You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1417 lines
54KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "dsputil.h"
  29. #include "cabac.h"
  30. #include "mpegvideo.h"
  31. #include "h264pred.h"
  32. #include "rectangle.h"
  33. #define interlaced_dct interlaced_dct_is_a_bad_name
  34. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  35. #define LUMA_DC_BLOCK_INDEX 25
  36. #define CHROMA_DC_BLOCK_INDEX 26
  37. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  38. #define COEFF_TOKEN_VLC_BITS 8
  39. #define TOTAL_ZEROS_VLC_BITS 9
  40. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  41. #define RUN_VLC_BITS 3
  42. #define RUN7_VLC_BITS 6
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. /* Compiling in interlaced support reduces the speed
  48. * of progressive decoding by about 2%. */
  49. #define ALLOW_INTERLACE
  50. #define ALLOW_NOCHROMA
  51. /**
  52. * The maximum number of slices supported by the decoder.
  53. * must be a power of 2
  54. */
  55. #define MAX_SLICES 16
  56. #ifdef ALLOW_INTERLACE
  57. #define MB_MBAFF h->mb_mbaff
  58. #define MB_FIELD h->mb_field_decoding_flag
  59. #define FRAME_MBAFF h->mb_aff_frame
  60. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  61. #else
  62. #define MB_MBAFF 0
  63. #define MB_FIELD 0
  64. #define FRAME_MBAFF 0
  65. #define FIELD_PICTURE 0
  66. #undef IS_INTERLACED
  67. #define IS_INTERLACED(mb_type) 0
  68. #endif
  69. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  70. #ifdef ALLOW_NOCHROMA
  71. #define CHROMA h->sps.chroma_format_idc
  72. #else
  73. #define CHROMA 1
  74. #endif
  75. #ifndef CABAC
  76. #define CABAC h->pps.cabac
  77. #endif
  78. #define EXTENDED_SAR 255
  79. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  80. #define MB_TYPE_8x8DCT 0x01000000
  81. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  82. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  83. /**
  84. * Value of Picture.reference when Picture is not a reference picture, but
  85. * is held for delayed output.
  86. */
  87. #define DELAYED_PIC_REF 4
  88. /* NAL unit types */
  89. enum {
  90. NAL_SLICE=1,
  91. NAL_DPA,
  92. NAL_DPB,
  93. NAL_DPC,
  94. NAL_IDR_SLICE,
  95. NAL_SEI,
  96. NAL_SPS,
  97. NAL_PPS,
  98. NAL_AUD,
  99. NAL_END_SEQUENCE,
  100. NAL_END_STREAM,
  101. NAL_FILLER_DATA,
  102. NAL_SPS_EXT,
  103. NAL_AUXILIARY_SLICE=19
  104. };
  105. /**
  106. * SEI message types
  107. */
  108. typedef enum {
  109. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  110. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  111. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  112. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  113. } SEI_Type;
  114. /**
  115. * pic_struct in picture timing SEI message
  116. */
  117. typedef enum {
  118. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  119. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  120. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  121. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  122. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  123. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  124. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  125. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  126. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  127. } SEI_PicStructType;
  128. /**
  129. * Sequence parameter set
  130. */
  131. typedef struct SPS{
  132. int profile_idc;
  133. int level_idc;
  134. int chroma_format_idc;
  135. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  136. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  137. int poc_type; ///< pic_order_cnt_type
  138. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  139. int delta_pic_order_always_zero_flag;
  140. int offset_for_non_ref_pic;
  141. int offset_for_top_to_bottom_field;
  142. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  143. int ref_frame_count; ///< num_ref_frames
  144. int gaps_in_frame_num_allowed_flag;
  145. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  146. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  147. int frame_mbs_only_flag;
  148. int mb_aff; ///<mb_adaptive_frame_field_flag
  149. int direct_8x8_inference_flag;
  150. int crop; ///< frame_cropping_flag
  151. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  152. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  153. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  154. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  155. int vui_parameters_present_flag;
  156. AVRational sar;
  157. int video_signal_type_present_flag;
  158. int full_range;
  159. int colour_description_present_flag;
  160. enum AVColorPrimaries color_primaries;
  161. enum AVColorTransferCharacteristic color_trc;
  162. enum AVColorSpace colorspace;
  163. int timing_info_present_flag;
  164. uint32_t num_units_in_tick;
  165. uint32_t time_scale;
  166. int fixed_frame_rate_flag;
  167. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  168. int bitstream_restriction_flag;
  169. int num_reorder_frames;
  170. int scaling_matrix_present;
  171. uint8_t scaling_matrix4[6][16];
  172. uint8_t scaling_matrix8[2][64];
  173. int nal_hrd_parameters_present_flag;
  174. int vcl_hrd_parameters_present_flag;
  175. int pic_struct_present_flag;
  176. int time_offset_length;
  177. int cpb_cnt; ///< See H.264 E.1.2
  178. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  179. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  180. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  181. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  182. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  183. int residual_color_transform_flag; ///< residual_colour_transform_flag
  184. }SPS;
  185. /**
  186. * Picture parameter set
  187. */
  188. typedef struct PPS{
  189. unsigned int sps_id;
  190. int cabac; ///< entropy_coding_mode_flag
  191. int pic_order_present; ///< pic_order_present_flag
  192. int slice_group_count; ///< num_slice_groups_minus1 + 1
  193. int mb_slice_group_map_type;
  194. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  195. int weighted_pred; ///< weighted_pred_flag
  196. int weighted_bipred_idc;
  197. int init_qp; ///< pic_init_qp_minus26 + 26
  198. int init_qs; ///< pic_init_qs_minus26 + 26
  199. int chroma_qp_index_offset[2];
  200. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  201. int constrained_intra_pred; ///< constrained_intra_pred_flag
  202. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  203. int transform_8x8_mode; ///< transform_8x8_mode_flag
  204. uint8_t scaling_matrix4[6][16];
  205. uint8_t scaling_matrix8[2][64];
  206. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  207. int chroma_qp_diff;
  208. }PPS;
  209. /**
  210. * Memory management control operation opcode.
