You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3148 lines
115KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "internal.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "h264.h"
  31. #include "h264data.h"
  32. #include "h264_mvpred.h"
  33. #include "h264_parser.h"
  34. #include "golomb.h"
  35. #include "mathops.h"
  36. #include "rectangle.h"
  37. #include "vdpau_internal.h"
  38. #include "cabac.h"
  39. //#undef NDEBUG
  40. #include <assert.h>
  41. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  42. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  43. static const uint8_t rem6[52]={
  44. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  45. };
  46. static const uint8_t div6[52]={
  47. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  48. };
  49. void ff_h264_write_back_intra_pred_mode(H264Context *h){
  50. const int mb_xy= h->mb_xy;
  51. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  52. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  53. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  54. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  55. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  56. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  57. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  58. }
  59. /**
  60. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  61. */
  62. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  63. MpegEncContext * const s = &h->s;
  64. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  65. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  66. int i;
  67. if(!(h->top_samples_available&0x8000)){
  68. for(i=0; i<4; i++){
  69. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  70. if(status<0){
  71. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  72. return -1;
  73. } else if(status){
  74. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  75. }
  76. }
  77. }
  78. if((h->left_samples_available&0x8888)!=0x8888){
  79. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  80. for(i=0; i<4; i++){
  81. if(!(h->left_samples_available&mask[i])){
  82. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  83. if(status<0){
  84. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  85. return -1;
  86. } else if(status){
  87. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  88. }
  89. }
  90. }
  91. }
  92. return 0;
  93. } //FIXME cleanup like ff_h264_check_intra_pred_mode
  94. /**
  95. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  96. */
  97. int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
  98. MpegEncContext * const s = &h->s;
  99. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  100. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  101. if(mode > 6U) {
  102. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  103. return -1;
  104. }
  105. if(!(h->top_samples_available&0x8000)){
  106. mode= top[ mode ];
  107. if(mode<0){
  108. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  109. return -1;
  110. }
  111. }
  112. if((h->left_samples_available&0x8080) != 0x8080){
  113. mode= left[ mode ];
  114. if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  115. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  116. }
  117. if(mode<0){
  118. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  119. return -1;
  120. }
  121. }
  122. return mode;
  123. }
  124. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  125. int i, si, di;
  126. uint8_t *dst;
  127. int bufidx;
  128. // src[0]&0x80; //forbidden bit
  129. h->nal_ref_idc= src[0]>>5;
  130. h->nal_unit_type= src[0]&0x1F;
  131. src++; length--;
  132. #if 0
  133. for(i=0; i<length; i++)
  134. printf("%2X ", src[i]);
  135. #endif
  136. #if HAVE_FAST_UNALIGNED
  137. # if HAVE_FAST_64BIT
  138. # define RS 7
  139. for(i=0; i+1<length; i+=9){
  140. if(!((~*(const uint64_t*)(src+i) & (*(const uint64_t*)(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  141. # else
  142. # define RS 3
  143. for(i=0; i+1<length; i+=5){
  144. if(!((~*(const uint32_t*)(src+i) & (*(const uint32_t*)(src+i) - 0x01000101U)) & 0x80008080U))
  145. # endif
  146. continue;
  147. if(i>0 && !src[i]) i--;
  148. while(src[i]) i++;
  149. #else
  150. # define RS 0
  151. for(i=0; i+1<length; i+=2){
  152. if(src[i]) continue;
  153. if(i>0 && src[i-1]==0) i--;
  154. #endif
  155. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  156. if(src[i+2]!=3){
  157. /* startcode, so we must be past the end */
  158. length=i;
  159. }
  160. break;
  161. }
  162. i-= RS;
  163. }
  164. if(i>=length-1){ //no escaped 0
  165. *dst_length= length;
  166. *consumed= length+1; //+1 for the header
  167. return src;
  168. }
  169. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  170. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
  171. dst= h->rbsp_buffer[bufidx];
  172. if (dst == NULL){
  173. return NULL;
  174. }
  175. //printf("decoding esc\n");
  176. memcpy(dst, src, i);
  177. si=di=i;
  178. while(si+2<length){
  179. //remove escapes (very rare 1:2^22)
  180. if(src[si+2]>3){
  181. dst[di++]= src[si++];
  182. dst[di++]= src[si++];
  183. }else if(src[si]==0 && src[si+1]==0){
  184. if(src[si+2]==3){ //escape
  185. dst[di++]= 0;
  186. dst[di++]= 0;
  187. si+=3;
  188. continue;
  189. }else //next start code
  190. goto nsc;
  191. }
  192. dst[di++]= src[si++];
  193. }
  194. while(si<length)
  195. dst[di++]= src[si++];
  196. nsc:
  197. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  198. *dst_length= di;
  199. *consumed= si + 1;//+1 for the header
  200. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  201. return dst;
  202. }
  203. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  204. int v= *src;
  205. int r;
  206. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  207. for(r=1; r<9; r++){
  208. if(v&1) return r;
  209. v>>=1;
  210. }
  211. return 0;
  212. }
  213. /**
  214. * IDCT transforms the 16 dc values and dequantizes them.
  215. * @param qp quantization parameter
  216. */
  217. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  218. #define stride 16
  219. int i;
  220. int temp[16]; //FIXME check if this is a good idea
  221. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  222. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  223. //memset(block, 64, 2*256);
  224. //return;
  225. for(i=0; i<4; i++){
  226. const int offset= y_offset[i];
  227. const int z0= block[offset+stride*0] + block[offset+stride*4];
  228. const int z1= block[offset+stride*0] - block[offset+stride*4];
  229. const int z2= block[offset+stride*1] - block[offset+stride*5];
  230. const int z3= block[offset+stride*1] + block[offset+stride*5];
  231. temp[4*i+0]= z0+z3;
  232. temp[4*i+1]= z1+z2;
  233. temp[4*i+2]= z1-z2;
  234. temp[4*i+3]= z0-z3;
  235. }
  236. for(i=0; i<4; i++){
  237. const int offset= x_offset[i];
  238. const int z0= temp[4*0+i] + temp[4*2+i];
  239. const int z1= temp[4*0+i] - temp[4*2+i];
  240. const int z2= temp[4*1+i] - temp[4*3+i];
  241. const int z3= temp[4*1+i] + temp[4*3+i];
  242. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  243. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  244. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  245. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  246. }
  247. }
  248. #if 0
  249. /**
  250. * DCT transforms the 16 dc values.
  251. * @param qp quantization parameter ??? FIXME
  252. */
  253. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  254. // const int qmul= dequant_coeff[qp][0];
  255. int i;
  256. int temp[16]; //FIXME check if this is a good idea
  257. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  258. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  259. for(i=0; i<4; i++){
  260. const int offset= y_offset[i];
  261. const int z0= block[offset+stride*0] + block[offset+stride*4];
  262. const int z1= block[offset+stride*0] - block[offset+stride*4];
  263. const int z2= block[offset+stride*1] - block[offset+stride*5];
  264. const int z3= block[offset+stride*1] + block[offset+stride*5];
  265. temp[4*i+0]= z0+z3;
  266. temp[4*i+1]= z1+z2;
  267. temp[4*i+2]= z1-z2;
  268. temp[4*i+3]= z0-z3;
  269. }
  270. for(i=0; i<4; i++){
  271. const int offset= x_offset[i];
  272. const int z0= temp[4*0+i] + temp[4*2+i];
  273. const int z1= temp[4*0+i] - temp[4*2+i];
  274. const int z2= temp[4*1+i] - temp[4*3+i];
  275. const int z3= temp[4*1+i] + temp[4*3+i];
  276. block[stride*0 +offset]= (z0 + z3)>>1;
  277. block[stride*2 +offset]= (z1 + z2)>>1;
  278. block[stride*8 +offset]= (z1 - z2)>>1;
  279. block[stride*10+offset]= (z0 - z3)>>1;
  280. }
  281. }
  282. #endif
  283. #undef xStride
  284. #undef stride
  285. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  286. const int stride= 16*2;
  287. const int xStride= 16;
  288. int a,b,c,d,e;
  289. a= block[stride*0 + xStride*0];
  290. b= block[stride*0 + xStride*1];
  291. c= block[stride*1 + xStride*0];
  292. d= block[stride*1 + xStride*1];
  293. e= a-b;
  294. a= a+b;
  295. b= c-d;
  296. c= c+d;
  297. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  298. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  299. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  300. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  301. }
  302. #if 0
  303. static void chroma_dc_dct_c(DCTELEM *block){
  304. const int stride= 16*2;
  305. const int xStride= 16;
  306. int a,b,c,d,e;
  307. a= block[stride*0 + xStride*0];
  308. b= block[stride*0 + xStride*1];
  309. c= block[stride*1 + xStride*0];
  310. d= block[stride*1 + xStride*1];
  311. e= a-b;
  312. a= a+b;
  313. b= c-d;
  314. c= c+d;
  315. block[stride*0 + xStride*0]= (a+c);
  316. block[stride*0 + xStride*1]= (e+b);
  317. block[stride*1 + xStride*0]= (a-c);
  318. block[stride*1 + xStride*1]= (e-b);
  319. }
  320. #endif
  321. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  322. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  323. int src_x_offset, int src_y_offset,
  324. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  325. MpegEncContext * const s = &h->s;
  326. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  327. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  328. const int luma_xy= (mx&3) + ((my&3)<<2);
  329. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  330. uint8_t * src_cb, * src_cr;
  331. int extra_width= h->emu_edge_width;
  332. int extra_height= h->emu_edge_height;
  333. int emu=0;
  334. const int full_mx= mx>>2;
  335. const int full_my= my>>2;
  336. const int pic_width = 16*s->mb_width;
  337. const int pic_height = 16*s->mb_height >> MB_FIELD;
  338. if(mx&7) extra_width -= 3;
  339. if(my&7) extra_height -= 3;
  340. if( full_mx < 0-extra_width
  341. || full_my < 0-extra_height
  342. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  343. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  344. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  345. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  346. emu=1;
  347. }
  348. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  349. if(!square){
  350. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  351. }
  352. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  353. if(MB_FIELD){
  354. // chroma offset when predicting from a field of opposite parity
  355. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  356. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  357. }
  358. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  359. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  360. if(emu){
  361. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  362. src_cb= s->edge_emu_buffer;
  363. }
  364. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  365. if(emu){
  366. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  367. src_cr= s->edge_emu_buffer;
  368. }
  369. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  370. }
  371. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  372. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  373. int x_offset, int y_offset,
  374. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  375. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  376. int list0, int list1){
  377. MpegEncContext * const s = &h->s;
  378. qpel_mc_func *qpix_op= qpix_put;
  379. h264_chroma_mc_func chroma_op= chroma_put;
  380. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  381. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  382. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  383. x_offset += 8*s->mb_x;
  384. y_offset += 8*(s->mb_y >> MB_FIELD);
  385. if(list0){
  386. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  387. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  388. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  389. qpix_op, chroma_op);
  390. qpix_op= qpix_avg;
  391. chroma_op= chroma_avg;
  392. }
  393. if(list1){
  394. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  395. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  396. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  397. qpix_op, chroma_op);
  398. }
  399. }
  400. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  401. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  402. int x_offset, int y_offset,
  403. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  404. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  405. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  406. int list0, int list1){
  407. MpegEncContext * const s = &h->s;
  408. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  409. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  410. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  411. x_offset += 8*s->mb_x;
  412. y_offset += 8*(s->mb_y >> MB_FIELD);
  413. if(list0 && list1){
  414. /* don't optimize for luma-only case, since B-frames usually
  415. * use implicit weights => chroma too. */
  416. uint8_t *tmp_cb = s->obmc_scratchpad;
  417. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  418. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  419. int refn0 = h->ref_cache[0][ scan8[n] ];
  420. int refn1 = h->ref_cache[1][ scan8[n] ];
