You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2707 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #include "mathops.h"
  42. #define FRAC_ONE (1 << FRAC_BITS)
  43. #define FIX(a) ((int)((a) * FRAC_ONE))
  44. /* WARNING: only correct for posititive numbers */
  45. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  46. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  47. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  48. /****************/
  49. #define HEADER_SIZE 4
  50. /**
  51. * Context for MP3On4 decoder
  52. */
  53. typedef struct MP3On4DecodeContext {
  54. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  55. int chan_cfg; ///< channel config number
  56. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  57. } MP3On4DecodeContext;
  58. /* layer 3 "granule" */
  59. typedef struct GranuleDef {
  60. uint8_t scfsi;
  61. int part2_3_length;
  62. int big_values;
  63. int global_gain;
  64. int scalefac_compress;
  65. uint8_t block_type;
  66. uint8_t switch_point;
  67. int table_select[3];
  68. int subblock_gain[3];
  69. uint8_t scalefac_scale;
  70. uint8_t count1table_select;
  71. int region_size[3]; /* number of huffman codes in each region */
  72. int preflag;
  73. int short_start, long_end; /* long/short band indexes */
  74. uint8_t scale_factors[40];
  75. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  76. } GranuleDef;
  77. #define MODE_EXT_MS_STEREO 2
  78. #define MODE_EXT_I_STEREO 1
  79. /* layer 3 huffman tables */
  80. typedef struct HuffTable {
  81. int xsize;
  82. const uint8_t *bits;
  83. const uint16_t *codes;
  84. } HuffTable;
  85. #include "mpegaudiodata.h"
  86. #include "mpegaudiodectab.h"
  87. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  88. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  89. /* vlc structure for decoding layer 3 huffman tables */
  90. static VLC huff_vlc[16];
  91. static VLC huff_quad_vlc[2];
  92. /* computed from band_size_long */
  93. static uint16_t band_index_long[9][23];
  94. /* XXX: free when all decoders are closed */
  95. #define TABLE_4_3_SIZE (8191 + 16)*4
  96. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  97. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  98. static uint32_t exp_table[512];
  99. static uint32_t expval_table[512][16];
  100. /* intensity stereo coef table */
  101. static int32_t is_table[2][16];
  102. static int32_t is_table_lsf[2][2][16];
  103. static int32_t csa_table[8][4];
  104. static float csa_table_float[8][4];
  105. static int32_t mdct_win[8][36];
  106. /* lower 2 bits: modulo 3, higher bits: shift */
  107. static uint16_t scale_factor_modshift[64];
  108. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  109. static int32_t scale_factor_mult[15][3];
  110. /* mult table for layer 2 group quantization */
  111. #define SCALE_GEN(v) \
  112. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  113. static const int32_t scale_factor_mult2[3][3] = {
  114. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  115. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  116. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  117. };
  118. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  119. /* layer 1 unscaling */
  120. /* n = number of bits of the mantissa minus 1 */
  121. static inline int l1_unscale(int n, int mant, int scale_factor)
  122. {
  123. int shift, mod;
  124. int64_t val;
  125. shift = scale_factor_modshift[scale_factor];
  126. mod = shift & 3;
  127. shift >>= 2;
  128. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  129. shift += n;
  130. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  131. return (int)((val + (1LL << (shift - 1))) >> shift);
  132. }
  133. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  134. {
  135. int shift, mod, val;
  136. shift = scale_factor_modshift[scale_factor];
  137. mod = shift & 3;
  138. shift >>= 2;
  139. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  140. /* NOTE: at this point, 0 <= shift <= 21 */
  141. if (shift > 0)
  142. val = (val + (1 << (shift - 1))) >> shift;
  143. return val;
  144. }
  145. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  146. static inline int l3_unscale(int value, int exponent)
  147. {
  148. unsigned int m;
  149. int e;
  150. e = table_4_3_exp [4*value + (exponent&3)];
  151. m = table_4_3_value[4*value + (exponent&3)];
  152. e -= (exponent >> 2);
  153. assert(e>=1);
  154. if (e > 31)
  155. return 0;
  156. m = (m + (1 << (e-1))) >> e;
  157. return m;
  158. }
  159. /* all integer n^(4/3) computation code */
  160. #define DEV_ORDER 13
  161. #define POW_FRAC_BITS 24
  162. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  163. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  164. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  165. static int dev_4_3_coefs[DEV_ORDER];
  166. #if 0 /* unused */
  167. static int pow_mult3[3] = {
  168. POW_FIX(1.0),
  169. POW_FIX(1.25992104989487316476),
  170. POW_FIX(1.58740105196819947474),
  171. };
  172. #endif
  173. static void int_pow_init(void)
  174. {
  175. int i, a;
  176. a = POW_FIX(1.0);
  177. for(i=0;i<DEV_ORDER;i++) {
  178. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  179. dev_4_3_coefs[i] = a;
  180. }
  181. }
  182. #if 0 /* unused, remove? */
  183. /* return the mantissa and the binary exponent */
  184. static int int_pow(int i, int *exp_ptr)
  185. {
  186. int e, er, eq, j;
  187. int a, a1;
  188. /* renormalize */
  189. a = i;
  190. e = POW_FRAC_BITS;
  191. while (a < (1 << (POW_FRAC_BITS - 1))) {
  192. a = a << 1;
  193. e--;
  194. }
  195. a -= (1 << POW_FRAC_BITS);
  196. a1 = 0;
  197. for(j = DEV_ORDER - 1; j >= 0; j--)
  198. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  199. a = (1 << POW_FRAC_BITS) + a1;
  200. /* exponent compute (exact) */
  201. e = e * 4;
  202. er = e % 3;
  203. eq = e / 3;
  204. a = POW_MULL(a, pow_mult3[er]);
  205. while (a >= 2 * POW_FRAC_ONE) {
  206. a = a >> 1;
  207. eq++;
  208. }
  209. /* convert to float */
  210. while (a < POW_FRAC_ONE) {
  211. a = a << 1;
  212. eq--;
  213. }
  214. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  215. #if POW_FRAC_BITS > FRAC_BITS
  216. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  217. /* correct overflow */
  218. if (a >= 2 * (1 << FRAC_BITS)) {
  219. a = a >> 1;
  220. eq++;
  221. }
  222. #endif
  223. *exp_ptr = eq;
  224. return a;
  225. }
  226. #endif
  227. static int decode_init(AVCodecContext * avctx)
  228. {
  229. MPADecodeContext *s = avctx->priv_data;
  230. static int init=0;
  231. int i, j, k;
  232. s->avctx = avctx;
  233. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  234. avctx->sample_fmt= SAMPLE_FMT_S32;
  235. #else
  236. avctx->sample_fmt= SAMPLE_FMT_S16;
  237. #endif
  238. s->error_resilience= avctx->error_resilience;
  239. if(avctx->antialias_algo != FF_AA_FLOAT)
  240. s->compute_antialias= compute_antialias_integer;
  241. else
  242. s->compute_antialias= compute_antialias_float;
  243. if (!init && !avctx->parse_only) {
  244. /* scale factors table for layer 1/2 */
  245. for(i=0;i<64;i++) {
  246. int shift, mod;
  247. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  248. shift = (i / 3);
  249. mod = i % 3;
  250. scale_factor_modshift[i] = mod | (shift << 2);
  251. }
  252. /* scale factor multiply for layer 1 */
  253. for(i=0;i<15;i++) {
  254. int n, norm;
  255. n = i + 2;
  256. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  257. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  258. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  259. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  260. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  261. i, norm,
  262. scale_factor_mult[i][0],
  263. scale_factor_mult[i][1],
  264. scale_factor_mult[i][2]);
  265. }
  266. ff_mpa_synth_init(window);
  267. /* huffman decode tables */
  268. for(i=1;i<16;i++) {
  269. const HuffTable *h = &mpa_huff_tables[i];
  270. int xsize, x, y;
  271. unsigned int n;
  272. uint8_t tmp_bits [512];
  273. uint16_t tmp_codes[512];
  274. memset(tmp_bits , 0, sizeof(tmp_bits ));
  275. memset(tmp_codes, 0, sizeof(tmp_codes));
  276. xsize = h->xsize;
  277. n = xsize * xsize;
  278. j = 0;
  279. for(x=0;x<xsize;x++) {
  280. for(y=0;y<xsize;y++){
  281. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  282. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  283. }
  284. }
  285. /* XXX: fail test */
  286. init_vlc(&huff_vlc[i], 7, 512,
  287. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  288. }
  289. for(i=0;i<2;i++) {
  290. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  291. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  292. }
  293. for(i=0;i<9;i++) {
  294. k = 0;
  295. for(j=0;j<22;j++) {
  296. band_index_long[i][j] = k;
  297. k += band_size_long[i][j];
  298. }
  299. band_index_long[i][22] = k;
  300. }
  301. /* compute n ^ (4/3) and store it in mantissa/exp format */
  302. int_pow_init();
  303. for(i=1;i<TABLE_4_3_SIZE;i++) {
  304. double f, fm;
  305. int e, m;
  306. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  307. fm = frexp(f, &e);
  308. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  309. e+= FRAC_BITS - 31 + 5 - 100;
  310. /* normalized to FRAC_BITS */
  311. table_4_3_value[i] = m;
  312. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  313. table_4_3_exp[i] = -e;
  314. }
  315. for(i=0; i<512*16; i++){
  316. int exponent= (i>>4);
