You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1085 lines
39KB

  1. /*
  2. * Copyright (c) 2003 The FFmpeg Project
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /*
  21. * How to use this decoder:
  22. * SVQ3 data is transported within Apple Quicktime files. Quicktime files
  23. * have stsd atoms to describe media trak properties. A stsd atom for a
  24. * video trak contains 1 or more ImageDescription atoms. These atoms begin
  25. * with the 4-byte length of the atom followed by the codec fourcc. Some
  26. * decoders need information in this atom to operate correctly. Such
  27. * is the case with SVQ3. In order to get the best use out of this decoder,
  28. * the calling app must make the SVQ3 ImageDescription atom available
  29. * via the AVCodecContext's extradata[_size] field:
  30. *
  31. * AVCodecContext.extradata = pointer to ImageDescription, first characters
  32. * are expected to be 'S', 'V', 'Q', and '3', NOT the 4-byte atom length
  33. * AVCodecContext.extradata_size = size of ImageDescription atom memory
  34. * buffer (which will be the same as the ImageDescription atom size field
  35. * from the QT file, minus 4 bytes since the length is missing)
  36. *
  37. * You will know you have these parameters passed correctly when the decoder
  38. * correctly decodes this file:
  39. * http://samples.mplayerhq.hu/V-codecs/SVQ3/Vertical400kbit.sorenson3.mov
  40. */
  41. #include "internal.h"
  42. #include "dsputil.h"
  43. #include "avcodec.h"
  44. #include "mpegvideo.h"
  45. #include "h264.h"
  46. #include "h264data.h" //FIXME FIXME FIXME
  47. #include "h264_mvpred.h"
  48. #include "golomb.h"
  49. #include "rectangle.h"
  50. #include "vdpau_internal.h"
  51. #if CONFIG_ZLIB
  52. #include <zlib.h>
  53. #endif
  54. #include "svq1.h"
  55. /**
  56. * @file libavcodec/svq3.c
  57. * svq3 decoder.
  58. */
  59. #define FULLPEL_MODE 1
  60. #define HALFPEL_MODE 2
  61. #define THIRDPEL_MODE 3
  62. #define PREDICT_MODE 4
  63. /* dual scan (from some older h264 draft)
  64. o-->o-->o o
  65. | /|
  66. o o o / o
  67. | / | |/ |
  68. o o o o
  69. /
  70. o-->o-->o-->o
  71. */
  72. static const uint8_t svq3_scan[16] = {
  73. 0+0*4, 1+0*4, 2+0*4, 2+1*4,
  74. 2+2*4, 3+0*4, 3+1*4, 3+2*4,
  75. 0+1*4, 0+2*4, 1+1*4, 1+2*4,
  76. 0+3*4, 1+3*4, 2+3*4, 3+3*4,
  77. };
  78. static const uint8_t svq3_pred_0[25][2] = {
  79. { 0, 0 },
  80. { 1, 0 }, { 0, 1 },
  81. { 0, 2 }, { 1, 1 }, { 2, 0 },
  82. { 3, 0 }, { 2, 1 }, { 1, 2 }, { 0, 3 },
  83. { 0, 4 }, { 1, 3 }, { 2, 2 }, { 3, 1 }, { 4, 0 },
  84. { 4, 1 }, { 3, 2 }, { 2, 3 }, { 1, 4 },
  85. { 2, 4 }, { 3, 3 }, { 4, 2 },
  86. { 4, 3 }, { 3, 4 },
  87. { 4, 4 }
  88. };
  89. static const int8_t svq3_pred_1[6][6][5] = {
  90. { { 2,-1,-1,-1,-1 }, { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 },
  91. { 2, 1,-1,-1,-1 }, { 1, 2,-1,-1,-1 }, { 1, 2,-1,-1,-1 } },
  92. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 4, 3 }, { 0, 1, 2, 4, 3 },
  93. { 0, 2, 1, 4, 3 }, { 2, 0, 1, 3, 4 }, { 0, 4, 2, 1, 3 } },
  94. { { 2, 0,-1,-1,-1 }, { 2, 1, 0, 4, 3 }, { 1, 2, 4, 0, 3 },
  95. { 2, 1, 0, 4, 3 }, { 2, 1, 4, 3, 0 }, { 1, 2, 4, 0, 3 } },
  96. { { 2, 0,-1,-1,-1 }, { 2, 0, 1, 4, 3 }, { 1, 2, 0, 4, 3 },
  97. { 2, 1, 0, 4, 3 }, { 2, 1, 3, 4, 0 }, { 2, 4, 1, 0, 3 } },
  98. { { 0, 2,-1,-1,-1 }, { 0, 2, 1, 3, 4 }, { 1, 2, 3, 0, 4 },
  99. { 2, 0, 1, 3, 4 }, { 2, 1, 3, 0, 4 }, { 2, 0, 4, 3, 1 } },
  100. { { 0, 2,-1,-1,-1 }, { 0, 2, 4, 1, 3 }, { 1, 4, 2, 0, 3 },
  101. { 4, 2, 0, 1, 3 }, { 2, 0, 1, 4, 3 }, { 4, 2, 1, 0, 3 } },
  102. };
  103. static const struct { uint8_t run; uint8_t level; } svq3_dct_tables[2][16] = {
  104. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 2, 1 }, { 0, 2 }, { 3, 1 }, { 4, 1 }, { 5, 1 },
  105. { 0, 3 }, { 1, 2 }, { 2, 2 }, { 6, 1 }, { 7, 1 }, { 8, 1 }, { 9, 1 }, { 0, 4 } },
  106. { { 0, 0 }, { 0, 1 }, { 1, 1 }, { 0, 2 }, { 2, 1 }, { 0, 3 }, { 0, 4 }, { 0, 5 },
  107. { 3, 1 }, { 4, 1 }, { 1, 2 }, { 1, 3 }, { 0, 6 }, { 0, 7 }, { 0, 8 }, { 0, 9 } }
  108. };
  109. static const uint32_t svq3_dequant_coeff[32] = {
  110. 3881, 4351, 4890, 5481, 6154, 6914, 7761, 8718,
  111. 9781, 10987, 12339, 13828, 15523, 17435, 19561, 21873,
  112. 24552, 27656, 30847, 34870, 38807, 43747, 49103, 54683,
  113. 61694, 68745, 77615, 89113,100253,109366,126635,141533
  114. };
  115. void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp)
  116. {
  117. const int qmul = svq3_dequant_coeff[qp];
  118. #define stride 16