  421. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  422. dest_y, dest_cb, dest_cr,
  423. x_offset, y_offset, qpix_put, chroma_put);
  424. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  425. tmp_y, tmp_cb, tmp_cr,
  426. x_offset, y_offset, qpix_put, chroma_put);
  427. if(h->use_weight == 2){
  428. int weight0 = h->implicit_weight[refn0][refn1];
  429. int weight1 = 64 - weight0;
  430. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  431. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  432. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  433. }else{
  434. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  435. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  436. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  437. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  438. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  439. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  440. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  441. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  442. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  443. }
  444. }else{
  445. int list = list1 ? 1 : 0;
  446. int refn = h->ref_cache[list][ scan8[n] ];
  447. Picture *ref= &h->ref_list[list][refn];
  448. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  449. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  450. qpix_put, chroma_put);
  451. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  452. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  453. if(h->use_weight_chroma){
  454. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  455. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  456. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  457. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  458. }
  459. }
  460. }
  461. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  462. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  463. int x_offset, int y_offset,
  464. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  465. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  466. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  467. int list0, int list1){
  468. if((h->use_weight==2 && list0 && list1
  469. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  470. || h->use_weight==1)
  471. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  472. x_offset, y_offset, qpix_put, chroma_put,
  473. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  474. else
  475. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  476. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  477. }
  478. static inline void prefetch_motion(H264Context *h, int list){
  479. /* fetch pixels for estimated mv 4 macroblocks ahead
  480. * optimized for 64byte cache lines */
  481. MpegEncContext * const s = &h->s;
  482. const int refn = h->ref_cache[list][scan8[0]];
  483. if(refn >= 0){
  484. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  485. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  486. uint8_t **src= h->ref_list[list][refn].data;
  487. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  488. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  489. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  490. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  491. }
  492. }
  493. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  494. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  495. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  496. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  497. MpegEncContext * const s = &h->s;
  498. const int mb_xy= h->mb_xy;
  499. const int mb_type= s->current_picture.mb_type[mb_xy];
  500. assert(IS_INTER(mb_type));
  501. prefetch_motion(h, 0);
  502. if(IS_16X16(mb_type)){
  503. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  504. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  505. weight_op, weight_avg,
  506. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  507. }else if(IS_16X8(mb_type)){
  508. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  509. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  510. &weight_op[1], &weight_avg[1],
  511. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  512. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  513. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  514. &weight_op[1], &weight_avg[1],
  515. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  516. }else if(IS_8X16(mb_type)){
  517. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  518. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  519. &weight_op[2], &weight_avg[2],
  520. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  521. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  522. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  523. &weight_op[2], &weight_avg[2],
  524. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  525. }else{
  526. int i;
  527. assert(IS_8X8(mb_type));
  528. for(i=0; i<4; i++){
  529. const int sub_mb_type= h->sub_mb_type[i];
  530. const int n= 4*i;
  531. int x_offset= (i&1)<<2;
  532. int y_offset= (i&2)<<1;
  533. if(IS_SUB_8X8(sub_mb_type)){
  534. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  535. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  536. &weight_op[3], &weight_avg[3],
  537. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  538. }else if(IS_SUB_8X4(sub_mb_type)){
  539. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  540. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  541. &weight_op[4], &weight_avg[4],
  542. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  543. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  544. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  545. &weight_op[4], &weight_avg[4],
  546. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  547. }else if(IS_SUB_4X8(sub_mb_type)){
  548. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  549. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  550. &weight_op[5], &weight_avg[5],
  551. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  552. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  553. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  554. &weight_op[5], &weight_avg[5],
  555. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  556. }else{
  557. int j;
  558. assert(IS_SUB_4X4(sub_mb_type));
  559. for(j=0; j<4; j++){
  560. int sub_x_offset= x_offset + 2*(j&1);
  561. int sub_y_offset= y_offset + (j&2);
  562. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  563. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  564. &weight_op[6], &weight_avg[6],
  565. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  566. }
  567. }
  568. }
  569. }
  570. prefetch_motion(h, 1);
  571. }
  572. static void free_tables(H264Context *h){
  573. int i;
  574. H264Context *hx;
  575. av_freep(&h->intra4x4_pred_mode);
  576. av_freep(&h->chroma_pred_mode_table);
  577. av_freep(&h->cbp_table);
  578. av_freep(&h->mvd_table[0]);
  579. av_freep(&h->mvd_table[1]);
  580. av_freep(&h->direct_table);
  581. av_freep(&h->non_zero_count);
  582. av_freep(&h->slice_table_base);
  583. h->slice_table= NULL;
  584. av_freep(&h->list_counts);
  585. av_freep(&h->mb2b_xy);
  586. av_freep(&h->mb2b8_xy);
  587. for(i = 0; i < MAX_THREADS; i++) {
  588. hx = h->thread_context[i];
  589. if(!hx) continue;
  590. av_freep(&hx->top_borders[1]);
  591. av_freep(&hx->top_borders[0]);
  592. av_freep(&hx->s.obmc_scratchpad);
  593. av_freep(&hx->rbsp_buffer[1]);
  594. av_freep(&hx->rbsp_buffer[0]);
  595. hx->rbsp_buffer_size[0] = 0;
  596. hx->rbsp_buffer_size[1] = 0;
  597. if (i) av_freep(&h->thread_context[i]);
  598. }
  599. }
  600. static void init_dequant8_coeff_table(H264Context *h){
  601. int i,q,x;
  602. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  603. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  604. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  605. for(i=0; i<2; i++ ){
  606. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  607. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  608. break;
  609. }
  610. for(q=0; q<52; q++){
  611. int shift = div6[q];
  612. int idx = rem6[q];
  613. for(x=0; x<64; x++)
  614. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  615. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  616. h->pps.scaling_matrix8[i][x]) << shift;
  617. }
  618. }
  619. }
  620. static void init_dequant4_coeff_table(H264Context *h){
  621. int i,j,q,x;
  622. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  623. for(i=0; i<6; i++ ){
  624. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  625. for(j=0; j<i; j++){
  626. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  627. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  628. break;
  629. }
  630. }
  631. if(j<i)
  632. continue;
  633. for(q=0; q<52; q++){
  634. int shift = div6[q] + 2;
  635. int idx = rem6[q];
  636. for(x=0; x<16; x++)
  637. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  638. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  639. h->pps.scaling_matrix4[i][x]) << shift;
  640. }
  641. }
  642. }
  643. static void init_dequant_tables(H264Context *h){
  644. int i,x;
  645. init_dequant4_coeff_table(h);
  646. if(h->pps.transform_8x8_mode)
  647. init_dequant8_coeff_table(h);
  648. if(h->sps.transform_bypass){
  649. for(i=0; i<6; i++)
  650. for(x=0; x<16; x++)
  651. h->dequant4_coeff[i][0][x] = 1<<6;
  652. if(h->pps.transform_8x8_mode)
  653. for(i=0; i<2; i++)
  654. for(x=0; x<64; x++)
  655. h->dequant8_coeff[i][0][x] = 1<<6;
  656. }
  657. }
  658. int ff_h264_alloc_tables(H264Context *h){
  659. MpegEncContext * const s = &h->s;
  660. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  661. int x,y;
  662. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t), fail)
  663. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 32 * sizeof(uint8_t), fail)
  664. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  665. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  666. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  667. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t), fail);
  668. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t), fail);
  669. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 32*big_mb_num * sizeof(uint8_t) , fail);
  670. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->list_counts, big_mb_num * sizeof(uint8_t), fail)
  671. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  672. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  673. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  674. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b8_xy , big_mb_num * sizeof(uint32_t), fail);
  675. for(y=0; y<s->mb_height; y++){
  676. for(x=0; x<s->mb_width; x++){
  677. const int mb_xy= x + y*s->mb_stride;
  678. const int b_xy = 4*x + 4*y*h->b_stride;
  679. const int b8_xy= 2*x + 2*y*h->b8_stride;
  680. h->mb2b_xy [mb_xy]= b_xy;
  681. h->mb2b8_xy[mb_xy]= b8_xy;
  682. }
  683. }
  684. s->obmc_scratchpad = NULL;
  685. if(!h->dequant4_coeff[0])
  686. init_dequant_tables(h);
  687. return 0;
  688. fail:
  689. free_tables(h);
  690. return -1;
  691. }
  692. /**
  693. * Mimic alloc_tables(), but for every context thread.
  694. */
  695. static void clone_tables(H264Context *dst, H264Context *src){
  696. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  697. dst->non_zero_count = src->non_zero_count;
  698. dst->slice_table = src->slice_table;
  699. dst->cbp_table = src->cbp_table;
  700. dst->mb2b_xy = src->mb2b_xy;
  701. dst->mb2b8_xy = src->mb2b8_xy;
  702. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  703. dst->mvd_table[0] = src->mvd_table[0];
  704. dst->mvd_table[1] = src->mvd_table[1];
  705. dst->direct_table = src->direct_table;
  706. dst->list_counts = src->list_counts;
  707. dst->s.obmc_scratchpad = NULL;
  708. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  709. }
  710. /**
  711. * Init context
  712. * Allocate buffers which are not shared amongst multiple threads.
  713. */
  714. static int context_init(H264Context *h){
  715. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  716. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  717. return 0;
  718. fail:
  719. return -1; // free_tables will clean up for us
  720. }
  721. static av_cold void common_init(H264Context *h){
  722. MpegEncContext * const s = &h->s;
  723. s->width = s->avctx->width;
  724. s->height = s->avctx->height;
  725. s->codec_id= s->avctx->codec->id;
  726. ff_h264_pred_init(&h->hpc, s->codec_id);
  727. h->dequant_coeff_pps= -1;
  728. s->unrestricted_mv=1;
  729. s->decode=1; //FIXME
  730. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  731. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  732. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  733. }
  734. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  735. H264Context *h= avctx->priv_data;
  736. MpegEncContext * const s = &h->s;
  737. MPV_decode_defaults(s);
  738. s->avctx = avctx;
  739. common_init(h);
  740. s->out_format = FMT_H264;
  741. s->workaround_bugs= avctx->workaround_bugs;
  742. // set defaults
  743. // s->decode_mb= ff_h263_decode_mb;
  744. s->quarter_sample = 1;
  745. if(!avctx->has_b_frames)
  746. s->low_delay= 1;
  747. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  748. ff_h264_decode_init_vlc();
  749. if(avctx->extradata_size > 0 && avctx->extradata &&
  750. *(char *)avctx->extradata == 1){
  751. h->is_avc = 1;
  752. h->got_avcC = 0;
  753. } else {
  754. h->is_avc = 0;
  755. }
  756. h->thread_context[0] = h;
  757. h->outputed_poc = INT_MIN;
  758. h->prev_poc_msb= 1<<16;
  759. ff_h264_reset_sei(h);
  760. if(avctx->codec_id == CODEC_ID_H264){
  761. if(avctx->ticks_per_frame == 1){
  762. s->avctx->time_base.den *=2;
  763. }
  764. avctx->ticks_per_frame = 2;
  765. }
  766. return 0;
  767. }
  768. int ff_h264_frame_start(H264Context *h){
  769. MpegEncContext * const s = &h->s;
  770. int i;
  771. if(MPV_frame_start(s, s->avctx) < 0)
  772. return -1;
  773. ff_er_frame_start(s);
  774. /*
  775. * MPV_frame_start uses pict_type to derive key_frame.
