_initialized) {
  641. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  642. return AVERROR_INVALIDDATA;
  643. }
  644. sh->num_entry_point_offsets = 0;
  645. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  646. sh->num_entry_point_offsets = get_ue_golomb_long(gb);
  647. if (sh->num_entry_point_offsets > 0) {
  648. int offset_len = get_ue_golomb_long(gb) + 1;
  649. for (i = 0; i < sh->num_entry_point_offsets; i++)
  650. skip_bits(gb, offset_len);
  651. }
  652. }
  653. if (s->ps.pps->slice_header_extension_present_flag) {
  654. unsigned int length = get_ue_golomb_long(gb);
  655. for (i = 0; i < length; i++)
  656. skip_bits(gb, 8); // slice_header_extension_data_byte
  657. }
  658. // Inferred parameters
  659. sh->slice_qp = 26 + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  660. if (sh->slice_qp > 51 ||
  661. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  662. av_log(s->avctx, AV_LOG_ERROR,
  663. "The slice_qp %d is outside the valid range "
  664. "[%d, 51].\n",
  665. sh->slice_qp,
  666. -s->ps.sps->qp_bd_offset);
  667. return AVERROR_INVALIDDATA;
  668. }
  669. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  670. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  671. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  672. return AVERROR_INVALIDDATA;
  673. }
  674. s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
  675. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  676. s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->ps.sps->qp_bd_offset,
  677. 52 + s->ps.sps->qp_bd_offset) - s->ps.sps->qp_bd_offset;
  678. s->slice_initialized = 1;
  679. return 0;
  680. }
  681. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  682. #define SET_SAO(elem, value) \
  683. do { \
  684. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  685. sao->elem = value; \
  686. else if (sao_merge_left_flag) \
  687. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  688. else if (sao_merge_up_flag) \
  689. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  690. else \
  691. sao->elem = 0; \
  692. } while (0)
  693. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  694. {
  695. HEVCLocalContext *lc = &s->HEVClc;
  696. int sao_merge_left_flag = 0;
  697. int sao_merge_up_flag = 0;
  698. int shift = s->ps.sps->bit_depth - FFMIN(s->ps.sps->bit_depth, 10);
  699. SAOParams *sao = &CTB(s->sao, rx, ry);
  700. int c_idx, i;
  701. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  702. s->sh.slice_sample_adaptive_offset_flag[1]) {
  703. if (rx > 0) {
  704. if (lc->ctb_left_flag)
  705. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  706. }
  707. if (ry > 0 && !sao_merge_left_flag) {
  708. if (lc->ctb_up_flag)
  709. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  710. }
  711. }
  712. for (c_idx = 0; c_idx < 3; c_idx++) {
  713. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  714. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  715. continue;
  716. }
  717. if (c_idx == 2) {
  718. sao->type_idx[2] = sao->type_idx[1];
  719. sao->eo_class[2] = sao->eo_class[1];
  720. } else {
  721. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  722. }
  723. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  724. continue;
  725. for (i = 0; i < 4; i++)
  726. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  727. if (sao->type_idx[c_idx] == SAO_BAND) {
  728. for (i = 0; i < 4; i++) {
  729. if (sao->offset_abs[c_idx][i]) {
  730. SET_SAO(offset_sign[c_idx][i],
  731. ff_hevc_sao_offset_sign_decode(s));
  732. } else {
  733. sao->offset_sign[c_idx][i] = 0;
  734. }
  735. }
  736. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  737. } else if (c_idx != 2) {
  738. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  739. }
  740. // Inferred parameters
  741. sao->offset_val[c_idx][0] = 0;
  742. for (i = 0; i < 4; i++) {
  743. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
  744. if (sao->type_idx[c_idx] == SAO_EDGE) {
  745. if (i > 1)
  746. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  747. } else if (sao->offset_sign[c_idx][i]) {
  748. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  749. }
  750. }
  751. }
  752. }
  753. #undef SET_SAO
  754. #undef CTB
  755. static void hls_residual_coding(HEVCContext *s, int x0, int y0,
  756. int log2_trafo_size, enum ScanType scan_idx,
  757. int c_idx)
  758. {
  759. #define GET_COORD(offset, n) \
  760. do { \
  761. x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n]; \
  762. y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n]; \
  763. } while (0)
  764. HEVCLocalContext *lc = &s->HEVClc;
  765. int transform_skip_flag = 0;
  766. int last_significant_coeff_x, last_significant_coeff_y;
  767. int last_scan_pos;
  768. int n_end;
  769. int num_coeff = 0;
  770. int greater1_ctx = 1;
  771. int num_last_subset;
  772. int x_cg_last_sig, y_cg_last_sig;
  773. const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
  774. ptrdiff_t stride = s->frame->linesize[c_idx];
  775. int hshift = s->ps.sps->hshift[c_idx];
  776. int vshift = s->ps.sps->vshift[c_idx];
  777. uint8_t *dst = &s->frame->data[c_idx][(y0 >> vshift) * stride +
  778. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  779. DECLARE_ALIGNED(32, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
  780. DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
  781. int trafo_size = 1 << log2_trafo_size;
  782. int i, qp, shift, add, scale, scale_m;
  783. static const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
  784. const uint8_t *scale_matrix;
  785. uint8_t dc_scale;
  786. // Derive QP for dequant
  787. if (!lc->cu.cu_transquant_bypass_flag) {
  788. static const int qp_c[] = {
  789. 29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
  790. };
  791. static const uint8_t rem6[51 + 2 * 6 + 1] = {
  792. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
  793. 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
  794. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  795. };
  796. static const uint8_t div6[51 + 2 * 6 + 1] = {
  797. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
  798. 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
  799. 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
  800. };
  801. int qp_y = lc->qp_y;
  802. if (c_idx == 0) {
  803. qp = qp_y + s->ps.sps->qp_bd_offset;
  804. } else {
  805. int qp_i, offset;
  806. if (c_idx == 1)
  807. offset = s->ps.pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
  808. else
  809. offset = s->ps.pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
  810. qp_i = av_clip(qp_y + offset, -s->ps.sps->qp_bd_offset, 57);
  811. if (qp_i < 30)
  812. qp = qp_i;
  813. else if (qp_i > 43)
  814. qp = qp_i - 6;
  815. else
  816. qp = qp_c[qp_i - 30];
  817. qp += s->ps.sps->qp_bd_offset;
  818. }
  819. shift = s->ps.sps->bit_depth + log2_trafo_size - 5;
  820. add = 1 << (shift - 1);
  821. scale = level_scale[rem6[qp]] << (div6[qp]);
  822. scale_m = 16; // default when no custom scaling lists.
  823. dc_scale = 16;
  824. if (s->ps.sps->scaling_list_enable_flag) {
  825. const ScalingList *sl = s->ps.pps->scaling_list_data_present_flag ?