  119. int i;
  120. int temp[16];
  121. static const int x_offset[4] = {0, 1*stride, 4* stride, 5*stride};
  122. static const int y_offset[4] = {0, 2*stride, 8* stride, 10*stride};
  123. for (i = 0; i < 4; i++){
  124. const int offset = y_offset[i];
  125. const int z0 = 13*(block[offset+stride*0] + block[offset+stride*4]);
  126. const int z1 = 13*(block[offset+stride*0] - block[offset+stride*4]);
  127. const int z2 = 7* block[offset+stride*1] - 17*block[offset+stride*5];
  128. const int z3 = 17* block[offset+stride*1] + 7*block[offset+stride*5];
  129. temp[4*i+0] = z0+z3;
  130. temp[4*i+1] = z1+z2;
  131. temp[4*i+2] = z1-z2;
  132. temp[4*i+3] = z0-z3;
  133. }
  134. for (i = 0; i < 4; i++){
  135. const int offset = x_offset[i];
  136. const int z0 = 13*(temp[4*0+i] + temp[4*2+i]);
  137. const int z1 = 13*(temp[4*0+i] - temp[4*2+i]);
  138. const int z2 = 7* temp[4*1+i] - 17*temp[4*3+i];
  139. const int z3 = 17* temp[4*1+i] + 7*temp[4*3+i];
  140. block[stride*0 +offset] = ((z0 + z3)*qmul + 0x80000) >> 20;
  141. block[stride*2 +offset] = ((z1 + z2)*qmul + 0x80000) >> 20;
  142. block[stride*8 +offset] = ((z1 - z2)*qmul + 0x80000) >> 20;
  143. block[stride*10+offset] = ((z0 - z3)*qmul + 0x80000) >> 20;
  144. }
  145. }
  146. #undef stride
  147. void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp,
  148. int dc)
  149. {
  150. const int qmul = svq3_dequant_coeff[qp];
  151. int i;
  152. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  153. if (dc) {
  154. dc = 13*13*((dc == 1) ? 1538*block[0] : ((qmul*(block[0] >> 3)) / 2));
  155. block[0] = 0;
  156. }
  157. for (i = 0; i < 4; i++) {
  158. const int z0 = 13*(block[0 + 4*i] + block[2 + 4*i]);
  159. const int z1 = 13*(block[0 + 4*i] - block[2 + 4*i]);
  160. const int z2 = 7* block[1 + 4*i] - 17*block[3 + 4*i];
  161. const int z3 = 17* block[1 + 4*i] + 7*block[3 + 4*i];
  162. block[0 + 4*i] = z0 + z3;
  163. block[1 + 4*i] = z1 + z2;
  164. block[2 + 4*i] = z1 - z2;
  165. block[3 + 4*i] = z0 - z3;
  166. }
  167. for (i = 0; i < 4; i++) {
  168. const int z0 = 13*(block[i + 4*0] + block[i + 4*2]);
  169. const int z1 = 13*(block[i + 4*0] - block[i + 4*2]);
  170. const int z2 = 7* block[i + 4*1] - 17*block[i + 4*3];
  171. const int z3 = 17* block[i + 4*1] + 7*block[i + 4*3];
  172. const int rr = (dc + 0x80000);
  173. dst[i + stride*0] = cm[ dst[i + stride*0] + (((z0 + z3)*qmul + rr) >> 20) ];
  174. dst[i + stride*1] = cm[ dst[i + stride*1] + (((z1 + z2)*qmul + rr) >> 20) ];
  175. dst[i + stride*2] = cm[ dst[i + stride*2] + (((z1 - z2)*qmul + rr) >> 20) ];
  176. dst[i + stride*3] = cm[ dst[i + stride*3] + (((z0 - z3)*qmul + rr) >> 20) ];
  177. }
  178. }
  179. static inline int svq3_decode_block(GetBitContext *gb, DCTELEM *block,
  180. int index, const int type)
  181. {
  182. static const uint8_t *const scan_patterns[4] =
  183. { luma_dc_zigzag_scan, zigzag_scan, svq3_scan, chroma_dc_scan };
  184. int run, level, sign, vlc, limit;
  185. const int intra = (3 * type) >> 2;
  186. const uint8_t *const scan = scan_patterns[type];
  187. for (limit = (16 >> intra); index < 16; index = limit, limit += 8) {
  188. for (; (vlc = svq3_get_ue_golomb(gb)) != 0; index++) {
  189. if (vlc == INVALID_VLC)
  190. return -1;
  191. sign = (vlc & 0x1) - 1;
  192. vlc = (vlc + 1) >> 1;
  193. if (type == 3) {
  194. if (vlc < 3) {
  195. run = 0;
  196. level = vlc;
  197. } else if (vlc < 4) {
  198. run = 1;
  199. level = 1;
  200. } else {
  201. run = (vlc & 0x3);
  202. level = ((vlc + 9) >> 2) - run;
  203. }
  204. } else {
  205. if (vlc < 16) {
  206. run = svq3_dct_tables[intra][vlc].run;
  207. level = svq3_dct_tables[intra][vlc].level;
  208. } else if (intra) {
  209. run = (vlc & 0x7);
  210. level = (vlc >> 3) + ((run == 0) ? 8 : ((run < 2) ? 2 : ((run < 5) ? 0 : -1)));
  211. } else {
  212. run = (vlc & 0xF);
  213. level = (vlc >> 4) + ((run == 0) ? 4 : ((run < 3) ? 2 : ((run < 10) ? 1 : 0)));
  214. }
  215. }
  216. if ((index += run) >= limit)
  217. return -1;
  218. block[scan[index]] = (level ^ sign) - sign;
  219. }
  220. if (type != 2) {
  221. break;
  222. }
  223. }
  224. return 0;
  225. }
  226. static inline void svq3_mc_dir_part(MpegEncContext *s,
  227. int x, int y, int width, int height,
  228. int mx, int my, int dxy,
  229. int thirdpel, int dir, int avg)
  230. {
  231. const Picture *pic = (dir == 0) ? &s->last_picture : &s->next_picture;
  232. uint8_t *src, *dest;
  233. int i, emu = 0;
