You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1130 lines
36KB

  1. /*
  2. * TwinVQ decoder
  3. * Copyright (c) 2009 Vitor Sessak
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "get_bits.h"
  23. #include "dsputil.h"
  24. #include "lsp.h"
  25. #include <math.h>
  26. #include <stdint.h>
  27. #include "twinvq_data.h"
  28. enum FrameType {
  29. FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
  30. FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
  31. FT_LONG, ///< Long frame (single sub-block + PPC)
  32. FT_PPC, ///< Periodic Peak Component (part of the long frame)
  33. };
  34. /**
  35. * Parameters and tables that are different for each frame type
  36. */
  37. struct FrameMode {
  38. uint8_t sub; ///< Number subblocks in each frame
  39. const uint16_t *bark_tab;
  40. /** number of distinct bark scale envelope values */
  41. uint8_t bark_env_size;
  42. const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
  43. uint8_t bark_n_coef;///< number of BSE CB coefficients to read
  44. uint8_t bark_n_bit; ///< number of bits of the BSE coefs
  45. //@{
  46. /** main codebooks for spectrum data */
  47. const int16_t *cb0;
  48. const int16_t *cb1;
  49. //@}
  50. uint8_t cb_len_read; ///< number of spectrum coefficients to read
  51. };
  52. /**
  53. * Parameters and tables that are different for every combination of
  54. * bitrate/sample rate
  55. */
  56. typedef struct {
  57. struct FrameMode fmode[3]; ///< frame type-dependant parameters
  58. uint16_t size; ///< frame size in samples
  59. uint8_t n_lsp; ///< number of lsp coefficients
  60. const float *lspcodebook;
  61. /* number of bits of the different LSP CB coefficients */
  62. uint8_t lsp_bit0;
  63. uint8_t lsp_bit1;
  64. uint8_t lsp_bit2;
  65. uint8_t lsp_split; ///< number of CB entries for the LSP decoding
  66. const int16_t *ppc_shape_cb; ///< PPC shape CB
  67. /** number of the bits for the PPC period value */
  68. uint8_t ppc_period_bit;
  69. uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
  70. uint8_t ppc_shape_len; ///< size of PPC shape CB
  71. uint8_t pgain_bit; ///< bits for PPC gain
  72. /** constant for peak period to peak width conversion */
  73. uint16_t peak_per2wid;
  74. } ModeTab;
  75. static const ModeTab mode_08_08 = {
  76. {
  77. { 8, bark_tab_s08_64, 10, tab.fcb08s , 1, 5, tab.cb0808s0, tab.cb0808s1, 18},
  78. { 2, bark_tab_m08_256, 20, tab.fcb08m , 2, 5, tab.cb0808m0, tab.cb0808m1, 16},
  79. { 1, bark_tab_l08_512, 30, tab.fcb08l , 3, 6, tab.cb0808l0, tab.cb0808l1, 17}
  80. },
  81. 512 , 12, tab.lsp08, 1, 5, 3, 3, tab.shape08 , 8, 28, 20, 6, 40
  82. };
  83. static const ModeTab mode_11_08 = {
  84. {
  85. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1108s0, tab.cb1108s1, 29},
  86. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1108m0, tab.cb1108m1, 24},
  87. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1108l0, tab.cb1108l1, 27}
  88. },
  89. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  90. };
  91. static const ModeTab mode_11_10 = {
  92. {
  93. { 8, bark_tab_s11_64, 10, tab.fcb11s , 1, 5, tab.cb1110s0, tab.cb1110s1, 21},
  94. { 2, bark_tab_m11_256, 20, tab.fcb11m , 2, 5, tab.cb1110m0, tab.cb1110m1, 18},
  95. { 1, bark_tab_l11_512, 30, tab.fcb11l , 3, 6, tab.cb1110l0, tab.cb1110l1, 20}
  96. },
  97. 512 , 16, tab.lsp11, 1, 6, 4, 3, tab.shape11 , 9, 36, 30, 7, 90
  98. };
  99. static const ModeTab mode_16_16 = {
  100. {
  101. { 8, bark_tab_s16_128, 10, tab.fcb16s , 1, 5, tab.cb1616s0, tab.cb1616s1, 16},
  102. { 2, bark_tab_m16_512, 20, tab.fcb16m , 2, 5, tab.cb1616m0, tab.cb1616m1, 15},
  103. { 1, bark_tab_l16_1024,30, tab.fcb16l , 3, 6, tab.cb1616l0, tab.cb1616l1, 16}
  104. },
  105. 1024, 16, tab.lsp16, 1, 6, 4, 3, tab.shape16 , 9, 56, 60, 7, 180
  106. };
  107. static const ModeTab mode_22_20 = {
  108. {
  109. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2220s0, tab.cb2220s1, 18},
  110. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2220m0, tab.cb2220m1, 17},
  111. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2220l0, tab.cb2220l1, 18}
  112. },
  113. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  114. };
  115. static const ModeTab mode_22_24 = {
  116. {
  117. { 8, bark_tab_s22_128, 10, tab.fcb22s_1, 1, 6, tab.cb2224s0, tab.cb2224s1, 15},
  118. { 2, bark_tab_m22_512, 20, tab.fcb22m_1, 2, 6, tab.cb2224m0, tab.cb2224m1, 14},
  119. { 1, bark_tab_l22_1024,32, tab.fcb22l_1, 4, 6, tab.cb2224l0, tab.cb2224l1, 15}
  120. },
  121. 1024, 16, tab.lsp22_1, 1, 6, 4, 3, tab.shape22_1, 9, 56, 36, 7, 144
  122. };
  123. static const ModeTab mode_22_32 = {
  124. {
  125. { 4, bark_tab_s22_128, 10, tab.fcb22s_2, 1, 6, tab.cb2232s0, tab.cb2232s1, 11},