  826. &s->ps.pps->scaling_list : &s->ps.sps->scaling_list;
  827. int matrix_id = lc->cu.pred_mode != MODE_INTRA;
  828. if (log2_trafo_size != 5)
  829. matrix_id = 3 * matrix_id + c_idx;
  830. scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
  831. if (log2_trafo_size >= 4)
  832. dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
  833. }
  834. }
  835. if (s->ps.pps->transform_skip_enabled_flag &&
  836. !lc->cu.cu_transquant_bypass_flag &&
  837. log2_trafo_size == 2) {
  838. transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
  839. }
  840. last_significant_coeff_x =
  841. ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
  842. last_significant_coeff_y =
  843. ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
  844. if (last_significant_coeff_x > 3) {
  845. int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
  846. last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
  847. (2 + (last_significant_coeff_x & 1)) +
  848. suffix;
  849. }
  850. if (last_significant_coeff_y > 3) {
  851. int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
  852. last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
  853. (2 + (last_significant_coeff_y & 1)) +
  854. suffix;
  855. }
  856. if (scan_idx == SCAN_VERT)
  857. FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
  858. x_cg_last_sig = last_significant_coeff_x >> 2;
  859. y_cg_last_sig = last_significant_coeff_y >> 2;
  860. switch (scan_idx) {
  861. case SCAN_DIAG: {
  862. int last_x_c = last_significant_coeff_x & 3;
  863. int last_y_c = last_significant_coeff_y & 3;
  864. scan_x_off = ff_hevc_diag_scan4x4_x;
  865. scan_y_off = ff_hevc_diag_scan4x4_y;
  866. num_coeff = diag_scan4x4_inv[last_y_c][last_x_c];
  867. if (trafo_size == 4) {
  868. scan_x_cg = scan_1x1;
  869. scan_y_cg = scan_1x1;
  870. } else if (trafo_size == 8) {
  871. num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  872. scan_x_cg = diag_scan2x2_x;
  873. scan_y_cg = diag_scan2x2_y;
  874. } else if (trafo_size == 16) {
  875. num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  876. scan_x_cg = ff_hevc_diag_scan4x4_x;
  877. scan_y_cg = ff_hevc_diag_scan4x4_y;
  878. } else { // trafo_size == 32
  879. num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
  880. scan_x_cg = ff_hevc_diag_scan8x8_x;
  881. scan_y_cg = ff_hevc_diag_scan8x8_y;
  882. }
  883. break;
  884. }
  885. case SCAN_HORIZ:
  886. scan_x_cg = horiz_scan2x2_x;
  887. scan_y_cg = horiz_scan2x2_y;
  888. scan_x_off = horiz_scan4x4_x;
  889. scan_y_off = horiz_scan4x4_y;
  890. num_coeff = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
  891. break;
  892. default: //SCAN_VERT
  893. scan_x_cg = horiz_scan2x2_y;
  894. scan_y_cg = horiz_scan2x2_x;
  895. scan_x_off = horiz_scan4x4_y;
  896. scan_y_off = horiz_scan4x4_x;
  897. num_coeff = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
  898. break;
  899. }
  900. num_coeff++;
  901. num_last_subset = (num_coeff - 1) >> 4;
  902. for (i = num_last_subset; i >= 0; i--) {
  903. int n, m;
  904. int x_cg, y_cg, x_c, y_c;
  905. int implicit_non_zero_coeff = 0;
  906. int64_t trans_coeff_level;
  907. int prev_sig = 0;
  908. int offset = i << 4;
  909. uint8_t significant_coeff_flag_idx[16];
  910. uint8_t nb_significant_coeff_flag = 0;
  911. x_cg = scan_x_cg[i];
  912. y_cg = scan_y_cg[i];
  913. if (i < num_last_subset && i > 0) {
  914. int ctx_cg = 0;
  915. if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
  916. ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
  917. if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
  918. ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
  919. significant_coeff_group_flag[x_cg][y_cg] =
  920. ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
  921. implicit_non_zero_coeff = 1;
  922. } else {
  923. significant_coeff_group_flag[x_cg][y_cg] =
  924. ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
  925. (x_cg == 0 && y_cg == 0));
  926. }
  927. last_scan_pos = num_coeff - offset - 1;
  928. if (i == num_last_subset) {
  929. n_end = last_scan_pos - 1;
  930. significant_coeff_flag_idx[0] = last_scan_pos;
  931. nb_significant_coeff_flag = 1;
  932. } else {
  933. n_end = 15;
  934. }
  935. if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
  936. prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
  937. if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
  938. prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
  939. for (n = n_end; n >= 0; n--) {
  940. GET_COORD(offset, n);
  941. if (significant_coeff_group_flag[x_cg][y_cg] &&
  942. (n > 0 || implicit_non_zero_coeff == 0)) {
  943. if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
  944. log2_trafo_size,
  945. scan_idx,
  946. prev_sig) == 1) {
  947. significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
  948. nb_significant_coeff_flag++;
  949. implicit_non_zero_coeff = 0;
  950. }
  951. } else {
  952. int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
  953. if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
  954. significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
  955. nb_significant_coeff_flag++;
  956. }
  957. }
  958. }
  959. n_end = nb_significant_coeff_flag;
  960. if (n_end) {
  961. int first_nz_pos_in_cg = 16;
  962. int last_nz_pos_in_cg = -1;
  963. int c_rice_param = 0;
  964. int first_greater1_coeff_idx = -1;
  965. uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
  966. uint16_t coeff_sign_flag;
  967. int sum_abs = 0;
  968. int sign_hidden = 0;
  969. // initialize first elem of coeff_bas_level_greater1_flag
  970. int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
  971. if (!(i == num_last_subset) && greater1_ctx == 0)
  972. ctx_set++;
  973. greater1_ctx = 1;
  974. last_nz_pos_in_cg = significant_coeff_flag_idx[0];
  975. for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
  976. int n_idx = significant_coeff_flag_idx[m];
  977. int inc = (ctx_set << 2) + greater1_ctx;
  978. coeff_abs_level_greater1_flag[n_idx] =
  979. ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
  980. if (coeff_abs_level_greater1_flag[n_idx]) {
  981. greater1_ctx = 0;
  982. } else if (greater1_ctx > 0 && greater1_ctx < 3) {
  983. greater1_ctx++;
  984. }
  985. if (coeff_abs_level_greater1_flag[n_idx] &&
  986. first_greater1_coeff_idx == -1)
  987. first_greater1_coeff_idx = n_idx;
  988. }
  989. first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
  990. sign_hidden = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
  991. !lc->cu.cu_transquant_bypass_flag;
  992. if (first_greater1_coeff_idx != -1) {
  993. coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
  994. }
  995. if (!s->ps.pps->sign_data_hiding_flag || !sign_hidden) {
  996. coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
  997. } else {
  998. coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
  999. }
  1000. for (m = 0; m < n_end; m++) {
  1001. n = significant_coeff_flag_idx[m];
  1002. GET_COORD(offset, n);
  1003. trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
  1004. if (trans_coeff_level == ((m < 8) ?
  1005. ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
  1006. trans_coeff_level += ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
  1007. if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
  1008. c_rice_param = FFMIN(c_rice_param + 1, 4);
  1009. }
  1010. if (s->ps.pps->sign_data_hiding_flag && sign_hidden) {
  1011. sum_abs += trans_coeff_level;
  1012. if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
  1013. trans_coeff_level = -trans_coeff_level;
  1014. }
  1015. if (coeff_sign_flag >> 15)
  1016. trans_coeff_level = -trans_coeff_level;
  1017. coeff_sign_flag <<= 1;
  1018. if (!lc->cu.cu_transquant_bypass_flag) {
  1019. if (s->ps.sps->scaling_list_enable_flag) {
  1020. if (y_c || x_c || log2_trafo_size < 4) {
  1021. int pos;
  1022. switch (log2_trafo_size) {
  1023. case 3: pos = (y_c << 3) + x_c; break;
  1024. case 4: pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
  1025. case 5: pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
  1026. default: pos = (y_c << 2) + x_c;
  1027. }
  1028. scale_m = scale_matrix[pos];
  1029. } else {
  1030. scale_m = dc_scale;
  1031. }
  1032. }
  1033. trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
  1034. if(trans_coeff_level < 0) {
  1035. if((~trans_coeff_level) & 0xFffffffffff8000)
  1036. trans_coeff_level = -32768;
  1037. } else {
  1038. if (trans_coeff_level & 0xffffffffffff8000)
  1039. trans_coeff_level = 32767;
  1040. }
  1041. }
  1042. coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
  1043. }
  1044. }
  1045. }
  1046. if (!lc->cu.cu_transquant_bypass_flag) {
  1047. if (transform_skip_flag)
  1048. s->hevcdsp.dequant(coeffs);
  1049. else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
  1050. log2_trafo_size == 2)
  1051. s->hevcdsp.transform_4x4_luma(coeffs);
  1052. else {
  1053. int max_xy = FFMAX(last_significant_coeff_x, last_significant_coeff_y);
  1054. if (max_xy == 0)
  1055. s->hevcdsp.idct_dc[log2_trafo_size - 2](coeffs);
  1056. else {
  1057. int col_limit = last_significant_coeff_x + last_significant_coeff_y + 4;
  1058. if (max_xy < 4)
  1059. col_limit = FFMIN(4, col_limit);
  1060. else if (max_xy < 8)
  1061. col_limit = FFMIN(8, col_limit);
  1062. else if (max_xy < 12)
  1063. col_limit = FFMIN(24, col_limit);
  1064. s->hevcdsp.idct[log2_trafo_size - 2](coeffs, col_limit);
  1065. }
  1066. }
  1067. }
  1068. s->hevcdsp.add_residual[log2_trafo_size - 2](dst, coeffs, stride);
  1069. }
  1070. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  1071. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1072. int log2_cb_size, int log2_trafo_size,
  1073. int blk_idx, int cbf_luma, int cbf_cb, int cbf_cr)
  1074. {
  1075. HEVCLocalContext *lc = &s->HEVClc;
  1076. if (lc->cu.pred_mode == MODE_INTRA) {
  1077. int trafo_size = 1 << log2_trafo_size;
  1078. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  1079. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  1080. if (log2_trafo_size > 2) {
  1081. trafo_size = trafo_size << (s->ps.sps->hshift[1] - 1);
  1082. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  1083. s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
  1084. s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
  1085. } else if (blk_idx == 3) {
  1086. trafo_size = trafo_size << s->ps.sps->hshift[1];
  1087. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1088. trafo_size, trafo_size);
  1089. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1090. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1091. }
  1092. }
  1093. if (cbf_luma || cbf_cb || cbf_cr) {
  1094. int scan_idx = SCAN_DIAG;
  1095. int scan_idx_c = SCAN_DIAG;
  1096. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  1097. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  1098. if (lc->tu.cu_qp_delta != 0)
  1099. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  1100. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  1101. lc->tu.is_cu_qp_delta_coded = 1;
  1102. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  1103. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  1104. av_log(s->avctx, AV_LOG_ERROR,
  1105. "The cu_qp_delta %d is outside the valid range "
  1106. "[%d, %d].\n",
  1107. lc->tu.cu_qp_delta,
  1108. -(26 + s->ps.sps->qp_bd_offset / 2),
  1109. (25 + s->ps.sps->qp_bd_offset / 2));
  1110. return AVERROR_INVALIDDATA;
  1111. }