  234. int blocksize = 2 - (width>>3); //16->0, 8->1, 4->2
  235. mx += x;
  236. my += y;
  237. if (mx < 0 || mx >= (s->h_edge_pos - width - 1) ||
  238. my < 0 || my >= (s->v_edge_pos - height - 1)) {
  239. if ((s->flags & CODEC_FLAG_EMU_EDGE)) {
  240. emu = 1;
  241. }
  242. mx = av_clip (mx, -16, (s->h_edge_pos - width + 15));
  243. my = av_clip (my, -16, (s->v_edge_pos - height + 15));
  244. }
  245. /* form component predictions */
  246. dest = s->current_picture.data[0] + x + y*s->linesize;
  247. src = pic->data[0] + mx + my*s->linesize;
  248. if (emu) {
  249. ff_emulated_edge_mc(s->edge_emu_buffer, src, s->linesize, (width + 1), (height + 1),
  250. mx, my, s->h_edge_pos, s->v_edge_pos);
  251. src = s->edge_emu_buffer;
  252. }
  253. if (thirdpel)
  254. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->linesize, width, height);
  255. else
  256. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->linesize, height);
  257. if (!(s->flags & CODEC_FLAG_GRAY)) {
  258. mx = (mx + (mx < (int) x)) >> 1;
  259. my = (my + (my < (int) y)) >> 1;
  260. width = (width >> 1);
  261. height = (height >> 1);
  262. blocksize++;
  263. for (i = 1; i < 3; i++) {
  264. dest = s->current_picture.data[i] + (x >> 1) + (y >> 1)*s->uvlinesize;
  265. src = pic->data[i] + mx + my*s->uvlinesize;
  266. if (emu) {
  267. ff_emulated_edge_mc(s->edge_emu_buffer, src, s->uvlinesize, (width + 1), (height + 1),
  268. mx, my, (s->h_edge_pos >> 1), (s->v_edge_pos >> 1));
  269. src = s->edge_emu_buffer;
  270. }
  271. if (thirdpel)
  272. (avg ? s->dsp.avg_tpel_pixels_tab : s->dsp.put_tpel_pixels_tab)[dxy](dest, src, s->uvlinesize, width, height);
  273. else
  274. (avg ? s->dsp.avg_pixels_tab : s->dsp.put_pixels_tab)[blocksize][dxy](dest, src, s->uvlinesize, height);
  275. }
  276. }
  277. }
  278. static inline int svq3_mc_dir(H264Context *h, int size, int mode, int dir,
  279. int avg)
  280. {
  281. int i, j, k, mx, my, dx, dy, x, y;
  282. MpegEncContext *const s = (MpegEncContext *) h;
  283. const int part_width = ((size & 5) == 4) ? 4 : 16 >> (size & 1);
  284. const int part_height = 16 >> ((unsigned) (size + 1) / 3);
  285. const int extra_width = (mode == PREDICT_MODE) ? -16*6 : 0;
  286. const int h_edge_pos = 6*(s->h_edge_pos - part_width ) - extra_width;
  287. const int v_edge_pos = 6*(s->v_edge_pos - part_height) - extra_width;
  288. for (i = 0; i < 16; i += part_height) {
  289. for (j = 0; j < 16; j += part_width) {
  290. const int b_xy = (4*s->mb_x + (j >> 2)) + (4*s->mb_y + (i >> 2))*h->b_stride;
  291. int dxy;
  292. x = 16*s->mb_x + j;
  293. y = 16*s->mb_y + i;
  294. k = ((j >> 2) & 1) + ((i >> 1) & 2) + ((j >> 1) & 4) + (i & 8);
  295. if (mode != PREDICT_MODE) {
  296. pred_motion(h, k, (part_width >> 2), dir, 1, &mx, &my);
  297. } else {
  298. mx = s->next_picture.motion_val[0][b_xy][0]<<1;
  299. my = s->next_picture.motion_val[0][b_xy][1]<<1;
  300. if (dir == 0) {
  301. mx = ((mx * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  302. my = ((my * h->frame_num_offset) / h->prev_frame_num_offset + 1) >> 1;
  303. } else {
  304. mx = ((mx * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  305. my = ((my * (h->frame_num_offset - h->prev_frame_num_offset)) / h->prev_frame_num_offset + 1) >> 1;
  306. }
  307. }
  308. /* clip motion vector prediction to frame border */
  309. mx = av_clip(mx, extra_width - 6*x, h_edge_pos - 6*x);
  310. my = av_clip(my, extra_width - 6*y, v_edge_pos - 6*y);
  311. /* get (optional) motion vector differential */
  312. if (mode == PREDICT_MODE) {
  313. dx = dy = 0;
  314. } else {
  315. dy = svq3_get_se_golomb(&s->gb);
  316. dx = svq3_get_se_golomb(&s->gb);
  317. if (dx == INVALID_VLC || dy == INVALID_VLC) {
  318. av_log(h->s.avctx, AV_LOG_ERROR, "invalid MV vlc\n");
  319. return -1;
  320. }
  321. }
  322. /* compute motion vector */
  323. if (mode == THIRDPEL_MODE) {
  324. int fx, fy;
  325. mx = ((mx + 1)>>1) + dx;
  326. my = ((my + 1)>>1) + dy;
  327. fx = ((unsigned)(mx + 0x3000))/3 - 0x1000;
  328. fy = ((unsigned)(my + 0x3000))/3 - 0x1000;
  329. dxy = (mx - 3*fx) + 4*(my - 3*fy);
  330. svq3_mc_dir_part(s, x, y, part_width, part_height, fx, fy, dxy, 1, dir, avg);
  331. mx += mx;
  332. my += my;
  333. } else if (mode == HALFPEL_MODE || mode == PREDICT_MODE) {
  334. mx = ((unsigned)(mx + 1 + 0x3000))/3 + dx - 0x1000;
  335. my = ((unsigned)(my + 1 + 0x3000))/3 + dy - 0x1000;
  336. dxy = (mx&1) + 2*(my&1);