  126. { 2, bark_tab_m22_256, 20, tab.fcb22m_2, 2, 6, tab.cb2232m0, tab.cb2232m1, 11},
  127. { 1, bark_tab_l22_512, 32, tab.fcb22l_2, 4, 6, tab.cb2232l0, tab.cb2232l1, 12}
  128. },
  129. 512 , 16, tab.lsp22_2, 1, 6, 4, 4, tab.shape22_2, 9, 56, 36, 7, 72
  130. };
  131. static const ModeTab mode_44_40 = {
  132. {
  133. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4440s0, tab.cb4440s1, 18},
  134. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4440m0, tab.cb4440m1, 17},
  135. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4440l0, tab.cb4440l1, 17}
  136. },
  137. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  138. };
  139. static const ModeTab mode_44_48 = {
  140. {
  141. {16, bark_tab_s44_128, 10, tab.fcb44s , 1, 6, tab.cb4448s0, tab.cb4448s1, 15},
  142. { 4, bark_tab_m44_512, 20, tab.fcb44m , 2, 6, tab.cb4448m0, tab.cb4448m1, 14},
  143. { 1, bark_tab_l44_2048,40, tab.fcb44l , 4, 6, tab.cb4448l0, tab.cb4448l1, 14}
  144. },
  145. 2048, 20, tab.lsp44, 1, 6, 4, 4, tab.shape44 , 9, 84, 54, 7, 432
  146. };
  147. typedef struct TwinContext {
  148. AVCodecContext *avctx;
  149. DSPContext dsp;
  150. FFTContext mdct_ctx[3];
  151. const ModeTab *mtab;
  152. // history
  153. float lsp_hist[2][20]; ///< LSP coefficients of the last frame
  154. float bark_hist[3][2][40]; ///< BSE coefficients of last frame
  155. // bitstream parameters
  156. int16_t permut[4][4096];
  157. uint8_t length[4][2]; ///< main codebook stride
  158. uint8_t length_change[4];
  159. uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
  160. int bits_main_spec_change[4];
  161. int n_div[4];
  162. float *spectrum;
  163. float *curr_frame; ///< non-interleaved output
  164. float *prev_frame; ///< non-interleaved previous frame
  165. int last_block_pos[2];
  166. float *cos_tabs[3];
  167. // scratch buffers
  168. float *tmp_buf;
  169. } TwinContext;
  170. #define PPC_SHAPE_CB_SIZE 64
  171. #define SUB_AMP_MAX 4500.0
  172. #define MULAW_MU 100.0
  173. #define GAIN_BITS 8
  174. #define AMP_MAX 13000.0
  175. #define SUB_GAIN_BITS 5
  176. #define WINDOW_TYPE_BITS 4
  177. #define PGAIN_MU 200
  178. /** @note not speed critical, hence not optimized */
  179. static void memset_float(float *buf, float val, int size)
  180. {
  181. while (size--)
  182. *buf++ = val;
  183. }
  184. /**
  185. * Evaluate a single LPC amplitude spectrum envelope coefficient from the line
  186. * spectrum pairs.
  187. *
  188. * @param lsp a vector of the cosinus of the LSP values
  189. * @param cos_val cos(PI*i/N) where i is the index of the LPC amplitude
  190. * @param order the order of the LSP (and the size of the *lsp buffer). Must
  191. * be a multiple of four.
  192. * @return the LPC value
  193. *
  194. * @todo reuse code from vorbis_dec.c: vorbis_floor0_decode
  195. */
  196. static float eval_lpc_spectrum(const float *lsp, float cos_val, int order)
  197. {
  198. int j;
  199. float p = 0.5f;
  200. float q = 0.5f;
  201. float two_cos_w = 2.0f*cos_val;
  202. for (j = 0; j + 1 < order; j += 2*2) {
  203. // Unroll the loop once since order is a multiple of four
  204. q *= lsp[j ] - two_cos_w;
  205. p *= lsp[j+1] - two_cos_w;
  206. q *= lsp[j+2] - two_cos_w;
  207. p *= lsp[j+3] - two_cos_w;
  208. }
  209. p *= p * (2.0f - two_cos_w);
  210. q *= q * (2.0f + two_cos_w);
  211. return 0.5 / (p + q);
  212. }
  213. /**
  214. * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs.
  215. */
  216. static void eval_lpcenv(TwinContext *tctx, const float *cos_vals, float *lpc)
  217. {
  218. int i;
  219. const ModeTab *mtab = tctx->mtab;
  220. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  221. for (i = 0; i < size_s/2; i++) {
  222. float cos_i = tctx->cos_tabs[0][i];
  223. lpc[i] = eval_lpc_spectrum(cos_vals, cos_i, mtab->n_lsp);
  224. lpc[size_s-i-1] = eval_lpc_spectrum(cos_vals, -cos_i, mtab->n_lsp);
  225. }
  226. }
  227. static void interpolate(float *out, float v1, float v2, int size)
  228. {
  229. int i;
  230. float step = (v1 - v2)/(size + 1);
  231. for (i = 0; i < size; i++) {
  232. v2 += step;
  233. out[i] = v2;
  234. }
  235. }
  236. static inline float get_cos(int idx, int part, const float *cos_tab, int size)
  237. {
  238. return part ? -cos_tab[size - idx - 1] :
  239. cos_tab[ idx ];
  240. }
  241. /**
  242. * Evaluates the LPC amplitude spectrum envelope from the line spectrum pairs.
  243. * Probably for speed reasons, the coefficients are evaluated as
  244. * siiiibiiiisiiiibiiiisiiiibiiiisiiiibiiiis ...
  245. * where s is an evaluated value, i is a value interpolated from the others
  246. * and b might be either calculated or interpolated, depending on an
  247. * unexplained condition.