  211. */
  212. typedef enum MMCOOpcode{
  213. MMCO_END=0,
  214. MMCO_SHORT2UNUSED,
  215. MMCO_LONG2UNUSED,
  216. MMCO_SHORT2LONG,
  217. MMCO_SET_MAX_LONG,
  218. MMCO_RESET,
  219. MMCO_LONG,
  220. } MMCOOpcode;
  221. /**
  222. * Memory management control operation.
  223. */
  224. typedef struct MMCO{
  225. MMCOOpcode opcode;
  226. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  227. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  228. } MMCO;
  229. /**
  230. * H264Context
  231. */
  232. typedef struct H264Context{
  233. MpegEncContext s;
  234. int nal_ref_idc;
  235. int nal_unit_type;
  236. uint8_t *rbsp_buffer[2];
  237. unsigned int rbsp_buffer_size[2];
  238. /**
  239. * Used to parse AVC variant of h264
  240. */
  241. int is_avc; ///< this flag is != 0 if codec is avc1
  242. int got_avcC; ///< flag used to parse avcC data only once
  243. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  244. int chroma_qp[2]; //QPc
  245. int qp_thresh; ///< QP threshold to skip loopfilter
  246. int prev_mb_skipped;
  247. int next_mb_skipped;
  248. //prediction stuff
  249. int chroma_pred_mode;
  250. int intra16x16_pred_mode;
  251. int top_mb_xy;
  252. int left_mb_xy[2];
  253. int8_t intra4x4_pred_mode_cache[5*8];
  254. int8_t (*intra4x4_pred_mode)[8];
  255. H264PredContext hpc;
  256. unsigned int topleft_samples_available;
  257. unsigned int top_samples_available;
  258. unsigned int topright_samples_available;
  259. unsigned int left_samples_available;
  260. uint8_t (*top_borders[2])[16+2*8];
  261. uint8_t left_border[2*(17+2*9)];
  262. /**
  263. * non zero coeff count cache.
  264. * is 64 if not available.
  265. */
  266. DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
  267. /*
  268. .UU.YYYY
  269. .UU.YYYY
  270. .vv.YYYY
  271. .VV.YYYY
  272. */
  273. uint8_t (*non_zero_count)[32];
  274. /**
  275. * Motion vector cache.
  276. */
  277. DECLARE_ALIGNED_8(int16_t, mv_cache)[2][5*8][2];
  278. DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
  279. #define LIST_NOT_USED -1 //FIXME rename?
  280. #define PART_NOT_AVAILABLE -2
  281. /**
  282. * is 1 if the specific list MV&references are set to 0,0,-2.
  283. */
  284. int mv_cache_clean[2];
  285. /**
  286. * number of neighbors (top and/or left) that used 8x8 dct
  287. */
  288. int neighbor_transform_size;
  289. /**
  290. * block_offset[ 0..23] for frame macroblocks
  291. * block_offset[24..47] for field macroblocks
  292. */
  293. int block_offset[2*(16+8)];
  294. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  295. uint32_t *mb2b8_xy;
  296. int b_stride; //FIXME use s->b4_stride
  297. int b8_stride;
  298. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  299. int mb_uvlinesize;
  300. int emu_edge_width;
  301. int emu_edge_height;
  302. int halfpel_flag;
  303. int thirdpel_flag;
  304. int unknown_svq3_flag;
  305. int next_slice_index;
  306. SPS *sps_buffers[MAX_SPS_COUNT];
  307. SPS sps; ///< current sps
  308. PPS *pps_buffers[MAX_PPS_COUNT];
  309. /**
  310. * current pps
  311. */
  312. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  313. uint32_t dequant4_buffer[6][52][16];
  314. uint32_t dequant8_buffer[2][52][64];
  315. uint32_t (*dequant4_coeff[6])[16];
  316. uint32_t (*dequant8_coeff[2])[64];
  317. int dequant_coeff_pps; ///< reinit tables when pps changes
  318. int slice_num;
  319. uint16_t *slice_table_base;
  320. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  321. int slice_type;
  322. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  323. int slice_type_fixed;
  324. //interlacing specific flags
  325. int mb_aff_frame;
  326. int mb_field_decoding_flag;
  327. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  328. DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
  329. //POC stuff
  330. int poc_lsb;
  331. int poc_msb;
  332. int delta_poc_bottom;
  333. int delta_poc[2];
  334. int frame_num;
  335. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  336. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  337. int frame_num_offset; ///< for POC type 2
  338. int prev_frame_num_offset; ///< for POC type 2
  339. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  340. /**
  341. * frame_num for frames or 2*frame_num+1 for field pics.