  337. svq3_mc_dir_part(s, x, y, part_width, part_height, mx>>1, my>>1, dxy, 0, dir, avg);
  338. mx *= 3;
  339. my *= 3;
  340. } else {
  341. mx = ((unsigned)(mx + 3 + 0x6000))/6 + dx - 0x1000;
  342. my = ((unsigned)(my + 3 + 0x6000))/6 + dy - 0x1000;
  343. svq3_mc_dir_part(s, x, y, part_width, part_height, mx, my, 0, 0, dir, avg);
  344. mx *= 6;
  345. my *= 6;
  346. }
  347. /* update mv_cache */
  348. if (mode != PREDICT_MODE) {
  349. int32_t mv = pack16to32(mx,my);
  350. if (part_height == 8 && i < 8) {
  351. *(int32_t *) h->mv_cache[dir][scan8[k] + 1*8] = mv;
  352. if (part_width == 8 && j < 8) {
  353. *(int32_t *) h->mv_cache[dir][scan8[k] + 1 + 1*8] = mv;
  354. }
  355. }
  356. if (part_width == 8 && j < 8) {
  357. *(int32_t *) h->mv_cache[dir][scan8[k] + 1] = mv;
  358. }
  359. if (part_width == 4 || part_height == 4) {
  360. *(int32_t *) h->mv_cache[dir][scan8[k]] = mv;
  361. }
  362. }
  363. /* write back motion vectors */
  364. fill_rectangle(s->current_picture.motion_val[dir][b_xy], part_width>>2, part_height>>2, h->b_stride, pack16to32(mx,my), 4);
  365. }
  366. }
  367. return 0;
  368. }
  369. static int svq3_decode_mb(H264Context *h, unsigned int mb_type)
  370. {
  371. int i, j, k, m, dir, mode;
  372. int cbp = 0;
  373. uint32_t vlc;
  374. int8_t *top, *left;
  375. MpegEncContext *const s = (MpegEncContext *) h;
  376. const int mb_xy = h->mb_xy;
  377. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  378. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  379. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  380. h->topright_samples_available = 0xFFFF;
  381. if (mb_type == 0) { /* SKIP */
  382. if (s->pict_type == FF_P_TYPE || s->next_picture.mb_type[mb_xy] == -1) {
  383. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 0, 0);
  384. if (s->pict_type == FF_B_TYPE) {
  385. svq3_mc_dir_part(s, 16*s->mb_x, 16*s->mb_y, 16, 16, 0, 0, 0, 0, 1, 1);
  386. }
  387. mb_type = MB_TYPE_SKIP;
  388. } else {
  389. mb_type = FFMIN(s->next_picture.mb_type[mb_xy], 6);
  390. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 0, 0) < 0)
  391. return -1;
  392. if (svq3_mc_dir(h, mb_type, PREDICT_MODE, 1, 1) < 0)
  393. return -1;
  394. mb_type = MB_TYPE_16x16;
  395. }
  396. } else if (mb_type < 8) { /* INTER */
  397. if (h->thirdpel_flag && h->halfpel_flag == !get_bits1 (&s->gb)) {
  398. mode = THIRDPEL_MODE;
  399. } else if (h->halfpel_flag && h->thirdpel_flag == !get_bits1 (&s->gb)) {
  400. mode = HALFPEL_MODE;
  401. } else {
  402. mode = FULLPEL_MODE;
  403. }
  404. /* fill caches */
  405. /* note ref_cache should contain here:
  406. ????????
  407. ???11111
  408. N??11111
  409. N??11111
  410. N??11111
  411. */
  412. for (m = 0; m < 2; m++) {
  413. if (s->mb_x > 0 && h->intra4x4_pred_mode[mb_xy - 1][0] != -1) {
  414. for (i = 0; i < 4; i++) {
  415. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - 1 + i*h->b_stride];
  416. }
  417. } else {
  418. for (i = 0; i < 4; i++) {
  419. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 + i*8] = 0;
  420. }
  421. }
  422. if (s->mb_y > 0) {
  423. memcpy(h->mv_cache[m][scan8[0] - 1*8], s->current_picture.motion_val[m][b_xy - h->b_stride], 4*2*sizeof(int16_t));
  424. memset(&h->ref_cache[m][scan8[0] - 1*8], (h->intra4x4_pred_mode[mb_xy - s->mb_stride][4] == -1) ? PART_NOT_AVAILABLE : 1, 4);
  425. if (s->mb_x < (s->mb_width - 1)) {
  426. *(uint32_t *) h->mv_cache[m][scan8[0] + 4 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride + 4];
  427. h->ref_cache[m][scan8[0] + 4 - 1*8] =
  428. (h->intra4x4_pred_mode[mb_xy - s->mb_stride + 1][0] == -1 ||
  429. h->intra4x4_pred_mode[mb_xy - s->mb_stride ][4] == -1) ? PART_NOT_AVAILABLE : 1;
  430. }else
  431. h->ref_cache[m][scan8[0] + 4 - 1*8] = PART_NOT_AVAILABLE;
  432. if (s->mb_x > 0) {
  433. *(uint32_t *) h->mv_cache[m][scan8[0] - 1 - 1*8] = *(uint32_t *) s->current_picture.motion_val[m][b_xy - h->b_stride - 1];
  434. h->ref_cache[m][scan8[0] - 1 - 1*8] = (h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] == -1) ? PART_NOT_AVAILABLE : 1;
  435. }else
  436. h->ref_cache[m][scan8[0] - 1 - 1*8] = PART_NOT_AVAILABLE;
  437. }else
  438. memset(&h->ref_cache[m][scan8[0] - 1*8 - 1], PART_NOT_AVAILABLE, 8);
  439. if (s->pict_type != FF_B_TYPE)
  440. break;
  441. }
  442. /* decode motion vector(s) and form prediction(s) */
  443. if (s->pict_type == FF_P_TYPE) {
  444. if (svq3_mc_dir(h, (mb_type - 1), mode, 0, 0) < 0)
  445. return -1;
  446. } else { /* FF_B_TYPE */