  248. *
  249. * @param step the size of a block "siiiibiiii"
  250. * @param in the cosinus of the LSP data
  251. * @param part is 0 for 0...PI (positive cossinus values) and 1 for PI...2PI
  252. (negative cossinus values)
  253. * @param size the size of the whole output
  254. */
  255. static inline void eval_lpcenv_or_interp(TwinContext *tctx,
  256. enum FrameType ftype,
  257. float *out, const float *in,
  258. int size, int step, int part)
  259. {
  260. int i;
  261. const ModeTab *mtab = tctx->mtab;
  262. const float *cos_tab = tctx->cos_tabs[ftype];
  263. // Fill the 's'
  264. for (i = 0; i < size; i += step)
  265. out[i] =
  266. eval_lpc_spectrum(in,
  267. get_cos(i, part, cos_tab, size),
  268. mtab->n_lsp);
  269. // Fill the 'iiiibiiii'
  270. for (i = step; i <= size - 2*step; i += step) {
  271. if (out[i + step] + out[i - step] > 1.95*out[i] ||
  272. out[i + step] >= out[i - step]) {
  273. interpolate(out + i - step + 1, out[i], out[i-step], step - 1);
  274. } else {
  275. out[i - step/2] =
  276. eval_lpc_spectrum(in,
  277. get_cos(i-step/2, part, cos_tab, size),
  278. mtab->n_lsp);
  279. interpolate(out + i - step + 1, out[i-step/2], out[i-step ], step/2 - 1);
  280. interpolate(out + i - step/2 + 1, out[i ], out[i-step/2], step/2 - 1);
  281. }
  282. }
  283. interpolate(out + size - 2*step + 1, out[size-step], out[size - 2*step], step - 1);
  284. }
  285. static void eval_lpcenv_2parts(TwinContext *tctx, enum FrameType ftype,
  286. const float *buf, float *lpc,
  287. int size, int step)
  288. {
  289. eval_lpcenv_or_interp(tctx, ftype, lpc , buf, size/2, step, 0);
  290. eval_lpcenv_or_interp(tctx, ftype, lpc + size/2, buf, size/2, 2*step, 1);
  291. interpolate(lpc+size/2-step+1, lpc[size/2], lpc[size/2-step], step);
  292. memset_float(lpc + size - 2*step + 1, lpc[size - 2*step], 2*step - 1);
  293. }
  294. /**
  295. * Inverse quantization. Read CB coefficients for cb1 and cb2 from the
  296. * bitstream, sum the corresponding vectors and write the result to *out
  297. * after permutation.
  298. */
  299. static void dequant(TwinContext *tctx, GetBitContext *gb, float *out,
  300. enum FrameType ftype,
  301. const int16_t *cb0, const int16_t *cb1, int cb_len)
  302. {
  303. int pos = 0;
  304. int i, j;
  305. for (i = 0; i < tctx->n_div[ftype]; i++) {
  306. int tmp0, tmp1;
  307. int sign0 = 1;
  308. int sign1 = 1;
  309. const int16_t *tab0, *tab1;
  310. int length = tctx->length[ftype][i >= tctx->length_change[ftype]];
  311. int bitstream_second_part = (i >= tctx->bits_main_spec_change[ftype]);
  312. int bits = tctx->bits_main_spec[0][ftype][bitstream_second_part];
  313. if (bits == 7) {
  314. if (get_bits1(gb))
  315. sign0 = -1;
  316. bits = 6;
  317. }
  318. tmp0 = get_bits(gb, bits);
  319. bits = tctx->bits_main_spec[1][ftype][bitstream_second_part];
  320. if (bits == 7) {
  321. if (get_bits1(gb))
  322. sign1 = -1;
  323. bits = 6;
  324. }
  325. tmp1 = get_bits(gb, bits);
  326. tab0 = cb0 + tmp0*cb_len;
  327. tab1 = cb1 + tmp1*cb_len;
  328. for (j = 0; j < length; j++)
  329. out[tctx->permut[ftype][pos+j]] = sign0*tab0[j] + sign1*tab1[j];
  330. pos += length;
  331. }
  332. }
  333. static inline float mulawinv(float y, float clip, float mu)
  334. {
  335. y = av_clipf(y/clip, -1, 1);
  336. return clip * FFSIGN(y) * (exp(log(1+mu) * fabs(y)) - 1) / mu;
  337. }
  338. /**
  339. * Evaluate a*b/400 rounded to the nearest integer. When, for example,
  340. * a*b == 200 and the nearest integer is ill-defined, use a table to emulate
  341. * the following broken float-based implementation used by the binary decoder:
  342. *
  343. * \code
  344. * static int very_broken_op(int a, int b)
  345. * {
  346. * static float test; // Ugh, force gcc to do the division first...
  347. *
  348. * test = a/400.;
  349. * return b * test + 0.5;
  350. * }
  351. * \endcode
  352. *
  353. * @note if this function is replaced by just ROUNDED_DIV(a*b,400.), the stddev
  354. * between the original file (before encoding with Yamaha encoder) and the
  355. * decoded output increases, which leads one to believe that the encoder expects
  356. * exactly this broken calculation.
  357. */
  358. static int very_broken_op(int a, int b)
  359. {
  360. int x = a*b + 200;
  361. int size;
  362. const uint8_t *rtab;
  363. if (x%400 || b%5)
  364. return x/400;
  365. x /= 400;
  366. size = tabs[b/5].size;
  367. rtab = tabs[b/5].tab;
  368. return x - rtab[size*av_log2(2*(x - 1)/size)+(x - 1)%size];
  369. }
  370. /**
  371. * Sum to data a periodic peak of a given period, width and shape.