  342. */
  343. int curr_pic_num;
  344. /**
  345. * max_frame_num or 2*max_frame_num for field pics.
  346. */
  347. int max_pic_num;
  348. //Weighted pred stuff
  349. int use_weight;
  350. int use_weight_chroma;
  351. int luma_log2_weight_denom;
  352. int chroma_log2_weight_denom;
  353. int luma_weight[2][48];
  354. int luma_offset[2][48];
  355. int chroma_weight[2][48][2];
  356. int chroma_offset[2][48][2];
  357. int implicit_weight[48][48];
  358. //deblock
  359. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  360. int slice_alpha_c0_offset;
  361. int slice_beta_offset;
  362. int redundant_pic_count;
  363. int direct_spatial_mv_pred;
  364. int dist_scale_factor[16];
  365. int dist_scale_factor_field[2][32];
  366. int map_col_to_list0[2][16+32];
  367. int map_col_to_list0_field[2][2][16+32];
  368. /**
  369. * num_ref_idx_l0/1_active_minus1 + 1
  370. */
  371. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  372. unsigned int list_count;
  373. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  374. Picture *short_ref[32];
  375. Picture *long_ref[32];
  376. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  377. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  378. Reordered version of default_ref_list
  379. according to picture reordering in slice header */
  380. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  381. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  382. int outputed_poc;
  383. /**
  384. * memory management control operations buffer.
  385. */
  386. MMCO mmco[MAX_MMCO_COUNT];
  387. int mmco_index;
  388. int long_ref_count; ///< number of actual long term references
  389. int short_ref_count; ///< number of actual short term references
  390. //data partitioning
  391. GetBitContext intra_gb;
  392. GetBitContext inter_gb;
  393. GetBitContext *intra_gb_ptr;
  394. GetBitContext *inter_gb_ptr;
  395. DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
  396. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  397. /**
  398. * Cabac
  399. */
  400. CABACContext cabac;
  401. uint8_t cabac_state[460];
  402. int cabac_init_idc;
  403. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  404. uint16_t *cbp_table;
  405. int cbp;
  406. int top_cbp;
  407. int left_cbp;
  408. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  409. uint8_t *chroma_pred_mode_table;
  410. int last_qscale_diff;
  411. int16_t (*mvd_table[2])[2];
  412. DECLARE_ALIGNED_8(int16_t, mvd_cache)[2][5*8][2];
  413. uint8_t *direct_table;
  414. uint8_t direct_cache[5*8];
  415. uint8_t zigzag_scan[16];
  416. uint8_t zigzag_scan8x8[64];
  417. uint8_t zigzag_scan8x8_cavlc[64];
  418. uint8_t field_scan[16];
  419. uint8_t field_scan8x8[64];
  420. uint8_t field_scan8x8_cavlc[64];
  421. const uint8_t *zigzag_scan_q0;
  422. const uint8_t *zigzag_scan8x8_q0;
  423. const uint8_t *zigzag_scan8x8_cavlc_q0;
  424. const uint8_t *field_scan_q0;
  425. const uint8_t *field_scan8x8_q0;
  426. const uint8_t *field_scan8x8_cavlc_q0;
  427. int x264_build;
  428. /**
  429. * @defgroup multithreading Members for slice based multithreading
  430. * @{
  431. */
  432. struct H264Context *thread_context[MAX_THREADS];
  433. /**
  434. * current slice number, used to initalize slice_num of each thread/context
  435. */
  436. int current_slice;
  437. /**
  438. * Max number of threads / contexts.
  439. * This is equal to AVCodecContext.thread_count unless
  440. * multithreaded decoding is impossible, in which case it is
  441. * reduced to 1.
  442. */
  443. int max_contexts;
  444. /**
  445. * 1 if the single thread fallback warning has already been
  446. * displayed, 0 otherwise.