  317. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  318. expval_table[exponent][i&15]= llrint(f);
  319. if((i&15)==1)
  320. exp_table[exponent]= llrint(f);
  321. }
  322. for(i=0;i<7;i++) {
  323. float f;
  324. int v;
  325. if (i != 6) {
  326. f = tan((double)i * M_PI / 12.0);
  327. v = FIXR(f / (1.0 + f));
  328. } else {
  329. v = FIXR(1.0);
  330. }
  331. is_table[0][i] = v;
  332. is_table[1][6 - i] = v;
  333. }
  334. /* invalid values */
  335. for(i=7;i<16;i++)
  336. is_table[0][i] = is_table[1][i] = 0.0;
  337. for(i=0;i<16;i++) {
  338. double f;
  339. int e, k;
  340. for(j=0;j<2;j++) {
  341. e = -(j + 1) * ((i + 1) >> 1);
  342. f = pow(2.0, e / 4.0);
  343. k = i & 1;
  344. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  345. is_table_lsf[j][k][i] = FIXR(1.0);
  346. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  347. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  348. }
  349. }
  350. for(i=0;i<8;i++) {
  351. float ci, cs, ca;
  352. ci = ci_table[i];
  353. cs = 1.0 / sqrt(1.0 + ci * ci);
  354. ca = cs * ci;
  355. csa_table[i][0] = FIXHR(cs/4);
  356. csa_table[i][1] = FIXHR(ca/4);
  357. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  358. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  359. csa_table_float[i][0] = cs;
  360. csa_table_float[i][1] = ca;
  361. csa_table_float[i][2] = ca + cs;
  362. csa_table_float[i][3] = ca - cs;
  363. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  364. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  365. }
  366. /* compute mdct windows */
  367. for(i=0;i<36;i++) {
  368. for(j=0; j<4; j++){
  369. double d;
  370. if(j==2 && i%3 != 1)
  371. continue;
  372. d= sin(M_PI * (i + 0.5) / 36.0);
  373. if(j==1){
  374. if (i>=30) d= 0;
  375. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  376. else if(i>=18) d= 1;
  377. }else if(j==3){
  378. if (i< 6) d= 0;
  379. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  380. else if(i< 18) d= 1;
  381. }
  382. //merge last stage of imdct into the window coefficients
  383. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  384. if(j==2)
  385. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  386. else
  387. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  388. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  389. }
  390. }
  391. /* NOTE: we do frequency inversion adter the MDCT by changing
  392. the sign of the right window coefs */
  393. for(j=0;j<4;j++) {
  394. for(i=0;i<36;i+=2) {
  395. mdct_win[j + 4][i] = mdct_win[j][i];
  396. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  397. }
  398. }
  399. #if defined(DEBUG)
  400. for(j=0;j<8;j++) {
  401. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  402. for(i=0;i<36;i++)
  403. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  404. av_log(avctx, AV_LOG_DEBUG, "\n");
  405. }
  406. #endif
  407. init = 1;
  408. }
  409. #ifdef DEBUG
  410. s->frame_count = 0;
  411. #endif
  412. if (avctx->codec_id == CODEC_ID_MP3ADU)
  413. s->adu_mode = 1;
  414. return 0;
  415. }
  416. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  417. /* cos(i*pi/64) */
  418. #define COS0_0 FIXHR(0.50060299823519630134/2)
  419. #define COS0_1 FIXHR(0.50547095989754365998/2)
  420. #define COS0_2 FIXHR(0.51544730992262454697/2)
  421. #define COS0_3 FIXHR(0.53104259108978417447/2)
  422. #define COS0_4 FIXHR(0.55310389603444452782/2)
  423. #define COS0_5 FIXHR(0.58293496820613387367/2)
  424. #define COS0_6 FIXHR(0.62250412303566481615/2)
  425. #define COS0_7 FIXHR(0.67480834145500574602/2)
  426. #define COS0_8 FIXHR(0.74453627100229844977/2)
  427. #define COS0_9 FIXHR(0.83934964541552703873/2)
  428. #define COS0_10 FIXHR(0.97256823786196069369/2)
  429. #define COS0_11 FIXHR(1.16943993343288495515/4)
  430. #define COS0_12 FIXHR(1.48416461631416627724/4)
  431. #define COS0_13 FIXHR(2.05778100995341155085/8)
  432. #define COS0_14 FIXHR(3.40760841846871878570/8)
  433. #define COS0_15 FIXHR(10.19000812354805681150/32)
  434. #define COS1_0 FIXHR(0.50241928618815570551/2)
  435. #define COS1_1 FIXHR(0.52249861493968888062/2)
  436. #define COS1_2 FIXHR(0.56694403481635770368/2)
  437. #define COS1_3 FIXHR(0.64682178335999012954/2)
  438. #define COS1_4 FIXHR(0.78815462345125022473/2)
  439. #define COS1_5 FIXHR(1.06067768599034747134/4)
  440. #define COS1_6 FIXHR(1.72244709823833392782/4)
  441. #define COS1_7 FIXHR(5.10114861868916385802/16)
  442. #define COS2_0 FIXHR(0.50979557910415916894/2)
  443. #define COS2_1 FIXHR(0.60134488693504528054/2)
  444. #define COS2_2 FIXHR(0.89997622313641570463/2)
  445. #define COS2_3 FIXHR(2.56291544774150617881/8)
  446. #define COS3_0 FIXHR(0.54119610014619698439/2)
  447. #define COS3_1 FIXHR(1.30656296487637652785/4)
  448. #define COS4_0 FIXHR(0.70710678118654752439/2)
  449. /* butterfly operator */
  450. #define BF(a, b, c, s)\
  451. {\
  452. tmp0 = tab[a] + tab[b];\
  453. tmp1 = tab[a] - tab[b];\
  454. tab[a] = tmp0;\
  455. tab[b] = MULH(tmp1<<(s), c);\
  456. }
  457. #define BF1(a, b, c, d)\
  458. {\
  459. BF(a, b, COS4_0, 1);\
  460. BF(c, d,-COS4_0, 1);\
  461. tab[c] += tab[d];\
  462. }
  463. #define BF2(a, b, c, d)\
  464. {\
  465. BF(a, b, COS4_0, 1);\
  466. BF(c, d,-COS4_0, 1);\
  467. tab[c] += tab[d];\
  468. tab[a] += tab[c];\
  469. tab[c] += tab[b];\
  470. tab[b] += tab[d];\
  471. }
  472. #define ADD(a, b) tab[a] += tab[b]
  473. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  474. static void dct32(int32_t *out, int32_t *tab)
  475. {
  476. int tmp0, tmp1;
  477. /* pass 1 */
  478. BF( 0, 31, COS0_0 , 1);
  479. BF(15, 16, COS0_15, 5);
  480. /* pass 2 */
  481. BF( 0, 15, COS1_0 , 1);
  482. BF(16, 31,-COS1_0 , 1);
  483. /* pass 1 */
  484. BF( 7, 24, COS0_7 , 1);
  485. BF( 8, 23, COS0_8 , 1);
  486. /* pass 2 */
  487. BF( 7, 8, COS1_7 , 4);
  488. BF(23, 24,-COS1_7 , 4);
  489. /* pass 3 */
  490. BF( 0, 7, COS2_0 , 1);
  491. BF( 8, 15,-COS2_0 , 1);
  492. BF(16, 23, COS2_0 , 1);
  493. BF(24, 31,-COS2_0 , 1);
  494. /* pass 1 */
  495. BF( 3, 28, COS0_3 , 1);
  496. BF(12, 19, COS0_12, 2);
  497. /* pass 2 */
  498. BF( 3, 12, COS1_3 , 1);
  499. BF(19, 28,-COS1_3 , 1);
  500. /* pass 1 */
  501. BF( 4, 27, COS0_4 , 1);
  502. BF(11, 20, COS0_11, 2);
  503. /* pass 2 */
  504. BF( 4, 11, COS1_4 , 1);
  505. BF(20, 27,-COS1_4 , 1);
  506. /* pass 3 */
  507. BF( 3, 4, COS2_3 , 3);
  508. BF(11, 12,-COS2_3 , 3);
  509. BF(19, 20, COS2_3 , 3);
  510. BF(27, 28,-COS2_3 , 3);
  511. /* pass 4 */
  512. BF( 0, 3, COS3_0 , 1);
  513. BF( 4, 7,-COS3_0 , 1);
  514. BF( 8, 11, COS3_0 , 1);
  515. BF(12, 15,-COS3_0 , 1);
  516. BF(16, 19, COS3_0 , 1);
  517. BF(20, 23,-COS3_0 , 1);
  518. BF(24, 27, COS3_0 , 1);
  519. BF(28, 31,-COS3_0 , 1);
  520. /* pass 1 */
  521. BF( 1, 30, COS0_1 , 1);
  522. BF(14, 17, COS0_14, 3);
  523. /* pass 2 */
  524. BF( 1, 14, COS1_1 , 1);
  525. BF(17, 30,-COS1_1 , 1);
  526. /* pass 1 */
  527. BF( 6, 25, COS0_6 , 1);
  528. BF( 9, 22, COS0_9 , 1);
  529. /* pass 2 */
  530. BF( 6, 9, COS1_6 , 2);
  531. BF(22, 25,-COS1_6 , 2);
  532. /* pass 3 */
  533. BF( 1, 6, COS2_1 , 1);
  534. BF( 9, 14,-COS2_1 , 1);
  535. BF(17, 22, COS2_1 , 1);
  536. BF(25, 30,-COS2_1 , 1);
  537. /* pass 1 */
  538. BF( 2, 29, COS0_2 , 1);
  539. BF(13, 18, COS0_13, 3);
  540. /* pass 2 */
  541. BF( 2, 13, COS1_2 , 1);
  542. BF(18, 29,-COS1_2 , 1);
  543. /* pass 1 */
  544. BF( 5, 26, COS0_5 , 1);
  545. BF(10, 21, COS0_10, 1);
  546. /* pass 2 */
  547. BF( 5, 10, COS1_5 , 2);
  548. BF(21, 26,-COS1_5 , 2);
  549. /* pass 3 */
  550. BF( 2, 5, COS2_2 , 1);
  551. BF(10, 13,-COS2_2 , 1);
  552. BF(18, 21, COS2_2 , 1);
  553. BF(26, 29,-COS2_2 , 1);
  554. /* pass 4 */
  555. BF( 1, 2, COS3_1 , 2);
  556. BF( 5, 6,-COS3_1 , 2);
  557. BF( 9, 10, COS3_1 , 2);
  558. BF(13, 14,-COS3_1 , 2);
  559. BF(17, 18, COS3_1 , 2);
  560. BF(21, 22,-COS3_1 , 2);
  561. BF(25, 26, COS3_1 , 2);
  562. BF(29, 30,-COS3_1 , 2);
  563. /* pass 5 */
  564. BF1( 0, 1, 2, 3);
  565. BF2( 4, 5, 6, 7);
  566. BF1( 8, 9, 10, 11);
  567. BF2(12, 13, 14, 15);
  568. BF1(16, 17, 18, 19);
  569. BF2(20, 21, 22, 23);
  570. BF1(24, 25, 26, 27);
  571. BF2(28, 29, 30, 31);
  572. /* pass 6 */
  573. ADD( 8, 12);
  574. ADD(12, 10);
  575. ADD(10, 14);
  576. ADD(14, 9);
  577. ADD( 9, 13);
  578. ADD(13, 11);
  579. ADD(11, 15);
  580. out[ 0] = tab[0];
  581. out[16] = tab[1];
  582. out[ 8] = tab[2];
  583. out[24] = tab[3];
  584. out[ 4] = tab[4];
  585. out[20] = tab[5];
  586. out[12] = tab[6];
  587. out[28] = tab[7];
  588. out[ 2] = tab[8];
  589. out[18] = tab[9];
  590. out[10] = tab[10];
  591. out[26] = tab[11];
  592. out[ 6] = tab[12];
  593. out[22] = tab[13];
  594. out[14] = tab[14];
  595. out[30] = tab[15];
  596. ADD(24, 28);
  597. ADD(28, 26);
  598. ADD(26, 30);
  599. ADD(30, 25);
  600. ADD(25, 29);
  601. ADD(29, 27);
  602. ADD(27, 31);
  603. out[ 1] = tab[16] + tab[24];
  604. out[17] = tab[17] + tab[25];
  605. out[ 9] = tab[18] + tab[26];
  606. out[25] = tab[19] + tab[27];
  607. out[ 5] = tab[20] + tab[28];
  608. out[21] = tab[21] + tab[29];
  609. out[13] = tab[22] + tab[30];
  610. out[29] = tab[23] + tab[31];
  611. out[ 3] = tab[24] + tab[20];
  612. out[19] = tab[25] + tab[21];
  613. out[11] = tab[26] + tab[22];
  614. out[27] = tab[27] + tab[23];
  615. out[ 7] = tab[28] + tab[18];
  616. out[23] = tab[29] + tab[19];
  617. out[15] = tab[30] + tab[17];
  618. out[31] = tab[31];
  619. }
  620. #if FRAC_BITS <= 15
  621. static inline int round_sample(int *sum)
  622. {