  372. *
  373. * @param period the period of the peak divised by 400.0
  374. */
  375. static void add_peak(int period, int width, const float *shape,
  376. float ppc_gain, float *speech, int len)
  377. {
  378. int i, j;
  379. const float *shape_end = shape + len;
  380. int center;
  381. // First peak centered around zero
  382. for (i = 0; i < width/2; i++)
  383. speech[i] += ppc_gain * *shape++;
  384. for (i = 1; i < ROUNDED_DIV(len,width) ; i++) {
  385. center = very_broken_op(period, i);
  386. for (j = -width/2; j < (width+1)/2; j++)
  387. speech[j+center] += ppc_gain * *shape++;
  388. }
  389. // For the last block, be careful not to go beyond the end of the buffer
  390. center = very_broken_op(period, i);
  391. for (j = -width/2; j < (width + 1)/2 && shape < shape_end; j++)
  392. speech[j+center] += ppc_gain * *shape++;
  393. }
  394. static void decode_ppc(TwinContext *tctx, int period_coef, const float *shape,
  395. float ppc_gain, float *speech)
  396. {
  397. const ModeTab *mtab = tctx->mtab;
  398. int isampf = tctx->avctx->sample_rate/1000;
  399. int ibps = tctx->avctx->bit_rate/(1000 * tctx->avctx->channels);
  400. int min_period = ROUNDED_DIV( 40*2*mtab->size, isampf);
  401. int max_period = ROUNDED_DIV(6*40*2*mtab->size, isampf);
  402. int period_range = max_period - min_period;
  403. // This is actually the period multiplied by 400. It is just linearly coded
  404. // between its maximum and minimum value.
  405. int period = min_period +
  406. ROUNDED_DIV(period_coef*period_range, (1 << mtab->ppc_period_bit) - 1);
  407. int width;
  408. if (isampf == 22 && ibps == 32) {
  409. // For some unknown reason, NTT decided to code this case differently...
  410. width = ROUNDED_DIV((period + 800)* mtab->peak_per2wid, 400*mtab->size);
  411. } else
  412. width = (period )* mtab->peak_per2wid/(400*mtab->size);
  413. add_peak(period, width, shape, ppc_gain, speech, mtab->ppc_shape_len);
  414. }
  415. static void dec_gain(TwinContext *tctx, GetBitContext *gb, enum FrameType ftype,
  416. float *out)
  417. {
  418. const ModeTab *mtab = tctx->mtab;
  419. int i, j;
  420. int sub = mtab->fmode[ftype].sub;
  421. float step = AMP_MAX / ((1 << GAIN_BITS) - 1);
  422. float sub_step = SUB_AMP_MAX / ((1 << SUB_GAIN_BITS) - 1);
  423. if (ftype == FT_LONG) {
  424. for (i = 0; i < tctx->avctx->channels; i++)
  425. out[i] = (1./(1<<13)) *
  426. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  427. AMP_MAX, MULAW_MU);
  428. } else {
  429. for (i = 0; i < tctx->avctx->channels; i++) {
  430. float val = (1./(1<<23)) *
  431. mulawinv(step * 0.5 + step * get_bits(gb, GAIN_BITS),
  432. AMP_MAX, MULAW_MU);
  433. for (j = 0; j < sub; j++) {
  434. out[i*sub + j] =
  435. val*mulawinv(sub_step* 0.5 +
  436. sub_step* get_bits(gb, SUB_GAIN_BITS),
  437. SUB_AMP_MAX, MULAW_MU);
  438. }
  439. }
  440. }
  441. }
  442. /**
  443. * Rearrange the LSP coefficients so that they have a minimum distance of
  444. * min_dist. This function does it exactly as described in section of 3.2.4
  445. * of the G.729 specification (but interestingly is different from what the
  446. * reference decoder actually does).
  447. */
  448. static void rearrange_lsp(int order, float *lsp, float min_dist)
  449. {
  450. int i;
  451. float min_dist2 = min_dist * 0.5;
  452. for (i = 1; i < order; i++)
  453. if (lsp[i] - lsp[i-1] < min_dist) {
  454. float avg = (lsp[i] + lsp[i-1]) * 0.5;
  455. lsp[i-1] = avg - min_dist2;
  456. lsp[i ] = avg + min_dist2;
  457. }
  458. }
  459. static void decode_lsp(TwinContext *tctx, int lpc_idx1, uint8_t *lpc_idx2,
  460. int lpc_hist_idx, float *lsp, float *hist)
  461. {
  462. const ModeTab *mtab = tctx->mtab;
  463. int i, j;
  464. const float *cb = mtab->lspcodebook;
  465. const float *cb2 = cb + (1 << mtab->lsp_bit1)*mtab->n_lsp;
  466. const float *cb3 = cb2 + (1 << mtab->lsp_bit2)*mtab->n_lsp;
  467. const int8_t funny_rounding[4] = {
  468. -2,
  469. mtab->lsp_split == 4 ? -2 : 1,
  470. mtab->lsp_split == 4 ? -2 : 1,
  471. 0
  472. };
  473. j = 0;
  474. for (i = 0; i < mtab->lsp_split; i++) {
  475. int chunk_end = ((i + 1)*mtab->n_lsp + funny_rounding[i])/mtab->lsp_split;
  476. for (; j < chunk_end; j++)
  477. lsp[j] = cb [lpc_idx1 * mtab->n_lsp + j] +
  478. cb2[lpc_idx2[i] * mtab->n_lsp + j];
  479. }
  480. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  481. for (i = 0; i < mtab->n_lsp; i++) {