  1112. ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
  1113. }
  1114. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  1115. if (lc->tu.cur_intra_pred_mode >= 6 &&
  1116. lc->tu.cur_intra_pred_mode <= 14) {
  1117. scan_idx = SCAN_VERT;
  1118. } else if (lc->tu.cur_intra_pred_mode >= 22 &&
  1119. lc->tu.cur_intra_pred_mode <= 30) {
  1120. scan_idx = SCAN_HORIZ;
  1121. }
  1122. if (lc->pu.intra_pred_mode_c >= 6 &&
  1123. lc->pu.intra_pred_mode_c <= 14) {
  1124. scan_idx_c = SCAN_VERT;
  1125. } else if (lc->pu.intra_pred_mode_c >= 22 &&
  1126. lc->pu.intra_pred_mode_c <= 30) {
  1127. scan_idx_c = SCAN_HORIZ;
  1128. }
  1129. }
  1130. if (cbf_luma)
  1131. hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  1132. if (log2_trafo_size > 2) {
  1133. if (cbf_cb)
  1134. hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
  1135. if (cbf_cr)
  1136. hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
  1137. } else if (blk_idx == 3) {
  1138. if (cbf_cb)
  1139. hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
  1140. if (cbf_cr)
  1141. hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
  1142. }
  1143. }
  1144. return 0;
  1145. }
  1146. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1147. {
  1148. int cb_size = 1 << log2_cb_size;
  1149. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1150. int min_pu_width = s->ps.sps->min_pu_width;
  1151. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1152. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1153. int i, j;
  1154. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1155. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1156. s->is_pcm[i + j * min_pu_width] = 2;
  1157. }
  1158. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1159. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1160. int log2_cb_size, int log2_trafo_size,
  1161. int trafo_depth, int blk_idx,
  1162. int cbf_cb, int cbf_cr)
  1163. {
  1164. HEVCLocalContext *lc = &s->HEVClc;
  1165. uint8_t split_transform_flag;
  1166. int ret;
  1167. if (lc->cu.intra_split_flag) {
  1168. if (trafo_depth == 1)
  1169. lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1170. } else {
  1171. lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
  1172. }
  1173. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1174. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1175. trafo_depth < lc->cu.max_trafo_depth &&
  1176. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1177. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1178. } else {
  1179. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1180. lc->cu.pred_mode == MODE_INTER &&
  1181. lc->cu.part_mode != PART_2Nx2N &&
  1182. trafo_depth == 0;
  1183. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1184. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1185. inter_split;
  1186. }
  1187. if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
  1188. cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1189. else if (log2_trafo_size > 2 || trafo_depth == 0)
  1190. cbf_cb = 0;
  1191. if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
  1192. cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1193. else if (log2_trafo_size > 2 || trafo_depth == 0)
  1194. cbf_cr = 0;
  1195. if (split_transform_flag) {
  1196. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1197. const int x1 = x0 + trafo_size_split;
  1198. const int y1 = y0 + trafo_size_split;
  1199. #define SUBDIVIDE(x, y, idx) \
  1200. do { \
  1201. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1202. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1203. cbf_cb, cbf_cr); \
  1204. if (ret < 0) \
  1205. return ret; \
  1206. } while (0)
  1207. SUBDIVIDE(x0, y0, 0);
  1208. SUBDIVIDE(x1, y0, 1);
  1209. SUBDIVIDE(x0, y1, 2);
  1210. SUBDIVIDE(x1, y1, 3);
  1211. #undef SUBDIVIDE
  1212. } else {
  1213. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1214. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1215. int min_tu_width = s->ps.sps->min_tb_width;
  1216. int cbf_luma = 1;
  1217. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1218. cbf_cb || cbf_cr)
  1219. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1220. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1221. log2_cb_size, log2_trafo_size,
  1222. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1223. if (ret < 0)
  1224. return ret;
  1225. // TODO: store cbf_luma somewhere else
  1226. if (cbf_luma) {
  1227. int i, j;
  1228. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1229. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1230. int x_tu = (x0 + j) >> log2_min_tu_size;
  1231. int y_tu = (y0 + i) >> log2_min_tu_size;
  1232. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1233. }
  1234. }
  1235. if (!s->sh.disable_deblocking_filter_flag) {
  1236. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1237. if (s->ps.pps->transquant_bypass_enable_flag &&
  1238. lc->cu.cu_transquant_bypass_flag)
  1239. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1240. }
  1241. }
  1242. return 0;
  1243. }
  1244. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1245. {
  1246. //TODO: non-4:2:0 support
  1247. HEVCLocalContext *lc = &s->HEVClc;
  1248. GetBitContext gb;
  1249. int cb_size = 1 << log2_cb_size;
  1250. ptrdiff_t stride0 = s->frame->linesize[0];
  1251. ptrdiff_t stride1 = s->frame->linesize[1];
  1252. ptrdiff_t stride2 = s->frame->linesize[2];
  1253. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1254. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1255. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1256. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->ps.sps->pcm.bit_depth_chroma;
  1257. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1258. int ret;
  1259. if (!s->sh.disable_deblocking_filter_flag)
  1260. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1261. ret = init_get_bits(&gb, pcm, length);
  1262. if (ret < 0)
  1263. return ret;
  1264. s->hevcdsp.put_pcm(dst0, stride0, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1265. s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->ps.sps->pcm.bit_depth_chroma);
  1266. s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->ps.sps->pcm.bit_depth_chroma);
  1267. return 0;
  1268. }
  1269. static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1270. {
  1271. HEVCLocalContext *lc = &s->HEVClc;
  1272. int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
  1273. int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
  1274. if (x)
  1275. x += ff_hevc_abs_mvd_greater1_flag_decode(s);
  1276. if (y)
  1277. y += ff_hevc_abs_mvd_greater1_flag_decode(s);
  1278. switch (x) {
  1279. case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s); break;
  1280. case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
  1281. case 0: lc->pu.mvd.x = 0; break;
  1282. }
  1283. switch (y) {
  1284. case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s); break;
  1285. case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
  1286. case 0: lc->pu.mvd.y = 0; break;
  1287. }
  1288. }
  1289. /**
  1290. * 8.5.3.2.2.1 Luma sample interpolation process
  1291. *
  1292. * @param s HEVC decoding context
  1293. * @param dst target buffer for block data at block position
  1294. * @param dststride stride of the dst buffer
  1295. * @param ref reference picture buffer at origin (0, 0)
  1296. * @param mv motion vector (relative to block position) to get pixel data from
  1297. * @param x_off horizontal position of block from origin (0, 0)
  1298. * @param y_off vertical position of block from origin (0, 0)
  1299. * @param block_w width of block
  1300. * @param block_h height of block
  1301. */
  1302. static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
  1303. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1304. int block_w, int block_h, int pred_idx)
  1305. {
  1306. HEVCLocalContext *lc = &s->HEVClc;
  1307. uint8_t *src = ref->data[0];
  1308. ptrdiff_t srcstride = ref->linesize[0];
  1309. int pic_width = s->ps.sps->width;
  1310. int pic_height = s->ps.sps->height;
  1311. int mx = mv->x & 3;
  1312. int my = mv->y & 3;
  1313. int extra_left = ff_hevc_qpel_extra_before[mx];
  1314. int extra_top = ff_hevc_qpel_extra_before[my];
  1315. x_off += mv->x >> 2;
  1316. y_off += mv->y >> 2;
  1317. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1318. if (x_off < extra_left || y_off < extra_top ||
  1319. x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
  1320. y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
  1321. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1322. int offset = extra_top * srcstride + (extra_left << s->ps.sps->pixel_shift);
  1323. int buf_offset = extra_top *
  1324. edge_emu_stride + (extra_left << s->ps.sps->pixel_shift);
  1325. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1326. edge_emu_stride, srcstride,
  1327. block_w + ff_hevc_qpel_extra[mx],
  1328. block_h + ff_hevc_qpel_extra[my],
  1329. x_off - extra_left, y_off - extra_top,
  1330. pic_width, pic_height);
  1331. src = lc->edge_emu_buffer + buf_offset;
  1332. srcstride = edge_emu_stride;
  1333. }
  1334. s->hevcdsp.put_hevc_qpel[!!my][!!mx][pred_idx](dst, dststride, src, srcstride,
  1335. block_h, mx, my, lc->mc_buffer);
  1336. }
  1337. /**
  1338. * 8.5.3.2.2.2 Chroma sample interpolation process
  1339. *
  1340. * @param s HEVC decoding context
  1341. * @param dst1 target buffer for block data at block position (U plane)
  1342. * @param dst2 target buffer for block data at block position (V plane)
  1343. * @param dststride stride of the dst1 and dst2 buffers
  1344. * @param ref reference picture buffer at origin (0, 0)
  1345. * @param mv motion vector (relative to block position) to get pixel data from
  1346. * @param x_off horizontal position of block from origin (0, 0)
  1347. * @param y_off vertical position of block from origin (0, 0)
  1348. * @param block_w width of block
  1349. * @param block_h height of block
  1350. */
  1351. static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
  1352. ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
  1353. int x_off, int y_off, int block_w, int block_h, int pred_idx)
  1354. {
  1355. HEVCLocalContext *lc = &s->HEVClc;
  1356. uint8_t *src1 = ref->data[1];
  1357. uint8_t *src2 = ref->data[2];
  1358. ptrdiff_t src1stride = ref->linesize[1];
  1359. ptrdiff_t src2stride = ref->linesize[2];
  1360. int pic_width = s->ps.sps->width >> 1;
  1361. int pic_height = s->ps.sps->height >> 1;
  1362. int mx = mv->x & 7;
  1363. int my = mv->y & 7;
  1364. x_off += mv->x >> 3;
  1365. y_off += mv->y >> 3;
  1366. src1 += y_off * src1stride + (x_off * (1 << s->ps.sps->pixel_shift));
  1367. src2 += y_off * src2stride + (x_off * (1 << s->ps.sps->pixel_shift));
  1368. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1369. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1370. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1371. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1372. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1373. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1374. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1375. int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1376. int buf_offset2 = EPEL_EXTRA_BEFORE *
  1377. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1378. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1379. edge_emu_stride, src1stride,
  1380. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1381. x_off - EPEL_EXTRA_BEFORE,
