You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

364 lines
9.8KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. *
  4. * Copyright (c) 2008 Vitor Sessak
  5. * Copyright (c) 2003 Nick Kurshev
  6. * Based on public domain decoder at http://www.honeypot.net/audio
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "get_bits.h"
  26. #include "ra144.h"
  27. #include "celp_filters.h"
  28. #define NBLOCKS 4 ///< number of subblocks within a block
  29. #define BLOCKSIZE 40 ///< subblock size in 16-bit words
  30. #define BUFFERSIZE 146 ///< the size of the adaptive codebook
  31. typedef struct {
  32. AVCodecContext *avctx;
  33. unsigned int old_energy; ///< previous frame energy
  34. unsigned int lpc_tables[2][10];
  35. /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
  36. * and lpc_coef[1] of the previous one. */
  37. unsigned int *lpc_coef[2];
  38. unsigned int lpc_refl_rms[2];
  39. /** The current subblock padded by the last 10 values of the previous one. */
  40. int16_t curr_sblock[50];
  41. /** Adaptive codebook, its size is two units bigger to avoid a
  42. * buffer overflow. */
  43. uint16_t adapt_cb[146+2];
  44. } RA144Context;
  45. static av_cold int ra144_decode_init(AVCodecContext * avctx)
  46. {
  47. RA144Context *ractx = avctx->priv_data;
  48. ractx->avctx = avctx;
  49. ractx->lpc_coef[0] = ractx->lpc_tables[0];
  50. ractx->lpc_coef[1] = ractx->lpc_tables[1];
  51. avctx->sample_fmt = SAMPLE_FMT_S16;
  52. return 0;
  53. }
  54. /**
  55. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  56. * odd way to make the output identical to the binary decoder.
  57. */
  58. static int t_sqrt(unsigned int x)
  59. {
  60. int s = 2;
  61. while (x > 0xfff) {
  62. s++;
  63. x >>= 2;
  64. }
  65. return ff_sqrt(x << 20) << s;
  66. }
  67. /**
  68. * Evaluate the LPC filter coefficients from the reflection coefficients.
  69. * Does the inverse of the eval_refl() function.
  70. */
  71. static void eval_coefs(int *coefs, const int *refl)
  72. {
  73. int buffer[10];
  74. int *b1 = buffer;
  75. int *b2 = coefs;
  76. int i, j;
  77. for (i=0; i < 10; i++) {
  78. b1[i] = refl[i] << 4;
  79. for (j=0; j < i; j++)
  80. b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j];
  81. FFSWAP(int *, b1, b2);
  82. }
  83. for (i=0; i < 10; i++)
  84. coefs[i] >>= 4;
  85. }
  86. /**
  87. * Copy the last offset values of *source to *target. If those values are not
  88. * enough to fill the target buffer, fill it with another copy of those values.
  89. */
  90. static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
  91. {
  92. source += BUFFERSIZE - offset;
  93. memcpy(target, source, FFMIN(BLOCKSIZE, offset)*sizeof(*target));
  94. if (offset < BLOCKSIZE)
  95. memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
  96. }
  97. /** inverse root mean square */
  98. static int irms(const int16_t *data)
  99. {
  100. unsigned int i, sum = 0;
  101. for (i=0; i < BLOCKSIZE; i++)
  102. sum += data[i] * data[i];
  103. if (sum == 0)
  104. return 0; /* OOPS - division by zero */
  105. return 0x20000000 / (t_sqrt(sum) >> 8);
  106. }
  107. static void add_wav(int16_t *dest, int n, int skip_first, int *m,
  108. const int16_t *s1, const int8_t *s2, const int8_t *s3)
  109. {
  110. int i;
  111. int v[3];
  112. v[0] = 0;
  113. for (i=!skip_first; i<3; i++)
  114. v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n];
  115. if (v[0]) {
  116. for (i=0; i < BLOCKSIZE; i++)
  117. dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
  118. } else {
  119. for (i=0; i < BLOCKSIZE; i++)
  120. dest[i] = ( s2[i]*v[1] + s3[i]*v[2]) >> 12;
  121. }
  122. }
  123. static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
  124. {
  125. return (rms * energy) >> 10;
  126. }
  127. static unsigned int rms(const int *data)
  128. {
  129. int i;
  130. unsigned int res = 0x10000;
  131. int b = 10;
  132. for (i=0; i < 10; i++) {
  133. res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12;
  134. if (res == 0)
  135. return 0;
  136. while (res <= 0x3fff) {
  137. b++;
  138. res <<= 2;
  139. }
  140. }
  141. return t_sqrt(res) >> b;
  142. }
  143. static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
  144. int gval, GetBitContext *gb)
  145. {
  146. uint16_t buffer_a[40];
  147. uint16_t *block;
  148. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  149. int gain = get_bits(gb, 8);
  150. int cb1_idx = get_bits(gb, 7);
  151. int cb2_idx = get_bits(gb, 7);
  152. int m[3];
  153. if (cba_idx) {
  154. cba_idx += BLOCKSIZE/2 - 1;
  155. copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
  156. m[0] = (irms(buffer_a) * gval) >> 12;
  157. } else {
  158. m[0] = 0;
  159. }
  160. m[1] = (cb1_base[cb1_idx] * gval) >> 8;
  161. m[2] = (cb2_base[cb2_idx] * gval) >> 8;
  162. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  163. (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
  164. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  165. add_wav(block, gain, cba_idx, m, cba_idx? buffer_a: NULL,
  166. cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
  167. memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
  168. 10*sizeof(*ractx->curr_sblock));
  169. if (ff_celp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs,
  170. block, BLOCKSIZE, 10, 1, 0xfff))
  171. memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
  172. }
  173. static void int_to_int16(int16_t *out, const int *inp)
  174. {
  175. int i;
  176. for (i=0; i < 30; i++)
  177. *out++ = *inp++;
  178. }
  179. /**
  180. * Evaluate the reflection coefficients from the filter coefficients.