  447. if (mb_type != 2) {
  448. if (svq3_mc_dir(h, 0, mode, 0, 0) < 0)
  449. return -1;
  450. } else {
  451. for (i = 0; i < 4; i++) {
  452. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  453. }
  454. }
  455. if (mb_type != 1) {
  456. if (svq3_mc_dir(h, 0, mode, 1, (mb_type == 3)) < 0)
  457. return -1;
  458. } else {
  459. for (i = 0; i < 4; i++) {
  460. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  461. }
  462. }
  463. }
  464. mb_type = MB_TYPE_16x16;
  465. } else if (mb_type == 8 || mb_type == 33) { /* INTRA4x4 */
  466. memset(h->intra4x4_pred_mode_cache, -1, 8*5*sizeof(int8_t));
  467. if (mb_type == 8) {
  468. if (s->mb_x > 0) {
  469. for (i = 0; i < 4; i++) {
  470. h->intra4x4_pred_mode_cache[scan8[0] - 1 + i*8] = h->intra4x4_pred_mode[mb_xy - 1][i];
  471. }
  472. if (h->intra4x4_pred_mode_cache[scan8[0] - 1] == -1) {
  473. h->left_samples_available = 0x5F5F;
  474. }
  475. }
  476. if (s->mb_y > 0) {
  477. h->intra4x4_pred_mode_cache[4+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][4];
  478. h->intra4x4_pred_mode_cache[5+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][5];
  479. h->intra4x4_pred_mode_cache[6+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][6];
  480. h->intra4x4_pred_mode_cache[7+8*0] = h->intra4x4_pred_mode[mb_xy - s->mb_stride][3];
  481. if (h->intra4x4_pred_mode_cache[4+8*0] == -1) {
  482. h->top_samples_available = 0x33FF;
  483. }
  484. }
  485. /* decode prediction codes for luma blocks */
  486. for (i = 0; i < 16; i+=2) {
  487. vlc = svq3_get_ue_golomb(&s->gb);
  488. if (vlc >= 25){
  489. av_log(h->s.avctx, AV_LOG_ERROR, "luma prediction:%d\n", vlc);
  490. return -1;
  491. }
  492. left = &h->intra4x4_pred_mode_cache[scan8[i] - 1];
  493. top = &h->intra4x4_pred_mode_cache[scan8[i] - 8];
  494. left[1] = svq3_pred_1[top[0] + 1][left[0] + 1][svq3_pred_0[vlc][0]];
  495. left[2] = svq3_pred_1[top[1] + 1][left[1] + 1][svq3_pred_0[vlc][1]];
  496. if (left[1] == -1 || left[2] == -1){
  497. av_log(h->s.avctx, AV_LOG_ERROR, "weird prediction\n");
  498. return -1;
  499. }
  500. }
  501. } else { /* mb_type == 33, DC_128_PRED block type */
  502. for (i = 0; i < 4; i++) {
  503. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_PRED, 4);
  504. }
  505. }
  506. ff_h264_write_back_intra_pred_mode(h);
  507. if (mb_type == 8) {
  508. ff_h264_check_intra4x4_pred_mode(h);
  509. h->top_samples_available = (s->mb_y == 0) ? 0x33FF : 0xFFFF;
  510. h->left_samples_available = (s->mb_x == 0) ? 0x5F5F : 0xFFFF;
  511. } else {
  512. for (i = 0; i < 4; i++) {
  513. memset(&h->intra4x4_pred_mode_cache[scan8[0] + 8*i], DC_128_PRED, 4);
  514. }
  515. h->top_samples_available = 0x33FF;
  516. h->left_samples_available = 0x5F5F;
  517. }
  518. mb_type = MB_TYPE_INTRA4x4;
  519. } else { /* INTRA16x16 */
  520. dir = i_mb_type_info[mb_type - 8].pred_mode;
  521. dir = (dir >> 1) ^ 3*(dir & 1) ^ 1;
  522. if ((h->intra16x16_pred_mode = ff_h264_check_intra_pred_mode(h, dir)) == -1){
  523. av_log(h->s.avctx, AV_LOG_ERROR, "check_intra_pred_mode = -1\n");
  524. return -1;
  525. }
  526. cbp = i_mb_type_info[mb_type - 8].cbp;
  527. mb_type = MB_TYPE_INTRA16x16;
  528. }
  529. if (!IS_INTER(mb_type) && s->pict_type != FF_I_TYPE) {
  530. for (i = 0; i < 4; i++) {
  531. memset(s->current_picture.motion_val[0][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  532. }
  533. if (s->pict_type == FF_B_TYPE) {
  534. for (i = 0; i < 4; i++) {
  535. memset(s->current_picture.motion_val[1][b_xy + i*h->b_stride], 0, 4*2*sizeof(int16_t));
  536. }
  537. }
  538. }
  539. if (!IS_INTRA4x4(mb_type)) {
  540. memset(h->intra4x4_pred_mode[mb_xy], DC_PRED, 8);
  541. }
  542. if (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE) {
  543. memset(h->non_zero_count_cache + 8, 0, 4*9*sizeof(uint8_t));
  544. s->dsp.clear_blocks(h->mb);
  545. }
  546. if (!IS_INTRA16x16(mb_type) && (!IS_SKIP(mb_type) || s->pict_type == FF_B_TYPE)) {
  547. if ((vlc = svq3_get_ue_golomb(&s->gb)) >= 48){
  548. av_log(h->s.avctx, AV_LOG_ERROR, "cbp_vlc=%d\n", vlc);
  549. return -1;
  550. }
  551. cbp = IS_INTRA(mb_type) ? golomb_to_intra4x4_cbp[vlc] : golomb_to_inter_cbp[vlc];
  552. }
  553. if (IS_INTRA16x16(mb_type) || (s->pict_type != FF_I_TYPE && s->adaptive_quant && cbp)) {
  554. s->qscale += svq3_get_se_golomb(&s->gb);
  555. if (s->qscale > 31){
  556. av_log(h->s.avctx, AV_LOG_ERROR, "qscale:%d\n", s->qscale);
  557. return -1;
  558. }
  559. }