  1382. y_off - EPEL_EXTRA_BEFORE,
  1383. pic_width, pic_height);
  1384. src1 = lc->edge_emu_buffer + buf_offset1;
  1385. src1stride = edge_emu_stride;
  1386. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst1, dststride, src1, src1stride,
  1387. block_h, mx, my, lc->mc_buffer);
  1388. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
  1389. edge_emu_stride, src2stride,
  1390. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1391. x_off - EPEL_EXTRA_BEFORE,
  1392. y_off - EPEL_EXTRA_BEFORE,
  1393. pic_width, pic_height);
  1394. src2 = lc->edge_emu_buffer + buf_offset2;
  1395. src2stride = edge_emu_stride;
  1396. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst2, dststride, src2, src2stride,
  1397. block_h, mx, my, lc->mc_buffer);
  1398. } else {
  1399. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst1, dststride, src1, src1stride,
  1400. block_h, mx, my, lc->mc_buffer);
  1401. s->hevcdsp.put_hevc_epel[!!my][!!mx][pred_idx](dst2, dststride, src2, src2stride,
  1402. block_h, mx, my, lc->mc_buffer);
  1403. }
  1404. }
  1405. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1406. const Mv *mv, int y0, int height)
  1407. {
  1408. int y = (mv->y >> 2) + y0 + height + 9;
  1409. ff_thread_await_progress(&ref->tf, y, 0);
  1410. }
  1411. static void hevc_luma_mv_mpv_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1412. int nPbH, int log2_cb_size, int part_idx,
  1413. int merge_idx, MvField *mv)
  1414. {
  1415. HEVCLocalContext *lc = &s->HEVClc;
  1416. enum InterPredIdc inter_pred_idc = PRED_L0;
  1417. int mvp_flag;
  1418. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1419. if (s->sh.slice_type == HEVC_SLICE_B)
  1420. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1421. if (inter_pred_idc != PRED_L1) {
  1422. if (s->sh.nb_refs[L0])
  1423. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1424. mv->pred_flag[0] = 1;
  1425. hls_mvd_coding(s, x0, y0, 0);
  1426. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1427. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1428. part_idx, merge_idx, mv, mvp_flag, 0);
  1429. mv->mv[0].x += lc->pu.mvd.x;
  1430. mv->mv[0].y += lc->pu.mvd.y;
  1431. }
  1432. if (inter_pred_idc != PRED_L0) {
  1433. if (s->sh.nb_refs[L1])
  1434. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1435. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1436. AV_ZERO32(&lc->pu.mvd);
  1437. } else {
  1438. hls_mvd_coding(s, x0, y0, 1);
  1439. }
  1440. mv->pred_flag[1] = 1;
  1441. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1442. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1443. part_idx, merge_idx, mv, mvp_flag, 1);
  1444. mv->mv[1].x += lc->pu.mvd.x;
  1445. mv->mv[1].y += lc->pu.mvd.y;
  1446. }
  1447. }
  1448. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1449. int nPbW, int nPbH,
  1450. int log2_cb_size, int partIdx)
  1451. {
  1452. static const int pred_indices[] = {
  1453. [4] = 0, [8] = 1, [12] = 2, [16] = 3, [24] = 4, [32] = 5, [48] = 6, [64] = 7,
  1454. };
  1455. const int pred_idx = pred_indices[nPbW];
  1456. #define POS(c_idx, x, y) \
  1457. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1458. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1459. HEVCLocalContext *lc = &s->HEVClc;
  1460. int merge_idx = 0;
  1461. struct MvField current_mv = {{{ 0 }}};
  1462. int min_pu_width = s->ps.sps->min_pu_width;
  1463. int weighted_pred = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1464. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1465. MvField *tab_mvf = s->ref->tab_mvf;
  1466. RefPicList *refPicList = s->ref->refPicList;
  1467. HEVCFrame *ref0, *ref1;
  1468. ptrdiff_t tmpstride = MAX_PB_SIZE * sizeof(int16_t);
  1469. uint8_t *dst0 = POS(0, x0, y0);
  1470. uint8_t *dst1 = POS(1, x0, y0);
  1471. uint8_t *dst2 = POS(2, x0, y0);
  1472. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1473. int min_cb_width = s->ps.sps->min_cb_width;
  1474. int x_cb = x0 >> log2_min_cb_size;
  1475. int y_cb = y0 >> log2_min_cb_size;
  1476. int x_pu, y_pu;
  1477. int i, j;
  1478. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1479. if (!skip_flag)
  1480. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1481. if (skip_flag || lc->pu.merge_flag) {
  1482. if (s->sh.max_num_merge_cand > 1)
  1483. merge_idx = ff_hevc_merge_idx_decode(s);
  1484. else
  1485. merge_idx = 0;
  1486. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1487. partIdx, merge_idx, &current_mv);
  1488. } else {
  1489. hevc_luma_mv_mpv_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1490. partIdx, merge_idx, &current_mv);
  1491. }
  1492. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1493. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1494. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1495. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1496. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1497. if (current_mv.pred_flag[0]) {
  1498. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1499. if (!ref0)
  1500. return;
  1501. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1502. }
  1503. if (current_mv.pred_flag[1]) {
  1504. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1505. if (!ref1)
  1506. return;
  1507. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1508. }
  1509. if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
  1510. DECLARE_ALIGNED(16, int16_t, tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
  1511. DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
  1512. luma_mc(s, tmp, tmpstride, ref0->frame,
  1513. &current_mv.mv[0], x0, y0, nPbW, nPbH, pred_idx);
  1514. if (weighted_pred) {
  1515. s->hevcdsp.weighted_pred[pred_idx](s->sh.luma_log2_weight_denom,
  1516. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1517. s->sh.luma_offset_l0[current_mv.ref_idx[0]],
  1518. dst0, s->frame->linesize[0], tmp,
  1519. tmpstride, nPbH);
  1520. } else {
  1521. s->hevcdsp.put_unweighted_pred[pred_idx](dst0, s->frame->linesize[0], tmp, tmpstride, nPbH);
  1522. }
  1523. chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
  1524. &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1525. if (weighted_pred) {
  1526. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1527. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
  1528. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
  1529. dst1, s->frame->linesize[1], tmp, tmpstride,
  1530. nPbH / 2);
  1531. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1532. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
  1533. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
  1534. dst2, s->frame->linesize[2], tmp2, tmpstride,
  1535. nPbH / 2);
  1536. } else {
  1537. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmpstride, nPbH / 2);
  1538. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH / 2);
  1539. }
  1540. } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
  1541. DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
  1542. DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
  1543. luma_mc(s, tmp, tmpstride, ref1->frame,
  1544. &current_mv.mv[1], x0, y0, nPbW, nPbH, pred_idx);
  1545. if (weighted_pred) {
  1546. s->hevcdsp.weighted_pred[pred_idx](s->sh.luma_log2_weight_denom,
  1547. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1548. s->sh.luma_offset_l1[current_mv.ref_idx[1]],
  1549. dst0, s->frame->linesize[0], tmp, tmpstride,
  1550. nPbH);
  1551. } else {
  1552. s->hevcdsp.put_unweighted_pred[pred_idx](dst0, s->frame->linesize[0], tmp, tmpstride, nPbH);
  1553. }
  1554. chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
  1555. &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1556. if (weighted_pred) {
  1557. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1558. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
  1559. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
  1560. dst1, s->frame->linesize[1], tmp, tmpstride, nPbH/2);
  1561. s->hevcdsp.weighted_pred_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1562. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
  1563. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
  1564. dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH/2);
  1565. } else {
  1566. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmpstride, nPbH / 2);
  1567. s->hevcdsp.put_unweighted_pred_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmpstride, nPbH / 2);
  1568. }
  1569. } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
  1570. DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
  1571. DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
  1572. DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
  1573. DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
  1574. luma_mc(s, tmp, tmpstride, ref0->frame,
  1575. &current_mv.mv[0], x0, y0, nPbW, nPbH, pred_idx);
  1576. luma_mc(s, tmp2, tmpstride, ref1->frame,
  1577. &current_mv.mv[1], x0, y0, nPbW, nPbH, pred_idx);
  1578. if (weighted_pred) {
  1579. s->hevcdsp.weighted_pred_avg[pred_idx](s->sh.luma_log2_weight_denom,
  1580. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1581. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1582. s->sh.luma_offset_l0[current_mv.ref_idx[0]],
  1583. s->sh.luma_offset_l1[current_mv.ref_idx[1]],
  1584. dst0, s->frame->linesize[0],
  1585. tmp, tmp2, tmpstride, nPbH);
  1586. } else {
  1587. s->hevcdsp.put_unweighted_pred_avg[pred_idx](dst0, s->frame->linesize[0],
  1588. tmp, tmp2, tmpstride, nPbH);
  1589. }
  1590. chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
  1591. &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1592. chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
  1593. &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2, pred_idx);
  1594. if (weighted_pred) {
  1595. s->hevcdsp.weighted_pred_avg_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1596. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
  1597. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
  1598. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
  1599. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
  1600. dst1, s->frame->linesize[1], tmp, tmp3,
  1601. tmpstride, nPbH / 2);
  1602. s->hevcdsp.weighted_pred_avg_chroma[pred_idx](s->sh.chroma_log2_weight_denom,
  1603. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
  1604. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
  1605. s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
  1606. s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
  1607. dst2, s->frame->linesize[2], tmp2, tmp4,
  1608. tmpstride, nPbH / 2);
  1609. } else {
  1610. s->hevcdsp.put_unweighted_pred_avg_chroma[pred_idx](dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbH/2);
  1611. s->hevcdsp.put_unweighted_pred_avg_chroma[pred_idx](dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbH/2);
  1612. }
  1613. }
  1614. }
  1615. /**
  1616. * 8.4.1
  1617. */
  1618. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1619. int prev_intra_luma_pred_flag)
  1620. {
  1621. HEVCLocalContext *lc = &s->HEVClc;
  1622. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1623. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1624. int min_pu_width = s->ps.sps->min_pu_width;
  1625. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1626. int x0b = x0 & ((1 << s->ps.sps->log2_ctb_size) - 1);
  1627. int y0b = y0 & ((1 << s->ps.sps->log2_ctb_size) - 1);
  1628. int cand_up = (lc->ctb_up_flag || y0b) ?