  776. * This is incorrect for H.264; IDR markings must be used.
  777. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  778. * See decode_nal_units().
  779. */
  780. s->current_picture_ptr->key_frame= 0;
  781. s->current_picture_ptr->mmco_reset= 0;
  782. assert(s->linesize && s->uvlinesize);
  783. for(i=0; i<16; i++){
  784. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  785. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  786. }
  787. for(i=0; i<4; i++){
  788. h->block_offset[16+i]=
  789. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  790. h->block_offset[24+16+i]=
  791. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  792. }
  793. /* can't be in alloc_tables because linesize isn't known there.
  794. * FIXME: redo bipred weight to not require extra buffer? */
  795. for(i = 0; i < s->avctx->thread_count; i++)
  796. if(!h->thread_context[i]->s.obmc_scratchpad)
  797. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  798. /* some macroblocks will be accessed before they're available */
  799. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  800. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  801. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  802. // We mark the current picture as non-reference after allocating it, so
  803. // that if we break out due to an error it can be released automatically
  804. // in the next MPV_frame_start().
  805. // SVQ3 as well as most other codecs have only last/next/current and thus
  806. // get released even with set reference, besides SVQ3 and others do not
  807. // mark frames as reference later "naturally".
  808. if(s->codec_id != CODEC_ID_SVQ3)
  809. s->current_picture_ptr->reference= 0;
  810. s->current_picture_ptr->field_poc[0]=
  811. s->current_picture_ptr->field_poc[1]= INT_MAX;
  812. assert(s->current_picture_ptr->long_ref==0);
  813. return 0;
  814. }
  815. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  816. MpegEncContext * const s = &h->s;
  817. int top_idx = 1;
  818. src_y -= linesize;
  819. src_cb -= uvlinesize;
  820. src_cr -= uvlinesize;
  821. if(!simple && FRAME_MBAFF){
  822. if(s->mb_y&1){
  823. if(!MB_MBAFF){
  824. *(uint64_t*)(h->top_borders[0][s->mb_x]+ 0)= *(uint64_t*)(src_y + 15*linesize);
  825. *(uint64_t*)(h->top_borders[0][s->mb_x]+ 8)= *(uint64_t*)(src_y +8+15*linesize);
  826. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  827. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+7*uvlinesize);
  828. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+7*uvlinesize);
  829. }
  830. }
  831. }else if(MB_MBAFF){
  832. top_idx = 0;
  833. }else
  834. return;
  835. }
  836. // There are two lines saved, the line above the the top macroblock of a pair,
  837. // and the line above the bottom macroblock
  838. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  839. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  840. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  841. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  842. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  843. }
  844. }
  845. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  846. MpegEncContext * const s = &h->s;
  847. int temp8, i;
  848. uint64_t temp64;
  849. int deblock_left;
  850. int deblock_top;
  851. int mb_xy;
  852. int top_idx = 1;
  853. if(!simple && FRAME_MBAFF){
  854. if(s->mb_y&1){
  855. if(!MB_MBAFF)
  856. return;
  857. }else{
  858. top_idx = MB_MBAFF ? 0 : 1;
  859. }
  860. }
  861. if(h->deblocking_filter == 2) {
  862. mb_xy = h->mb_xy;
  863. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  864. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  865. } else {
  866. deblock_left = (s->mb_x > 0);
  867. deblock_top = (s->mb_y > !!MB_FIELD);
  868. }
  869. src_y -= linesize + 1;
  870. src_cb -= uvlinesize + 1;
  871. src_cr -= uvlinesize + 1;
  872. #define XCHG(a,b,t,xchg)\
  873. t= a;\
  874. if(xchg)\
  875. a= b;\
  876. b= t;
  877. if(deblock_top){
  878. if(deblock_left){
  879. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x-1]+8), *(uint64_t*)(src_y -7), temp64, 1);
  880. }
  881. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  882. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  883. if(s->mb_x+1 < s->mb_width){
  884. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  885. }
  886. }
  887. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  888. if(deblock_top){
  889. if(deblock_left){
  890. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x-1]+16), *(uint64_t*)(src_cb -7), temp64, 1);
  891. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x-1]+24), *(uint64_t*)(src_cr -7), temp64, 1);
  892. }
  893. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  894. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  895. }
  896. }
  897. }
  898. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  899. MpegEncContext * const s = &h->s;
  900. const int mb_x= s->mb_x;
  901. const int mb_y= s->mb_y;
  902. const int mb_xy= h->mb_xy;
  903. const int mb_type= s->current_picture.mb_type[mb_xy];
  904. uint8_t *dest_y, *dest_cb, *dest_cr;
  905. int linesize, uvlinesize /*dct_offset*/;
  906. int i;
  907. int *block_offset = &h->block_offset[0];
  908. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  909. /* is_h264 should always be true if SVQ3 is disabled. */
  910. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  911. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  912. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  913. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  914. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  915. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  916. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  917. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  918. h->list_counts[mb_xy]= h->list_count;
  919. if (!simple && MB_FIELD) {
  920. linesize = h->mb_linesize = s->linesize * 2;
  921. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  922. block_offset = &h->block_offset[24];
  923. if(mb_y&1){ //FIXME move out of this function?
  924. dest_y -= s->linesize*15;
  925. dest_cb-= s->uvlinesize*7;
  926. dest_cr-= s->uvlinesize*7;
  927. }
  928. if(FRAME_MBAFF) {
  929. int list;
  930. for(list=0; list<h->list_count; list++){
  931. if(!USES_LIST(mb_type, list))
  932. continue;
  933. if(IS_16X16(mb_type)){
  934. int8_t *ref = &h->ref_cache[list][scan8[0]];
  935. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  936. }else{
  937. for(i=0; i<16; i+=4){
  938. int ref = h->ref_cache[list][scan8[i]];
  939. if(ref >= 0)
  940. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  941. }
  942. }
  943. }
  944. }
  945. } else {
  946. linesize = h->mb_linesize = s->linesize;
  947. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  948. // dct_offset = s->linesize * 16;
  949. }
  950. if (!simple && IS_INTRA_PCM(mb_type)) {
  951. for (i=0; i<16; i++) {
  952. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  953. }
  954. for (i=0; i<8; i++) {
  955. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  956. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  957. }
  958. } else {
  959. if(IS_INTRA(mb_type)){
  960. if(h->deblocking_filter)
  961. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  962. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  963. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  964. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  965. }
  966. if(IS_INTRA4x4(mb_type)){
  967. if(simple || !s->encoding){
  968. if(IS_8x8DCT(mb_type)){
  969. if(transform_bypass){
  970. idct_dc_add =
  971. idct_add = s->dsp.add_pixels8;
  972. }else{
  973. idct_dc_add = s->dsp.h264_idct8_dc_add;
  974. idct_add = s->dsp.h264_idct8_add;
  975. }
  976. for(i=0; i<16; i+=4){
  977. uint8_t * const ptr= dest_y + block_offset[i];
  978. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  979. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  980. h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
  981. }else{
  982. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  983. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  984. (h->topright_samples_available<<i)&0x4000, linesize);
  985. if(nnz){
  986. if(nnz == 1 && h->mb[i*16])
  987. idct_dc_add(ptr, h->mb + i*16, linesize);
  988. else
  989. idct_add (ptr, h->mb + i*16, linesize);
  990. }
  991. }
  992. }
  993. }else{
  994. if(transform_bypass){
  995. idct_dc_add =
  996. idct_add = s->dsp.add_pixels4;
  997. }else{
  998. idct_dc_add = s->dsp.h264_idct_dc_add;
  999. idct_add = s->dsp.h264_idct_add;
  1000. }
  1001. for(i=0; i<16; i++){
  1002. uint8_t * const ptr= dest_y + block_offset[i];
  1003. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1004. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1005. h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
  1006. }else{
  1007. uint8_t *topright;
  1008. int nnz, tr;
  1009. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1010. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1011. assert(mb_y || linesize <= block_offset[i]);
  1012. if(!topright_avail){
  1013. tr= ptr[3 - linesize]*0x01010101;
  1014. topright= (uint8_t*) &tr;
  1015. }else
  1016. topright= ptr + 4 - linesize;
  1017. }else
  1018. topright= NULL;
  1019. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1020. nnz = h->non_zero_count_cache[ scan8[i] ];
  1021. if(nnz){
  1022. if(is_h264){
  1023. if(nnz == 1 && h->mb[i*16])
  1024. idct_dc_add(ptr, h->mb + i*16, linesize);
  1025. else
  1026. idct_add (ptr, h->mb + i*16, linesize);
  1027. }else
  1028. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  1029. }
  1030. }
  1031. }
  1032. }
  1033. }
  1034. }else{
  1035. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1036. if(is_h264){
  1037. if(!transform_bypass)
  1038. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  1039. }else
  1040. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  1041. }
  1042. if(h->deblocking_filter)
  1043. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  1044. }else if(is_h264){
  1045. hl_motion(h, dest_y, dest_cb, dest_cr,
  1046. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1047. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1048. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  1049. }
  1050. if(!IS_INTRA4x4(mb_type)){
  1051. if(is_h264){
  1052. if(IS_INTRA16x16(mb_type)){
  1053. if(transform_bypass){
  1054. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1055. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
  1056. }else{
  1057. for(i=0; i<16; i++){
  1058. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1059. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
  1060. }
  1061. }
  1062. }else{
  1063. s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1064. }
  1065. }else if(h->cbp&15){
  1066. if(transform_bypass){
  1067. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1068. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1069. for(i=0; i<16; i+=di){
  1070. if(h->non_zero_count_cache[ scan8[i] ]){
  1071. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  1072. }
  1073. }
  1074. }else{
  1075. if(IS_8x8DCT(mb_type)){
  1076. s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1077. }else{
  1078. s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1079. }
  1080. }
  1081. }
  1082. }else{
  1083. for(i=0; i<16; i++){
  1084. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  1085. uint8_t * const ptr= dest_y + block_offset[i];
  1086. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1087. }
  1088. }
  1089. }
  1090. }
  1091. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1092. uint8_t *dest[2] = {dest_cb, dest_cr};
  1093. if(transform_bypass){
  1094. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1095. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
  1096. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
  1097. }else{
  1098. idct_add = s->dsp.add_pixels4;
  1099. for(i=16; i<16+8; i++){
  1100. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1101. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1102. }
  1103. }
  1104. }else{
  1105. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1106. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1107. if(is_h264){
  1108. idct_add = s->dsp.h264_idct_add;
  1109. idct_dc_add = s->dsp.h264_idct_dc_add;
  1110. for(i=16; i<16+8; i++){
  1111. if(h->non_zero_count_cache[ scan8[i] ])
  1112. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1113. else if(h->mb[i*16])
  1114. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1115. }
  1116. }else{
  1117. for(i=16; i<16+8; i++){
  1118. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1119. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  1120. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[s->qscale + 12] - 12, 2);
  1121. }
  1122. }
  1123. }
  1124. }
  1125. }
  1126. }
  1127. if(h->cbp || IS_INTRA(mb_type))
  1128. s->dsp.clear_blocks(h->mb);
  1129. if(h->deblocking_filter && 0) {
  1130. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  1131. fill_filter_caches(h, mb_type); //FIXME don't fill stuff which isn't used by filter_mb
  1132. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  1133. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  1134. if (!simple && FRAME_MBAFF) {
  1135. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1136. } else {
  1137. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1138. }
  1139. }
  1140. }
  1141. /**
  1142. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1143. */
  1144. static void hl_decode_mb_simple(H264Context *h){
  1145. hl_decode_mb_internal(h, 1);
  1146. }
  1147. /**
  1148. * Process a macroblock; this handles edge cases, such as interlacing.