  482. float tmp1 = 1. - cb3[lpc_hist_idx*mtab->n_lsp + i];
  483. float tmp2 = hist[i] * cb3[lpc_hist_idx*mtab->n_lsp + i];
  484. hist[i] = lsp[i];
  485. lsp[i] = lsp[i] * tmp1 + tmp2;
  486. }
  487. rearrange_lsp(mtab->n_lsp, lsp, 0.0001);
  488. rearrange_lsp(mtab->n_lsp, lsp, 0.000095);
  489. ff_sort_nearly_sorted_floats(lsp, mtab->n_lsp);
  490. }
  491. static void dec_lpc_spectrum_inv(TwinContext *tctx, float *lsp,
  492. enum FrameType ftype, float *lpc)
  493. {
  494. int i;
  495. int size = tctx->mtab->size / tctx->mtab->fmode[ftype].sub;
  496. for (i = 0; i < tctx->mtab->n_lsp; i++)
  497. lsp[i] = 2*cos(lsp[i]);
  498. switch (ftype) {
  499. case FT_LONG:
  500. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 8);
  501. break;
  502. case FT_MEDIUM:
  503. eval_lpcenv_2parts(tctx, ftype, lsp, lpc, size, 2);
  504. break;
  505. case FT_SHORT:
  506. eval_lpcenv(tctx, lsp, lpc);
  507. break;
  508. }
  509. }
  510. static void imdct_and_window(TwinContext *tctx, enum FrameType ftype, int wtype,
  511. float *in, float *prev, int ch)
  512. {
  513. const ModeTab *mtab = tctx->mtab;
  514. int bsize = mtab->size / mtab->fmode[ftype].sub;
  515. int size = mtab->size;
  516. float *buf1 = tctx->tmp_buf;
  517. int j;
  518. int wsize; // Window size
  519. float *out = tctx->curr_frame + 2*ch*mtab->size;
  520. float *out2 = out;
  521. float *prev_buf;
  522. int first_wsize;
  523. static const uint8_t wtype_to_wsize[] = {0, 0, 2, 2, 2, 1, 0, 1, 1};
  524. int types_sizes[] = {
  525. mtab->size / mtab->fmode[FT_LONG ].sub,
  526. mtab->size / mtab->fmode[FT_MEDIUM].sub,
  527. mtab->size / (2*mtab->fmode[FT_SHORT ].sub),
  528. };
  529. wsize = types_sizes[wtype_to_wsize[wtype]];
  530. first_wsize = wsize;
  531. prev_buf = prev + (size - bsize)/2;
  532. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  533. int sub_wtype = ftype == FT_MEDIUM ? 8 : wtype;
  534. if (!j && wtype == 4)
  535. sub_wtype = 4;
  536. else if (j == mtab->fmode[ftype].sub-1 && wtype == 7)
  537. sub_wtype = 7;
  538. wsize = types_sizes[wtype_to_wsize[sub_wtype]];
  539. ff_imdct_half(&tctx->mdct_ctx[ftype], buf1 + bsize*j, in + bsize*j);
  540. tctx->dsp.vector_fmul_window(out2,
  541. prev_buf + (bsize-wsize)/2,
  542. buf1 + bsize*j,
  543. ff_sine_windows[av_log2(wsize)],
  544. 0.0,
  545. wsize/2);
  546. out2 += wsize;
  547. memcpy(out2, buf1 + bsize*j + wsize/2, (bsize - wsize/2)*sizeof(float));
  548. out2 += ftype == FT_MEDIUM ? (bsize-wsize)/2 : bsize - wsize;
  549. prev_buf = buf1 + bsize*j + bsize/2;
  550. }
  551. tctx->last_block_pos[ch] = (size + first_wsize)/2;
  552. }
  553. static void imdct_output(TwinContext *tctx, enum FrameType ftype, int wtype,
  554. float *out)
  555. {
  556. const ModeTab *mtab = tctx->mtab;
  557. float *prev_buf = tctx->prev_frame + tctx->last_block_pos[0];
  558. int i, j;
  559. for (i = 0; i < tctx->avctx->channels; i++) {
  560. imdct_and_window(tctx, ftype, wtype,
  561. tctx->spectrum + i*mtab->size,
  562. prev_buf + 2*i*mtab->size,
  563. i);
  564. }
  565. if (tctx->avctx->channels == 2) {
  566. for (i = 0; i < mtab->size - tctx->last_block_pos[0]; i++) {
  567. float f1 = prev_buf[ i];
  568. float f2 = prev_buf[2*mtab->size + i];
  569. out[2*i ] = f1 + f2;
  570. out[2*i + 1] = f1 - f2;
  571. }
  572. for (j = 0; i < mtab->size; j++,i++) {
  573. float f1 = tctx->curr_frame[ j];
  574. float f2 = tctx->curr_frame[2*mtab->size + j];
  575. out[2*i ] = f1 + f2;
  576. out[2*i + 1] = f1 - f2;
  577. }
  578. } else {
  579. memcpy(out, prev_buf,
  580. (mtab->size - tctx->last_block_pos[0]) * sizeof(*out));
  581. out += mtab->size - tctx->last_block_pos[0];
  582. memcpy(out, tctx->curr_frame,
  583. (tctx->last_block_pos[0]) * sizeof(*out));
  584. }
  585. }
  586. static void dec_bark_env(TwinContext *tctx, const uint8_t *in, int use_hist,
  587. int ch, float *out, float gain, enum FrameType ftype)
  588. {
  589. const ModeTab *mtab = tctx->mtab;
  590. int i,j;
  591. float *hist = tctx->bark_hist[ftype][ch];
  592. float val = ((const float []) {0.4, 0.35, 0.28})[ftype];
  593. int bark_n_coef = mtab->fmode[ftype].bark_n_coef;
  594. int fw_cb_len = mtab->fmode[ftype].bark_env_size / bark_n_coef;
  595. int idx = 0;
  596. for (i = 0; i < fw_cb_len; i++)
  597. for (j = 0; j < bark_n_coef; j++, idx++) {
  598. float tmp2 =
  599. mtab->fmode[ftype].bark_cb[fw_cb_len*in[j] + i] * (1./4096);
  600. float st = use_hist ?