  560. if (IS_INTRA16x16(mb_type)) {
  561. if (svq3_decode_block(&s->gb, h->mb, 0, 0)){
  562. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding intra luma dc\n");
  563. return -1;
  564. }
  565. }
  566. if (cbp) {
  567. const int index = IS_INTRA16x16(mb_type) ? 1 : 0;
  568. const int type = ((s->qscale < 24 && IS_INTRA4x4(mb_type)) ? 2 : 1);
  569. for (i = 0; i < 4; i++) {
  570. if ((cbp & (1 << i))) {
  571. for (j = 0; j < 4; j++) {
  572. k = index ? ((j&1) + 2*(i&1) + 2*(j&2) + 4*(i&2)) : (4*i + j);
  573. h->non_zero_count_cache[ scan8[k] ] = 1;
  574. if (svq3_decode_block(&s->gb, &h->mb[16*k], index, type)){
  575. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding block\n");
  576. return -1;
  577. }
  578. }
  579. }
  580. }
  581. if ((cbp & 0x30)) {
  582. for (i = 0; i < 2; ++i) {
  583. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + 4*i)], 0, 3)){
  584. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma dc block\n");
  585. return -1;
  586. }
  587. }
  588. if ((cbp & 0x20)) {
  589. for (i = 0; i < 8; i++) {
  590. h->non_zero_count_cache[ scan8[16+i] ] = 1;
  591. if (svq3_decode_block(&s->gb, &h->mb[16*(16 + i)], 1, 1)){
  592. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding chroma ac block\n");
  593. return -1;
  594. }
  595. }
  596. }
  597. }
  598. }
  599. h->cbp= cbp;
  600. s->current_picture.mb_type[mb_xy] = mb_type;
  601. if (IS_INTRA(mb_type)) {
  602. h->chroma_pred_mode = ff_h264_check_intra_pred_mode(h, DC_PRED8x8);
  603. }
  604. return 0;
  605. }
  606. static int svq3_decode_slice_header(H264Context *h)
  607. {
  608. MpegEncContext *const s = (MpegEncContext *) h;
  609. const int mb_xy = h->mb_xy;
  610. int i, header;
  611. header = get_bits(&s->gb, 8);
  612. if (((header & 0x9F) != 1 && (header & 0x9F) != 2) || (header & 0x60) == 0) {
  613. /* TODO: what? */
  614. av_log(h->s.avctx, AV_LOG_ERROR, "unsupported slice header (%02X)\n", header);
  615. return -1;
  616. } else {
  617. int length = (header >> 5) & 3;
  618. h->next_slice_index = get_bits_count(&s->gb) + 8*show_bits(&s->gb, 8*length) + 8*length;
  619. if (h->next_slice_index > s->gb.size_in_bits) {
  620. av_log(h->s.avctx, AV_LOG_ERROR, "slice after bitstream end\n");
  621. return -1;
  622. }
  623. s->gb.size_in_bits = h->next_slice_index - 8*(length - 1);
  624. skip_bits(&s->gb, 8);
  625. if (h->svq3_watermark_key) {
  626. uint32_t header = AV_RL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1]);
  627. AV_WL32(&s->gb.buffer[(get_bits_count(&s->gb)>>3)+1], header ^ h->svq3_watermark_key);
  628. }
  629. if (length > 0) {
  630. memcpy((uint8_t *) &s->gb.buffer[get_bits_count(&s->gb) >> 3],
  631. &s->gb.buffer[s->gb.size_in_bits >> 3], (length - 1));
  632. }
  633. skip_bits_long(&s->gb, 0);
  634. }
  635. if ((i = svq3_get_ue_golomb(&s->gb)) == INVALID_VLC || i >= 3){
  636. av_log(h->s.avctx, AV_LOG_ERROR, "illegal slice type %d \n", i);
  637. return -1;
  638. }
  639. h->slice_type = golomb_to_pict_type[i];
  640. if ((header & 0x9F) == 2) {
  641. i = (s->mb_num < 64) ? 6 : (1 + av_log2 (s->mb_num - 1));
  642. s->mb_skip_run = get_bits(&s->gb, i) - (s->mb_x + (s->mb_y * s->mb_width));
  643. } else {
  644. skip_bits1(&s->gb);
  645. s->mb_skip_run = 0;
  646. }
  647. h->slice_num = get_bits(&s->gb, 8);
  648. s->qscale = get_bits(&s->gb, 5);
  649. s->adaptive_quant = get_bits1(&s->gb);
  650. /* unknown fields */
  651. skip_bits1(&s->gb);
  652. if (h->unknown_svq3_flag) {
  653. skip_bits1(&s->gb);
  654. }
  655. skip_bits1(&s->gb);
  656. skip_bits(&s->gb, 2);
  657. while (get_bits1(&s->gb)) {
  658. skip_bits(&s->gb, 8);
  659. }
  660. /* reset intra predictors and invalidate motion vector references */
  661. if (s->mb_x > 0) {
  662. memset(h->intra4x4_pred_mode[mb_xy - 1], -1, 4*sizeof(int8_t));
  663. memset(h->intra4x4_pred_mode[mb_xy - s->mb_x], -1, 8*sizeof(int8_t)*s->mb_x);
  664. }
  665. if (s->mb_y > 0) {
  666. memset(h->intra4x4_pred_mode[mb_xy - s->mb_stride], -1, 8*sizeof(int8_t)*(s->mb_width - s->mb_x));
  667. if (s->mb_x > 0) {
  668. h->intra4x4_pred_mode[mb_xy - s->mb_stride - 1][3] = -1;
  669. }
  670. }
  671. return 0;
  672. }
  673. static av_cold int svq3_decode_init(AVCodecContext *avctx)
  674. {
  675. MpegEncContext *const s = avctx->priv_data;
  676. H264Context *const h = avctx->priv_data;
  677. int m;
  678. unsigned char *extradata;
  679. unsigned int size;
  680. if(avctx->thread_count > 1){