  447. */
  448. int single_decode_warning;
  449. int last_slice_type;
  450. /** @} */
  451. int mb_xy;
  452. uint32_t svq3_watermark_key;
  453. /**
  454. * pic_struct in picture timing SEI message
  455. */
  456. SEI_PicStructType sei_pic_struct;
  457. /**
  458. * Complement sei_pic_struct
  459. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  460. * However, soft telecined frames may have these values.
  461. * This is used in an attempt to flag soft telecine progressive.
  462. */
  463. int prev_interlaced_frame;
  464. /**
  465. * Bit set of clock types for fields/frames in picture timing SEI message.
  466. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  467. * interlaced).
  468. */
  469. int sei_ct_type;
  470. /**
  471. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  472. */
  473. int sei_dpb_output_delay;
  474. /**
  475. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  476. */
  477. int sei_cpb_removal_delay;
  478. /**
  479. * recovery_frame_cnt from SEI message
  480. *
  481. * Set to -1 if no recovery point SEI message found or to number of frames
  482. * before playback synchronizes. Frames having recovery point are key
  483. * frames.
  484. */
  485. int sei_recovery_frame_cnt;
  486. int is_complex;
  487. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  488. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  489. // Timestamp stuff
  490. int sei_buffering_period_present; ///< Buffering period SEI flag
  491. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  492. }H264Context;
  493. extern const uint8_t ff_h264_chroma_qp[52];
  494. /**
  495. * Decode SEI
  496. */
  497. int ff_h264_decode_sei(H264Context *h);
  498. /**
  499. * Decode SPS
  500. */
  501. int ff_h264_decode_seq_parameter_set(H264Context *h);
  502. /**
  503. * Decode PPS
  504. */
  505. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  506. /**
  507. * Decodes a network abstraction layer unit.
  508. * @param consumed is the number of bytes used as input
  509. * @param length is the length of the array
  510. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  511. * @returns decoded bytes, might be src+1 if no escapes
  512. */
  513. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  514. /**
  515. * identifies the exact end of the bitstream
  516. * @return the length of the trailing, or 0 if damaged
  517. */
  518. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  519. /**
  520. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  521. */
  522. av_cold void ff_h264_free_context(H264Context *h);
  523. /**
  524. * reconstructs bitstream slice_type.
  525. */
  526. int ff_h264_get_slice_type(H264Context *h);
  527. /**
  528. * allocates tables.
  529. * needs width/height
  530. */
  531. int ff_h264_alloc_tables(H264Context *h);
  532. /**
  533. * fills the default_ref_list.
  534. */
  535. int ff_h264_fill_default_ref_list(H264Context *h);
  536. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  537. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  538. void ff_h264_remove_all_refs(H264Context *h);
  539. /**
  540. * Executes the reference picture marking (memory management control operations).
  541. */
  542. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  543. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  544. /**
  545. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  546. */
  547. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  548. /**
  549. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  550. */
  551. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  552. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  553. void ff_h264_hl_decode_mb(H264Context *h);
  554. int ff_h264_frame_start(H264Context *h);
  555. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  556. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  557. av_cold void ff_h264_decode_init_vlc(void);
  558. /**
  559. * decodes a macroblock
  560. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  561. */
  562. int ff_h264_decode_mb_cavlc(H264Context *h);
  563. /**
  564. * decodes a CABAC coded macroblock
  565. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  566. */
  567. int ff_h264_decode_mb_cabac(H264Context *h);
  568. void ff_h264_init_cabac_states(H264Context *h);
  569. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  570. void ff_h264_direct_ref_list_init(H264Context * const h);
  571. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  572. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  573. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  574. /**
  575. * Reset SEI values at the beginning of the frame.
  576. *
  577. * @param h H.264 context.
  578. */
  579. void ff_h264_reset_sei(H264Context *h);
  580. /*
  581. o-o o-o
  582. / / /
  583. o-o o-o
  584. ,---'
  585. o-o o-o
  586. / / /
  587. o-o o-o
  588. */
  589. //This table must be here because scan8[constant] must be known at compiletime
  590. static const uint8_t scan8[16 + 2*4]={
  591. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  592. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  593. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  594. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  595. 1+1*8, 2+1*8,
  596. 1+2*8, 2+2*8,
  597. 1+4*8, 2+4*8,
  598. 1+5*8, 2+5*8,
  599. };
  600. static av_always_inline uint32_t pack16to32(int a, int b){
  601. #if HAVE_BIGENDIAN
  602. return (b&0xFFFF) + (a<<16);
  603. #else
  604. return (a&0xFFFF) + (b<<16);
  605. #endif
  606. }
  607. /**
  608. * gets the chroma qp.