  601. (1. - val) * tmp2 + val*hist[idx] + 1. : tmp2 + 1.;
  602. hist[idx] = tmp2;
  603. if (st < -1.) st = 1.;
  604. memset_float(out, st * gain, mtab->fmode[ftype].bark_tab[idx]);
  605. out += mtab->fmode[ftype].bark_tab[idx];
  606. }
  607. }
  608. static void read_and_decode_spectrum(TwinContext *tctx, GetBitContext *gb,
  609. float *out, enum FrameType ftype)
  610. {
  611. const ModeTab *mtab = tctx->mtab;
  612. int channels = tctx->avctx->channels;
  613. int sub = mtab->fmode[ftype].sub;
  614. int block_size = mtab->size / sub;
  615. float gain[channels*sub];
  616. float ppc_shape[mtab->ppc_shape_len * channels * 4];
  617. uint8_t bark1[channels][sub][mtab->fmode[ftype].bark_n_coef];
  618. uint8_t bark_use_hist[channels][sub];
  619. uint8_t lpc_idx1[channels];
  620. uint8_t lpc_idx2[channels][tctx->mtab->lsp_split];
  621. uint8_t lpc_hist_idx[channels];
  622. int i, j, k;
  623. dequant(tctx, gb, out, ftype,
  624. mtab->fmode[ftype].cb0, mtab->fmode[ftype].cb1,
  625. mtab->fmode[ftype].cb_len_read);
  626. for (i = 0; i < channels; i++)
  627. for (j = 0; j < sub; j++)
  628. for (k = 0; k < mtab->fmode[ftype].bark_n_coef; k++)
  629. bark1[i][j][k] =
  630. get_bits(gb, mtab->fmode[ftype].bark_n_bit);
  631. for (i = 0; i < channels; i++)
  632. for (j = 0; j < sub; j++)
  633. bark_use_hist[i][j] = get_bits1(gb);
  634. dec_gain(tctx, gb, ftype, gain);
  635. for (i = 0; i < channels; i++) {
  636. lpc_hist_idx[i] = get_bits(gb, tctx->mtab->lsp_bit0);
  637. lpc_idx1 [i] = get_bits(gb, tctx->mtab->lsp_bit1);
  638. for (j = 0; j < tctx->mtab->lsp_split; j++)
  639. lpc_idx2[i][j] = get_bits(gb, tctx->mtab->lsp_bit2);
  640. }
  641. if (ftype == FT_LONG) {
  642. int cb_len_p = (tctx->n_div[3] + mtab->ppc_shape_len*channels - 1)/
  643. tctx->n_div[3];
  644. dequant(tctx, gb, ppc_shape, FT_PPC, mtab->ppc_shape_cb,
  645. mtab->ppc_shape_cb + cb_len_p*PPC_SHAPE_CB_SIZE, cb_len_p);
  646. }
  647. for (i = 0; i < channels; i++) {
  648. float *chunk = out + mtab->size * i;
  649. float lsp[tctx->mtab->n_lsp];
  650. for (j = 0; j < sub; j++) {
  651. dec_bark_env(tctx, bark1[i][j], bark_use_hist[i][j], i,
  652. tctx->tmp_buf, gain[sub*i+j], ftype);
  653. tctx->dsp.vector_fmul(chunk + block_size*j, tctx->tmp_buf,
  654. block_size);
  655. }
  656. if (ftype == FT_LONG) {
  657. float pgain_step = 25000. / ((1 << mtab->pgain_bit) - 1);
  658. int p_coef = get_bits(gb, tctx->mtab->ppc_period_bit);
  659. int g_coef = get_bits(gb, tctx->mtab->pgain_bit);
  660. float v = 1./8192*
  661. mulawinv(pgain_step*g_coef+ pgain_step/2, 25000., PGAIN_MU);
  662. decode_ppc(tctx, p_coef, ppc_shape + i*mtab->ppc_shape_len, v,
  663. chunk);
  664. }
  665. decode_lsp(tctx, lpc_idx1[i], lpc_idx2[i], lpc_hist_idx[i], lsp,
  666. tctx->lsp_hist[i]);
  667. dec_lpc_spectrum_inv(tctx, lsp, ftype, tctx->tmp_buf);
  668. for (j = 0; j < mtab->fmode[ftype].sub; j++) {
  669. tctx->dsp.vector_fmul(chunk, tctx->tmp_buf, block_size);
  670. chunk += block_size;
  671. }
  672. }
  673. }
  674. static int twin_decode_frame(AVCodecContext * avctx, void *data,
  675. int *data_size, AVPacket *avpkt)
  676. {
  677. const uint8_t *buf = avpkt->data;
  678. int buf_size = avpkt->size;
  679. TwinContext *tctx = avctx->priv_data;
  680. GetBitContext gb;
  681. const ModeTab *mtab = tctx->mtab;
  682. float *out = data;
  683. enum FrameType ftype;
  684. int window_type;
  685. static const enum FrameType wtype_to_ftype_table[] = {
  686. FT_LONG, FT_LONG, FT_SHORT, FT_LONG,
  687. FT_MEDIUM, FT_LONG, FT_LONG, FT_MEDIUM, FT_MEDIUM
  688. };
  689. if (buf_size*8 < avctx->bit_rate*mtab->size/avctx->sample_rate + 8) {
  690. av_log(avctx, AV_LOG_ERROR,
  691. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  692. *data_size = 0;
  693. return buf_size;
  694. }
  695. init_get_bits(&gb, buf, buf_size * 8);
  696. skip_bits(&gb, get_bits(&gb, 8));
  697. window_type = get_bits(&gb, WINDOW_TYPE_BITS);
  698. if (window_type > 8) {
  699. av_log(avctx, AV_LOG_ERROR, "Invalid window type, broken sample?\n");
  700. return -1;
  701. }
  702. ftype = wtype_to_ftype_table[window_type];
  703. read_and_decode_spectrum(tctx, &gb, tctx->spectrum, ftype);
  704. imdct_output(tctx, ftype, window_type, out);
  705. FFSWAP(float*, tctx->curr_frame, tctx->prev_frame);
  706. if (tctx->avctx->frame_number < 2) {
  707. *data_size=0;
  708. return buf_size;
  709. }