  681. av_log(avctx, AV_LOG_ERROR, "SVQ3 does not support multithreaded decoding, patch welcome! (check latest SVN too)\n");
  682. return -1;
  683. }
  684. if (ff_h264_decode_init(avctx) < 0)
  685. return -1;
  686. s->flags = avctx->flags;
  687. s->flags2 = avctx->flags2;
  688. s->unrestricted_mv = 1;
  689. h->is_complex=1;
  690. avctx->pix_fmt = avctx->codec->pix_fmts[0];
  691. if (!s->context_initialized) {
  692. s->width = avctx->width;
  693. s->height = avctx->height;
  694. h->halfpel_flag = 1;
  695. h->thirdpel_flag = 1;
  696. h->unknown_svq3_flag = 0;
  697. h->chroma_qp[0] = h->chroma_qp[1] = 4;
  698. if (MPV_common_init(s) < 0)
  699. return -1;
  700. h->b_stride = 4*s->mb_width;
  701. ff_h264_alloc_tables(h);
  702. /* prowl for the "SEQH" marker in the extradata */
  703. extradata = (unsigned char *)avctx->extradata;
  704. for (m = 0; m < avctx->extradata_size; m++) {
  705. if (!memcmp(extradata, "SEQH", 4))
  706. break;
  707. extradata++;
  708. }
  709. /* if a match was found, parse the extra data */
  710. if (extradata && !memcmp(extradata, "SEQH", 4)) {
  711. GetBitContext gb;
  712. int frame_size_code;
  713. size = AV_RB32(&extradata[4]);
  714. init_get_bits(&gb, extradata + 8, size*8);
  715. /* 'frame size code' and optional 'width, height' */
  716. frame_size_code = get_bits(&gb, 3);
  717. switch (frame_size_code) {
  718. case 0: avctx->width = 160; avctx->height = 120; break;
  719. case 1: avctx->width = 128; avctx->height = 96; break;
  720. case 2: avctx->width = 176; avctx->height = 144; break;
  721. case 3: avctx->width = 352; avctx->height = 288; break;
  722. case 4: avctx->width = 704; avctx->height = 576; break;
  723. case 5: avctx->width = 240; avctx->height = 180; break;
  724. case 6: avctx->width = 320; avctx->height = 240; break;
  725. case 7:
  726. avctx->width = get_bits(&gb, 12);
  727. avctx->height = get_bits(&gb, 12);
  728. break;
  729. }
  730. h->halfpel_flag = get_bits1(&gb);
  731. h->thirdpel_flag = get_bits1(&gb);
  732. /* unknown fields */
  733. skip_bits1(&gb);
  734. skip_bits1(&gb);
  735. skip_bits1(&gb);
  736. skip_bits1(&gb);
  737. s->low_delay = get_bits1(&gb);
  738. /* unknown field */
  739. skip_bits1(&gb);
  740. while (get_bits1(&gb)) {
  741. skip_bits(&gb, 8);
  742. }
  743. h->unknown_svq3_flag = get_bits1(&gb);
  744. avctx->has_b_frames = !s->low_delay;
  745. if (h->unknown_svq3_flag) {
  746. #if CONFIG_ZLIB
  747. unsigned watermark_width = svq3_get_ue_golomb(&gb);
  748. unsigned watermark_height = svq3_get_ue_golomb(&gb);
  749. int u1 = svq3_get_ue_golomb(&gb);
  750. int u2 = get_bits(&gb, 8);
  751. int u3 = get_bits(&gb, 2);
  752. int u4 = svq3_get_ue_golomb(&gb);
  753. unsigned buf_len = watermark_width*watermark_height*4;
  754. int offset = (get_bits_count(&gb)+7)>>3;
  755. uint8_t *buf;
  756. if ((uint64_t)watermark_width*4 > UINT_MAX/watermark_height)
  757. return -1;
  758. buf = av_malloc(buf_len);
  759. av_log(avctx, AV_LOG_DEBUG, "watermark size: %dx%d\n", watermark_width, watermark_height);
  760. av_log(avctx, AV_LOG_DEBUG, "u1: %x u2: %x u3: %x compressed data size: %d offset: %d\n", u1, u2, u3, u4, offset);
  761. if (uncompress(buf, (uLong*)&buf_len, extradata + 8 + offset, size - offset) != Z_OK) {
  762. av_log(avctx, AV_LOG_ERROR, "could not uncompress watermark logo\n");
  763. av_free(buf);
  764. return -1;
  765. }
  766. h->svq3_watermark_key = ff_svq1_packet_checksum(buf, buf_len, 0);
  767. h->svq3_watermark_key = h->svq3_watermark_key << 16 | h->svq3_watermark_key;
  768. av_log(avctx, AV_LOG_DEBUG, "watermark key %#x\n", h->svq3_watermark_key);
  769. av_free(buf);
  770. #else
  771. av_log(avctx, AV_LOG_ERROR, "this svq3 file contains watermark which need zlib support compiled in\n");
  772. return -1;
  773. #endif
  774. }
  775. }
  776. }
  777. return 0;
  778. }
  779. static int svq3_decode_frame(AVCodecContext *avctx,
  780. void *data, int *data_size,
  781. AVPacket *avpkt)
  782. {
  783. const uint8_t *buf = avpkt->data;
  784. int buf_size = avpkt->size;
  785. MpegEncContext *const s = avctx->priv_data;
  786. H264Context *const h = avctx->priv_data;
  787. int m, mb_type;
  788. /* special case for last picture */
  789. if (buf_size == 0) {
  790. if (s->next_picture_ptr && !s->low_delay) {
  791. *(AVFrame *) data = *(AVFrame *) &s->next_picture;
  792. s->next_picture_ptr = NULL;
  793. *data_size = sizeof(AVFrame);
  794. }
  795. return 0;
  796. }
  797. init_get_bits (&s->gb, buf, 8*buf_size);