  1629. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1630. int cand_left = (lc->ctb_left_flag || x0b) ?
  1631. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1632. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1633. MvField *tab_mvf = s->ref->tab_mvf;
  1634. int intra_pred_mode;
  1635. int candidate[3];
  1636. int i, j;
  1637. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1638. if ((y0 - 1) < y_ctb)
  1639. cand_up = INTRA_DC;
  1640. if (cand_left == cand_up) {
  1641. if (cand_left < 2) {
  1642. candidate[0] = INTRA_PLANAR;
  1643. candidate[1] = INTRA_DC;
  1644. candidate[2] = INTRA_ANGULAR_26;
  1645. } else {
  1646. candidate[0] = cand_left;
  1647. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1648. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1649. }
  1650. } else {
  1651. candidate[0] = cand_left;
  1652. candidate[1] = cand_up;
  1653. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1654. candidate[2] = INTRA_PLANAR;
  1655. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1656. candidate[2] = INTRA_DC;
  1657. } else {
  1658. candidate[2] = INTRA_ANGULAR_26;
  1659. }
  1660. }
  1661. if (prev_intra_luma_pred_flag) {
  1662. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1663. } else {
  1664. if (candidate[0] > candidate[1])
  1665. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1666. if (candidate[0] > candidate[2])
  1667. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1668. if (candidate[1] > candidate[2])
  1669. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1670. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1671. for (i = 0; i < 3; i++)
  1672. if (intra_pred_mode >= candidate[i])
  1673. intra_pred_mode++;
  1674. }
  1675. /* write the intra prediction units into the mv array */
  1676. if (!size_in_pus)
  1677. size_in_pus = 1;
  1678. for (i = 0; i < size_in_pus; i++) {
  1679. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1680. intra_pred_mode, size_in_pus);
  1681. for (j = 0; j < size_in_pus; j++) {
  1682. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra = 1;
  1683. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
  1684. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
  1685. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0] = 0;
  1686. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1] = 0;
  1687. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x = 0;
  1688. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y = 0;
  1689. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x = 0;
  1690. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y = 0;
  1691. }
  1692. }
  1693. return intra_pred_mode;
  1694. }
  1695. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1696. int log2_cb_size, int ct_depth)
  1697. {
  1698. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1699. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1700. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1701. int y;
  1702. for (y = 0; y < length; y++)
  1703. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1704. ct_depth, length);
  1705. }
  1706. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1707. int log2_cb_size)
  1708. {
  1709. HEVCLocalContext *lc = &s->HEVClc;
  1710. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1711. uint8_t prev_intra_luma_pred_flag[4];
  1712. int split = lc->cu.part_mode == PART_NxN;
  1713. int pb_size = (1 << log2_cb_size) >> split;
  1714. int side = split + 1;
  1715. int chroma_mode;
  1716. int i, j;
  1717. for (i = 0; i < side; i++)
  1718. for (j = 0; j < side; j++)
  1719. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1720. for (i = 0; i < side; i++) {
  1721. for (j = 0; j < side; j++) {
  1722. if (prev_intra_luma_pred_flag[2 * i + j])
  1723. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1724. else
  1725. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1726. lc->pu.intra_pred_mode[2 * i + j] =
  1727. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1728. prev_intra_luma_pred_flag[2 * i + j]);
  1729. }
  1730. }
  1731. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1732. if (chroma_mode != 4) {
  1733. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1734. lc->pu.intra_pred_mode_c = 34;
  1735. else
  1736. lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
  1737. } else {
  1738. lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
  1739. }
  1740. }
  1741. static void intra_prediction_unit_default_value(HEVCContext *s,
  1742. int x0, int y0,
  1743. int log2_cb_size)
  1744. {
  1745. HEVCLocalContext *lc = &s->HEVClc;
  1746. int pb_size = 1 << log2_cb_size;
  1747. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1748. int min_pu_width = s->ps.sps->min_pu_width;
  1749. MvField *tab_mvf = s->ref->tab_mvf;
  1750. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1751. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1752. int j, k;
  1753. if (size_in_pus == 0)
  1754. size_in_pus = 1;
  1755. for (j = 0; j < size_in_pus; j++) {
  1756. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1757. for (k = 0; k < size_in_pus; k++)
  1758. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
  1759. }
  1760. }
  1761. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1762. {
  1763. int cb_size = 1 << log2_cb_size;
  1764. HEVCLocalContext *lc = &s->HEVClc;
  1765. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1766. int length = cb_size >> log2_min_cb_size;
  1767. int min_cb_width = s->ps.sps->min_cb_width;
  1768. int x_cb = x0 >> log2_min_cb_size;
  1769. int y_cb = y0 >> log2_min_cb_size;
  1770. int x, y, ret;
  1771. lc->cu.x = x0;
  1772. lc->cu.y = y0;
  1773. lc->cu.pred_mode = MODE_INTRA;
  1774. lc->cu.part_mode = PART_2Nx2N;
  1775. lc->cu.intra_split_flag = 0;
  1776. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1777. for (x = 0; x < 4; x++)
  1778. lc->pu.intra_pred_mode[x] = 1;
  1779. if (s->ps.pps->transquant_bypass_enable_flag) {
  1780. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1781. if (lc->cu.cu_transquant_bypass_flag)
  1782. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1783. } else
  1784. lc->cu.cu_transquant_bypass_flag = 0;
  1785. if (s->sh.slice_type != HEVC_SLICE_I) {
  1786. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1787. x = y_cb * min_cb_width + x_cb;
  1788. for (y = 0; y < length; y++) {
  1789. memset(&s->skip_flag[x], skip_flag, length);
  1790. x += min_cb_width;
  1791. }
  1792. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1793. }
  1794. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1795. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
  1796. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1797. if (!s->sh.disable_deblocking_filter_flag)
  1798. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1799. } else {
  1800. int pcm_flag = 0;
  1801. if (s->sh.slice_type != HEVC_SLICE_I)
  1802. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1803. if (lc->cu.pred_mode != MODE_INTRA ||
  1804. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1805. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1806. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1807. lc->cu.pred_mode == MODE_INTRA;
  1808. }
  1809. if (lc->cu.pred_mode == MODE_INTRA) {
  1810. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1811. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1812. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1813. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1814. }
  1815. if (pcm_flag) {
  1816. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1817. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1818. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1819. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1820. if (ret < 0)
  1821. return ret;
  1822. } else {
  1823. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1824. }
  1825. } else {
  1826. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1827. switch (lc->cu.part_mode) {
  1828. case PART_2Nx2N:
  1829. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
  1830. break;
  1831. case PART_2NxN:
  1832. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0);
  1833. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
  1834. break;
  1835. case PART_Nx2N:
  1836. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0);
  1837. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
  1838. break;
  1839. case PART_2NxnU:
  1840. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0);
  1841. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
  1842. break;
  1843. case PART_2NxnD:
  1844. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0);
  1845. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1);
  1846. break;
  1847. case PART_nLx2N:
  1848. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0);
  1849. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
  1850. break;
  1851. case PART_nRx2N:
  1852. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