  710. tctx->dsp.vector_clipf(out, out, -32700./(1<<15), 32700./(1<<15),
  711. avctx->channels * mtab->size);
  712. *data_size = mtab->size*avctx->channels*4;
  713. return buf_size;
  714. }
  715. /**
  716. * Init IMDCT and windowing tables
  717. */
  718. static av_cold void init_mdct_win(TwinContext *tctx)
  719. {
  720. int i,j;
  721. const ModeTab *mtab = tctx->mtab;
  722. int size_s = mtab->size / mtab->fmode[FT_SHORT].sub;
  723. int size_m = mtab->size / mtab->fmode[FT_MEDIUM].sub;
  724. int channels = tctx->avctx->channels;
  725. float norm = channels == 1 ? 2. : 1.;
  726. for (i = 0; i < 3; i++) {
  727. int bsize = tctx->mtab->size/tctx->mtab->fmode[i].sub;
  728. ff_mdct_init(&tctx->mdct_ctx[i], av_log2(bsize) + 1, 1,
  729. -sqrt(norm/bsize) / (1<<15));
  730. }
  731. tctx->tmp_buf = av_malloc(mtab->size * sizeof(*tctx->tmp_buf));
  732. tctx->spectrum = av_malloc(2*mtab->size*channels*sizeof(float));
  733. tctx->curr_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  734. tctx->prev_frame = av_malloc(2*mtab->size*channels*sizeof(float));
  735. for (i = 0; i < 3; i++) {
  736. int m = 4*mtab->size/mtab->fmode[i].sub;
  737. double freq = 2*M_PI/m;
  738. tctx->cos_tabs[i] = av_malloc((m/4)*sizeof(*tctx->cos_tabs));
  739. for (j = 0; j <= m/8; j++)
  740. tctx->cos_tabs[i][j] = cos((2*j + 1)*freq);
  741. for (j = 1; j < m/8; j++)
  742. tctx->cos_tabs[i][m/4-j] = tctx->cos_tabs[i][j];
  743. }
  744. ff_init_ff_sine_windows(av_log2(size_m));
  745. ff_init_ff_sine_windows(av_log2(size_s/2));
  746. ff_init_ff_sine_windows(av_log2(mtab->size));
  747. }
  748. /**
  749. * Interpret the data as if it were a num_blocks x line_len[0] matrix and for
  750. * each line do a cyclic permutation, i.e.
  751. * abcdefghijklm -> defghijklmabc
  752. * where the amount to be shifted is evaluated depending on the column.
  753. */
  754. static void permutate_in_line(int16_t *tab, int num_vect, int num_blocks,
  755. int block_size,
  756. const uint8_t line_len[2], int length_div,
  757. enum FrameType ftype)
  758. {
  759. int i,j;
  760. for (i = 0; i < line_len[0]; i++) {
  761. int shift;
  762. if (num_blocks == 1 ||
  763. (ftype == FT_LONG && num_vect % num_blocks) ||
  764. (ftype != FT_LONG && num_vect & 1 ) ||
  765. i == line_len[1]) {
  766. shift = 0;
  767. } else if (ftype == FT_LONG) {
  768. shift = i;
  769. } else
  770. shift = i*i;
  771. for (j = 0; j < num_vect && (j+num_vect*i < block_size*num_blocks); j++)
  772. tab[i*num_vect+j] = i*num_vect + (j + shift) % num_vect;
  773. }
  774. }
  775. /**
  776. * Interpret the input data as in the following table:
  777. *
  778. * \verbatim
  779. *
  780. * abcdefgh
  781. * ijklmnop
  782. * qrstuvw
  783. * x123456
  784. *
  785. * \endverbatim
  786. *
  787. * and transpose it, giving the output
  788. * aiqxbjr1cks2dlt3emu4fvn5gow6hp
  789. */
  790. static void transpose_perm(int16_t *out, int16_t *in, int num_vect,
  791. const uint8_t line_len[2], int length_div)
  792. {
  793. int i,j;
  794. int cont= 0;
  795. for (i = 0; i < num_vect; i++)
  796. for (j = 0; j < line_len[i >= length_div]; j++)
  797. out[cont++] = in[j*num_vect + i];
  798. }
  799. static void linear_perm(int16_t *out, int16_t *in, int n_blocks, int size)
  800. {
  801. int block_size = size/n_blocks;
  802. int i;
  803. for (i = 0; i < size; i++)
  804. out[i] = block_size * (in[i] % n_blocks) + in[i] / n_blocks;
  805. }
  806. static av_cold void construct_perm_table(TwinContext *tctx,enum FrameType ftype)
  807. {
  808. int block_size;
  809. const ModeTab *mtab = tctx->mtab;
  810. int size = tctx->avctx->channels*mtab->fmode[ftype].sub;
  811. int16_t *tmp_perm = (int16_t *) tctx->tmp_buf;
  812. if (ftype == FT_PPC) {
  813. size = tctx->avctx->channels;
  814. block_size = mtab->ppc_shape_len;
  815. } else
  816. block_size = mtab->size / mtab->fmode[ftype].sub;
  817. permutate_in_line(tmp_perm, tctx->n_div[ftype], size,
  818. block_size, tctx->length[ftype],
  819. tctx->length_change[ftype], ftype);
  820. transpose_perm(tctx->permut[ftype], tmp_perm, tctx->n_div[ftype],
  821. tctx->length[ftype], tctx->length_change[ftype]);
  822. linear_perm(tctx->permut[ftype], tctx->permut[ftype], size,
  823. size*block_size);
  824. }
  825. static av_cold void init_bitstream_params(TwinContext *tctx)
  826. {
  827. const ModeTab *mtab = tctx->mtab;
  828. int n_ch = tctx->avctx->channels;
  829. int total_fr_bits = tctx->avctx->bit_rate*mtab->size/
