You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

862 lines
29KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. *
  5. * VC-3 encoder funded by the British Broadcasting Corporation
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. //#define DEBUG
  24. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "dnxhdenc.h"
  29. int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
  30. #define LAMBDA_FRAC_BITS 10
  31. static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  32. {
  33. int i;
  34. for (i = 0; i < 4; i++) {
  35. block[0] = pixels[0]; block[1] = pixels[1];
  36. block[2] = pixels[2]; block[3] = pixels[3];
  37. block[4] = pixels[4]; block[5] = pixels[5];
  38. block[6] = pixels[6]; block[7] = pixels[7];
  39. pixels += line_size;
  40. block += 8;
  41. }
  42. memcpy(block , block- 8, sizeof(*block)*8);
  43. memcpy(block+ 8, block-16, sizeof(*block)*8);
  44. memcpy(block+16, block-24, sizeof(*block)*8);
  45. memcpy(block+24, block-32, sizeof(*block)*8);
  46. }
  47. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  48. {
  49. int i, j, level, run;
  50. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  51. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  52. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits , max_level*4*sizeof(*ctx->vlc_bits ), fail);
  53. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2 , fail);
  54. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits , 63 , fail);
  55. ctx->vlc_codes += max_level*2;
  56. ctx->vlc_bits += max_level*2;
  57. for (level = -max_level; level < max_level; level++) {
  58. for (run = 0; run < 2; run++) {
  59. int index = (level<<1)|run;
  60. int sign, offset = 0, alevel = level;
  61. MASK_ABS(sign, alevel);
  62. if (alevel > 64) {
  63. offset = (alevel-1)>>6;
  64. alevel -= offset<<6;
  65. }
  66. for (j = 0; j < 257; j++) {
  67. if (ctx->cid_table->ac_level[j] == alevel &&
  68. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  69. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  70. assert(!ctx->vlc_codes[index]);
  71. if (alevel) {
  72. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  73. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  74. } else {
  75. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  76. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  77. }
  78. break;
  79. }
  80. }
  81. assert(!alevel || j < 257);
  82. if (offset) {
  83. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  84. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  85. }
  86. }
  87. }
  88. for (i = 0; i < 62; i++) {
  89. int run = ctx->cid_table->run[i];
  90. assert(run < 63);
  91. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  92. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  93. }
  94. return 0;
  95. fail:
  96. return -1;
  97. }
  98. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  99. {
  100. // init first elem to 1 to avoid div by 0 in convert_matrix
  101. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  102. int qscale, i;
  103. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
  104. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
  105. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  106. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  107. for (i = 1; i < 64; i++) {
  108. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  109. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  110. }
  111. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  112. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  113. for (i = 1; i < 64; i++) {
  114. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  115. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  116. }
  117. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  118. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  119. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  120. for (i = 0; i < 64; i++) {
  121. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  122. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  123. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  124. }
  125. }
  126. return 0;
  127. fail:
  128. return -1;
  129. }
  130. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  131. {
  132. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  133. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  134. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  135. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4) * 8;
  136. ctx->qscale = 1;
  137. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  138. return 0;
  139. fail:
  140. return -1;
  141. }
  142. static int dnxhd_encode_init(AVCodecContext *avctx)
  143. {
  144. DNXHDEncContext *ctx = avctx->priv_data;
  145. int i, index;
  146. ctx->cid = ff_dnxhd_find_cid(avctx);
  147. if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) {
  148. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  149. return -1;
  150. }
  151. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  152. index = ff_dnxhd_get_cid_table(ctx->cid);
  153. ctx->cid_table = &ff_dnxhd_cid_table[index];
  154. ctx->m.avctx = avctx;
  155. ctx->m.mb_intra = 1;