  1149. */
  1150. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1151. hl_decode_mb_internal(h, 0);
  1152. }
  1153. void ff_h264_hl_decode_mb(H264Context *h){
  1154. MpegEncContext * const s = &h->s;
  1155. const int mb_xy= h->mb_xy;
  1156. const int mb_type= s->current_picture.mb_type[mb_xy];
  1157. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1158. if (is_complex)
  1159. hl_decode_mb_complex(h);
  1160. else hl_decode_mb_simple(h);
  1161. }
  1162. static int pred_weight_table(H264Context *h){
  1163. MpegEncContext * const s = &h->s;
  1164. int list, i;
  1165. int luma_def, chroma_def;
  1166. h->use_weight= 0;
  1167. h->use_weight_chroma= 0;
  1168. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1169. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1170. luma_def = 1<<h->luma_log2_weight_denom;
  1171. chroma_def = 1<<h->chroma_log2_weight_denom;
  1172. for(list=0; list<2; list++){
  1173. h->luma_weight_flag[list] = 0;
  1174. h->chroma_weight_flag[list] = 0;
  1175. for(i=0; i<h->ref_count[list]; i++){
  1176. int luma_weight_flag, chroma_weight_flag;
  1177. luma_weight_flag= get_bits1(&s->gb);
  1178. if(luma_weight_flag){
  1179. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  1180. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  1181. if( h->luma_weight[list][i] != luma_def
  1182. || h->luma_offset[list][i] != 0) {
  1183. h->use_weight= 1;
  1184. h->luma_weight_flag[list]= 1;
  1185. }
  1186. }else{
  1187. h->luma_weight[list][i]= luma_def;
  1188. h->luma_offset[list][i]= 0;
  1189. }
  1190. if(CHROMA){
  1191. chroma_weight_flag= get_bits1(&s->gb);
  1192. if(chroma_weight_flag){
  1193. int j;
  1194. for(j=0; j<2; j++){
  1195. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  1196. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  1197. if( h->chroma_weight[list][i][j] != chroma_def
  1198. || h->chroma_offset[list][i][j] != 0) {
  1199. h->use_weight_chroma= 1;
  1200. h->chroma_weight_flag[list]= 1;
  1201. }
  1202. }
  1203. }else{
  1204. int j;
  1205. for(j=0; j<2; j++){
  1206. h->chroma_weight[list][i][j]= chroma_def;
  1207. h->chroma_offset[list][i][j]= 0;
  1208. }
  1209. }
  1210. }
  1211. }
  1212. if(h->slice_type_nos != FF_B_TYPE) break;
  1213. }
  1214. h->use_weight= h->use_weight || h->use_weight_chroma;
  1215. return 0;
  1216. }
  1217. static void implicit_weight_table(H264Context *h){
  1218. MpegEncContext * const s = &h->s;
  1219. int ref0, ref1, i;
  1220. int cur_poc = s->current_picture_ptr->poc;
  1221. for (i = 0; i < 2; i++) {
  1222. h->luma_weight_flag[i] = 0;
  1223. h->chroma_weight_flag[i] = 0;
  1224. }
  1225. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  1226. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  1227. h->use_weight= 0;
  1228. h->use_weight_chroma= 0;
  1229. return;
  1230. }
  1231. h->use_weight= 2;
  1232. h->use_weight_chroma= 2;
  1233. h->luma_log2_weight_denom= 5;
  1234. h->chroma_log2_weight_denom= 5;
  1235. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  1236. int poc0 = h->ref_list[0][ref0].poc;
  1237. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  1238. int poc1 = h->ref_list[1][ref1].poc;
  1239. int td = av_clip(poc1 - poc0, -128, 127);
  1240. if(td){
  1241. int tb = av_clip(cur_poc - poc0, -128, 127);
  1242. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1243. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  1244. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  1245. h->implicit_weight[ref0][ref1] = 32;
  1246. else
  1247. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  1248. }else
  1249. h->implicit_weight[ref0][ref1] = 32;
  1250. }
  1251. }
  1252. }
  1253. /**
  1254. * instantaneous decoder refresh.
  1255. */
  1256. static void idr(H264Context *h){
  1257. ff_h264_remove_all_refs(h);
  1258. h->prev_frame_num= 0;
  1259. h->prev_frame_num_offset= 0;
  1260. h->prev_poc_msb=
  1261. h->prev_poc_lsb= 0;
  1262. }
  1263. /* forget old pics after a seek */
  1264. static void flush_dpb(AVCodecContext *avctx){
  1265. H264Context *h= avctx->priv_data;
  1266. int i;
  1267. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  1268. if(h->delayed_pic[i])
  1269. h->delayed_pic[i]->reference= 0;
  1270. h->delayed_pic[i]= NULL;
  1271. }
  1272. h->outputed_poc= INT_MIN;
  1273. h->prev_interlaced_frame = 1;
  1274. idr(h);
  1275. if(h->s.current_picture_ptr)
  1276. h->s.current_picture_ptr->reference= 0;
  1277. h->s.first_field= 0;
  1278. ff_h264_reset_sei(h);
  1279. ff_mpeg_flush(avctx);
  1280. }
  1281. static int init_poc(H264Context *h){
  1282. MpegEncContext * const s = &h->s;
  1283. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  1284. int field_poc[2];
  1285. Picture *cur = s->current_picture_ptr;
  1286. h->frame_num_offset= h->prev_frame_num_offset;
  1287. if(h->frame_num < h->prev_frame_num)
  1288. h->frame_num_offset += max_frame_num;
  1289. if(h->sps.poc_type==0){
  1290. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  1291. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  1292. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  1293. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  1294. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  1295. else
  1296. h->poc_msb = h->prev_poc_msb;
  1297. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  1298. field_poc[0] =
  1299. field_poc[1] = h->poc_msb + h->poc_lsb;
  1300. if(s->picture_structure == PICT_FRAME)
  1301. field_poc[1] += h->delta_poc_bottom;
  1302. }else if(h->sps.poc_type==1){
  1303. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  1304. int i;
  1305. if(h->sps.poc_cycle_length != 0)
  1306. abs_frame_num = h->frame_num_offset + h->frame_num;
  1307. else
  1308. abs_frame_num = 0;
  1309. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  1310. abs_frame_num--;
  1311. expected_delta_per_poc_cycle = 0;
  1312. for(i=0; i < h->sps.poc_cycle_length; i++)
  1313. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  1314. if(abs_frame_num > 0){
  1315. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  1316. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  1317. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  1318. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  1319. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  1320. } else
  1321. expectedpoc = 0;
  1322. if(h->nal_ref_idc == 0)
  1323. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  1324. field_poc[0] = expectedpoc + h->delta_poc[0];
  1325. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  1326. if(s->picture_structure == PICT_FRAME)
  1327. field_poc[1] += h->delta_poc[1];
  1328. }else{
  1329. int poc= 2*(h->frame_num_offset + h->frame_num);
  1330. if(!h->nal_ref_idc)
  1331. poc--;
  1332. field_poc[0]= poc;
  1333. field_poc[1]= poc;
  1334. }
  1335. if(s->picture_structure != PICT_BOTTOM_FIELD)
  1336. s->current_picture_ptr->field_poc[0]= field_poc[0];
  1337. if(s->picture_structure != PICT_TOP_FIELD)
  1338. s->current_picture_ptr->field_poc[1]= field_poc[1];
  1339. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  1340. return 0;
  1341. }
  1342. /**
  1343. * initialize scan tables
  1344. */
  1345. static void init_scan_tables(H264Context *h){
  1346. MpegEncContext * const s = &h->s;
  1347. int i;
  1348. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  1349. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  1350. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  1351. }else{
  1352. for(i=0; i<16; i++){
  1353. #define T(x) (x>>2) | ((x<<2) & 0xF)
  1354. h->zigzag_scan[i] = T(zigzag_scan[i]);
  1355. h-> field_scan[i] = T( field_scan[i]);
  1356. #undef T
  1357. }
  1358. }
  1359. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  1360. memcpy(h->zigzag_scan8x8, ff_zigzag_direct, 64*sizeof(uint8_t));
  1361. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  1362. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  1363. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  1364. }else{
  1365. for(i=0; i<64; i++){
  1366. #define T(x) (x>>3) | ((x&7)<<3)
  1367. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  1368. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  1369. h->field_scan8x8[i] = T(field_scan8x8[i]);
  1370. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  1371. #undef T
  1372. }
  1373. }
  1374. if(h->sps.transform_bypass){ //FIXME same ugly
  1375. h->zigzag_scan_q0 = zigzag_scan;
  1376. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  1377. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  1378. h->field_scan_q0 = field_scan;
  1379. h->field_scan8x8_q0 = field_scan8x8;
  1380. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  1381. }else{
  1382. h->zigzag_scan_q0 = h->zigzag_scan;
  1383. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  1384. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  1385. h->field_scan_q0 = h->field_scan;
  1386. h->field_scan8x8_q0 = h->field_scan8x8;
  1387. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  1388. }
  1389. }
  1390. static void field_end(H264Context *h){
  1391. MpegEncContext * const s = &h->s;
  1392. AVCodecContext * const avctx= s->avctx;
  1393. s->mb_y= 0;
  1394. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  1395. s->current_picture_ptr->pict_type= s->pict_type;
  1396. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1397. ff_vdpau_h264_set_reference_frames(s);
  1398. if(!s->dropable) {
  1399. ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1400. h->prev_poc_msb= h->poc_msb;
  1401. h->prev_poc_lsb= h->poc_lsb;
  1402. }
  1403. h->prev_frame_num_offset= h->frame_num_offset;
  1404. h->prev_frame_num= h->frame_num;
  1405. if (avctx->hwaccel) {
  1406. if (avctx->hwaccel->end_frame(avctx) < 0)
  1407. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  1408. }
  1409. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1410. ff_vdpau_h264_picture_complete(s);
  1411. /*
  1412. * FIXME: Error handling code does not seem to support interlaced
  1413. * when slices span multiple rows
  1414. * The ff_er_add_slice calls don't work right for bottom
  1415. * fields; they cause massive erroneous error concealing
  1416. * Error marking covers both fields (top and bottom).
  1417. * This causes a mismatched s->error_count
  1418. * and a bad error table. Further, the error count goes to
  1419. * INT_MAX when called for bottom field, because mb_y is
  1420. * past end by one (callers fault) and resync_mb_y != 0
  1421. * causes problems for the first MB line, too.
  1422. */
  1423. if (!FIELD_PICTURE)
  1424. ff_er_frame_end(s);
  1425. MPV_frame_end(s);
  1426. h->current_slice=0;
  1427. }
  1428. /**
  1429. * Replicates H264 "master" context to thread contexts.