  609. */
  610. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  611. return h->pps.chroma_qp_table[t][qscale];
  612. }
  613. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  614. static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){
  615. MpegEncContext * const s = &h->s;
  616. const int mb_xy= h->mb_xy;
  617. int topleft_xy, top_xy, topright_xy, left_xy[2];
  618. int topleft_type, top_type, topright_type, left_type[2];
  619. const uint8_t * left_block;
  620. int topleft_partition= -1;
  621. int i;
  622. static const uint8_t left_block_options[4][16]={
  623. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  624. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  625. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  626. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  627. };
  628. top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  629. //FIXME deblocking could skip the intra and nnz parts.
  630. // if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
  631. // return;
  632. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  633. * stuff, I can't imagine that these complex rules are worth it. */
  634. topleft_xy = top_xy - 1;
  635. topright_xy= top_xy + 1;
  636. left_xy[1] = left_xy[0] = mb_xy-1;
  637. left_block = left_block_options[0];
  638. if(FRAME_MBAFF){
  639. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  640. const int top_pair_xy = pair_xy - s->mb_stride;
  641. const int topleft_pair_xy = top_pair_xy - 1;
  642. const int topright_pair_xy = top_pair_xy + 1;
  643. const int topleft_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
  644. const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  645. const int topright_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
  646. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  647. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  648. const int bottom = (s->mb_y & 1);
  649. tprintf(s->avctx, "fill_caches: curr_mb_field_flag:%d, left_mb_field_flag:%d, topleft_mb_field_flag:%d, top_mb_field_flag:%d, topright_mb_field_flag:%d\n", curr_mb_field_flag, left_mb_field_flag, topleft_mb_field_flag, top_mb_field_flag, topright_mb_field_flag);
  650. if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
  651. top_xy -= s->mb_stride;
  652. }
  653. if (curr_mb_field_flag && (bottom || topleft_mb_field_flag)){
  654. topleft_xy -= s->mb_stride;
  655. } else if(bottom && !curr_mb_field_flag && left_mb_field_flag) {
  656. topleft_xy += s->mb_stride;
  657. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  658. topleft_partition = 0;
  659. }
  660. if (curr_mb_field_flag && (bottom || topright_mb_field_flag)){
  661. topright_xy -= s->mb_stride;
  662. }
  663. if (left_mb_field_flag != curr_mb_field_flag) {
  664. left_xy[1] = left_xy[0] = pair_xy - 1;
  665. if (curr_mb_field_flag) {
  666. left_xy[1] += s->mb_stride;
  667. left_block = left_block_options[3];
  668. } else {
  669. left_block= left_block_options[2 - bottom];
  670. }
  671. }
  672. }
  673. h->top_mb_xy = top_xy;
  674. h->left_mb_xy[0] = left_xy[0];
  675. h->left_mb_xy[1] = left_xy[1];
  676. if(for_deblock){
  677. //for sufficiently low qp, filtering wouldn't do anything
  678. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  679. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  680. int qp = s->current_picture.qscale_table[mb_xy];
  681. if(qp <= qp_thresh
  682. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  683. && (left_xy[1]<0 || ((qp + s->current_picture.qscale_table[left_xy[1]] + 1)>>1) <= qp_thresh)
  684. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  685. return 1;
  686. }
  687. if(IS_INTRA(mb_type))
  688. return 0;
  689. *((uint64_t*)&h->non_zero_count_cache[0+8*1])= *((uint64_t*)&h->non_zero_count[mb_xy][ 0]);
  690. *((uint64_t*)&h->non_zero_count_cache[0+8*2])= *((uint64_t*)&h->non_zero_count[mb_xy][ 8]);
  691. *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
  692. *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
  693. *((uint64_t*)&h->non_zero_count_cache[0+8*4])= *((uint64_t*)&h->non_zero_count[mb_xy][24]);
  694. h->cbp= h->cbp_table[mb_xy];
  695. topleft_type = 0;
  696. topright_type = 0;
  697. top_type = h->slice_table[top_xy ] < 0xFFFF ? s->current_picture.mb_type[top_xy] : 0;
  698. left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
  699. left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
  700. if(!IS_INTRA(mb_type)){
  701. int list;
  702. for(list=0; list<h->list_count; list++){
  703. int8_t *ref;
  704. int y, b_xy;
  705. if(!USES_LIST(mb_type, list)){
  706. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  707. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  708. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
  709. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  710. *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
  711. continue;
  712. }
  713. ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
  714. if(for_deblock){
  715. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  716. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  717. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
  718. ref += h->b8_stride;
  719. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  720. *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
  721. }else{
  722. *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
  723. *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
  724. ref += h->b8_stride;
  725. *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
  726. *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref[0],ref[1])&0x00FF00FF)*0x0101;
  727. }
  728. b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  729. for(y=0; y<4; y++){
  730. *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride];
  731. *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y]= *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride];
  732. }
  733. }
  734. }
  735. }else{
  736. topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
  737. top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
  738. topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
  739. left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
  740. left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
  741. if(IS_INTRA(mb_type)){
  742. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  743. h->topleft_samples_available=
  744. h->top_samples_available=
  745. h->left_samples_available= 0xFFFF;
  746. h->topright_samples_available= 0xEEEA;
  747. if(!(top_type & type_mask)){
  748. h->topleft_samples_available= 0xB3FF;
  749. h->top_samples_available= 0x33FF;
  750. h->topright_samples_available= 0x26EA;
  751. }
  752. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  753. if(IS_INTERLACED(mb_type)){
  754. if(!(left_type[0] & type_mask)){
  755. h->topleft_samples_available&= 0xDFFF;
  756. h->left_samples_available&= 0x5FFF;
  757. }
  758. if(!(left_type[1] & type_mask)){
  759. h->topleft_samples_available&= 0xFF5F;
  760. h->left_samples_available&= 0xFF5F;