  623. int sum1;
  624. sum1 = (*sum) >> OUT_SHIFT;
  625. *sum &= (1<<OUT_SHIFT)-1;
  626. if (sum1 < OUT_MIN)
  627. sum1 = OUT_MIN;
  628. else if (sum1 > OUT_MAX)
  629. sum1 = OUT_MAX;
  630. return sum1;
  631. }
  632. /* signed 16x16 -> 32 multiply add accumulate */
  633. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  634. /* signed 16x16 -> 32 multiply */
  635. #define MULS(ra, rb) MUL16(ra, rb)
  636. #else
  637. static inline int round_sample(int64_t *sum)
  638. {
  639. int sum1;
  640. sum1 = (int)((*sum) >> OUT_SHIFT);
  641. *sum &= (1<<OUT_SHIFT)-1;
  642. if (sum1 < OUT_MIN)
  643. sum1 = OUT_MIN;
  644. else if (sum1 > OUT_MAX)
  645. sum1 = OUT_MAX;
  646. return sum1;
  647. }
  648. # define MULS(ra, rb) MUL64(ra, rb)
  649. #endif
  650. #define SUM8(sum, op, w, p) \
  651. { \
  652. sum op MULS((w)[0 * 64], p[0 * 64]);\
  653. sum op MULS((w)[1 * 64], p[1 * 64]);\
  654. sum op MULS((w)[2 * 64], p[2 * 64]);\
  655. sum op MULS((w)[3 * 64], p[3 * 64]);\
  656. sum op MULS((w)[4 * 64], p[4 * 64]);\
  657. sum op MULS((w)[5 * 64], p[5 * 64]);\
  658. sum op MULS((w)[6 * 64], p[6 * 64]);\
  659. sum op MULS((w)[7 * 64], p[7 * 64]);\
  660. }
  661. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  662. { \
  663. int tmp;\
  664. tmp = p[0 * 64];\
  665. sum1 op1 MULS((w1)[0 * 64], tmp);\
  666. sum2 op2 MULS((w2)[0 * 64], tmp);\
  667. tmp = p[1 * 64];\
  668. sum1 op1 MULS((w1)[1 * 64], tmp);\
  669. sum2 op2 MULS((w2)[1 * 64], tmp);\
  670. tmp = p[2 * 64];\
  671. sum1 op1 MULS((w1)[2 * 64], tmp);\
  672. sum2 op2 MULS((w2)[2 * 64], tmp);\
  673. tmp = p[3 * 64];\
  674. sum1 op1 MULS((w1)[3 * 64], tmp);\
  675. sum2 op2 MULS((w2)[3 * 64], tmp);\
  676. tmp = p[4 * 64];\
  677. sum1 op1 MULS((w1)[4 * 64], tmp);\
  678. sum2 op2 MULS((w2)[4 * 64], tmp);\
  679. tmp = p[5 * 64];\
  680. sum1 op1 MULS((w1)[5 * 64], tmp);\
  681. sum2 op2 MULS((w2)[5 * 64], tmp);\
  682. tmp = p[6 * 64];\
  683. sum1 op1 MULS((w1)[6 * 64], tmp);\
  684. sum2 op2 MULS((w2)[6 * 64], tmp);\
  685. tmp = p[7 * 64];\
  686. sum1 op1 MULS((w1)[7 * 64], tmp);\
  687. sum2 op2 MULS((w2)[7 * 64], tmp);\
  688. }
  689. void ff_mpa_synth_init(MPA_INT *window)
  690. {
  691. int i;
  692. /* max = 18760, max sum over all 16 coefs : 44736 */
  693. for(i=0;i<257;i++) {
  694. int v;
  695. v = ff_mpa_enwindow[i];
  696. #if WFRAC_BITS < 16
  697. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  698. #endif
  699. window[i] = v;
  700. if ((i & 63) != 0)
  701. v = -v;
  702. if (i != 0)
  703. window[512 - i] = v;
  704. }
  705. }
  706. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  707. 32 samples. */
  708. /* XXX: optimize by avoiding ring buffer usage */
  709. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  710. MPA_INT *window, int *dither_state,
  711. OUT_INT *samples, int incr,
  712. int32_t sb_samples[SBLIMIT])
  713. {
  714. int32_t tmp[32];
  715. register MPA_INT *synth_buf;
  716. register const MPA_INT *w, *w2, *p;
  717. int j, offset, v;
  718. OUT_INT *samples2;
  719. #if FRAC_BITS <= 15
  720. int sum, sum2;
  721. #else
  722. int64_t sum, sum2;
  723. #endif
  724. dct32(tmp, sb_samples);
  725. offset = *synth_buf_offset;
  726. synth_buf = synth_buf_ptr + offset;
  727. for(j=0;j<32;j++) {
  728. v = tmp[j];
  729. #if FRAC_BITS <= 15
  730. /* NOTE: can cause a loss in precision if very high amplitude
  731. sound */
  732. if (v > 32767)
  733. v = 32767;
  734. else if (v < -32768)
  735. v = -32768;
  736. #endif
  737. synth_buf[j] = v;
  738. }
  739. /* copy to avoid wrap */
  740. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  741. samples2 = samples + 31 * incr;
  742. w = window;
  743. w2 = window + 31;
  744. sum = *dither_state;
  745. p = synth_buf + 16;
  746. SUM8(sum, +=, w, p);
  747. p = synth_buf + 48;
  748. SUM8(sum, -=, w + 32, p);
  749. *samples = round_sample(&sum);
  750. samples += incr;
  751. w++;
  752. /* we calculate two samples at the same time to avoid one memory
  753. access per two sample */
  754. for(j=1;j<16;j++) {
  755. sum2 = 0;
  756. p = synth_buf + 16 + j;
  757. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  758. p = synth_buf + 48 - j;
  759. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  760. *samples = round_sample(&sum);
  761. samples += incr;
  762. sum += sum2;
  763. *samples2 = round_sample(&sum);
  764. samples2 -= incr;
  765. w++;
  766. w2--;
  767. }
  768. p = synth_buf + 32;
  769. SUM8(sum, -=, w + 32, p);
  770. *samples = round_sample(&sum);
  771. *dither_state= sum;
  772. offset = (offset - 32) & 511;
  773. *synth_buf_offset = offset;
  774. }
  775. #define C3 FIXHR(0.86602540378443864676/2)
  776. /* 0.5 / cos(pi*(2*i+1)/36) */
  777. static const int icos36[9] = {
  778. FIXR(0.50190991877167369479),
  779. FIXR(0.51763809020504152469), //0
  780. FIXR(0.55168895948124587824),
  781. FIXR(0.61038729438072803416),
  782. FIXR(0.70710678118654752439), //1
  783. FIXR(0.87172339781054900991),
  784. FIXR(1.18310079157624925896),
  785. FIXR(1.93185165257813657349), //2
  786. FIXR(5.73685662283492756461),
  787. };
  788. /* 0.5 / cos(pi*(2*i+1)/36) */
  789. static const int icos36h[9] = {
  790. FIXHR(0.50190991877167369479/2),
  791. FIXHR(0.51763809020504152469/2), //0
  792. FIXHR(0.55168895948124587824/2),
  793. FIXHR(0.61038729438072803416/2),
  794. FIXHR(0.70710678118654752439/2), //1
  795. FIXHR(0.87172339781054900991/2),
  796. FIXHR(1.18310079157624925896/4),
  797. FIXHR(1.93185165257813657349/4), //2
  798. // FIXHR(5.73685662283492756461),
  799. };
  800. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  801. cases. */
  802. static void imdct12(int *out, int *in)
  803. {
  804. int in0, in1, in2, in3, in4, in5, t1, t2;
  805. in0= in[0*3];
  806. in1= in[1*3] + in[0*3];
  807. in2= in[2*3] + in[1*3];
  808. in3= in[3*3] + in[2*3];
  809. in4= in[4*3] + in[3*3];
  810. in5= in[5*3] + in[4*3];
  811. in5 += in3;
  812. in3 += in1;
  813. in2= MULH(2*in2, C3);
  814. in3= MULH(4*in3, C3);
  815. t1 = in0 - in4;
  816. t2 = MULH(2*(in1 - in5), icos36h[4]);
  817. out[ 7]=
  818. out[10]= t1 + t2;
  819. out[ 1]=
  820. out[ 4]= t1 - t2;
  821. in0 += in4>>1;
  822. in4 = in0 + in2;
  823. in5 += 2*in1;
  824. in1 = MULH(in5 + in3, icos36h[1]);
  825. out[ 8]=
  826. out[ 9]= in4 + in1;
  827. out[ 2]=
  828. out[ 3]= in4 - in1;
  829. in0 -= in2;
  830. in5 = MULH(2*(in5 - in3), icos36h[7]);
  831. out[ 0]=
  832. out[ 5]= in0 - in5;
  833. out[ 6]=
  834. out[11]= in0 + in5;
  835. }
  836. /* cos(pi*i/18) */
  837. #define C1 FIXHR(0.98480775301220805936/2)
  838. #define C2 FIXHR(0.93969262078590838405/2)
  839. #define C3 FIXHR(0.86602540378443864676/2)
  840. #define C4 FIXHR(0.76604444311897803520/2)
  841. #define C5 FIXHR(0.64278760968653932632/2)
  842. #define C6 FIXHR(0.5/2)
  843. #define C7 FIXHR(0.34202014332566873304/2)
  844. #define C8 FIXHR(0.17364817766693034885/2)
  845. /* using Lee like decomposition followed by hand coded 9 points DCT */
  846. static void imdct36(int *out, int *buf, int *in, int *win)
  847. {
  848. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  849. int tmp[18], *tmp1, *in1;
  850. for(i=17;i>=1;i--)
  851. in[i] += in[i-1];
  852. for(i=17;i>=3;i-=2)
  853. in[i] += in[i-2];
  854. for(j=0;j<2;j++) {
  855. tmp1 = tmp + j;
  856. in1 = in + j;
  857. #if 0
  858. //more accurate but slower
  859. int64_t t0, t1, t2, t3;
  860. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  861. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  862. t1 = in1[2*0] - in1[2*6];
  863. tmp1[ 6] = t1 - (t2>>1);
  864. tmp1[16] = t1 + t2;
  865. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  866. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  867. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  868. tmp1[10] = (t3 - t0 - t2) >> 32;
  869. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  870. tmp1[14] = (t3 + t2 - t1) >> 32;
  871. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  872. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  873. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  874. t0 = MUL64(2*in1[2*3], C3);
  875. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  876. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  877. tmp1[12] = (t2 + t1 - t0) >> 32;
  878. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  879. #else
  880. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  881. t3 = in1[2*0] + (in1[2*6]>>1);
  882. t1 = in1[2*0] - in1[2*6];
  883. tmp1[ 6] = t1 - (t2>>1);
  884. tmp1[16] = t1 + t2;
  885. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  886. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  887. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  888. tmp1[10] = t3 - t0 - t2;
  889. tmp1[ 2] = t3 + t0 + t1;
  890. tmp1[14] = t3 + t2 - t1;
  891. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  892. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  893. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  894. t0 = MULH(2*in1[2*3], C3);
  895. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  896. tmp1[ 0] = t2 + t3 + t0;
  897. tmp1[12] = t2 + t1 - t0;
  898. tmp1[ 8] = t3 - t1 - t0;
  899. #endif
  900. }
  901. i = 0;
  902. for(j=0;j<4;j++) {
  903. t0 = tmp[i];
  904. t1 = tmp[i + 2];
  905. s0 = t1 + t0;
  906. s2 = t1 - t0;
  907. t2 = tmp[i + 1];
  908. t3 = tmp[i + 3];
  909. s1 = MULH(2*(t3 + t2), icos36h[j]);
  910. s3 = MULL(t3 - t2, icos36[8 - j]);
  911. t0 = s0 + s1;
  912. t1 = s0 - s1;