  1430. */
  1431. static void clone_slice(H264Context *dst, H264Context *src)
  1432. {
  1433. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  1434. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  1435. dst->s.current_picture = src->s.current_picture;
  1436. dst->s.linesize = src->s.linesize;
  1437. dst->s.uvlinesize = src->s.uvlinesize;
  1438. dst->s.first_field = src->s.first_field;
  1439. dst->prev_poc_msb = src->prev_poc_msb;
  1440. dst->prev_poc_lsb = src->prev_poc_lsb;
  1441. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  1442. dst->prev_frame_num = src->prev_frame_num;
  1443. dst->short_ref_count = src->short_ref_count;
  1444. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  1445. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  1446. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  1447. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  1448. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  1449. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  1450. }
  1451. /**
  1452. * decodes a slice header.
  1453. * This will also call MPV_common_init() and frame_start() as needed.
  1454. *
  1455. * @param h h264context
  1456. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  1457. *
  1458. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  1459. */
  1460. static int decode_slice_header(H264Context *h, H264Context *h0){
  1461. MpegEncContext * const s = &h->s;
  1462. MpegEncContext * const s0 = &h0->s;
  1463. unsigned int first_mb_in_slice;
  1464. unsigned int pps_id;
  1465. int num_ref_idx_active_override_flag;
  1466. unsigned int slice_type, tmp, i, j;
  1467. int default_ref_list_done = 0;
  1468. int last_pic_structure;
  1469. s->dropable= h->nal_ref_idc == 0;
  1470. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  1471. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  1472. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  1473. }else{
  1474. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  1475. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  1476. }
  1477. first_mb_in_slice= get_ue_golomb(&s->gb);
  1478. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  1479. if(h0->current_slice && FIELD_PICTURE){
  1480. field_end(h);
  1481. }
  1482. h0->current_slice = 0;
  1483. if (!s0->first_field)
  1484. s->current_picture_ptr= NULL;
  1485. }
  1486. slice_type= get_ue_golomb_31(&s->gb);
  1487. if(slice_type > 9){
  1488. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  1489. return -1;
  1490. }
  1491. if(slice_type > 4){
  1492. slice_type -= 5;
  1493. h->slice_type_fixed=1;
  1494. }else
  1495. h->slice_type_fixed=0;
  1496. slice_type= golomb_to_pict_type[ slice_type ];
  1497. if (slice_type == FF_I_TYPE
  1498. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  1499. default_ref_list_done = 1;
  1500. }
  1501. h->slice_type= slice_type;
  1502. h->slice_type_nos= slice_type & 3;
  1503. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  1504. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  1505. av_log(h->s.avctx, AV_LOG_ERROR,
  1506. "B picture before any references, skipping\n");
  1507. return -1;
  1508. }
  1509. pps_id= get_ue_golomb(&s->gb);
  1510. if(pps_id>=MAX_PPS_COUNT){
  1511. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  1512. return -1;
  1513. }
  1514. if(!h0->pps_buffers[pps_id]) {
  1515. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  1516. return -1;
  1517. }
  1518. h->pps= *h0->pps_buffers[pps_id];
  1519. if(!h0->sps_buffers[h->pps.sps_id]) {
  1520. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  1521. return -1;
  1522. }
  1523. h->sps = *h0->sps_buffers[h->pps.sps_id];
  1524. if(h == h0 && h->dequant_coeff_pps != pps_id){
  1525. h->dequant_coeff_pps = pps_id;
  1526. init_dequant_tables(h);
  1527. }
  1528. s->mb_width= h->sps.mb_width;
  1529. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  1530. h->b_stride= s->mb_width*4;
  1531. h->b8_stride= s->mb_width*2;
  1532. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  1533. if(h->sps.frame_mbs_only_flag)
  1534. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  1535. else
  1536. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  1537. if (s->context_initialized
  1538. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  1539. if(h != h0)
  1540. return -1; // width / height changed during parallelized decoding
  1541. free_tables(h);
  1542. flush_dpb(s->avctx);
  1543. MPV_common_end(s);
  1544. }
  1545. if (!s->context_initialized) {
  1546. if(h != h0)
  1547. return -1; // we cant (re-)initialize context during parallel decoding
  1548. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1549. s->avctx->sample_aspect_ratio= h->sps.sar;
  1550. if(!s->avctx->sample_aspect_ratio.den)
  1551. s->avctx->sample_aspect_ratio.den = 1;
  1552. if(h->sps.video_signal_type_present_flag){
  1553. s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  1554. if(h->sps.colour_description_present_flag){
  1555. s->avctx->color_primaries = h->sps.color_primaries;
  1556. s->avctx->color_trc = h->sps.color_trc;
  1557. s->avctx->colorspace = h->sps.colorspace;
  1558. }
  1559. }
  1560. if(h->sps.timing_info_present_flag){
  1561. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick, h->sps.time_scale};
  1562. if(h->x264_build > 0 && h->x264_build < 44)
  1563. s->avctx->time_base.den *= 2;
  1564. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  1565. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  1566. }
  1567. s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts);
  1568. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  1569. if (MPV_common_init(s) < 0)
  1570. return -1;
  1571. s->first_field = 0;
  1572. h->prev_interlaced_frame = 1;
  1573. init_scan_tables(h);
  1574. ff_h264_alloc_tables(h);
  1575. for(i = 1; i < s->avctx->thread_count; i++) {
  1576. H264Context *c;
  1577. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  1578. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  1579. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  1580. c->sps = h->sps;
  1581. c->pps = h->pps;
  1582. init_scan_tables(c);
  1583. clone_tables(c, h);
  1584. }
  1585. for(i = 0; i < s->avctx->thread_count; i++)
  1586. if(context_init(h->thread_context[i]) < 0)
  1587. return -1;
  1588. }
  1589. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  1590. h->mb_mbaff = 0;
  1591. h->mb_aff_frame = 0;
  1592. last_pic_structure = s0->picture_structure;
  1593. if(h->sps.frame_mbs_only_flag){
  1594. s->picture_structure= PICT_FRAME;
  1595. }else{
  1596. if(get_bits1(&s->gb)) { //field_pic_flag
  1597. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  1598. } else {
  1599. s->picture_structure= PICT_FRAME;
  1600. h->mb_aff_frame = h->sps.mb_aff;
  1601. }
  1602. }
  1603. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  1604. if(h0->current_slice == 0){
  1605. while(h->frame_num != h->prev_frame_num &&
  1606. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  1607. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  1608. if (ff_h264_frame_start(h) < 0)
  1609. return -1;
  1610. h->prev_frame_num++;
  1611. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  1612. s->current_picture_ptr->frame_num= h->prev_frame_num;
  1613. ff_h264_execute_ref_pic_marking(h, NULL, 0);
  1614. }
  1615. /* See if we have a decoded first field looking for a pair... */
  1616. if (s0->first_field) {
  1617. assert(s0->current_picture_ptr);
  1618. assert(s0->current_picture_ptr->data[0]);
  1619. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  1620. /* figure out if we have a complementary field pair */
  1621. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  1622. /*
  1623. * Previous field is unmatched. Don't display it, but let it
  1624. * remain for reference if marked as such.
  1625. */
  1626. s0->current_picture_ptr = NULL;
  1627. s0->first_field = FIELD_PICTURE;
  1628. } else {
  1629. if (h->nal_ref_idc &&
  1630. s0->current_picture_ptr->reference &&
  1631. s0->current_picture_ptr->frame_num != h->frame_num) {
  1632. /*
  1633. * This and previous field were reference, but had
  1634. * different frame_nums. Consider this field first in
  1635. * pair. Throw away previous field except for reference
  1636. * purposes.
  1637. */
  1638. s0->first_field = 1;
  1639. s0->current_picture_ptr = NULL;
  1640. } else {
  1641. /* Second field in complementary pair */
  1642. s0->first_field = 0;
  1643. }
  1644. }
  1645. } else {
  1646. /* Frame or first field in a potentially complementary pair */
  1647. assert(!s0->current_picture_ptr);
  1648. s0->first_field = FIELD_PICTURE;
  1649. }
  1650. if((!FIELD_PICTURE || s0->first_field) && ff_h264_frame_start(h) < 0) {
  1651. s0->first_field = 0;
  1652. return -1;
  1653. }
  1654. }
  1655. if(h != h0)
  1656. clone_slice(h, h0);
  1657. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  1658. assert(s->mb_num == s->mb_width * s->mb_height);
  1659. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  1660. first_mb_in_slice >= s->mb_num){
  1661. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1662. return -1;
  1663. }
  1664. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  1665. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  1666. if (s->picture_structure == PICT_BOTTOM_FIELD)
  1667. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  1668. assert(s->mb_y < s->mb_height);
  1669. if(s->picture_structure==PICT_FRAME){
  1670. h->curr_pic_num= h->frame_num;
  1671. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  1672. }else{
  1673. h->curr_pic_num= 2*h->frame_num + 1;
  1674. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  1675. }
  1676. if(h->nal_unit_type == NAL_IDR_SLICE){
  1677. get_ue_golomb(&s->gb); /* idr_pic_id */
  1678. }
  1679. if(h->sps.poc_type==0){
  1680. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  1681. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  1682. h->delta_poc_bottom= get_se_golomb(&s->gb);
  1683. }
  1684. }
  1685. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  1686. h->delta_poc[0]= get_se_golomb(&s->gb);
  1687. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  1688. h->delta_poc[1]= get_se_golomb(&s->gb);
  1689. }
  1690. init_poc(h);
  1691. if(h->pps.redundant_pic_cnt_present){
  1692. h->redundant_pic_count= get_ue_golomb(&s->gb);
  1693. }
  1694. //set defaults, might be overridden a few lines later
  1695. h->ref_count[0]= h->pps.ref_count[0];
  1696. h->ref_count[1]= h->pps.ref_count[1];
  1697. if(h->slice_type_nos != FF_I_TYPE){
  1698. if(h->slice_type_nos == FF_B_TYPE){
  1699. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  1700. }
  1701. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  1702. if(num_ref_idx_active_override_flag){
  1703. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  1704. if(h->slice_type_nos==FF_B_TYPE)
  1705. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  1706. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  1707. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  1708. h->ref_count[0]= h->ref_count[1]= 1;
  1709. return -1;
  1710. }
  1711. }
  1712. if(h->slice_type_nos == FF_B_TYPE)
  1713. h->list_count= 2;
  1714. else
  1715. h->list_count= 1;
  1716. }else
  1717. h->list_count= 0;
  1718. if(!default_ref_list_done){
  1719. ff_h264_fill_default_ref_list(h);
  1720. }
  1721. if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0)
  1722. return -1;
  1723. if(h->slice_type_nos!=FF_I_TYPE){
  1724. s->last_picture_ptr= &h->ref_list[0][0];
  1725. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  1726. }
  1727. if(h->slice_type_nos==FF_B_TYPE){
  1728. s->next_picture_ptr= &h->ref_list[1][0];
  1729. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  1730. }
  1731. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  1732. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  1733. pred_weight_table(h);