  761. }
  762. }else{
  763. int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
  764. ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
  765. assert(left_xy[0] == left_xy[1]);
  766. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  767. h->topleft_samples_available&= 0xDF5F;
  768. h->left_samples_available&= 0x5F5F;
  769. }
  770. }
  771. }else{
  772. if(!(left_type[0] & type_mask)){
  773. h->topleft_samples_available&= 0xDF5F;
  774. h->left_samples_available&= 0x5F5F;
  775. }
  776. }
  777. if(!(topleft_type & type_mask))
  778. h->topleft_samples_available&= 0x7FFF;
  779. if(!(topright_type & type_mask))
  780. h->topright_samples_available&= 0xFBFF;
  781. if(IS_INTRA4x4(mb_type)){
  782. if(IS_INTRA4x4(top_type)){
  783. h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
  784. h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
  785. h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
  786. h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
  787. }else{
  788. int pred;
  789. if(!(top_type & type_mask))
  790. pred= -1;
  791. else{
  792. pred= 2;
  793. }
  794. h->intra4x4_pred_mode_cache[4+8*0]=
  795. h->intra4x4_pred_mode_cache[5+8*0]=
  796. h->intra4x4_pred_mode_cache[6+8*0]=
  797. h->intra4x4_pred_mode_cache[7+8*0]= pred;
  798. }
  799. for(i=0; i<2; i++){
  800. if(IS_INTRA4x4(left_type[i])){
  801. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
  802. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
  803. }else{
  804. int pred;
  805. if(!(left_type[i] & type_mask))
  806. pred= -1;
  807. else{
  808. pred= 2;
  809. }
  810. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  811. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
  812. }
  813. }
  814. }
  815. }
  816. }
  817. /*
  818. 0 . T T. T T T T
  819. 1 L . .L . . . .
  820. 2 L . .L . . . .
  821. 3 . T TL . . . .
  822. 4 L . .L . . . .
  823. 5 L . .. . . . .
  824. */
  825. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  826. if(top_type){
  827. *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
  828. if(!for_deblock){
  829. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  830. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  831. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  832. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  833. }
  834. }else{
  835. if(for_deblock){
  836. *(uint32_t*)&h->non_zero_count_cache[4+8*0]= 0;
  837. }else{
  838. h->non_zero_count_cache[1+8*0]=
  839. h->non_zero_count_cache[2+8*0]=
  840. h->non_zero_count_cache[1+8*3]=
  841. h->non_zero_count_cache[2+8*3]=
  842. *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
  843. }
  844. }
  845. for (i=0; i<2; i++) {
  846. if(left_type[i]){
  847. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  848. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  849. if(!for_deblock){
  850. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  851. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  852. }
  853. }else{
  854. if(for_deblock){
  855. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  856. h->non_zero_count_cache[3+8*2 + 2*8*i]= 0;
  857. }else{
  858. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  859. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  860. h->non_zero_count_cache[0+8*1 + 8*i]=
  861. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  862. }
  863. }
  864. }
  865. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  866. if(for_deblock && !CABAC && h->pps.transform_8x8_mode){
  867. if(IS_8x8DCT(top_type)){
  868. h->non_zero_count_cache[4+8*0]=
  869. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  870. h->non_zero_count_cache[6+8*0]=
  871. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  872. }
  873. if(IS_8x8DCT(left_type[0])){
  874. h->non_zero_count_cache[3+8*1]=
  875. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  876. }
  877. if(IS_8x8DCT(left_type[1])){
  878. h->non_zero_count_cache[3+8*3]=
  879. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  880. }
  881. if(IS_8x8DCT(mb_type)){
  882. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  883. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp_table[mb_xy] & 1;
  884. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  885. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp_table[mb_xy] & 2;
  886. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  887. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp_table[mb_xy] & 4;
  888. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  889. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp_table[mb_xy] & 8;
  890. }
  891. }
  892. if( CABAC && !for_deblock) {
  893. // top_cbp
  894. if(top_type) {
  895. h->top_cbp = h->cbp_table[top_xy];
  896. } else if(IS_INTRA(mb_type)) {
  897. h->top_cbp = 0x1C0;
  898. } else {
  899. h->top_cbp = 0;
  900. }
  901. // left_cbp
  902. if (left_type[0]) {
  903. h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
  904. } else if(IS_INTRA(mb_type)) {
  905. h->left_cbp = 0x1C0;
  906. } else {
  907. h->left_cbp = 0;
  908. }
  909. if (left_type[0]) {
  910. h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
  911. }
  912. if (left_type[1]) {
  913. h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
  914. }
  915. }
  916. #if 1
  917. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  918. int list;
  919. for(list=0; list<h->list_count; list++){
  920. if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
  921. /*if(!h->mv_cache_clean[list]){
  922. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  923. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  924. h->mv_cache_clean[list]= 1;
  925. }*/
  926. continue;
  927. }
  928. h->mv_cache_clean[list]= 0;
  929. if(USES_LIST(top_type, list)){
  930. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  931. const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
  932. *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
  933. *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
  934. *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
  935. *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
  936. if(for_deblock){
  937. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  938. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  939. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  940. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  941. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  942. }else{
  943. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  944. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
  945. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  946. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
  947. }
  948. }else{
  949. *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
  950. *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
  951. *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
  952. *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
  953. *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
  954. }