  913. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  914. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  915. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  916. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  917. t0 = s2 + s3;
  918. t1 = s2 - s3;
  919. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  920. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  921. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  922. buf[ + j] = MULH(t0, win[18 + j]);
  923. i += 4;
  924. }
  925. s0 = tmp[16];
  926. s1 = MULH(2*tmp[17], icos36h[4]);
  927. t0 = s0 + s1;
  928. t1 = s0 - s1;
  929. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  930. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  931. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  932. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  933. }
  934. /* return the number of decoded frames */
  935. static int mp_decode_layer1(MPADecodeContext *s)
  936. {
  937. int bound, i, v, n, ch, j, mant;
  938. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  939. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  940. if (s->mode == MPA_JSTEREO)
  941. bound = (s->mode_ext + 1) * 4;
  942. else
  943. bound = SBLIMIT;
  944. /* allocation bits */
  945. for(i=0;i<bound;i++) {
  946. for(ch=0;ch<s->nb_channels;ch++) {
  947. allocation[ch][i] = get_bits(&s->gb, 4);
  948. }
  949. }
  950. for(i=bound;i<SBLIMIT;i++) {
  951. allocation[0][i] = get_bits(&s->gb, 4);
  952. }
  953. /* scale factors */
  954. for(i=0;i<bound;i++) {
  955. for(ch=0;ch<s->nb_channels;ch++) {
  956. if (allocation[ch][i])
  957. scale_factors[ch][i] = get_bits(&s->gb, 6);
  958. }
  959. }
  960. for(i=bound;i<SBLIMIT;i++) {
  961. if (allocation[0][i]) {
  962. scale_factors[0][i] = get_bits(&s->gb, 6);
  963. scale_factors[1][i] = get_bits(&s->gb, 6);
  964. }
  965. }
  966. /* compute samples */
  967. for(j=0;j<12;j++) {
  968. for(i=0;i<bound;i++) {
  969. for(ch=0;ch<s->nb_channels;ch++) {
  970. n = allocation[ch][i];
  971. if (n) {
  972. mant = get_bits(&s->gb, n + 1);
  973. v = l1_unscale(n, mant, scale_factors[ch][i]);
  974. } else {
  975. v = 0;
  976. }
  977. s->sb_samples[ch][j][i] = v;
  978. }
  979. }
  980. for(i=bound;i<SBLIMIT;i++) {
  981. n = allocation[0][i];
  982. if (n) {
  983. mant = get_bits(&s->gb, n + 1);
  984. v = l1_unscale(n, mant, scale_factors[0][i]);
  985. s->sb_samples[0][j][i] = v;
  986. v = l1_unscale(n, mant, scale_factors[1][i]);
  987. s->sb_samples[1][j][i] = v;
  988. } else {
  989. s->sb_samples[0][j][i] = 0;
  990. s->sb_samples[1][j][i] = 0;
  991. }
  992. }
  993. }
  994. return 12;
  995. }
  996. static int mp_decode_layer2(MPADecodeContext *s)
  997. {
  998. int sblimit; /* number of used subbands */
  999. const unsigned char *alloc_table;
  1000. int table, bit_alloc_bits, i, j, ch, bound, v;
  1001. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1002. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1003. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1004. int scale, qindex, bits, steps, k, l, m, b;
  1005. /* select decoding table */
  1006. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1007. s->sample_rate, s->lsf);
  1008. sblimit = ff_mpa_sblimit_table[table];
  1009. alloc_table = ff_mpa_alloc_tables[table];
  1010. if (s->mode == MPA_JSTEREO)
  1011. bound = (s->mode_ext + 1) * 4;
  1012. else
  1013. bound = sblimit;
  1014. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1015. /* sanity check */
  1016. if( bound > sblimit ) bound = sblimit;
  1017. /* parse bit allocation */
  1018. j = 0;
  1019. for(i=0;i<bound;i++) {
  1020. bit_alloc_bits = alloc_table[j];
  1021. for(ch=0;ch<s->nb_channels;ch++) {
  1022. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1023. }
  1024. j += 1 << bit_alloc_bits;
  1025. }
  1026. for(i=bound;i<sblimit;i++) {
  1027. bit_alloc_bits = alloc_table[j];
  1028. v = get_bits(&s->gb, bit_alloc_bits);
  1029. bit_alloc[0][i] = v;
  1030. bit_alloc[1][i] = v;
  1031. j += 1 << bit_alloc_bits;
  1032. }
  1033. #ifdef DEBUG
  1034. {
  1035. for(ch=0;ch<s->nb_channels;ch++) {
  1036. for(i=0;i<sblimit;i++)
  1037. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1038. dprintf(s->avctx, "\n");
  1039. }
  1040. }
  1041. #endif
  1042. /* scale codes */
  1043. for(i=0;i<sblimit;i++) {
  1044. for(ch=0;ch<s->nb_channels;ch++) {
  1045. if (bit_alloc[ch][i])
  1046. scale_code[ch][i] = get_bits(&s->gb, 2);
  1047. }
  1048. }
  1049. /* scale factors */
  1050. for(i=0;i<sblimit;i++) {
  1051. for(ch=0;ch<s->nb_channels;ch++) {
  1052. if (bit_alloc[ch][i]) {
  1053. sf = scale_factors[ch][i];
  1054. switch(scale_code[ch][i]) {
  1055. default:
  1056. case 0:
  1057. sf[0] = get_bits(&s->gb, 6);
  1058. sf[1] = get_bits(&s->gb, 6);
  1059. sf[2] = get_bits(&s->gb, 6);
  1060. break;
  1061. case 2:
  1062. sf[0] = get_bits(&s->gb, 6);
  1063. sf[1] = sf[0];
  1064. sf[2] = sf[0];
  1065. break;
  1066. case 1:
  1067. sf[0] = get_bits(&s->gb, 6);
  1068. sf[2] = get_bits(&s->gb, 6);
  1069. sf[1] = sf[0];
  1070. break;
  1071. case 3:
  1072. sf[0] = get_bits(&s->gb, 6);
  1073. sf[2] = get_bits(&s->gb, 6);
  1074. sf[1] = sf[2];
  1075. break;
  1076. }
  1077. }
  1078. }
  1079. }
  1080. #ifdef DEBUG
  1081. for(ch=0;ch<s->nb_channels;ch++) {
  1082. for(i=0;i<sblimit;i++) {
  1083. if (bit_alloc[ch][i]) {
  1084. sf = scale_factors[ch][i];
  1085. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1086. } else {
  1087. dprintf(s->avctx, " -");
  1088. }
  1089. }
  1090. dprintf(s->avctx, "\n");
  1091. }
  1092. #endif
  1093. /* samples */
  1094. for(k=0;k<3;k++) {
  1095. for(l=0;l<12;l+=3) {
  1096. j = 0;
  1097. for(i=0;i<bound;i++) {
  1098. bit_alloc_bits = alloc_table[j];
  1099. for(ch=0;ch<s->nb_channels;ch++) {
  1100. b = bit_alloc[ch][i];
  1101. if (b) {
  1102. scale = scale_factors[ch][i][k];
  1103. qindex = alloc_table[j+b];
  1104. bits = ff_mpa_quant_bits[qindex];
  1105. if (bits < 0) {
  1106. /* 3 values at the same time */
  1107. v = get_bits(&s->gb, -bits);
  1108. steps = ff_mpa_quant_steps[qindex];
  1109. s->sb_samples[ch][k * 12 + l + 0][i] =
  1110. l2_unscale_group(steps, v % steps, scale);
  1111. v = v / steps;
  1112. s->sb_samples[ch][k * 12 + l + 1][i] =
  1113. l2_unscale_group(steps, v % steps, scale);
  1114. v = v / steps;
  1115. s->sb_samples[ch][k * 12 + l + 2][i] =
  1116. l2_unscale_group(steps, v, scale);
  1117. } else {
  1118. for(m=0;m<3;m++) {
  1119. v = get_bits(&s->gb, bits);
  1120. v = l1_unscale(bits - 1, v, scale);
  1121. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1122. }
  1123. }
  1124. } else {
  1125. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1126. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1127. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1128. }
  1129. }
  1130. /* next subband in alloc table */
  1131. j += 1 << bit_alloc_bits;
  1132. }
  1133. /* XXX: find a way to avoid this duplication of code */
  1134. for(i=bound;i<sblimit;i++) {
  1135. bit_alloc_bits = alloc_table[j];
  1136. b = bit_alloc[0][i];
  1137. if (b) {
  1138. int mant, scale0, scale1;
  1139. scale0 = scale_factors[0][i][k];
  1140. scale1 = scale_factors[1][i][k];
  1141. qindex = alloc_table[j+b];
  1142. bits = ff_mpa_quant_bits[qindex];
  1143. if (bits < 0) {
  1144. /* 3 values at the same time */
  1145. v = get_bits(&s->gb, -bits);
  1146. steps = ff_mpa_quant_steps[qindex];
  1147. mant = v % steps;
  1148. v = v / steps;
  1149. s->sb_samples[0][k * 12 + l + 0][i] =
  1150. l2_unscale_group(steps, mant, scale0);
  1151. s->sb_samples[1][k * 12 + l + 0][i] =
  1152. l2_unscale_group(steps, mant, scale1);
  1153. mant = v % steps;
  1154. v = v / steps;
  1155. s->sb_samples[0][k * 12 + l + 1][i] =
  1156. l2_unscale_group(steps, mant, scale0);
  1157. s->sb_samples[1][k * 12 + l + 1][i] =
  1158. l2_unscale_group(steps, mant, scale1);
  1159. s->sb_samples[0][k * 12 + l + 2][i] =
  1160. l2_unscale_group(steps, v, scale0);
  1161. s->sb_samples[1][k * 12 + l + 2][i] =
  1162. l2_unscale_group(steps, v, scale1);
  1163. } else {
  1164. for(m=0;m<3;m++) {
  1165. mant = get_bits(&s->gb, bits);
  1166. s->sb_samples[0][k * 12 + l + m][i] =
  1167. l1_unscale(bits - 1, mant, scale0);
  1168. s->sb_samples[1][k * 12 + l + m][i] =
  1169. l1_unscale(bits - 1, mant, scale1);
  1170. }
  1171. }
  1172. } else {
  1173. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1174. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1175. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1176. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1177. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1178. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1179. }
  1180. /* next subband in alloc table */
  1181. j += 1 << bit_alloc_bits;
  1182. }
  1183. /* fill remaining samples to zero */
  1184. for(i=sblimit;i<SBLIMIT;i++) {
  1185. for(ch=0;ch<s->nb_channels;ch++) {
  1186. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1187. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1188. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1189. }
  1190. }
  1191. }
  1192. }
  1193. return 3 * 12;
  1194. }
  1195. static inline void lsf_sf_expand(int *slen,
  1196. int sf, int n1, int n2, int n3)
  1197. {
  1198. if (n3) {
  1199. slen[3] = sf % n3;
  1200. sf /= n3;
  1201. } else {
  1202. slen[3] = 0;
  1203. }
  1204. if (n2) {
  1205. slen[2] = sf % n2;
  1206. sf /= n2;
  1207. } else {
  1208. slen[2] = 0;