  1734. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  1735. implicit_weight_table(h);
  1736. else {
  1737. h->use_weight = 0;
  1738. for (i = 0; i < 2; i++) {
  1739. h->luma_weight_flag[i] = 0;
  1740. h->chroma_weight_flag[i] = 0;
  1741. }
  1742. }
  1743. if(h->nal_ref_idc)
  1744. ff_h264_decode_ref_pic_marking(h0, &s->gb);
  1745. if(FRAME_MBAFF)
  1746. ff_h264_fill_mbaff_ref_list(h);
  1747. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  1748. ff_h264_direct_dist_scale_factor(h);
  1749. ff_h264_direct_ref_list_init(h);
  1750. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  1751. tmp = get_ue_golomb_31(&s->gb);
  1752. if(tmp > 2){
  1753. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  1754. return -1;
  1755. }
  1756. h->cabac_init_idc= tmp;
  1757. }
  1758. h->last_qscale_diff = 0;
  1759. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  1760. if(tmp>51){
  1761. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1762. return -1;
  1763. }
  1764. s->qscale= tmp;
  1765. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1766. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1767. //FIXME qscale / qp ... stuff
  1768. if(h->slice_type == FF_SP_TYPE){
  1769. get_bits1(&s->gb); /* sp_for_switch_flag */
  1770. }
  1771. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  1772. get_se_golomb(&s->gb); /* slice_qs_delta */
  1773. }
  1774. h->deblocking_filter = 1;
  1775. h->slice_alpha_c0_offset = 0;
  1776. h->slice_beta_offset = 0;
  1777. if( h->pps.deblocking_filter_parameters_present ) {
  1778. tmp= get_ue_golomb_31(&s->gb);
  1779. if(tmp > 2){
  1780. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  1781. return -1;
  1782. }
  1783. h->deblocking_filter= tmp;
  1784. if(h->deblocking_filter < 2)
  1785. h->deblocking_filter^= 1; // 1<->0
  1786. if( h->deblocking_filter ) {
  1787. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  1788. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  1789. }
  1790. }
  1791. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  1792. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  1793. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  1794. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  1795. h->deblocking_filter= 0;
  1796. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  1797. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  1798. /* Cheat slightly for speed:
  1799. Do not bother to deblock across slices. */
  1800. h->deblocking_filter = 2;
  1801. } else {
  1802. h0->max_contexts = 1;
  1803. if(!h0->single_decode_warning) {
  1804. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1805. h0->single_decode_warning = 1;
  1806. }
  1807. if(h != h0)
  1808. return 1; // deblocking switched inside frame
  1809. }
  1810. }
  1811. h->qp_thresh= 15 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]);
  1812. #if 0 //FMO
  1813. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  1814. slice_group_change_cycle= get_bits(&s->gb, ?);
  1815. #endif
  1816. h0->last_slice_type = slice_type;
  1817. h->slice_num = ++h0->current_slice;
  1818. if(h->slice_num >= MAX_SLICES){
  1819. av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
  1820. }
  1821. for(j=0; j<2; j++){
  1822. int id_list[16];
  1823. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  1824. for(i=0; i<16; i++){
  1825. id_list[i]= 60;
  1826. if(h->ref_list[j][i].data[0]){
  1827. int k;
  1828. uint8_t *base= h->ref_list[j][i].base[0];
  1829. for(k=0; k<h->short_ref_count; k++)
  1830. if(h->short_ref[k]->base[0] == base){
  1831. id_list[i]= k;
  1832. break;
  1833. }
  1834. for(k=0; k<h->long_ref_count; k++)
  1835. if(h->long_ref[k] && h->long_ref[k]->base[0] == base){
  1836. id_list[i]= h->short_ref_count + k;
  1837. break;
  1838. }
  1839. }
  1840. }
  1841. ref2frm[0]=
  1842. ref2frm[1]= -1;
  1843. for(i=0; i<16; i++)
  1844. ref2frm[i+2]= 4*id_list[i]
  1845. +(h->ref_list[j][i].reference&3);
  1846. ref2frm[18+0]=
  1847. ref2frm[18+1]= -1;
  1848. for(i=16; i<48; i++)
  1849. ref2frm[i+4]= 4*id_list[(i-16)>>1]
  1850. +(h->ref_list[j][i].reference&3);
  1851. }
  1852. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  1853. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  1854. s->avctx->refs= h->sps.ref_frame_count;
  1855. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  1856. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1857. h->slice_num,
  1858. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  1859. first_mb_in_slice,
  1860. av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1861. pps_id, h->frame_num,
  1862. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  1863. h->ref_count[0], h->ref_count[1],
  1864. s->qscale,
  1865. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  1866. h->use_weight,
  1867. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  1868. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  1869. );
  1870. }
  1871. return 0;
  1872. }
  1873. int ff_h264_get_slice_type(H264Context *h)
  1874. {
  1875. switch (h->slice_type) {
  1876. case FF_P_TYPE: return 0;
  1877. case FF_B_TYPE: return 1;
  1878. case FF_I_TYPE: return 2;
  1879. case FF_SP_TYPE: return 3;
  1880. case FF_SI_TYPE: return 4;
  1881. default: return -1;
  1882. }
  1883. }
  1884. static void loop_filter(H264Context *h){
  1885. MpegEncContext * const s = &h->s;
  1886. uint8_t *dest_y, *dest_cb, *dest_cr;
  1887. int linesize, uvlinesize, mb_x, mb_y;
  1888. const int end_mb_y= s->mb_y + FRAME_MBAFF;
  1889. const int old_slice_type= h->slice_type;
  1890. if(h->deblocking_filter) {
  1891. for(mb_x= 0; mb_x<s->mb_width; mb_x++){
  1892. for(mb_y=end_mb_y - FRAME_MBAFF; mb_y<= end_mb_y; mb_y++){
  1893. int list, mb_xy, mb_type, is_complex;
  1894. mb_xy = h->mb_xy = mb_x + mb_y*s->mb_stride;
  1895. h->slice_num= h->slice_table[mb_xy];
  1896. mb_type= s->current_picture.mb_type[mb_xy];
  1897. h->list_count= h->list_counts[mb_xy];
  1898. if(h->list_count==2){
  1899. h->slice_type= h->slice_type_nos= FF_B_TYPE;
  1900. }else if(h->list_count==1){
  1901. h->slice_type= h->slice_type_nos= FF_P_TYPE;
  1902. }else
  1903. h->slice_type= h->slice_type_nos= FF_I_TYPE;
  1904. if(FRAME_MBAFF)
  1905. h->mb_mbaff = h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  1906. is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0; //FIXME qscale might be wrong
  1907. s->mb_x= mb_x;
  1908. s->mb_y= mb_y;
  1909. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  1910. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  1911. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  1912. //FIXME simplify above
  1913. if (MB_FIELD) {
  1914. linesize = h->mb_linesize = s->linesize * 2;
  1915. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  1916. if(mb_y&1){ //FIXME move out of this function?
  1917. dest_y -= s->linesize*15;
  1918. dest_cb-= s->uvlinesize*7;
  1919. dest_cr-= s->uvlinesize*7;
  1920. }
  1921. } else {
  1922. linesize = h->mb_linesize = s->linesize;
  1923. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  1924. }
  1925. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, !is_complex);
  1926. if(fill_filter_caches(h, mb_type) < 0)
  1927. continue;
  1928. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  1929. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  1930. if (is_complex && FRAME_MBAFF) {
  1931. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1932. } else {
  1933. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1934. }
  1935. }
  1936. }
  1937. }
  1938. h->slice_type= old_slice_type;
  1939. s->mb_x= 0;
  1940. s->mb_y= end_mb_y - FRAME_MBAFF;
  1941. }
  1942. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  1943. H264Context *h = *(void**)arg;
  1944. MpegEncContext * const s = &h->s;
  1945. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  1946. s->mb_skip_run= -1;
  1947. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  1948. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  1949. if( h->pps.cabac ) {
  1950. /* realign */
  1951. align_get_bits( &s->gb );
  1952. /* init cabac */
  1953. ff_init_cabac_states( &h->cabac);
  1954. ff_init_cabac_decoder( &h->cabac,
  1955. s->gb.buffer + get_bits_count(&s->gb)/8,
  1956. (get_bits_left(&s->gb) + 7)/8);
  1957. ff_h264_init_cabac_states(h);
  1958. for(;;){
  1959. //START_TIMER
  1960. int ret = ff_h264_decode_mb_cabac(h);
  1961. int eos;
  1962. //STOP_TIMER("decode_mb_cabac")
  1963. if(ret>=0) ff_h264_hl_decode_mb(h);
  1964. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  1965. s->mb_y++;
  1966. ret = ff_h264_decode_mb_cabac(h);
  1967. if(ret>=0) ff_h264_hl_decode_mb(h);
  1968. s->mb_y--;
  1969. }
  1970. eos = get_cabac_terminate( &h->cabac );
  1971. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  1972. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  1973. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  1974. return -1;
  1975. }
  1976. if( ++s->mb_x >= s->mb_width ) {
  1977. s->mb_x = 0;
  1978. loop_filter(h);
  1979. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  1980. ++s->mb_y;
  1981. if(FIELD_OR_MBAFF_PICTURE) {
  1982. ++s->mb_y;
  1983. }
  1984. }
  1985. if( eos || s->mb_y >= s->mb_height ) {
  1986. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  1987. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  1988. return 0;
  1989. }
  1990. }
  1991. } else {
  1992. for(;;){
  1993. int ret = ff_h264_decode_mb_cavlc(h);
  1994. if(ret>=0) ff_h264_hl_decode_mb(h);
  1995. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  1996. s->mb_y++;
  1997. ret = ff_h264_decode_mb_cavlc(h);
  1998. if(ret>=0) ff_h264_hl_decode_mb(h);
  1999. s->mb_y--;
  2000. }
  2001. if(ret<0){
  2002. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2003. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2004. return -1;
  2005. }
  2006. if(++s->mb_x >= s->mb_width){
  2007. s->mb_x=0;
  2008. loop_filter(h);
  2009. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2010. ++s->mb_y;
  2011. if(FIELD_OR_MBAFF_PICTURE) {
  2012. ++s->mb_y;
  2013. }
  2014. if(s->mb_y >= s->mb_height){
  2015. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2016. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  2017. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2018. return 0;
  2019. }else{
  2020. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2021. return -1;
  2022. }
  2023. }
  2024. }
  2025. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  2026. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2027. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  2028. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2029. return 0;
  2030. }else{
  2031. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2032. return -1;
  2033. }
  2034. }
  2035. }
  2036. }
  2037. #if 0
  2038. for(;s->mb_y < s->mb_height; s->mb_y++){
  2039. for(;s->mb_x < s->mb_width; s->mb_x++){
  2040. int ret= decode_mb(h);
  2041. ff_h264_hl_decode_mb(h);
  2042. if(ret<0){
  2043. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2044. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2045. return -1;
  2046. }
  2047. if(++s->mb_x >= s->mb_width){
  2048. s->mb_x=0;
  2049. if(++s->mb_y >= s->mb_height){
  2050. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2051. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2052. return 0;
  2053. }else{
  2054. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2055. return -1;
  2056. }
  2057. }
  2058. }
  2059. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  2060. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2061. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2062. return 0;
  2063. }else{
  2064. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2065. return -1;
  2066. }
  2067. }
  2068. }
  2069. s->mb_x=0;
  2070. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2071. }
  2072. #endif
  2073. return -1; //not reached
  2074. }
  2075. /**
  2076. * Call decode_slice() for each context.