  955. for(i=0; i<2; i++){
  956. int cache_idx = scan8[0] - 1 + i*2*8;
  957. if(USES_LIST(left_type[i], list)){
  958. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  959. const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
  960. *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
  961. *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
  962. if(for_deblock){
  963. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  964. h->ref_cache[list][cache_idx ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]];
  965. h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]];
  966. }else{
  967. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
  968. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
  969. }
  970. }else{
  971. *(uint32_t*)h->mv_cache [list][cache_idx ]=
  972. *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
  973. h->ref_cache[list][cache_idx ]=
  974. h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  975. }
  976. }
  977. if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
  978. continue;
  979. if(USES_LIST(topleft_type, list)){
  980. const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
  981. const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
  982. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  983. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  984. }else{
  985. *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
  986. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  987. }
  988. if(USES_LIST(topright_type, list)){
  989. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  990. const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
  991. *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
  992. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  993. }else{
  994. *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
  995. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  996. }
  997. if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
  998. continue;
  999. h->ref_cache[list][scan8[5 ]+1] =
  1000. h->ref_cache[list][scan8[7 ]+1] =
  1001. h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
  1002. h->ref_cache[list][scan8[4 ]] =
  1003. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  1004. *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
  1005. *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
  1006. *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  1007. *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
  1008. *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
  1009. if( CABAC ) {
  1010. /* XXX beurk, Load mvd */
  1011. if(USES_LIST(top_type, list)){
  1012. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  1013. *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
  1014. *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
  1015. *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
  1016. *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
  1017. }else{
  1018. *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
  1019. *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
  1020. *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
  1021. *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
  1022. }
  1023. if(USES_LIST(left_type[0], list)){
  1024. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  1025. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
  1026. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
  1027. }else{
  1028. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
  1029. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
  1030. }
  1031. if(USES_LIST(left_type[1], list)){
  1032. const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
  1033. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
  1034. *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
  1035. }else{
  1036. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
  1037. *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
  1038. }
  1039. *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
  1040. *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
  1041. *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
  1042. *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
  1043. *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
  1044. if(h->slice_type_nos == FF_B_TYPE){
  1045. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
  1046. if(IS_DIRECT(top_type)){
  1047. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
  1048. }else if(IS_8X8(top_type)){
  1049. int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
  1050. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
  1051. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
  1052. }else{
  1053. *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
  1054. }
  1055. if(IS_DIRECT(left_type[0]))
  1056. h->direct_cache[scan8[0] - 1 + 0*8]= 1;
  1057. else if(IS_8X8(left_type[0]))
  1058. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
  1059. else
  1060. h->direct_cache[scan8[0] - 1 + 0*8]= 0;
  1061. if(IS_DIRECT(left_type[1]))
  1062. h->direct_cache[scan8[0] - 1 + 2*8]= 1;
  1063. else if(IS_8X8(left_type[1]))
  1064. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
  1065. else
  1066. h->direct_cache[scan8[0] - 1 + 2*8]= 0;
  1067. }
  1068. }
  1069. if(FRAME_MBAFF){
  1070. #define MAP_MVS\
  1071. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  1072. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  1073. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  1074. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  1075. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  1076. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  1077. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  1078. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  1079. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  1080. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  1081. if(MB_FIELD){
  1082. #define MAP_F2F(idx, mb_type)\
  1083. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1084. h->ref_cache[list][idx] <<= 1;\
  1085. h->mv_cache[list][idx][1] /= 2;\
  1086. h->mvd_cache[list][idx][1] /= 2;\
  1087. }
  1088. MAP_MVS
  1089. #undef MAP_F2F
  1090. }else{
  1091. #define MAP_F2F(idx, mb_type)\
  1092. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  1093. h->ref_cache[list][idx] >>= 1;\
  1094. h->mv_cache[list][idx][1] <<= 1;\
  1095. h->mvd_cache[list][idx][1] <<= 1;\
  1096. }
  1097. MAP_MVS
  1098. #undef MAP_F2F
  1099. }
  1100. }
  1101. }
  1102. }
  1103. #endif
  1104. if(!for_deblock)
  1105. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1106. return 0;
  1107. }
  1108. static void fill_decode_caches(H264Context *h, int mb_type){
  1109. fill_caches(h, mb_type, 0);
  1110. }
  1111. /**
  1112. *
  1113. * @returns non zero if the loop filter can be skiped
  1114. */
  1115. static int fill_filter_caches(H264Context *h, int mb_type){
  1116. return fill_caches(h, mb_type, 1);
  1117. }
  1118. /**
  1119. * gets the predicted intra4x4 prediction mode.