  1209. }
  1210. slen[1] = sf % n1;
  1211. sf /= n1;
  1212. slen[0] = sf;
  1213. }
  1214. static void exponents_from_scale_factors(MPADecodeContext *s,
  1215. GranuleDef *g,
  1216. int16_t *exponents)
  1217. {
  1218. const uint8_t *bstab, *pretab;
  1219. int len, i, j, k, l, v0, shift, gain, gains[3];
  1220. int16_t *exp_ptr;
  1221. exp_ptr = exponents;
  1222. gain = g->global_gain - 210;
  1223. shift = g->scalefac_scale + 1;
  1224. bstab = band_size_long[s->sample_rate_index];
  1225. pretab = mpa_pretab[g->preflag];
  1226. for(i=0;i<g->long_end;i++) {
  1227. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1228. len = bstab[i];
  1229. for(j=len;j>0;j--)
  1230. *exp_ptr++ = v0;
  1231. }
  1232. if (g->short_start < 13) {
  1233. bstab = band_size_short[s->sample_rate_index];
  1234. gains[0] = gain - (g->subblock_gain[0] << 3);
  1235. gains[1] = gain - (g->subblock_gain[1] << 3);
  1236. gains[2] = gain - (g->subblock_gain[2] << 3);
  1237. k = g->long_end;
  1238. for(i=g->short_start;i<13;i++) {
  1239. len = bstab[i];
  1240. for(l=0;l<3;l++) {
  1241. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1242. for(j=len;j>0;j--)
  1243. *exp_ptr++ = v0;
  1244. }
  1245. }
  1246. }
  1247. }
  1248. /* handle n = 0 too */
  1249. static inline int get_bitsz(GetBitContext *s, int n)
  1250. {
  1251. if (n == 0)
  1252. return 0;
  1253. else
  1254. return get_bits(s, n);
  1255. }
  1256. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1257. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1258. s->gb= s->in_gb;
  1259. s->in_gb.buffer=NULL;
  1260. assert((get_bits_count(&s->gb) & 7) == 0);
  1261. skip_bits_long(&s->gb, *pos - *end_pos);
  1262. *end_pos2=
  1263. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1264. *pos= get_bits_count(&s->gb);
  1265. }
  1266. }
  1267. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1268. int16_t *exponents, int end_pos2)
  1269. {
  1270. int s_index;
  1271. int i;
  1272. int last_pos, bits_left;
  1273. VLC *vlc;
  1274. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1275. /* low frequencies (called big values) */
  1276. s_index = 0;
  1277. for(i=0;i<3;i++) {
  1278. int j, k, l, linbits;
  1279. j = g->region_size[i];
  1280. if (j == 0)
  1281. continue;
  1282. /* select vlc table */
  1283. k = g->table_select[i];
  1284. l = mpa_huff_data[k][0];
  1285. linbits = mpa_huff_data[k][1];
  1286. vlc = &huff_vlc[l];
  1287. if(!l){
  1288. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1289. s_index += 2*j;
  1290. continue;
  1291. }
  1292. /* read huffcode and compute each couple */
  1293. for(;j>0;j--) {
  1294. int exponent, x, y, v;
  1295. int pos= get_bits_count(&s->gb);
  1296. if (pos >= end_pos){
  1297. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1298. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1299. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1300. if(pos >= end_pos)
  1301. break;
  1302. }
  1303. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1304. if(!y){
  1305. g->sb_hybrid[s_index ] =
  1306. g->sb_hybrid[s_index+1] = 0;
  1307. s_index += 2;
  1308. continue;
  1309. }
  1310. exponent= exponents[s_index];
  1311. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1312. i, g->region_size[i] - j, x, y, exponent);
  1313. if(y&16){
  1314. x = y >> 5;
  1315. y = y & 0x0f;
  1316. if (x < 15){
  1317. v = expval_table[ exponent ][ x ];
  1318. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1319. }else{
  1320. x += get_bitsz(&s->gb, linbits);
  1321. v = l3_unscale(x, exponent);
  1322. }
  1323. if (get_bits1(&s->gb))
  1324. v = -v;
  1325. g->sb_hybrid[s_index] = v;
  1326. if (y < 15){
  1327. v = expval_table[ exponent ][ y ];
  1328. }else{
  1329. y += get_bitsz(&s->gb, linbits);
  1330. v = l3_unscale(y, exponent);
  1331. }
  1332. if (get_bits1(&s->gb))
  1333. v = -v;
  1334. g->sb_hybrid[s_index+1] = v;
  1335. }else{
  1336. x = y >> 5;
  1337. y = y & 0x0f;
  1338. x += y;
  1339. if (x < 15){
  1340. v = expval_table[ exponent ][ x ];
  1341. }else{
  1342. x += get_bitsz(&s->gb, linbits);
  1343. v = l3_unscale(x, exponent);
  1344. }
  1345. if (get_bits1(&s->gb))
  1346. v = -v;
  1347. g->sb_hybrid[s_index+!!y] = v;
  1348. g->sb_hybrid[s_index+ !y] = 0;
  1349. }
  1350. s_index+=2;
  1351. }
  1352. }
  1353. /* high frequencies */
  1354. vlc = &huff_quad_vlc[g->count1table_select];
  1355. last_pos=0;
  1356. while (s_index <= 572) {
  1357. int pos, code;
  1358. pos = get_bits_count(&s->gb);
  1359. if (pos >= end_pos) {
  1360. if (pos > end_pos2 && last_pos){
  1361. /* some encoders generate an incorrect size for this
  1362. part. We must go back into the data */
  1363. s_index -= 4;
  1364. skip_bits_long(&s->gb, last_pos - pos);
  1365. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1366. if(s->error_resilience >= FF_ER_COMPLIANT)
  1367. s_index=0;
  1368. break;
  1369. }
  1370. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1371. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1372. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1373. if(pos >= end_pos)
  1374. break;
  1375. }
  1376. last_pos= pos;
  1377. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1378. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1379. g->sb_hybrid[s_index+0]=
  1380. g->sb_hybrid[s_index+1]=
  1381. g->sb_hybrid[s_index+2]=
  1382. g->sb_hybrid[s_index+3]= 0;
  1383. while(code){
  1384. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1385. int v;
  1386. int pos= s_index+idxtab[code];
  1387. code ^= 8>>idxtab[code];
  1388. v = exp_table[ exponents[pos] ];
  1389. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1390. if(get_bits1(&s->gb))
  1391. v = -v;
  1392. g->sb_hybrid[pos] = v;
  1393. }
  1394. s_index+=4;
  1395. }
  1396. /* skip extension bits */
  1397. bits_left = end_pos2 - get_bits_count(&s->gb);
  1398. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1399. if (bits_left < 0/* || bits_left > 500*/) {
  1400. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1401. s_index=0;
  1402. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1403. av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1404. s_index=0;
  1405. }
  1406. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1407. skip_bits_long(&s->gb, bits_left);
  1408. i= get_bits_count(&s->gb);
  1409. switch_buffer(s, &i, &end_pos, &end_pos2);
  1410. return 0;
  1411. }
  1412. /* Reorder short blocks from bitstream order to interleaved order. It
  1413. would be faster to do it in parsing, but the code would be far more
  1414. complicated */
  1415. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1416. {
  1417. int i, j, len;
  1418. int32_t *ptr, *dst, *ptr1;
  1419. int32_t tmp[576];
  1420. if (g->block_type != 2)
  1421. return;
  1422. if (g->switch_point) {
  1423. if (s->sample_rate_index != 8) {
  1424. ptr = g->sb_hybrid + 36;
  1425. } else {
  1426. ptr = g->sb_hybrid + 48;
  1427. }
  1428. } else {
  1429. ptr = g->sb_hybrid;
  1430. }
  1431. for(i=g->short_start;i<13;i++) {
  1432. len = band_size_short[s->sample_rate_index][i];
  1433. ptr1 = ptr;
  1434. dst = tmp;
  1435. for(j=len;j>0;j--) {
  1436. *dst++ = ptr[0*len];
  1437. *dst++ = ptr[1*len];
  1438. *dst++ = ptr[2*len];
  1439. ptr++;
  1440. }
  1441. ptr+=2*len;
  1442. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1443. }
  1444. }
  1445. #define ISQRT2 FIXR(0.70710678118654752440)
  1446. static void compute_stereo(MPADecodeContext *s,
  1447. GranuleDef *g0, GranuleDef *g1)
  1448. {
  1449. int i, j, k, l;
  1450. int32_t v1, v2;
  1451. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1452. int32_t (*is_tab)[16];
  1453. int32_t *tab0, *tab1;
  1454. int non_zero_found_short[3];
  1455. /* intensity stereo */
  1456. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1457. if (!s->lsf) {
  1458. is_tab = is_table;
  1459. sf_max = 7;
  1460. } else {
  1461. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1462. sf_max = 16;
  1463. }
  1464. tab0 = g0->sb_hybrid + 576;
  1465. tab1 = g1->sb_hybrid + 576;
  1466. non_zero_found_short[0] = 0;
  1467. non_zero_found_short[1] = 0;
  1468. non_zero_found_short[2] = 0;
  1469. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1470. for(i = 12;i >= g1->short_start;i--) {
  1471. /* for last band, use previous scale factor */
  1472. if (i != 11)
  1473. k -= 3;
  1474. len = band_size_short[s->sample_rate_index][i];
  1475. for(l=2;l>=0;l--) {
  1476. tab0 -= len;
  1477. tab1 -= len;
  1478. if (!non_zero_found_short[l]) {
  1479. /* test if non zero band. if so, stop doing i-stereo */
  1480. for(j=0;j<len;j++) {
  1481. if (tab1[j] != 0) {
  1482. non_zero_found_short[l] = 1;
  1483. goto found1;
  1484. }
  1485. }
  1486. sf = g1->scale_factors[k + l];
  1487. if (sf >= sf_max)
  1488. goto found1;
  1489. v1 = is_tab[0][sf];
  1490. v2 = is_tab[1][sf];
  1491. for(j=0;j<len;j++) {
  1492. tmp0 = tab0[j];
  1493. tab0[j] = MULL(tmp0, v1);
  1494. tab1[j] = MULL(tmp0, v2);
  1495. }
  1496. } else {
  1497. found1:
  1498. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1499. /* lower part of the spectrum : do ms stereo
  1500. if enabled */
  1501. for(j=0;j<len;j++) {
  1502. tmp0 = tab0[j];
  1503. tmp1 = tab1[j];
  1504. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1505. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1506. }
  1507. }
  1508. }
  1509. }
  1510. }
  1511. non_zero_found = non_zero_found_short[0] |
  1512. non_zero_found_short[1] |
  1513. non_zero_found_short[2];