  2077. *
  2078. * @param h h264 master context
  2079. * @param context_count number of contexts to execute
  2080. */
  2081. static void execute_decode_slices(H264Context *h, int context_count){
  2082. MpegEncContext * const s = &h->s;
  2083. AVCodecContext * const avctx= s->avctx;
  2084. H264Context *hx;
  2085. int i;
  2086. if (s->avctx->hwaccel)
  2087. return;
  2088. if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2089. return;
  2090. if(context_count == 1) {
  2091. decode_slice(avctx, &h);
  2092. } else {
  2093. for(i = 1; i < context_count; i++) {
  2094. hx = h->thread_context[i];
  2095. hx->s.error_recognition = avctx->error_recognition;
  2096. hx->s.error_count = 0;
  2097. }
  2098. avctx->execute(avctx, (void *)decode_slice,
  2099. h->thread_context, NULL, context_count, sizeof(void*));
  2100. /* pull back stuff from slices to master context */
  2101. hx = h->thread_context[context_count - 1];
  2102. s->mb_x = hx->s.mb_x;
  2103. s->mb_y = hx->s.mb_y;
  2104. s->dropable = hx->s.dropable;
  2105. s->picture_structure = hx->s.picture_structure;
  2106. for(i = 1; i < context_count; i++)
  2107. h->s.error_count += h->thread_context[i]->s.error_count;
  2108. }
  2109. }
  2110. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  2111. MpegEncContext * const s = &h->s;
  2112. AVCodecContext * const avctx= s->avctx;
  2113. int buf_index=0;
  2114. H264Context *hx; ///< thread context
  2115. int context_count = 0;
  2116. int next_avc= h->is_avc ? 0 : buf_size;
  2117. h->max_contexts = avctx->thread_count;
  2118. #if 0
  2119. int i;
  2120. for(i=0; i<50; i++){
  2121. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  2122. }
  2123. #endif
  2124. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  2125. h->current_slice = 0;
  2126. if (!s->first_field)
  2127. s->current_picture_ptr= NULL;
  2128. ff_h264_reset_sei(h);
  2129. }
  2130. for(;;){
  2131. int consumed;
  2132. int dst_length;
  2133. int bit_length;
  2134. const uint8_t *ptr;
  2135. int i, nalsize = 0;
  2136. int err;
  2137. if(buf_index >= next_avc) {
  2138. if(buf_index >= buf_size) break;
  2139. nalsize = 0;
  2140. for(i = 0; i < h->nal_length_size; i++)
  2141. nalsize = (nalsize << 8) | buf[buf_index++];
  2142. if(nalsize <= 1 || nalsize > buf_size - buf_index){
  2143. if(nalsize == 1){
  2144. buf_index++;
  2145. continue;
  2146. }else{
  2147. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  2148. break;
  2149. }
  2150. }
  2151. next_avc= buf_index + nalsize;
  2152. } else {
  2153. // start code prefix search
  2154. for(; buf_index + 3 < next_avc; buf_index++){
  2155. // This should always succeed in the first iteration.
  2156. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  2157. break;
  2158. }
  2159. if(buf_index+3 >= buf_size) break;
  2160. buf_index+=3;
  2161. if(buf_index >= next_avc) continue;
  2162. }
  2163. hx = h->thread_context[context_count];
  2164. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  2165. if (ptr==NULL || dst_length < 0){
  2166. return -1;
  2167. }
  2168. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  2169. dst_length--;
  2170. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  2171. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  2172. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  2173. }
  2174. if (h->is_avc && (nalsize != consumed) && nalsize){
  2175. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  2176. }
  2177. buf_index += consumed;
  2178. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  2179. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  2180. continue;
  2181. again:
  2182. err = 0;
  2183. switch(hx->nal_unit_type){
  2184. case NAL_IDR_SLICE:
  2185. if (h->nal_unit_type != NAL_IDR_SLICE) {
  2186. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  2187. return -1;
  2188. }
  2189. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  2190. case NAL_SLICE:
  2191. init_get_bits(&hx->s.gb, ptr, bit_length);
  2192. hx->intra_gb_ptr=
  2193. hx->inter_gb_ptr= &hx->s.gb;
  2194. hx->s.data_partitioning = 0;
  2195. if((err = decode_slice_header(hx, h)))
  2196. break;
  2197. if (s->avctx->hwaccel && h->current_slice == 1) {
  2198. if (s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  2199. return -1;
  2200. }
  2201. s->current_picture_ptr->key_frame |=
  2202. (hx->nal_unit_type == NAL_IDR_SLICE) ||
  2203. (h->sei_recovery_frame_cnt >= 0);
  2204. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  2205. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2206. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2207. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2208. && avctx->skip_frame < AVDISCARD_ALL){
  2209. if(avctx->hwaccel) {
  2210. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  2211. return -1;
  2212. }else
  2213. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2214. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  2215. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  2216. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  2217. }else
  2218. context_count++;
  2219. }
  2220. break;
  2221. case NAL_DPA:
  2222. init_get_bits(&hx->s.gb, ptr, bit_length);
  2223. hx->intra_gb_ptr=
  2224. hx->inter_gb_ptr= NULL;
  2225. if ((err = decode_slice_header(hx, h)) < 0)
  2226. break;
  2227. hx->s.data_partitioning = 1;
  2228. break;
  2229. case NAL_DPB:
  2230. init_get_bits(&hx->intra_gb, ptr, bit_length);
  2231. hx->intra_gb_ptr= &hx->intra_gb;
  2232. break;
  2233. case NAL_DPC:
  2234. init_get_bits(&hx->inter_gb, ptr, bit_length);
  2235. hx->inter_gb_ptr= &hx->inter_gb;
  2236. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  2237. && s->context_initialized
  2238. && s->hurry_up < 5
  2239. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  2240. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  2241. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  2242. && avctx->skip_frame < AVDISCARD_ALL)
  2243. context_count++;
  2244. break;
  2245. case NAL_SEI:
  2246. init_get_bits(&s->gb, ptr, bit_length);
  2247. ff_h264_decode_sei(h);
  2248. break;
  2249. case NAL_SPS:
  2250. init_get_bits(&s->gb, ptr, bit_length);
  2251. ff_h264_decode_seq_parameter_set(h);
  2252. if(s->flags& CODEC_FLAG_LOW_DELAY)
  2253. s->low_delay=1;
  2254. if(avctx->has_b_frames < 2)
  2255. avctx->has_b_frames= !s->low_delay;
  2256. break;
  2257. case NAL_PPS:
  2258. init_get_bits(&s->gb, ptr, bit_length);
  2259. ff_h264_decode_picture_parameter_set(h, bit_length);
  2260. break;
  2261. case NAL_AUD:
  2262. case NAL_END_SEQUENCE:
  2263. case NAL_END_STREAM:
  2264. case NAL_FILLER_DATA:
  2265. case NAL_SPS_EXT:
  2266. case NAL_AUXILIARY_SLICE:
  2267. break;
  2268. default:
  2269. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  2270. }
  2271. if(context_count == h->max_contexts) {
  2272. execute_decode_slices(h, context_count);
  2273. context_count = 0;
  2274. }
  2275. if (err < 0)
  2276. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  2277. else if(err == 1) {
  2278. /* Slice could not be decoded in parallel mode, copy down
  2279. * NAL unit stuff to context 0 and restart. Note that
  2280. * rbsp_buffer is not transferred, but since we no longer
  2281. * run in parallel mode this should not be an issue. */
  2282. h->nal_unit_type = hx->nal_unit_type;
  2283. h->nal_ref_idc = hx->nal_ref_idc;
  2284. hx = h;
  2285. goto again;
  2286. }
  2287. }
  2288. if(context_count)
  2289. execute_decode_slices(h, context_count);
  2290. return buf_index;
  2291. }
  2292. /**
  2293. * returns the number of bytes consumed for building the current frame
  2294. */
  2295. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  2296. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  2297. if(pos+10>buf_size) pos=buf_size; // oops ;)
  2298. return pos;
  2299. }
  2300. static int decode_frame(AVCodecContext *avctx,
  2301. void *data, int *data_size,
  2302. AVPacket *avpkt)
  2303. {
  2304. const uint8_t *buf = avpkt->data;
  2305. int buf_size = avpkt->size;
  2306. H264Context *h = avctx->priv_data;
  2307. MpegEncContext *s = &h->s;
  2308. AVFrame *pict = data;
  2309. int buf_index;
  2310. s->flags= avctx->flags;
  2311. s->flags2= avctx->flags2;
  2312. /* end of stream, output what is still in the buffers */
  2313. if (buf_size == 0) {
  2314. Picture *out;
  2315. int i, out_idx;
  2316. //FIXME factorize this with the output code below
  2317. out = h->delayed_pic[0];
  2318. out_idx = 0;
  2319. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2320. if(h->delayed_pic[i]->poc < out->poc){
  2321. out = h->delayed_pic[i];
  2322. out_idx = i;
  2323. }
  2324. for(i=out_idx; h->delayed_pic[i]; i++)
  2325. h->delayed_pic[i] = h->delayed_pic[i+1];
  2326. if(out){
  2327. *data_size = sizeof(AVFrame);
  2328. *pict= *(AVFrame*)out;
  2329. }
  2330. return 0;
  2331. }
  2332. if(h->is_avc && !h->got_avcC) {
  2333. int i, cnt, nalsize;
  2334. unsigned char *p = avctx->extradata;
  2335. if(avctx->extradata_size < 7) {
  2336. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  2337. return -1;
  2338. }
  2339. if(*p != 1) {
  2340. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  2341. return -1;
  2342. }
  2343. /* sps and pps in the avcC always have length coded with 2 bytes,
  2344. so put a fake nal_length_size = 2 while parsing them */
  2345. h->nal_length_size = 2;
  2346. // Decode sps from avcC
  2347. cnt = *(p+5) & 0x1f; // Number of sps
  2348. p += 6;
  2349. for (i = 0; i < cnt; i++) {
  2350. nalsize = AV_RB16(p) + 2;
  2351. if(decode_nal_units(h, p, nalsize) < 0) {
  2352. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  2353. return -1;
  2354. }
  2355. p += nalsize;
  2356. }
  2357. // Decode pps from avcC
  2358. cnt = *(p++); // Number of pps
  2359. for (i = 0; i < cnt; i++) {
  2360. nalsize = AV_RB16(p) + 2;
  2361. if(decode_nal_units(h, p, nalsize) != nalsize) {
  2362. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  2363. return -1;
  2364. }
  2365. p += nalsize;
  2366. }
  2367. // Now store right nal length size, that will be use to parse all other nals
  2368. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  2369. // Do not reparse avcC
  2370. h->got_avcC = 1;
  2371. }
  2372. if(!h->got_avcC && !h->is_avc && s->avctx->extradata_size){
  2373. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  2374. return -1;
  2375. h->got_avcC = 1;
  2376. }
  2377. buf_index=decode_nal_units(h, buf, buf_size);
  2378. if(buf_index < 0)
  2379. return -1;
  2380. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  2381. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  2382. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  2383. return -1;
  2384. }
  2385. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  2386. Picture *out = s->current_picture_ptr;
  2387. Picture *cur = s->current_picture_ptr;
  2388. int i, pics, out_of_order, out_idx;
  2389. field_end(h);
  2390. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  2391. /* Wait for second field. */
  2392. *data_size = 0;
  2393. } else {
  2394. cur->interlaced_frame = 0;
  2395. cur->repeat_pict = 0;
  2396. /* Signal interlacing information externally. */
  2397. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  2398. if(h->sps.pic_struct_present_flag){
  2399. switch (h->sei_pic_struct)
  2400. {
  2401. case SEI_PIC_STRUCT_FRAME:
  2402. break;
  2403. case SEI_PIC_STRUCT_TOP_FIELD:
  2404. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  2405. cur->interlaced_frame = 1;
  2406. break;
  2407. case SEI_PIC_STRUCT_TOP_BOTTOM:
  2408. case SEI_PIC_STRUCT_BOTTOM_TOP:
  2409. if (FIELD_OR_MBAFF_PICTURE)
  2410. cur->interlaced_frame = 1;
  2411. else
  2412. // try to flag soft telecine progressive
  2413. cur->interlaced_frame = h->prev_interlaced_frame;
  2414. break;
  2415. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  2416. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  2417. // Signal the possibility of telecined film externally (pic_struct 5,6)
  2418. // From these hints, let the applications decide if they apply deinterlacing.