  1853. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1);
  1854. break;
  1855. case PART_NxN:
  1856. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0);
  1857. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1);
  1858. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
  1859. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
  1860. break;
  1861. }
  1862. }
  1863. if (!pcm_flag) {
  1864. int rqt_root_cbf = 1;
  1865. if (lc->cu.pred_mode != MODE_INTRA &&
  1866. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1867. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1868. }
  1869. if (rqt_root_cbf) {
  1870. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1871. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1872. s->ps.sps->max_transform_hierarchy_depth_inter;
  1873. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1874. log2_cb_size,
  1875. log2_cb_size, 0, 0, 0, 0);
  1876. if (ret < 0)
  1877. return ret;
  1878. } else {
  1879. if (!s->sh.disable_deblocking_filter_flag)
  1880. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1881. }
  1882. }
  1883. }
  1884. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1885. ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
  1886. x = y_cb * min_cb_width + x_cb;
  1887. for (y = 0; y < length; y++) {
  1888. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1889. x += min_cb_width;
  1890. }
  1891. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
  1892. return 0;
  1893. }
  1894. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1895. int log2_cb_size, int cb_depth)
  1896. {
  1897. HEVCLocalContext *lc = &s->HEVClc;
  1898. const int cb_size = 1 << log2_cb_size;
  1899. int split_cu;
  1900. lc->ct.depth = cb_depth;
  1901. if (x0 + cb_size <= s->ps.sps->width &&
  1902. y0 + cb_size <= s->ps.sps->height &&
  1903. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1904. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1905. } else {
  1906. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1907. }
  1908. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1909. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1910. lc->tu.is_cu_qp_delta_coded = 0;
  1911. lc->tu.cu_qp_delta = 0;
  1912. }
  1913. if (split_cu) {
  1914. const int cb_size_split = cb_size >> 1;
  1915. const int x1 = x0 + cb_size_split;
  1916. const int y1 = y0 + cb_size_split;
  1917. log2_cb_size--;
  1918. cb_depth++;
  1919. #define SUBDIVIDE(x, y) \
  1920. do { \
  1921. if (x < s->ps.sps->width && y < s->ps.sps->height) { \
  1922. int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
  1923. if (ret < 0) \
  1924. return ret; \
  1925. } \
  1926. } while (0)
  1927. SUBDIVIDE(x0, y0);
  1928. SUBDIVIDE(x1, y0);
  1929. SUBDIVIDE(x0, y1);
  1930. SUBDIVIDE(x1, y1);
  1931. } else {
  1932. int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1933. if (ret < 0)
  1934. return ret;
  1935. }
  1936. return 0;
  1937. }
  1938. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  1939. int ctb_addr_ts)
  1940. {
  1941. HEVCLocalContext *lc = &s->HEVClc;
  1942. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1943. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1944. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  1945. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  1946. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  1947. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  1948. lc->first_qp_group = 1;
  1949. lc->end_of_tiles_x = s->ps.sps->width;
  1950. } else if (s->ps.pps->tiles_enabled_flag) {
  1951. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  1952. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  1953. lc->start_of_tiles_x = x_ctb;
  1954. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  1955. lc->first_qp_group = 1;
  1956. }
  1957. } else {
  1958. lc->end_of_tiles_x = s->ps.sps->width;
  1959. }
  1960. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  1961. lc->boundary_flags = 0;
  1962. if (s->ps.pps->tiles_enabled_flag) {
  1963. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  1964. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  1965. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  1966. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1967. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  1968. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  1969. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  1970. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1971. } else {
  1972. if (!ctb_addr_in_slice)
  1973. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  1974. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  1975. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  1976. }
  1977. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  1978. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  1979. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  1980. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  1981. }
  1982. static int hls_slice_data(HEVCContext *s)
  1983. {
  1984. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  1985. int more_data = 1;
  1986. int x_ctb = 0;
  1987. int y_ctb = 0;
  1988. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  1989. int ret;
  1990. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  1991. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  1992. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  1993. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  1994. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  1995. ff_hevc_cabac_init(s, ctb_addr_ts);
  1996. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  1997. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  1998. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  1999. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2000. ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2001. if (ret < 0)
  2002. return ret;
  2003. more_data = !ff_hevc_end_of_slice_flag_decode(s);
  2004. ctb_addr_ts++;
  2005. ff_hevc_save_states(s, ctb_addr_ts);
  2006. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2007. }
  2008. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2009. y_ctb + ctb_size >= s->ps.sps->height)
  2010. ff_hevc_hls_filter(s, x_ctb, y_ctb);
  2011. return ctb_addr_ts;
  2012. }
  2013. static void restore_tqb_pixels(HEVCContext *s)
  2014. {
  2015. int min_pu_size = 1 << s->ps.sps->log2_min_pu_size;
  2016. int x, y, c_idx;
  2017. for (c_idx = 0; c_idx < 3; c_idx++) {
  2018. ptrdiff_t stride = s->frame->linesize[c_idx];
  2019. int hshift = s->ps.sps->hshift[c_idx];
  2020. int vshift = s->ps.sps->vshift[c_idx];
  2021. for (y = 0; y < s->ps.sps->min_pu_height; y++) {
  2022. for (x = 0; x < s->ps.sps->min_pu_width; x++) {
  2023. if (s->is_pcm[y * s->ps.sps->min_pu_width + x]) {
  2024. int n;
  2025. int len = min_pu_size >> hshift;
  2026. uint8_t *src = &s->frame->data[c_idx][((y << s->ps.sps->log2_min_pu_size) >> vshift) * stride + (((x << s->ps.sps->log2_min_pu_size) >> hshift) << s->ps.sps->pixel_shift)];
  2027. uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->ps.sps->log2_min_pu_size) >> vshift) * stride + (((x << s->ps.sps->log2_min_pu_size) >> hshift) << s->ps.sps->pixel_shift)];
  2028. for (n = 0; n < (min_pu_size >> vshift); n++) {
  2029. memcpy(dst, src, len);
  2030. src += stride;
  2031. dst += stride;
  2032. }
  2033. }
  2034. }
  2035. }
  2036. }
  2037. }
  2038. static int set_side_data(HEVCContext *s)
  2039. {
  2040. AVFrame *out = s->ref->frame;
  2041. if (s->sei_frame_packing_present &&
  2042. s->frame_packing_arrangement_type >= 3 &&
  2043. s->frame_packing_arrangement_type <= 5 &&
  2044. s->content_interpretation_type > 0 &&
  2045. s->content_interpretation_type < 3) {
  2046. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2047. if (!stereo)
  2048. return AVERROR(ENOMEM);
  2049. switch (s->frame_packing_arrangement_type) {
  2050. case 3:
  2051. if (s->quincunx_subsampling)
  2052. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2053. else
  2054. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2055. break;
  2056. case 4:
  2057. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2058. break;
  2059. case 5:
  2060. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2061. break;
  2062. }
  2063. if (s->content_interpretation_type == 2)
  2064. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2065. }
  2066. if (s->sei_display_orientation_present &&
  2067. (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
  2068. double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
  2069. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2070. AV_FRAME_DATA_DISPLAYMATRIX,
  2071. sizeof(int32_t) * 9);
  2072. if (!rotation)
  2073. return AVERROR(ENOMEM);
  2074. av_display_rotation_set((int32_t *)rotation->data, angle);
  2075. av_display_matrix_flip((int32_t *)rotation->data,
  2076. s->sei_hflip, s->sei_vflip);
  2077. }
  2078. return 0;
  2079. }
  2080. static int hevc_frame_start(HEVCContext *s)