  798. s->mb_x = s->mb_y = h->mb_xy = 0;
  799. if (svq3_decode_slice_header(h))
  800. return -1;
  801. s->pict_type = h->slice_type;
  802. s->picture_number = h->slice_num;
  803. if (avctx->debug&FF_DEBUG_PICT_INFO){
  804. av_log(h->s.avctx, AV_LOG_DEBUG, "%c hpel:%d, tpel:%d aqp:%d qp:%d, slice_num:%02X\n",
  805. av_get_pict_type_char(s->pict_type), h->halfpel_flag, h->thirdpel_flag,
  806. s->adaptive_quant, s->qscale, h->slice_num);
  807. }
  808. /* for hurry_up == 5 */
  809. s->current_picture.pict_type = s->pict_type;
  810. s->current_picture.key_frame = (s->pict_type == FF_I_TYPE);
  811. /* Skip B-frames if we do not have reference frames. */
  812. if (s->last_picture_ptr == NULL && s->pict_type == FF_B_TYPE)
  813. return 0;
  814. /* Skip B-frames if we are in a hurry. */
  815. if (avctx->hurry_up && s->pict_type == FF_B_TYPE)
  816. return 0;
  817. /* Skip everything if we are in a hurry >= 5. */
  818. if (avctx->hurry_up >= 5)
  819. return 0;
  820. if ( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type == FF_B_TYPE)
  821. ||(avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type != FF_I_TYPE)
  822. || avctx->skip_frame >= AVDISCARD_ALL)
  823. return 0;
  824. if (s->next_p_frame_damaged) {
  825. if (s->pict_type == FF_B_TYPE)
  826. return 0;
  827. else
  828. s->next_p_frame_damaged = 0;
  829. }
  830. if (ff_h264_frame_start(h) < 0)
  831. return -1;
  832. if (s->pict_type == FF_B_TYPE) {
  833. h->frame_num_offset = (h->slice_num - h->prev_frame_num);
  834. if (h->frame_num_offset < 0) {
  835. h->frame_num_offset += 256;
  836. }
  837. if (h->frame_num_offset == 0 || h->frame_num_offset >= h->prev_frame_num_offset) {
  838. av_log(h->s.avctx, AV_LOG_ERROR, "error in B-frame picture id\n");
  839. return -1;
  840. }
  841. } else {
  842. h->prev_frame_num = h->frame_num;
  843. h->frame_num = h->slice_num;
  844. h->prev_frame_num_offset = (h->frame_num - h->prev_frame_num);
  845. if (h->prev_frame_num_offset < 0) {
  846. h->prev_frame_num_offset += 256;
  847. }
  848. }
  849. for (m = 0; m < 2; m++){
  850. int i;
  851. for (i = 0; i < 4; i++){
  852. int j;
  853. for (j = -1; j < 4; j++)
  854. h->ref_cache[m][scan8[0] + 8*i + j]= 1;
  855. if (i < 3)
  856. h->ref_cache[m][scan8[0] + 8*i + j]= PART_NOT_AVAILABLE;
  857. }
  858. }
  859. for (s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  860. for (s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  861. h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  862. if ( (get_bits_count(&s->gb) + 7) >= s->gb.size_in_bits &&
  863. ((get_bits_count(&s->gb) & 7) == 0 || show_bits(&s->gb, (-get_bits_count(&s->gb) & 7)) == 0)) {
  864. skip_bits(&s->gb, h->next_slice_index - get_bits_count(&s->gb));
  865. s->gb.size_in_bits = 8*buf_size;
  866. if (svq3_decode_slice_header(h))
  867. return -1;
  868. /* TODO: support s->mb_skip_run */
  869. }
  870. mb_type = svq3_get_ue_golomb(&s->gb);
  871. if (s->pict_type == FF_I_TYPE) {
  872. mb_type += 8;
  873. } else if (s->pict_type == FF_B_TYPE && mb_type >= 4) {
  874. mb_type += 4;
  875. }
  876. if (mb_type > 33 || svq3_decode_mb(h, mb_type)) {
  877. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  878. return -1;
  879. }
  880. if (mb_type != 0) {
  881. ff_h264_hl_decode_mb (h);
  882. }
  883. if (s->pict_type != FF_B_TYPE && !s->low_delay) {
  884. s->current_picture.mb_type[s->mb_x + s->mb_y*s->mb_stride] =
  885. (s->pict_type == FF_P_TYPE && mb_type < 8) ? (mb_type - 1) : -1;
  886. }
  887. }
  888. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  889. }
  890. MPV_frame_end(s);
  891. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  892. *(AVFrame *) data = *(AVFrame *) &s->current_picture;
  893. } else {
  894. *(AVFrame *) data = *(AVFrame *) &s->last_picture;
  895. }
  896. /* Do not output the last pic after seeking. */
  897. if (s->last_picture_ptr || s->low_delay) {
  898. *data_size = sizeof(AVFrame);
  899. }
  900. return buf_size;
  901. }
  902. AVCodec svq3_decoder = {
  903. "svq3",
  904. CODEC_TYPE_VIDEO,
  905. CODEC_ID_SVQ3,
  906. sizeof(H264Context),
  907. svq3_decode_init,
  908. NULL,
  909. ff_h264_decode_end,
  910. svq3_decode_frame,
  911. CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  912. .long_name = NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 3 / Sorenson Video 3 / SVQ3"),
  913. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUVJ420P, PIX_FMT_NONE},
  914. };