  1120. */
  1121. static inline int pred_intra_mode(H264Context *h, int n){
  1122. const int index8= scan8[n];
  1123. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1124. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1125. const int min= FFMIN(left, top);
  1126. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1127. if(min<0) return DC_PRED;
  1128. else return min;
  1129. }
  1130. static inline void write_back_non_zero_count(H264Context *h){
  1131. const int mb_xy= h->mb_xy;
  1132. *((uint64_t*)&h->non_zero_count[mb_xy][ 0]) = *((uint64_t*)&h->non_zero_count_cache[0+8*1]);
  1133. *((uint64_t*)&h->non_zero_count[mb_xy][ 8]) = *((uint64_t*)&h->non_zero_count_cache[0+8*2]);
  1134. *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
  1135. *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
  1136. *((uint64_t*)&h->non_zero_count[mb_xy][24]) = *((uint64_t*)&h->non_zero_count_cache[0+8*4]);
  1137. }
  1138. static inline void write_back_motion(H264Context *h, int mb_type){
  1139. MpegEncContext * const s = &h->s;
  1140. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
  1141. const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
  1142. int list;
  1143. if(!USES_LIST(mb_type, 0))
  1144. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
  1145. for(list=0; list<h->list_count; list++){
  1146. int y;
  1147. if(!USES_LIST(mb_type, list))
  1148. continue;
  1149. for(y=0; y<4; y++){
  1150. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
  1151. *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
  1152. }
  1153. if( CABAC ) {
  1154. if(IS_SKIP(mb_type))
  1155. fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
  1156. else
  1157. for(y=0; y<4; y++){
  1158. *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
  1159. *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
  1160. }
  1161. }
  1162. {
  1163. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1164. ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
  1165. ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
  1166. ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
  1167. ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
  1168. }
  1169. }
  1170. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1171. if(IS_8X8(mb_type)){
  1172. uint8_t *direct_table = &h->direct_table[b8_xy];
  1173. direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
  1174. direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
  1175. direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
  1176. }
  1177. }
  1178. }
  1179. static inline int get_dct8x8_allowed(H264Context *h){
  1180. if(h->sps.direct_8x8_inference_flag)
  1181. return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1182. else
  1183. return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1184. }
  1185. static void predict_field_decoding_flag(H264Context *h){
  1186. MpegEncContext * const s = &h->s;
  1187. const int mb_xy= h->mb_xy;
  1188. int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
  1189. ? s->current_picture.mb_type[mb_xy-1]
  1190. : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
  1191. ? s->current_picture.mb_type[mb_xy-s->mb_stride]
  1192. : 0;
  1193. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  1194. }
  1195. /**
  1196. * decodes a P_SKIP or B_SKIP macroblock
  1197. */
  1198. static void decode_mb_skip(H264Context *h){
  1199. MpegEncContext * const s = &h->s;
  1200. const int mb_xy= h->mb_xy;
  1201. int mb_type=0;
  1202. memset(h->non_zero_count[mb_xy], 0, 32);
  1203. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1204. if(MB_FIELD)
  1205. mb_type|= MB_TYPE_INTERLACED;
  1206. if( h->slice_type_nos == FF_B_TYPE )
  1207. {
  1208. // just for fill_caches. pred_direct_motion will set the real mb_type
  1209. mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1210. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1211. ff_h264_pred_direct_motion(h, &mb_type);
  1212. mb_type|= MB_TYPE_SKIP;
  1213. }
  1214. else
  1215. {
  1216. int mx, my;
  1217. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1218. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1219. pred_pskip_motion(h, &mx, &my);
  1220. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1221. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1222. }
  1223. write_back_motion(h, mb_type);
  1224. s->current_picture.mb_type[mb_xy]= mb_type;
  1225. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1226. h->slice_table[ mb_xy ]= h->slice_num;
  1227. h->prev_mb_skipped= 1;
  1228. }
  1229. #include "h264_mvpred.h" //For pred_pskip_motion()
  1230. #endif /* AVCODEC_H264_H */