  2081. {
  2082. HEVCLocalContext *lc = &s->HEVClc;
  2083. int ret;
  2084. memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
  2085. memset(s->vertical_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
  2086. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2087. memset(s->is_pcm, 0, s->ps.sps->min_pu_width * s->ps.sps->min_pu_height);
  2088. lc->start_of_tiles_x = 0;
  2089. s->is_decoded = 0;
  2090. s->first_nal_type = s->nal_unit_type;
  2091. if (s->ps.pps->tiles_enabled_flag)
  2092. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2093. ret = ff_hevc_set_new_ref(s, s->ps.sps->sao_enabled ? &s->sao_frame : &s->frame,
  2094. s->poc);
  2095. if (ret < 0)
  2096. goto fail;
  2097. ret = ff_hevc_frame_rps(s);
  2098. if (ret < 0) {
  2099. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2100. goto fail;
  2101. }
  2102. s->ref->frame->key_frame = IS_IRAP(s);
  2103. ret = set_side_data(s);
  2104. if (ret < 0)
  2105. goto fail;
  2106. av_frame_unref(s->output_frame);
  2107. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2108. if (ret < 0)
  2109. goto fail;
  2110. ff_thread_finish_setup(s->avctx);
  2111. return 0;
  2112. fail:
  2113. if (s->ref)
  2114. ff_hevc_unref_frame(s, s->ref, ~0);
  2115. s->ref = NULL;
  2116. return ret;
  2117. }
  2118. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2119. {
  2120. HEVCLocalContext *lc = &s->HEVClc;
  2121. GetBitContext *gb = &lc->gb;
  2122. int ctb_addr_ts, ret;
  2123. *gb = nal->gb;
  2124. s->nal_unit_type = nal->type;
  2125. s->temporal_id = nal->temporal_id;
  2126. switch (s->nal_unit_type) {
  2127. case HEVC_NAL_VPS:
  2128. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2129. if (ret < 0)
  2130. goto fail;
  2131. break;
  2132. case HEVC_NAL_SPS:
  2133. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2134. s->apply_defdispwin);
  2135. if (ret < 0)
  2136. goto fail;
  2137. break;
  2138. case HEVC_NAL_PPS:
  2139. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2140. if (ret < 0)
  2141. goto fail;
  2142. break;
  2143. case HEVC_NAL_SEI_PREFIX:
  2144. case HEVC_NAL_SEI_SUFFIX:
  2145. ret = ff_hevc_decode_nal_sei(s);
  2146. if (ret < 0)
  2147. goto fail;
  2148. break;
  2149. case HEVC_NAL_TRAIL_R:
  2150. case HEVC_NAL_TRAIL_N:
  2151. case HEVC_NAL_TSA_N:
  2152. case HEVC_NAL_TSA_R:
  2153. case HEVC_NAL_STSA_N:
  2154. case HEVC_NAL_STSA_R:
  2155. case HEVC_NAL_BLA_W_LP:
  2156. case HEVC_NAL_BLA_W_RADL:
  2157. case HEVC_NAL_BLA_N_LP:
  2158. case HEVC_NAL_IDR_W_RADL:
  2159. case HEVC_NAL_IDR_N_LP:
  2160. case HEVC_NAL_CRA_NUT:
  2161. case HEVC_NAL_RADL_N:
  2162. case HEVC_NAL_RADL_R:
  2163. case HEVC_NAL_RASL_N:
  2164. case HEVC_NAL_RASL_R:
  2165. ret = hls_slice_header(s);
  2166. if (ret < 0)
  2167. return ret;
  2168. if (s->max_ra == INT_MAX) {
  2169. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2170. s->max_ra = s->poc;
  2171. } else {
  2172. if (IS_IDR(s))
  2173. s->max_ra = INT_MIN;
  2174. }
  2175. }
  2176. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2177. s->poc <= s->max_ra) {
  2178. s->is_decoded = 0;
  2179. break;
  2180. } else {
  2181. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2182. s->max_ra = INT_MIN;
  2183. }
  2184. if (s->sh.first_slice_in_pic_flag) {
  2185. ret = hevc_frame_start(s);
  2186. if (ret < 0)
  2187. return ret;
  2188. } else if (!s->ref) {
  2189. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2190. goto fail;
  2191. }
  2192. if (s->nal_unit_type != s->first_nal_type) {
  2193. av_log(s->avctx, AV_LOG_ERROR,
  2194. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2195. s->first_nal_type, s->nal_unit_type);
  2196. return AVERROR_INVALIDDATA;
  2197. }
  2198. if (!s->sh.dependent_slice_segment_flag &&
  2199. s->sh.slice_type != HEVC_SLICE_I) {
  2200. ret = ff_hevc_slice_rpl(s);
  2201. if (ret < 0) {
  2202. av_log(s->avctx, AV_LOG_WARNING,
  2203. "Error constructing the reference lists for the current slice.\n");
  2204. goto fail;
  2205. }
  2206. }
  2207. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2208. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2209. if (ret < 0)
  2210. goto fail;
  2211. }
  2212. if (s->avctx->hwaccel) {
  2213. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2214. if (ret < 0)
  2215. goto fail;
  2216. } else {
  2217. ctb_addr_ts = hls_slice_data(s);
  2218. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2219. s->is_decoded = 1;
  2220. if ((s->ps.pps->transquant_bypass_enable_flag ||
  2221. (s->ps.sps->pcm.loop_filter_disable_flag && s->ps.sps->pcm_enabled_flag)) &&
  2222. s->ps.sps->sao_enabled)
  2223. restore_tqb_pixels(s);
  2224. }
  2225. if (ctb_addr_ts < 0) {
  2226. ret = ctb_addr_ts;
  2227. goto fail;
  2228. }
  2229. }
  2230. break;
  2231. case HEVC_NAL_EOS_NUT:
  2232. case HEVC_NAL_EOB_NUT:
  2233. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2234. s->max_ra = INT_MAX;
  2235. break;
  2236. case HEVC_NAL_AUD:
  2237. case HEVC_NAL_FD_NUT:
  2238. break;
  2239. default:
  2240. av_log(s->avctx, AV_LOG_INFO,
  2241. "Skipping NAL unit %d\n", s->nal_unit_type);
  2242. }
  2243. return 0;
  2244. fail:
  2245. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2246. return ret;
  2247. return 0;
  2248. }
  2249. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2250. {
  2251. int i, ret = 0;
  2252. s->ref = NULL;
  2253. s->eos = 0;
  2254. /* split the input packet into NAL units, so we know the upper bound on the
  2255. * number of slices in the frame */
  2256. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2257. s->nal_length_size, s->avctx->codec_id);
  2258. if (ret < 0) {
  2259. av_log(s->avctx, AV_LOG_ERROR,
  2260. "Error splitting the input into NAL units.\n");
  2261. return ret;
  2262. }
  2263. for (i = 0; i < s->pkt.nb_nals; i++) {
  2264. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2265. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT)
  2266. s->eos = 1;
  2267. }
  2268. /* decode the NAL units */
  2269. for (i = 0; i < s->pkt.nb_nals; i++) {
  2270. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2271. if (ret < 0) {
  2272. av_log(s->avctx, AV_LOG_WARNING,
  2273. "Error parsing NAL unit #%d.\n", i);
  2274. goto fail;
  2275. }
  2276. }
  2277. fail:
  2278. if (s->ref)
  2279. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2280. return ret;
  2281. }
  2282. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2283. {
  2284. int i;
  2285. for (i = 0; i < 16; i++)
  2286. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2287. }
  2288. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2289. {
  2290. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2291. int pixel_shift;
  2292. int i, j;
  2293. if (!desc)
  2294. return AVERROR(EINVAL);
  2295. pixel_shift = desc->comp[0].depth > 8;
  2296. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2297. s->poc);
  2298. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2299. * on BE arches */
  2300. #if HAVE_BIGENDIAN
  2301. if (pixel_shift && !s->checksum_buf) {
  2302. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2303. FFMAX3(frame->linesize[0], frame->linesize[1],
  2304. frame->linesize[2]));
  2305. if (!s->checksum_buf)
  2306. return AVERROR(ENOMEM);
  2307. }
  2308. #endif
  2309. for (i = 0; frame->data[i]; i++) {
  2310. int width = s->avctx->coded_width;
  2311. int height = s->avctx->coded_height;
  2312. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2313. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2314. uint8_t md5[16];
  2315. av_md5_init(s->md5_ctx);
  2316. for (j = 0; j < h; j++) {
  2317. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2318. #if HAVE_BIGENDIAN
  2319. if (pixel_shift) {
  2320. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2321. (const uint16_t *) src, w);
  2322. src = s->checksum_buf;
  2323. }
  2324. #endif
  2325. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2326. }
  2327. av_md5_final(s->md5_ctx, md5);
  2328. if (!memcmp(md5, s->md5[i], 16)) {
  2329. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2330. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2331. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2332. } else {
  2333. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2334. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2335. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2336. print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
  2337. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2338. return AVERROR_INVALIDDATA;
  2339. }
  2340. }
  2341. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2342. return 0;
  2343. }
  2344. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2345. {
  2346. AVCodecContext *avctx = s->avctx;
  2347. GetByteContext gb;
  2348. int ret, i;
  2349. bytestream2_init(&gb, buf, length);
  2350. if (length > 3 && (buf[0] || buf[1] || buf[2] > 1)) {
  2351. /* It seems the extradata is encoded as hvcC format.