  1514. for(i = g1->long_end - 1;i >= 0;i--) {
  1515. len = band_size_long[s->sample_rate_index][i];
  1516. tab0 -= len;
  1517. tab1 -= len;
  1518. /* test if non zero band. if so, stop doing i-stereo */
  1519. if (!non_zero_found) {
  1520. for(j=0;j<len;j++) {
  1521. if (tab1[j] != 0) {
  1522. non_zero_found = 1;
  1523. goto found2;
  1524. }
  1525. }
  1526. /* for last band, use previous scale factor */
  1527. k = (i == 21) ? 20 : i;
  1528. sf = g1->scale_factors[k];
  1529. if (sf >= sf_max)
  1530. goto found2;
  1531. v1 = is_tab[0][sf];
  1532. v2 = is_tab[1][sf];
  1533. for(j=0;j<len;j++) {
  1534. tmp0 = tab0[j];
  1535. tab0[j] = MULL(tmp0, v1);
  1536. tab1[j] = MULL(tmp0, v2);
  1537. }
  1538. } else {
  1539. found2:
  1540. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1541. /* lower part of the spectrum : do ms stereo
  1542. if enabled */
  1543. for(j=0;j<len;j++) {
  1544. tmp0 = tab0[j];
  1545. tmp1 = tab1[j];
  1546. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1547. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1548. }
  1549. }
  1550. }
  1551. }
  1552. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1553. /* ms stereo ONLY */
  1554. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1555. global gain */
  1556. tab0 = g0->sb_hybrid;
  1557. tab1 = g1->sb_hybrid;
  1558. for(i=0;i<576;i++) {
  1559. tmp0 = tab0[i];
  1560. tmp1 = tab1[i];
  1561. tab0[i] = tmp0 + tmp1;
  1562. tab1[i] = tmp0 - tmp1;
  1563. }
  1564. }
  1565. }
  1566. static void compute_antialias_integer(MPADecodeContext *s,
  1567. GranuleDef *g)
  1568. {
  1569. int32_t *ptr, *csa;
  1570. int n, i;
  1571. /* we antialias only "long" bands */
  1572. if (g->block_type == 2) {
  1573. if (!g->switch_point)
  1574. return;
  1575. /* XXX: check this for 8000Hz case */
  1576. n = 1;
  1577. } else {
  1578. n = SBLIMIT - 1;
  1579. }
  1580. ptr = g->sb_hybrid + 18;
  1581. for(i = n;i > 0;i--) {
  1582. int tmp0, tmp1, tmp2;
  1583. csa = &csa_table[0][0];
  1584. #define INT_AA(j) \
  1585. tmp0 = ptr[-1-j];\
  1586. tmp1 = ptr[ j];\
  1587. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1588. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1589. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1590. INT_AA(0)
  1591. INT_AA(1)
  1592. INT_AA(2)
  1593. INT_AA(3)
  1594. INT_AA(4)
  1595. INT_AA(5)
  1596. INT_AA(6)
  1597. INT_AA(7)
  1598. ptr += 18;
  1599. }
  1600. }
  1601. static void compute_antialias_float(MPADecodeContext *s,
  1602. GranuleDef *g)
  1603. {
  1604. int32_t *ptr;
  1605. int n, i;
  1606. /* we antialias only "long" bands */
  1607. if (g->block_type == 2) {
  1608. if (!g->switch_point)
  1609. return;
  1610. /* XXX: check this for 8000Hz case */
  1611. n = 1;
  1612. } else {
  1613. n = SBLIMIT - 1;
  1614. }
  1615. ptr = g->sb_hybrid + 18;
  1616. for(i = n;i > 0;i--) {
  1617. float tmp0, tmp1;
  1618. float *csa = &csa_table_float[0][0];
  1619. #define FLOAT_AA(j)\
  1620. tmp0= ptr[-1-j];\
  1621. tmp1= ptr[ j];\
  1622. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1623. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1624. FLOAT_AA(0)
  1625. FLOAT_AA(1)
  1626. FLOAT_AA(2)
  1627. FLOAT_AA(3)
  1628. FLOAT_AA(4)
  1629. FLOAT_AA(5)
  1630. FLOAT_AA(6)
  1631. FLOAT_AA(7)
  1632. ptr += 18;
  1633. }
  1634. }
  1635. static void compute_imdct(MPADecodeContext *s,
  1636. GranuleDef *g,
  1637. int32_t *sb_samples,
  1638. int32_t *mdct_buf)
  1639. {
  1640. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1641. int32_t out2[12];
  1642. int i, j, mdct_long_end, v, sblimit;
  1643. /* find last non zero block */
  1644. ptr = g->sb_hybrid + 576;
  1645. ptr1 = g->sb_hybrid + 2 * 18;
  1646. while (ptr >= ptr1) {
  1647. ptr -= 6;
  1648. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1649. if (v != 0)
  1650. break;
  1651. }
  1652. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1653. if (g->block_type == 2) {
  1654. /* XXX: check for 8000 Hz */
  1655. if (g->switch_point)
  1656. mdct_long_end = 2;
  1657. else
  1658. mdct_long_end = 0;
  1659. } else {
  1660. mdct_long_end = sblimit;
  1661. }
  1662. buf = mdct_buf;
  1663. ptr = g->sb_hybrid;
  1664. for(j=0;j<mdct_long_end;j++) {
  1665. /* apply window & overlap with previous buffer */
  1666. out_ptr = sb_samples + j;
  1667. /* select window */
  1668. if (g->switch_point && j < 2)
  1669. win1 = mdct_win[0];
  1670. else
  1671. win1 = mdct_win[g->block_type];
  1672. /* select frequency inversion */
  1673. win = win1 + ((4 * 36) & -(j & 1));
  1674. imdct36(out_ptr, buf, ptr, win);
  1675. out_ptr += 18*SBLIMIT;
  1676. ptr += 18;
  1677. buf += 18;
  1678. }
  1679. for(j=mdct_long_end;j<sblimit;j++) {
  1680. /* select frequency inversion */
  1681. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1682. out_ptr = sb_samples + j;
  1683. for(i=0; i<6; i++){
  1684. *out_ptr = buf[i];
  1685. out_ptr += SBLIMIT;
  1686. }
  1687. imdct12(out2, ptr + 0);
  1688. for(i=0;i<6;i++) {
  1689. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1690. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1691. out_ptr += SBLIMIT;
  1692. }
  1693. imdct12(out2, ptr + 1);
  1694. for(i=0;i<6;i++) {
  1695. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1696. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1697. out_ptr += SBLIMIT;
  1698. }
  1699. imdct12(out2, ptr + 2);
  1700. for(i=0;i<6;i++) {
  1701. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1702. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1703. buf[i + 6*2] = 0;
  1704. }
  1705. ptr += 18;
  1706. buf += 18;
  1707. }
  1708. /* zero bands */
  1709. for(j=sblimit;j<SBLIMIT;j++) {
  1710. /* overlap */
  1711. out_ptr = sb_samples + j;
  1712. for(i=0;i<18;i++) {
  1713. *out_ptr = buf[i];
  1714. buf[i] = 0;
  1715. out_ptr += SBLIMIT;
  1716. }
  1717. buf += 18;
  1718. }
  1719. }
  1720. #if defined(DEBUG)
  1721. void sample_dump(int fnum, int32_t *tab, int n)
  1722. {
  1723. static FILE *files[16], *f;
  1724. char buf[512];
  1725. int i;
  1726. int32_t v;
  1727. f = files[fnum];
  1728. if (!f) {
  1729. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1730. fnum,
  1731. #ifdef USE_HIGHPRECISION
  1732. "hp"
  1733. #else
  1734. "lp"
  1735. #endif
  1736. );
  1737. f = fopen(buf, "w");
  1738. if (!f)
  1739. return;
  1740. files[fnum] = f;
  1741. }
  1742. if (fnum == 0) {
  1743. static int pos = 0;
  1744. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1745. for(i=0;i<n;i++) {
  1746. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1747. if ((i % 18) == 17)
  1748. av_log(NULL, AV_LOG_DEBUG, "\n");
  1749. }
  1750. pos += n;
  1751. }
  1752. for(i=0;i<n;i++) {
  1753. /* normalize to 23 frac bits */
  1754. v = tab[i] << (23 - FRAC_BITS);
  1755. fwrite(&v, 1, sizeof(int32_t), f);
  1756. }
  1757. }
  1758. #endif
  1759. /* main layer3 decoding function */
  1760. static int mp_decode_layer3(MPADecodeContext *s)
  1761. {
  1762. int nb_granules, main_data_begin, private_bits;
  1763. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1764. GranuleDef granules[2][2], *g;
  1765. int16_t exponents[576];
  1766. /* read side info */
  1767. if (s->lsf) {
  1768. main_data_begin = get_bits(&s->gb, 8);
  1769. private_bits = get_bits(&s->gb, s->nb_channels);
  1770. nb_granules = 1;
  1771. } else {
  1772. main_data_begin = get_bits(&s->gb, 9);
  1773. if (s->nb_channels == 2)
  1774. private_bits = get_bits(&s->gb, 3);
  1775. else
  1776. private_bits = get_bits(&s->gb, 5);
  1777. nb_granules = 2;
  1778. for(ch=0;ch<s->nb_channels;ch++) {
  1779. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1780. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1781. }
  1782. }
  1783. for(gr=0;gr<nb_granules;gr++) {
  1784. for(ch=0;ch<s->nb_channels;ch++) {
  1785. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1786. g = &granules[ch][gr];
  1787. g->part2_3_length = get_bits(&s->gb, 12);
  1788. g->big_values = get_bits(&s->gb, 9);
  1789. if(g->big_values > 288){
  1790. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1791. return -1;
  1792. }
  1793. g->global_gain = get_bits(&s->gb, 8);
  1794. /* if MS stereo only is selected, we precompute the
  1795. 1/sqrt(2) renormalization factor */
  1796. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1797. MODE_EXT_MS_STEREO)
  1798. g->global_gain -= 2;
  1799. if (s->lsf)
  1800. g->scalefac_compress = get_bits(&s->gb, 9);
  1801. else
  1802. g->scalefac_compress = get_bits(&s->gb, 4);
  1803. blocksplit_flag = get_bits(&s->gb, 1);
  1804. if (blocksplit_flag) {
  1805. g->block_type = get_bits(&s->gb, 2);
  1806. if (g->block_type == 0){
  1807. av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
  1808. return -1;
  1809. }
  1810. g->switch_point = get_bits(&s->gb, 1);
  1811. for(i=0;i<2;i++)
  1812. g->table_select[i] = get_bits(&s->gb, 5);
  1813. for(i=0;i<3;i++)
  1814. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1815. /* compute huffman coded region sizes */
  1816. if (g->block_type == 2)
  1817. g->region_size[0] = (36 / 2);
  1818. else {
  1819. if (s->sample_rate_index <= 2)
  1820. g->region_size[0] = (36 / 2);
  1821. else if (s->sample_rate_index != 8)
  1822. g->region_size[0] = (54 / 2);
  1823. else
  1824. g->region_size[0] = (108 / 2);
  1825. }
  1826. g->region_size[1] = (576 / 2);
  1827. } else {
  1828. int region_address1, region_address2, l;
  1829. g->block_type = 0;
  1830. g->switch_point = 0;
  1831. for(i=0;i<3;i++)