  2419. cur->repeat_pict = 1;
  2420. break;
  2421. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  2422. // Force progressive here, as doubling interlaced frame is a bad idea.
  2423. cur->repeat_pict = 2;
  2424. break;
  2425. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  2426. cur->repeat_pict = 4;
  2427. break;
  2428. }
  2429. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  2430. cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0;
  2431. }else{
  2432. /* Derive interlacing flag from used decoding process. */
  2433. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  2434. }
  2435. h->prev_interlaced_frame = cur->interlaced_frame;
  2436. if (cur->field_poc[0] != cur->field_poc[1]){
  2437. /* Derive top_field_first from field pocs. */
  2438. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  2439. }else{
  2440. if(cur->interlaced_frame || h->sps.pic_struct_present_flag){
  2441. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  2442. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  2443. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  2444. cur->top_field_first = 1;
  2445. else
  2446. cur->top_field_first = 0;
  2447. }else{
  2448. /* Most likely progressive */
  2449. cur->top_field_first = 0;
  2450. }
  2451. }
  2452. //FIXME do something with unavailable reference frames
  2453. /* Sort B-frames into display order */
  2454. if(h->sps.bitstream_restriction_flag
  2455. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  2456. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  2457. s->low_delay = 0;
  2458. }
  2459. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  2460. && !h->sps.bitstream_restriction_flag){
  2461. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  2462. s->low_delay= 0;
  2463. }
  2464. pics = 0;
  2465. while(h->delayed_pic[pics]) pics++;
  2466. assert(pics <= MAX_DELAYED_PIC_COUNT);
  2467. h->delayed_pic[pics++] = cur;
  2468. if(cur->reference == 0)
  2469. cur->reference = DELAYED_PIC_REF;
  2470. out = h->delayed_pic[0];
  2471. out_idx = 0;
  2472. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  2473. if(h->delayed_pic[i]->poc < out->poc){
  2474. out = h->delayed_pic[i];
  2475. out_idx = i;
  2476. }
  2477. if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset))
  2478. h->outputed_poc= INT_MIN;
  2479. out_of_order = out->poc < h->outputed_poc;
  2480. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  2481. { }
  2482. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  2483. || (s->low_delay &&
  2484. ((h->outputed_poc != INT_MIN && out->poc > h->outputed_poc + 2)
  2485. || cur->pict_type == FF_B_TYPE)))
  2486. {
  2487. s->low_delay = 0;
  2488. s->avctx->has_b_frames++;
  2489. }
  2490. if(out_of_order || pics > s->avctx->has_b_frames){
  2491. out->reference &= ~DELAYED_PIC_REF;
  2492. for(i=out_idx; h->delayed_pic[i]; i++)
  2493. h->delayed_pic[i] = h->delayed_pic[i+1];
  2494. }
  2495. if(!out_of_order && pics > s->avctx->has_b_frames){
  2496. *data_size = sizeof(AVFrame);
  2497. if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) {
  2498. h->outputed_poc = INT_MIN;
  2499. } else
  2500. h->outputed_poc = out->poc;
  2501. *pict= *(AVFrame*)out;
  2502. }else{
  2503. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  2504. }
  2505. }
  2506. }
  2507. assert(pict->data[0] || !*data_size);
  2508. ff_print_debug_info(s, pict);
  2509. //printf("out %d\n", (int)pict->data[0]);
  2510. return get_consumed_bytes(s, buf_index, buf_size);
  2511. }
  2512. #if 0
  2513. static inline void fill_mb_avail(H264Context *h){
  2514. MpegEncContext * const s = &h->s;
  2515. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  2516. if(s->mb_y){
  2517. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  2518. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  2519. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  2520. }else{
  2521. h->mb_avail[0]=
  2522. h->mb_avail[1]=
  2523. h->mb_avail[2]= 0;
  2524. }
  2525. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  2526. h->mb_avail[4]= 1; //FIXME move out
  2527. h->mb_avail[5]= 0; //FIXME move out
  2528. }
  2529. #endif
  2530. #ifdef TEST
  2531. #undef printf
  2532. #undef random
  2533. #define COUNT 8000
  2534. #define SIZE (COUNT*40)
  2535. int main(void){
  2536. int i;
  2537. uint8_t temp[SIZE];
  2538. PutBitContext pb;
  2539. GetBitContext gb;
  2540. // int int_temp[10000];
  2541. DSPContext dsp;
  2542. AVCodecContext avctx;
  2543. dsputil_init(&dsp, &avctx);
  2544. init_put_bits(&pb, temp, SIZE);
  2545. printf("testing unsigned exp golomb\n");
  2546. for(i=0; i<COUNT; i++){
  2547. START_TIMER
  2548. set_ue_golomb(&pb, i);
  2549. STOP_TIMER("set_ue_golomb");
  2550. }
  2551. flush_put_bits(&pb);
  2552. init_get_bits(&gb, temp, 8*SIZE);
  2553. for(i=0; i<COUNT; i++){
  2554. int j, s;
  2555. s= show_bits(&gb, 24);
  2556. START_TIMER
  2557. j= get_ue_golomb(&gb);
  2558. if(j != i){
  2559. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2560. // return -1;
  2561. }
  2562. STOP_TIMER("get_ue_golomb");
  2563. }
  2564. init_put_bits(&pb, temp, SIZE);
  2565. printf("testing signed exp golomb\n");
  2566. for(i=0; i<COUNT; i++){
  2567. START_TIMER
  2568. set_se_golomb(&pb, i - COUNT/2);
  2569. STOP_TIMER("set_se_golomb");
  2570. }
  2571. flush_put_bits(&pb);
  2572. init_get_bits(&gb, temp, 8*SIZE);
  2573. for(i=0; i<COUNT; i++){
  2574. int j, s;
  2575. s= show_bits(&gb, 24);
  2576. START_TIMER
  2577. j= get_se_golomb(&gb);
  2578. if(j != i - COUNT/2){
  2579. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  2580. // return -1;
  2581. }
  2582. STOP_TIMER("get_se_golomb");
  2583. }
  2584. #if 0
  2585. printf("testing 4x4 (I)DCT\n");
  2586. DCTELEM block[16];
  2587. uint8_t src[16], ref[16];
  2588. uint64_t error= 0, max_error=0;
  2589. for(i=0; i<COUNT; i++){
  2590. int j;
  2591. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  2592. for(j=0; j<16; j++){
  2593. ref[j]= random()%255;
  2594. src[j]= random()%255;
  2595. }
  2596. h264_diff_dct_c(block, src, ref, 4);
  2597. //normalize
  2598. for(j=0; j<16; j++){
  2599. // printf("%d ", block[j]);
  2600. block[j]= block[j]*4;
  2601. if(j&1) block[j]= (block[j]*4 + 2)/5;
  2602. if(j&4) block[j]= (block[j]*4 + 2)/5;
  2603. }
  2604. // printf("\n");
  2605. s->dsp.h264_idct_add(ref, block, 4);
  2606. /* for(j=0; j<16; j++){
  2607. printf("%d ", ref[j]);
  2608. }
  2609. printf("\n");*/
  2610. for(j=0; j<16; j++){
  2611. int diff= FFABS(src[j] - ref[j]);
  2612. error+= diff*diff;
  2613. max_error= FFMAX(max_error, diff);
  2614. }
  2615. }
  2616. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  2617. printf("testing quantizer\n");
  2618. for(qp=0; qp<52; qp++){
  2619. for(i=0; i<16; i++)
  2620. src1_block[i]= src2_block[i]= random()%255;
  2621. }
  2622. printf("Testing NAL layer\n");
  2623. uint8_t bitstream[COUNT];
  2624. uint8_t nal[COUNT*2];
  2625. H264Context h;
  2626. memset(&h, 0, sizeof(H264Context));
  2627. for(i=0; i<COUNT; i++){
  2628. int zeros= i;
  2629. int nal_length;
  2630. int consumed;
  2631. int out_length;
  2632. uint8_t *out;
  2633. int j;
  2634. for(j=0; j<COUNT; j++){
  2635. bitstream[j]= (random() % 255) + 1;
  2636. }
  2637. for(j=0; j<zeros; j++){
  2638. int pos= random() % COUNT;
  2639. while(bitstream[pos] == 0){
  2640. pos++;
  2641. pos %= COUNT;
  2642. }
  2643. bitstream[pos]=0;
  2644. }
  2645. START_TIMER
  2646. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  2647. if(nal_length<0){
  2648. printf("encoding failed\n");
  2649. return -1;
  2650. }
  2651. out= ff_h264_decode_nal(&h, nal, &out_length, &consumed, nal_length);
  2652. STOP_TIMER("NAL")
  2653. if(out_length != COUNT){
  2654. printf("incorrect length %d %d\n", out_length, COUNT);
  2655. return -1;
  2656. }
  2657. if(consumed != nal_length){
  2658. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  2659. return -1;
  2660. }
  2661. if(memcmp(bitstream, out, COUNT)){
  2662. printf("mismatch\n");
  2663. return -1;
  2664. }
  2665. }
  2666. #endif
  2667. printf("Testing RBSP\n");
  2668. return 0;
  2669. }
  2670. #endif /* TEST */
  2671. av_cold void ff_h264_free_context(H264Context *h)
  2672. {
  2673. int i;
  2674. free_tables(h); //FIXME cleanup init stuff perhaps
  2675. for(i = 0; i < MAX_SPS_COUNT; i++)
  2676. av_freep(h->sps_buffers + i);
  2677. for(i = 0; i < MAX_PPS_COUNT; i++)
  2678. av_freep(h->pps_buffers + i);
  2679. }
  2680. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  2681. {
  2682. H264Context *h = avctx->priv_data;
  2683. MpegEncContext *s = &h->s;
  2684. ff_h264_free_context(h);
  2685. MPV_common_end(s);
  2686. // memset(h, 0, sizeof(H264Context));
  2687. return 0;
  2688. }
  2689. AVCodec h264_decoder = {
  2690. "h264",
  2691. CODEC_TYPE_VIDEO,
  2692. CODEC_ID_H264,
  2693. sizeof(H264Context),
  2694. ff_h264_decode_init,
  2695. NULL,
  2696. ff_h264_decode_end,
  2697. decode_frame,
  2698. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  2699. .flush= flush_dpb,
  2700. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  2701. .pix_fmts= ff_hwaccel_pixfmt_list_420,
  2702. };
  2703. #if CONFIG_H264_VDPAU_DECODER
  2704. AVCodec h264_vdpau_decoder = {
  2705. "h264_vdpau",
  2706. CODEC_TYPE_VIDEO,
  2707. CODEC_ID_H264,
  2708. sizeof(H264Context),
  2709. ff_h264_decode_init,
  2710. NULL,
  2711. ff_h264_decode_end,
  2712. decode_frame,
  2713. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  2714. .flush= flush_dpb,
  2715. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  2716. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  2717. };
  2718. #endif