  2352. * Temporarily, we support configurationVersion==0 until 14496-15 3rd
  2353. * is finalized. When finalized, configurationVersion will be 1 and we
  2354. * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
  2355. int i, j, num_arrays, nal_len_size;
  2356. s->is_nalff = 1;
  2357. bytestream2_skip(&gb, 21);
  2358. nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
  2359. num_arrays = bytestream2_get_byte(&gb);
  2360. /* nal units in the hvcC always have length coded with 2 bytes,
  2361. * so put a fake nal_length_size = 2 while parsing them */
  2362. s->nal_length_size = 2;
  2363. /* Decode nal units from hvcC. */
  2364. for (i = 0; i < num_arrays; i++) {
  2365. int type = bytestream2_get_byte(&gb) & 0x3f;
  2366. int cnt = bytestream2_get_be16(&gb);
  2367. for (j = 0; j < cnt; j++) {
  2368. // +2 for the nal size field
  2369. int nalsize = bytestream2_peek_be16(&gb) + 2;
  2370. if (bytestream2_get_bytes_left(&gb) < nalsize) {
  2371. av_log(s->avctx, AV_LOG_ERROR,
  2372. "Invalid NAL unit size in extradata.\n");
  2373. return AVERROR_INVALIDDATA;
  2374. }
  2375. ret = decode_nal_units(s, gb.buffer, nalsize);
  2376. if (ret < 0) {
  2377. av_log(avctx, AV_LOG_ERROR,
  2378. "Decoding nal unit %d %d from hvcC failed\n",
  2379. type, i);
  2380. return ret;
  2381. }
  2382. bytestream2_skip(&gb, nalsize);
  2383. }
  2384. }
  2385. /* Now store right nal length size, that will be used to parse
  2386. * all other nals */
  2387. s->nal_length_size = nal_len_size;
  2388. } else {
  2389. s->is_nalff = 0;
  2390. ret = decode_nal_units(s, buf, length);
  2391. if (ret < 0)
  2392. return ret;
  2393. }
  2394. /* export stream parameters from the first SPS */
  2395. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2396. if (s->ps.sps_list[i]) {
  2397. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2398. export_stream_params(s->avctx, &s->ps, sps);
  2399. break;
  2400. }
  2401. }
  2402. return 0;
  2403. }
  2404. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2405. AVPacket *avpkt)
  2406. {
  2407. int ret;
  2408. int new_extradata_size;
  2409. uint8_t *new_extradata;
  2410. HEVCContext *s = avctx->priv_data;
  2411. if (!avpkt->size) {
  2412. ret = ff_hevc_output_frame(s, data, 1);
  2413. if (ret < 0)
  2414. return ret;
  2415. *got_output = ret;
  2416. return 0;
  2417. }
  2418. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2419. &new_extradata_size);
  2420. if (new_extradata && new_extradata_size > 0) {
  2421. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2422. if (ret < 0)
  2423. return ret;
  2424. }
  2425. s->ref = NULL;
  2426. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2427. if (ret < 0)
  2428. return ret;
  2429. if (avctx->hwaccel) {
  2430. if (s->ref && avctx->hwaccel->end_frame(avctx) < 0)
  2431. av_log(avctx, AV_LOG_ERROR,
  2432. "hardware accelerator failed to decode picture\n");
  2433. } else {
  2434. /* verify the SEI checksum */
  2435. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2436. s->is_md5) {
  2437. ret = verify_md5(s, s->ref->frame);
  2438. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2439. ff_hevc_unref_frame(s, s->ref, ~0);
  2440. return ret;
  2441. }
  2442. }
  2443. }
  2444. s->is_md5 = 0;
  2445. if (s->is_decoded) {
  2446. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2447. s->is_decoded = 0;
  2448. }
  2449. if (s->output_frame->buf[0]) {
  2450. av_frame_move_ref(data, s->output_frame);
  2451. *got_output = 1;
  2452. }
  2453. return avpkt->size;
  2454. }
  2455. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2456. {
  2457. int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2458. if (ret < 0)
  2459. return ret;
  2460. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2461. if (!dst->tab_mvf_buf)
  2462. goto fail;
  2463. dst->tab_mvf = src->tab_mvf;
  2464. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2465. if (!dst->rpl_tab_buf)
  2466. goto fail;
  2467. dst->rpl_tab = src->rpl_tab;
  2468. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2469. if (!dst->rpl_buf)
  2470. goto fail;
  2471. dst->poc = src->poc;
  2472. dst->ctb_count = src->ctb_count;
  2473. dst->flags = src->flags;
  2474. dst->sequence = src->sequence;
  2475. if (src->hwaccel_picture_private) {
  2476. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2477. if (!dst->hwaccel_priv_buf)
  2478. goto fail;
  2479. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2480. }
  2481. return 0;
  2482. fail:
  2483. ff_hevc_unref_frame(s, dst, ~0);
  2484. return AVERROR(ENOMEM);
  2485. }
  2486. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2487. {
  2488. HEVCContext *s = avctx->priv_data;
  2489. int i;
  2490. pic_arrays_free(s);
  2491. av_freep(&s->md5_ctx);
  2492. av_frame_free(&s->tmp_frame);
  2493. av_frame_free(&s->output_frame);
  2494. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2495. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2496. av_frame_free(&s->DPB[i].frame);
  2497. }
  2498. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2499. av_buffer_unref(&s->ps.vps_list[i]);
  2500. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2501. av_buffer_unref(&s->ps.sps_list[i]);
  2502. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2503. av_buffer_unref(&s->ps.pps_list[i]);
  2504. ff_h2645_packet_uninit(&s->pkt);
  2505. return 0;
  2506. }
  2507. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2508. {
  2509. HEVCContext *s = avctx->priv_data;
  2510. int i;
  2511. s->avctx = avctx;
  2512. s->tmp_frame = av_frame_alloc();
  2513. if (!s->tmp_frame)
  2514. goto fail;
  2515. s->output_frame = av_frame_alloc();
  2516. if (!s->output_frame)
  2517. goto fail;
  2518. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2519. s->DPB[i].frame = av_frame_alloc();
  2520. if (!s->DPB[i].frame)
  2521. goto fail;
  2522. s->DPB[i].tf.f = s->DPB[i].frame;
  2523. }
  2524. s->max_ra = INT_MAX;
  2525. s->md5_ctx = av_md5_alloc();
  2526. if (!s->md5_ctx)
  2527. goto fail;
  2528. ff_bswapdsp_init(&s->bdsp);
  2529. s->context_initialized = 1;
  2530. return 0;
  2531. fail:
  2532. hevc_decode_free(avctx);
  2533. return AVERROR(ENOMEM);
  2534. }
  2535. static int hevc_update_thread_context(AVCodecContext *dst,
  2536. const AVCodecContext *src)
  2537. {
  2538. HEVCContext *s = dst->priv_data;
  2539. HEVCContext *s0 = src->priv_data;
  2540. int i, ret;
  2541. if (!s->context_initialized) {
  2542. ret = hevc_init_context(dst);
  2543. if (ret < 0)
  2544. return ret;
  2545. }
  2546. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2547. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2548. if (s0->DPB[i].frame->buf[0]) {
  2549. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2550. if (ret < 0)
  2551. return ret;
  2552. }
  2553. }
  2554. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2555. av_buffer_unref(&s->ps.vps_list[i]);
  2556. if (s0->ps.vps_list[i]) {
  2557. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2558. if (!s->ps.vps_list[i])
  2559. return AVERROR(ENOMEM);
  2560. }
  2561. }
  2562. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2563. av_buffer_unref(&s->ps.sps_list[i]);
  2564. if (s0->ps.sps_list[i]) {
  2565. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2566. if (!s->ps.sps_list[i])
  2567. return AVERROR(ENOMEM);
  2568. }
  2569. }
  2570. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2571. av_buffer_unref(&s->ps.pps_list[i]);
  2572. if (s0->ps.pps_list[i]) {
  2573. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2574. if (!s->ps.pps_list[i])
  2575. return AVERROR(ENOMEM);
  2576. }
  2577. }
  2578. if (s->ps.sps != s0->ps.sps)
  2579. ret = set_sps(s, s0->ps.sps, src->pix_fmt);
  2580. s->seq_decode = s0->seq_decode;
  2581. s->seq_output = s0->seq_output;
  2582. s->pocTid0 = s0->pocTid0;
  2583. s->max_ra = s0->max_ra;
  2584. s->is_nalff = s0->is_nalff;
  2585. s->nal_length_size = s0->nal_length_size;
  2586. if (s0->eos) {
  2587. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2588. s->max_ra = INT_MAX;
  2589. }
  2590. return 0;
  2591. }
  2592. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2593. {
  2594. HEVCContext *s = avctx->priv_data;
  2595. int ret;
  2596. avctx->internal->allocate_progress = 1;
  2597. ret = hevc_init_context(avctx);
  2598. if (ret < 0)
  2599. return ret;
  2600. if (avctx->extradata_size > 0 && avctx->extradata) {
  2601. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2602. if (ret < 0) {
  2603. hevc_decode_free(avctx);
  2604. return ret;
  2605. }
  2606. }
  2607. return 0;
  2608. }
  2609. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2610. {
  2611. HEVCContext *s = avctx->priv_data;
  2612. int ret;
  2613. memset(s, 0, sizeof(*s));
  2614. ret = hevc_init_context(avctx);
  2615. if (ret < 0)
  2616. return ret;
  2617. return 0;
  2618. }
  2619. static void hevc_decode_flush(AVCodecContext *avctx)
  2620. {
  2621. HEVCContext *s = avctx->priv_data;
  2622. ff_hevc_flush_dpb(s);
  2623. s->max_ra = INT_MAX;
  2624. }
  2625. #define OFFSET(x) offsetof(HEVCContext, x)
  2626. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2627. static const AVOption options[] = {
  2628. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2629. AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
  2630. { NULL },
  2631. };
  2632. static const AVClass hevc_decoder_class = {
  2633. .class_name = "HEVC decoder",
  2634. .item_name = av_default_item_name,
  2635. .option = options,
  2636. .version = LIBAVUTIL_VERSION_INT,
  2637. };
  2638. AVCodec ff_hevc_decoder = {
  2639. .name = "hevc",
  2640. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2641. .type = AVMEDIA_TYPE_VIDEO,
  2642. .id = AV_CODEC_ID_HEVC,
  2643. .priv_data_size = sizeof(HEVCContext),
  2644. .priv_class = &hevc_decoder_class,
  2645. .init = hevc_decode_init,
  2646. .close = hevc_decode_free,
  2647. .decode = hevc_decode_frame,
  2648. .flush = hevc_decode_flush,
  2649. .update_thread_context = hevc_update_thread_context,
  2650. .init_thread_copy = hevc_init_thread_copy,
  2651. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2652. AV_CODEC_CAP_FRAME_THREADS,
  2653. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2654. .caps_internal = FF_CODEC_CAP_EXPORTS_CROPPING | FF_CODEC_CAP_INIT_THREADSAFE,
  2655. };