  181. * Does the inverse of the eval_coefs() function.
  182. *
  183. * @return 1 if one of the reflection coefficients is greater than
  184. * 4095, 0 if not.
  185. */
  186. static int eval_refl(int *refl, const int16_t *coefs, AVCodecContext *avctx)
  187. {
  188. int b, i, j;
  189. int buffer1[10];
  190. int buffer2[10];
  191. int *bp1 = buffer1;
  192. int *bp2 = buffer2;
  193. for (i=0; i < 10; i++)
  194. buffer2[i] = coefs[i];
  195. refl[9] = bp2[9];
  196. if ((unsigned) bp2[9] + 0x1000 > 0x1fff) {
  197. av_log(avctx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  198. return 1;
  199. }
  200. for (i=8; i >= 0; i--) {
  201. b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12);
  202. if (!b)
  203. b = -2;
  204. for (j=0; j <= i; j++)
  205. bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12;
  206. if ((unsigned) bp1[i] + 0x1000 > 0x1fff)
  207. return 1;
  208. refl[i] = bp1[i];
  209. FFSWAP(int *, bp1, bp2);
  210. }
  211. return 0;
  212. }
  213. static int interp(RA144Context *ractx, int16_t *out, int a,
  214. int copyold, int energy)
  215. {
  216. int work[10];
  217. int b = NBLOCKS - a;
  218. int i;
  219. // Interpolate block coefficients from the this frame's forth block and
  220. // last frame's forth block.
  221. for (i=0; i<30; i++)
  222. out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2;
  223. if (eval_refl(work, out, ractx->avctx)) {
  224. // The interpolated coefficients are unstable, copy either new or old
  225. // coefficients.
  226. int_to_int16(out, ractx->lpc_coef[copyold]);
  227. return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
  228. } else {
  229. return rescale_rms(rms(work), energy);
  230. }
  231. }
  232. /** Uncompress one block (20 bytes -> 160*2 bytes). */
  233. static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
  234. int *data_size, AVPacket *avpkt)
  235. {
  236. const uint8_t *buf = avpkt->data;
  237. int buf_size = avpkt->size;
  238. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  239. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  240. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  241. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  242. int i, j;
  243. int16_t *data = vdata;
  244. unsigned int energy;
  245. RA144Context *ractx = avctx->priv_data;
  246. GetBitContext gb;
  247. if (*data_size < 2*160)
  248. return -1;
  249. if(buf_size < 20) {
  250. av_log(avctx, AV_LOG_ERROR,
  251. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  252. *data_size = 0;
  253. return buf_size;
  254. }
  255. init_get_bits(&gb, buf, 20 * 8);
  256. for (i=0; i<10; i++)
  257. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
  258. eval_coefs(ractx->lpc_coef[0], lpc_refl);
  259. ractx->lpc_refl_rms[0] = rms(lpc_refl);
  260. energy = energy_tab[get_bits(&gb, 5)];
  261. refl_rms[0] = interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
  262. refl_rms[1] = interp(ractx, block_coefs[1], 2, energy <= ractx->old_energy,
  263. t_sqrt(energy*ractx->old_energy) >> 12);
  264. refl_rms[2] = interp(ractx, block_coefs[2], 3, 0, energy);
  265. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
  266. int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
  267. for (i=0; i < 4; i++) {
  268. do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb);
  269. for (j=0; j < BLOCKSIZE; j++)
  270. *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2);
  271. }
  272. ractx->old_energy = energy;
  273. ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
  274. FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
  275. *data_size = 2*160;
  276. return 20;
  277. }
  278. AVCodec ra_144_decoder =
  279. {
  280. "real_144",
  281. CODEC_TYPE_AUDIO,
  282. CODEC_ID_RA_144,
  283. sizeof(RA144Context),
  284. ra144_decode_init,
  285. NULL,
  286. NULL,
  287. ra144_decode_frame,
  288. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  289. };