  830. tctx->avctx->sample_rate;
  831. int lsp_bits_per_block = n_ch*(mtab->lsp_bit0 + mtab->lsp_bit1 +
  832. mtab->lsp_split*mtab->lsp_bit2);
  833. int ppc_bits = n_ch*(mtab->pgain_bit + mtab->ppc_shape_bit +
  834. mtab->ppc_period_bit);
  835. int bsize_no_main_cb[3];
  836. int bse_bits[3];
  837. int i;
  838. enum FrameType frametype;
  839. for (i = 0; i < 3; i++)
  840. // +1 for history usage switch
  841. bse_bits[i] = n_ch *
  842. (mtab->fmode[i].bark_n_coef * mtab->fmode[i].bark_n_bit + 1);
  843. bsize_no_main_cb[2] = bse_bits[2] + lsp_bits_per_block + ppc_bits +
  844. WINDOW_TYPE_BITS + n_ch*GAIN_BITS;
  845. for (i = 0; i < 2; i++)
  846. bsize_no_main_cb[i] =
  847. lsp_bits_per_block + n_ch*GAIN_BITS + WINDOW_TYPE_BITS +
  848. mtab->fmode[i].sub*(bse_bits[i] + n_ch*SUB_GAIN_BITS);
  849. // The remaining bits are all used for the main spectrum coefficients
  850. for (i = 0; i < 4; i++) {
  851. int bit_size;
  852. int vect_size;
  853. int rounded_up, rounded_down, num_rounded_down, num_rounded_up;
  854. if (i == 3) {
  855. bit_size = n_ch * mtab->ppc_shape_bit;
  856. vect_size = n_ch * mtab->ppc_shape_len;
  857. } else {
  858. bit_size = total_fr_bits - bsize_no_main_cb[i];
  859. vect_size = n_ch * mtab->size;
  860. }
  861. tctx->n_div[i] = (bit_size + 13) / 14;
  862. rounded_up = (bit_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  863. rounded_down = (bit_size )/tctx->n_div[i];
  864. num_rounded_down = rounded_up * tctx->n_div[i] - bit_size;
  865. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  866. tctx->bits_main_spec[0][i][0] = (rounded_up + 1)/2;
  867. tctx->bits_main_spec[1][i][0] = (rounded_up )/2;
  868. tctx->bits_main_spec[0][i][1] = (rounded_down + 1)/2;
  869. tctx->bits_main_spec[1][i][1] = (rounded_down )/2;
  870. tctx->bits_main_spec_change[i] = num_rounded_up;
  871. rounded_up = (vect_size + tctx->n_div[i] - 1)/tctx->n_div[i];
  872. rounded_down = (vect_size )/tctx->n_div[i];
  873. num_rounded_down = rounded_up * tctx->n_div[i] - vect_size;
  874. num_rounded_up = tctx->n_div[i] - num_rounded_down;
  875. tctx->length[i][0] = rounded_up;
  876. tctx->length[i][1] = rounded_down;
  877. tctx->length_change[i] = num_rounded_up;
  878. }
  879. for (frametype = FT_SHORT; frametype <= FT_PPC; frametype++)
  880. construct_perm_table(tctx, frametype);
  881. }
  882. static av_cold int twin_decode_init(AVCodecContext *avctx)
  883. {
  884. TwinContext *tctx = avctx->priv_data;
  885. int isampf = avctx->sample_rate/1000;
  886. int ibps = avctx->bit_rate/(1000 * avctx->channels);
  887. tctx->avctx = avctx;
  888. avctx->sample_fmt = SAMPLE_FMT_FLT;
  889. if (avctx->channels > 2) {
  890. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %i\n",
  891. avctx->channels);
  892. return -1;
  893. }
  894. switch ((isampf << 8) + ibps) {
  895. case (8 <<8) + 8: tctx->mtab = &mode_08_08; break;
  896. case (11<<8) + 8: tctx->mtab = &mode_11_08; break;
  897. case (11<<8) + 10: tctx->mtab = &mode_11_10; break;
  898. case (16<<8) + 16: tctx->mtab = &mode_16_16; break;
  899. case (22<<8) + 20: tctx->mtab = &mode_22_20; break;
  900. case (22<<8) + 24: tctx->mtab = &mode_22_24; break;
  901. case (22<<8) + 32: tctx->mtab = &mode_22_32; break;
  902. case (44<<8) + 40: tctx->mtab = &mode_44_40; break;
  903. case (44<<8) + 48: tctx->mtab = &mode_44_48; break;
  904. default:
  905. av_log(avctx, AV_LOG_ERROR, "This version does not support %d kHz - %d kbit/s/ch mode.\n", isampf, isampf);
  906. return -1;
  907. }
  908. dsputil_init(&tctx->dsp, avctx);
  909. init_mdct_win(tctx);
  910. init_bitstream_params(tctx);
  911. memset_float(tctx->bark_hist[0][0], 0.1, FF_ARRAY_ELEMS(tctx->bark_hist));
  912. return 0;
  913. }
  914. static av_cold int twin_decode_close(AVCodecContext *avctx)
  915. {
  916. TwinContext *tctx = avctx->priv_data;
  917. int i;
  918. for (i = 0; i < 3; i++) {
  919. ff_mdct_end(&tctx->mdct_ctx[i]);
  920. av_free(tctx->cos_tabs[i]);
  921. }
  922. av_free(tctx->curr_frame);
  923. av_free(tctx->spectrum);
  924. av_free(tctx->prev_frame);
  925. av_free(tctx->tmp_buf);
  926. return 0;
  927. }
  928. AVCodec twinvq_decoder =
  929. {
  930. "twinvq",
  931. CODEC_TYPE_AUDIO,
  932. CODEC_ID_TWINVQ,
  933. sizeof(TwinContext),
  934. twin_decode_init,
  935. NULL,
  936. twin_decode_close,
  937. twin_decode_frame,
  938. .long_name = NULL_IF_CONFIG_SMALL("VQF TwinVQ"),
  939. };