  1832. g->table_select[i] = get_bits(&s->gb, 5);
  1833. /* compute huffman coded region sizes */
  1834. region_address1 = get_bits(&s->gb, 4);
  1835. region_address2 = get_bits(&s->gb, 3);
  1836. dprintf(s->avctx, "region1=%d region2=%d\n",
  1837. region_address1, region_address2);
  1838. g->region_size[0] =
  1839. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1840. l = region_address1 + region_address2 + 2;
  1841. /* should not overflow */
  1842. if (l > 22)
  1843. l = 22;
  1844. g->region_size[1] =
  1845. band_index_long[s->sample_rate_index][l] >> 1;
  1846. }
  1847. /* convert region offsets to region sizes and truncate
  1848. size to big_values */
  1849. g->region_size[2] = (576 / 2);
  1850. j = 0;
  1851. for(i=0;i<3;i++) {
  1852. k = FFMIN(g->region_size[i], g->big_values);
  1853. g->region_size[i] = k - j;
  1854. j = k;
  1855. }
  1856. /* compute band indexes */
  1857. if (g->block_type == 2) {
  1858. if (g->switch_point) {
  1859. /* if switched mode, we handle the 36 first samples as
  1860. long blocks. For 8000Hz, we handle the 48 first
  1861. exponents as long blocks (XXX: check this!) */
  1862. if (s->sample_rate_index <= 2)
  1863. g->long_end = 8;
  1864. else if (s->sample_rate_index != 8)
  1865. g->long_end = 6;
  1866. else
  1867. g->long_end = 4; /* 8000 Hz */
  1868. g->short_start = 2 + (s->sample_rate_index != 8);
  1869. } else {
  1870. g->long_end = 0;
  1871. g->short_start = 0;
  1872. }
  1873. } else {
  1874. g->short_start = 13;
  1875. g->long_end = 22;
  1876. }
  1877. g->preflag = 0;
  1878. if (!s->lsf)
  1879. g->preflag = get_bits(&s->gb, 1);
  1880. g->scalefac_scale = get_bits(&s->gb, 1);
  1881. g->count1table_select = get_bits(&s->gb, 1);
  1882. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1883. g->block_type, g->switch_point);
  1884. }
  1885. }
  1886. if (!s->adu_mode) {
  1887. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1888. assert((get_bits_count(&s->gb) & 7) == 0);
  1889. /* now we get bits from the main_data_begin offset */
  1890. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1891. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1892. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1893. s->in_gb= s->gb;
  1894. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1895. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1896. }
  1897. for(gr=0;gr<nb_granules;gr++) {
  1898. for(ch=0;ch<s->nb_channels;ch++) {
  1899. g = &granules[ch][gr];
  1900. if(get_bits_count(&s->gb)<0){
  1901. av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1902. main_data_begin, s->last_buf_size, gr);
  1903. skip_bits_long(&s->gb, g->part2_3_length);
  1904. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1905. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1906. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1907. s->gb= s->in_gb;
  1908. s->in_gb.buffer=NULL;
  1909. }
  1910. continue;
  1911. }
  1912. bits_pos = get_bits_count(&s->gb);
  1913. if (!s->lsf) {
  1914. uint8_t *sc;
  1915. int slen, slen1, slen2;
  1916. /* MPEG1 scale factors */
  1917. slen1 = slen_table[0][g->scalefac_compress];
  1918. slen2 = slen_table[1][g->scalefac_compress];
  1919. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1920. if (g->block_type == 2) {
  1921. n = g->switch_point ? 17 : 18;
  1922. j = 0;
  1923. if(slen1){
  1924. for(i=0;i<n;i++)
  1925. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1926. }else{
  1927. for(i=0;i<n;i++)
  1928. g->scale_factors[j++] = 0;
  1929. }
  1930. if(slen2){
  1931. for(i=0;i<18;i++)
  1932. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1933. for(i=0;i<3;i++)
  1934. g->scale_factors[j++] = 0;
  1935. }else{
  1936. for(i=0;i<21;i++)
  1937. g->scale_factors[j++] = 0;
  1938. }
  1939. } else {
  1940. sc = granules[ch][0].scale_factors;
  1941. j = 0;
  1942. for(k=0;k<4;k++) {
  1943. n = (k == 0 ? 6 : 5);
  1944. if ((g->scfsi & (0x8 >> k)) == 0) {
  1945. slen = (k < 2) ? slen1 : slen2;
  1946. if(slen){
  1947. for(i=0;i<n;i++)
  1948. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1949. }else{
  1950. for(i=0;i<n;i++)
  1951. g->scale_factors[j++] = 0;
  1952. }
  1953. } else {
  1954. /* simply copy from last granule */
  1955. for(i=0;i<n;i++) {
  1956. g->scale_factors[j] = sc[j];
  1957. j++;
  1958. }
  1959. }
  1960. }
  1961. g->scale_factors[j++] = 0;
  1962. }
  1963. #if defined(DEBUG)
  1964. {
  1965. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  1966. g->scfsi, gr, ch);
  1967. for(i=0;i<j;i++)
  1968. dprintf(s->avctx, " %d", g->scale_factors[i]);
  1969. dprintf(s->avctx, "\n");
  1970. }
  1971. #endif
  1972. } else {
  1973. int tindex, tindex2, slen[4], sl, sf;
  1974. /* LSF scale factors */
  1975. if (g->block_type == 2) {
  1976. tindex = g->switch_point ? 2 : 1;
  1977. } else {
  1978. tindex = 0;
  1979. }
  1980. sf = g->scalefac_compress;
  1981. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1982. /* intensity stereo case */
  1983. sf >>= 1;
  1984. if (sf < 180) {
  1985. lsf_sf_expand(slen, sf, 6, 6, 0);
  1986. tindex2 = 3;
  1987. } else if (sf < 244) {
  1988. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1989. tindex2 = 4;
  1990. } else {
  1991. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1992. tindex2 = 5;
  1993. }
  1994. } else {
  1995. /* normal case */
  1996. if (sf < 400) {
  1997. lsf_sf_expand(slen, sf, 5, 4, 4);
  1998. tindex2 = 0;
  1999. } else if (sf < 500) {
  2000. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2001. tindex2 = 1;
  2002. } else {
  2003. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2004. tindex2 = 2;
  2005. g->preflag = 1;
  2006. }
  2007. }
  2008. j = 0;
  2009. for(k=0;k<4;k++) {
  2010. n = lsf_nsf_table[tindex2][tindex][k];
  2011. sl = slen[k];
  2012. if(sl){
  2013. for(i=0;i<n;i++)
  2014. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2015. }else{
  2016. for(i=0;i<n;i++)
  2017. g->scale_factors[j++] = 0;
  2018. }
  2019. }
  2020. /* XXX: should compute exact size */
  2021. for(;j<40;j++)
  2022. g->scale_factors[j] = 0;
  2023. #if defined(DEBUG)
  2024. {
  2025. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2026. gr, ch);
  2027. for(i=0;i<40;i++)
  2028. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2029. dprintf(s->avctx, "\n");
  2030. }
  2031. #endif
  2032. }
  2033. exponents_from_scale_factors(s, g, exponents);
  2034. /* read Huffman coded residue */
  2035. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2036. #if defined(DEBUG)
  2037. sample_dump(0, g->sb_hybrid, 576);
  2038. #endif
  2039. } /* ch */
  2040. if (s->nb_channels == 2)
  2041. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2042. for(ch=0;ch<s->nb_channels;ch++) {
  2043. g = &granules[ch][gr];
  2044. reorder_block(s, g);
  2045. #if defined(DEBUG)
  2046. sample_dump(0, g->sb_hybrid, 576);
  2047. #endif
  2048. s->compute_antialias(s, g);
  2049. #if defined(DEBUG)
  2050. sample_dump(1, g->sb_hybrid, 576);
  2051. #endif
  2052. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2053. #if defined(DEBUG)
  2054. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2055. #endif
  2056. }
  2057. } /* gr */
  2058. if(get_bits_count(&s->gb)<0)
  2059. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2060. return nb_granules * 18;
  2061. }
  2062. static int mp_decode_frame(MPADecodeContext *s,
  2063. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2064. {
  2065. int i, nb_frames, ch;
  2066. OUT_INT *samples_ptr;
  2067. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2068. /* skip error protection field */
  2069. if (s->error_protection)
  2070. get_bits(&s->gb, 16);
  2071. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2072. switch(s->layer) {
  2073. case 1:
  2074. nb_frames = mp_decode_layer1(s);
  2075. break;
  2076. case 2:
  2077. nb_frames = mp_decode_layer2(s);
  2078. break;
  2079. case 3:
  2080. default:
  2081. nb_frames = mp_decode_layer3(s);
  2082. s->last_buf_size=0;
  2083. if(s->in_gb.buffer){
  2084. align_get_bits(&s->gb);
  2085. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2086. if(i >= 0 && i <= BACKSTEP_SIZE){
  2087. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2088. s->last_buf_size=i;
  2089. }else
  2090. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2091. s->gb= s->in_gb;
  2092. s->in_gb.buffer= NULL;
  2093. }
  2094. align_get_bits(&s->gb);
  2095. assert((get_bits_count(&s->gb) & 7) == 0);
  2096. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2097. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2098. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2099. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2100. }
  2101. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2102. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2103. s->last_buf_size += i;
  2104. break;
  2105. }
  2106. #if defined(DEBUG)
  2107. for(i=0;i<nb_frames;i++) {
  2108. for(ch=0;ch<s->nb_channels;ch++) {
  2109. int j;
  2110. dprintf(s->avctx, "%d-%d:", i, ch);
  2111. for(j=0;j<SBLIMIT;j++)
  2112. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2113. dprintf(s->avctx, "\n");
  2114. }
  2115. }
  2116. #endif
  2117. /* apply the synthesis filter */
  2118. for(ch=0;ch<s->nb_channels;ch++) {
  2119. samples_ptr = samples + ch;
  2120. for(i=0;i<nb_frames;i++) {
  2121. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2122. window, &s->dither_state,
  2123. samples_ptr, s->nb_channels,
  2124. s->sb_samples[ch][i]);
  2125. samples_ptr += 32 * s->nb_channels;
  2126. }
  2127. }
  2128. #ifdef DEBUG
  2129. s->frame_count++;
  2130. #endif
  2131. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2132. }
  2133. static int decode_frame(AVCodecContext * avctx,
  2134. void *data, int *data_size,
  2135. uint8_t * buf, int buf_size)
  2136. {
  2137. MPADecodeContext *s = avctx->priv_data;
  2138. uint32_t header;
  2139. int out_size;
  2140. OUT_INT *out_samples = data;
  2141. retry:
  2142. if(buf_size < HEADER_SIZE)
  2143. return -1;
  2144. header = AV_RB32(buf);
  2145. if(ff_mpa_check_header(header) < 0){
  2146. buf++;
  2147. // buf_size--;
  2148. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2149. goto retry;
  2150. }
  2151. if (ff_mpegaudio_decode_header(s, header) == 1) {
  2152. /* free format: prepare to compute frame size */
  2153. s->frame_size = -1;
  2154. return -1;
  2155. }
  2156. /* update codec info */
  2157. avctx->channels = s->nb_channels;
  2158. avctx->bit_rate = s->bit_rate;
  2159. avctx->sub_id = s->layer;
  2160. switch(s->layer) {
  2161. case 1:
  2162. avctx->frame_size = 384;
  2163. break;
  2164. case 2:
  2165. avctx->frame_size = 1152;
  2166. break;
  2167. case 3:
  2168. if (s->lsf)
  2169. avctx->frame_size = 576;
  2170. else
  2171. avctx->frame_size = 1152;
  2172. break;
  2173. }
  2174. if(s->frame_size<=0 || s->frame_size > buf_size){
  2175. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2176. return -1;
  2177. }else if(s->frame_size < buf_size){
  2178. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2179. buf_size= s->frame_size;
  2180. }
  2181. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2182. if(out_size>=0){
  2183. *data_size = out_size;
  2184. avctx->sample_rate = s->sample_rate;
  2185. //FIXME maybe move the other codec info stuff from above here too
  2186. }else
  2187. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2188. s->frame_size = 0;
  2189. return buf_size;
  2190. }
  2191. static void flush(AVCodecContext *avctx){
  2192. MPADecodeContext *s = avctx->priv_data;
  2193. s->last_buf_size= 0;
  2194. }
  2195. #ifdef CONFIG_MP3ADU_DECODER
  2196. static int decode_frame_adu(AVCodecContext * avctx,
  2197. void *data, int *data_size,
  2198. uint8_t * buf, int buf_size)
  2199. {
  2200. MPADecodeContext *s = avctx->priv_data;
  2201. uint32_t header;
  2202. int len, out_size;
  2203. OUT_INT *out_samples = data;
  2204. len = buf_size;
  2205. // Discard too short frames
  2206. if (buf_size < HEADER_SIZE) {
  2207. *data_size = 0;
  2208. return buf_size;
  2209. }
  2210. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2211. len = MPA_MAX_CODED_FRAME_SIZE;
  2212. // Get header and restore sync word
  2213. header = AV_RB32(buf) | 0xffe00000;
  2214. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2215. *data_size = 0;
  2216. return buf_size;
  2217. }
  2218. ff_mpegaudio_decode_header(s, header);
  2219. /* update codec info */
  2220. avctx->sample_rate = s->sample_rate;
  2221. avctx->channels = s->nb_channels;
  2222. avctx->bit_rate = s->bit_rate;
  2223. avctx->sub_id = s->layer;
  2224. avctx->frame_size=s->frame_size = len;
  2225. if (avctx->parse_only) {
  2226. out_size = buf_size;
  2227. } else {
  2228. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2229. }
  2230. *data_size = out_size;
  2231. return buf_size;
  2232. }
  2233. #endif /* CONFIG_MP3ADU_DECODER */
  2234. #ifdef CONFIG_MP3ON4_DECODER
  2235. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2236. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2237. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2238. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2239. static int chan_offset[9][5] = {
  2240. {0},
  2241. {0}, // C
  2242. {0}, // FLR
  2243. {2,0}, // C FLR
  2244. {2,0,3}, // C FLR BS
  2245. {4,0,2}, // C FLR BLRS
  2246. {4,0,2,5}, // C FLR BLRS LFE
  2247. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2248. {0,2} // FLR BLRS
  2249. };
  2250. static int decode_init_mp3on4(AVCodecContext * avctx)
  2251. {
  2252. MP3On4DecodeContext *s = avctx->priv_data;
  2253. int i;
  2254. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2255. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2256. return -1;
  2257. }
  2258. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2259. s->frames = mp3Frames[s->chan_cfg];
  2260. if(!s->frames) {
  2261. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2262. return -1;
  2263. }
  2264. avctx->channels = mp3Channels[s->chan_cfg];
  2265. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2266. * We replace avctx->priv_data with the context of the first decoder so that
  2267. * decode_init() does not have to be changed.
  2268. * Other decoders will be inited here copying data from the first context
  2269. */
  2270. // Allocate zeroed memory for the first decoder context
  2271. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2272. // Put decoder context in place to make init_decode() happy
  2273. avctx->priv_data = s->mp3decctx[0];
  2274. decode_init(avctx);
  2275. // Restore mp3on4 context pointer
  2276. avctx->priv_data = s;
  2277. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2278. /* Create a separate codec/context for each frame (first is already ok).
  2279. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2280. */
  2281. for (i = 1; i < s->frames; i++) {
  2282. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2283. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2284. s->mp3decctx[i]->adu_mode = 1;
  2285. s->mp3decctx[i]->avctx = avctx;
  2286. }
  2287. return 0;
  2288. }
  2289. static int decode_close_mp3on4(AVCodecContext * avctx)
  2290. {
  2291. MP3On4DecodeContext *s = avctx->priv_data;
  2292. int i;
  2293. for (i = 0; i < s->frames; i++)
  2294. if (s->mp3decctx[i])
  2295. av_free(s->mp3decctx[i]);
  2296. return 0;
  2297. }
  2298. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2299. void *data, int *data_size,
  2300. uint8_t * buf, int buf_size)
  2301. {
  2302. MP3On4DecodeContext *s = avctx->priv_data;
  2303. MPADecodeContext *m;
  2304. int len, out_size = 0;
  2305. uint32_t header;
  2306. OUT_INT *out_samples = data;
  2307. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2308. OUT_INT *outptr, *bp;
  2309. int fsize;
  2310. unsigned char *start2 = buf, *start;
  2311. int fr, i, j, n;
  2312. int off = avctx->channels;
  2313. int *coff = chan_offset[s->chan_cfg];
  2314. len = buf_size;
  2315. // Discard too short frames
  2316. if (buf_size < HEADER_SIZE) {
  2317. *data_size = 0;
  2318. return buf_size;
  2319. }
  2320. // If only one decoder interleave is not needed
  2321. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2322. for (fr = 0; fr < s->frames; fr++) {
  2323. start = start2;
  2324. fsize = (start[0] << 4) | (start[1] >> 4);
  2325. start2 += fsize;
  2326. if (fsize > len)
  2327. fsize = len;
  2328. len -= fsize;
  2329. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2330. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2331. m = s->mp3decctx[fr];
  2332. assert (m != NULL);
  2333. // Get header
  2334. header = AV_RB32(start) | 0xfff00000;
  2335. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2336. *data_size = 0;
  2337. return buf_size;
  2338. }
  2339. ff_mpegaudio_decode_header(m, header);
  2340. mp_decode_frame(m, decoded_buf, start, fsize);
  2341. n = MPA_FRAME_SIZE * m->nb_channels;
  2342. out_size += n * sizeof(OUT_INT);
  2343. if(s->frames > 1) {
  2344. /* interleave output data */
  2345. bp = out_samples + coff[fr];
  2346. if(m->nb_channels == 1) {
  2347. for(j = 0; j < n; j++) {
  2348. *bp = decoded_buf[j];
  2349. bp += off;
  2350. }
  2351. } else {
  2352. for(j = 0; j < n; j++) {
  2353. bp[0] = decoded_buf[j++];
  2354. bp[1] = decoded_buf[j];
  2355. bp += off;
  2356. }
  2357. }
  2358. }
  2359. }
  2360. /* update codec info */
  2361. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2362. avctx->frame_size= buf_size;
  2363. avctx->bit_rate = 0;
  2364. for (i = 0; i < s->frames; i++)
  2365. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2366. *data_size = out_size;
  2367. return buf_size;
  2368. }
  2369. #endif /* CONFIG_MP3ON4_DECODER */
  2370. #ifdef CONFIG_MP2_DECODER
  2371. AVCodec mp2_decoder =
  2372. {
  2373. "mp2",
  2374. CODEC_TYPE_AUDIO,
  2375. CODEC_ID_MP2,
  2376. sizeof(MPADecodeContext),
  2377. decode_init,
  2378. NULL,
  2379. NULL,
  2380. decode_frame,
  2381. CODEC_CAP_PARSE_ONLY,
  2382. };
  2383. #endif
  2384. #ifdef CONFIG_MP3_DECODER
  2385. AVCodec mp3_decoder =
  2386. {
  2387. "mp3",
  2388. CODEC_TYPE_AUDIO,
  2389. CODEC_ID_MP3,
  2390. sizeof(MPADecodeContext),
  2391. decode_init,
  2392. NULL,
  2393. NULL,
  2394. decode_frame,
  2395. CODEC_CAP_PARSE_ONLY,
  2396. .flush= flush,
  2397. };
  2398. #endif
  2399. #ifdef CONFIG_MP3ADU_DECODER
  2400. AVCodec mp3adu_decoder =
  2401. {
  2402. "mp3adu",
  2403. CODEC_TYPE_AUDIO,
  2404. CODEC_ID_MP3ADU,
  2405. sizeof(MPADecodeContext),
  2406. decode_init,
  2407. NULL,
  2408. NULL,
  2409. decode_frame_adu,
  2410. CODEC_CAP_PARSE_ONLY,
  2411. .flush= flush,
  2412. };
  2413. #endif
  2414. #ifdef CONFIG_MP3ON4_DECODER
  2415. AVCodec mp3on4_decoder =
  2416. {
  2417. "mp3on4",
  2418. CODEC_TYPE_AUDIO,
  2419. CODEC_ID_MP3ON4,
  2420. sizeof(MP3On4DecodeContext),
  2421. decode_init_mp3on4,
  2422. NULL,
  2423. decode_close_mp3on4,
  2424. decode_frame_mp3on4,
  2425. .flush= flush,
  2426. };
  2427. #endif