  156. ctx->m.h263_aic = 1;
  157. ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4;
  158. dsputil_init(&ctx->m.dsp, avctx);
  159. ff_dct_common_init(&ctx->m);
  160. #if HAVE_MMX
  161. ff_dnxhd_init_mmx(ctx);
  162. #endif
  163. if (!ctx->m.dct_quantize)
  164. ctx->m.dct_quantize = dct_quantize_c;
  165. ctx->m.mb_height = (avctx->height + 15) / 16;
  166. ctx->m.mb_width = (avctx->width + 15) / 16;
  167. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  168. ctx->interlaced = 1;
  169. ctx->m.mb_height /= 2;
  170. }
  171. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  172. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  173. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  174. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  175. return -1;
  176. if (dnxhd_init_vlc(ctx) < 0)
  177. return -1;
  178. if (dnxhd_init_rc(ctx) < 0)
  179. return -1;
  180. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_offs, ctx->m.mb_height*sizeof(uint32_t), fail);
  182. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  183. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t) , fail);
  184. ctx->frame.key_frame = 1;
  185. ctx->frame.pict_type = FF_I_TYPE;
  186. ctx->m.avctx->coded_frame = &ctx->frame;
  187. if (avctx->thread_count > MAX_THREADS) {
  188. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  189. return -1;
  190. }
  191. ctx->thread[0] = ctx;
  192. for (i = 1; i < avctx->thread_count; i++) {
  193. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  194. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  195. }
  196. return 0;
  197. fail: //for FF_ALLOCZ_OR_GOTO
  198. return -1;
  199. }
  200. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  201. {
  202. DNXHDEncContext *ctx = avctx->priv_data;
  203. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  204. memset(buf, 0, 640);
  205. memcpy(buf, header_prefix, 5);
  206. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  207. buf[6] = 0x80; // crc flag off
  208. buf[7] = 0xa0; // reserved
  209. AV_WB16(buf + 0x18, avctx->height); // ALPF
  210. AV_WB16(buf + 0x1a, avctx->width); // SPL
  211. AV_WB16(buf + 0x1d, avctx->height); // NAL
  212. buf[0x21] = 0x38; // FIXME 8 bit per comp
  213. buf[0x22] = 0x88 + (ctx->frame.interlaced_frame<<2);
  214. AV_WB32(buf + 0x28, ctx->cid); // CID
  215. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  216. buf[0x5f] = 0x01; // UDL
  217. buf[0x167] = 0x02; // reserved
  218. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  219. buf[0x16d] = ctx->m.mb_height; // Ns
  220. buf[0x16f] = 0x10; // reserved
  221. ctx->msip = buf + 0x170;
  222. return 0;
  223. }
  224. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  225. {
  226. int nbits;
  227. if (diff < 0) {
  228. nbits = av_log2_16bit(-2*diff);
  229. diff--;
  230. } else {
  231. nbits = av_log2_16bit(2*diff);
  232. }
  233. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  234. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  235. }
  236. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  237. {
  238. int last_non_zero = 0;
  239. int slevel, i, j;
  240. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  241. ctx->m.last_dc[n] = block[0];
  242. for (i = 1; i <= last_index; i++) {
  243. j = ctx->m.intra_scantable.permutated[i];
  244. slevel = block[j];
  245. if (slevel) {
  246. int run_level = i - last_non_zero - 1;
  247. int rlevel = (slevel<<1)|!!run_level;
  248. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  249. if (run_level)
  250. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  251. last_non_zero = i;
  252. }
  253. }
  254. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  255. }
  256. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  257. {
  258. const uint8_t *weight_matrix;
  259. int level;
  260. int i;
  261. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  262. for (i = 1; i <= last_index; i++) {
  263. int j = ctx->m.intra_scantable.permutated[i];
  264. level = block[j];
  265. if (level) {
  266. if (level < 0) {
  267. level = (1-2*level) * qscale * weight_matrix[i];
  268. if (weight_matrix[i] != 32)
  269. level += 32;
  270. level >>= 6;
  271. level = -level;
  272. } else {
  273. level = (2*level+1) * qscale * weight_matrix[i];
  274. if (weight_matrix[i] != 32)
  275. level += 32;
  276. level >>= 6;
  277. }
  278. block[j] = level;
  279. }
  280. }
  281. }
  282. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  283. {
  284. int score = 0;
  285. int i;
  286. for (i = 0; i < 64; i++)
  287. score += (block[i]-qblock[i])*(block[i]-qblock[i]);
  288. return score;
  289. }
  290. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  291. {
  292. int last_non_zero = 0;
  293. int bits = 0;
  294. int i, j, level;
  295. for (i = 1; i <= last_index; i++) {
  296. j = ctx->m.intra_scantable.permutated[i];
  297. level = block[j];
  298. if (level) {
  299. int run_level = i - last_non_zero - 1;
  300. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  301. last_non_zero = i;
  302. }
  303. }
  304. return bits;
  305. }
  306. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  307. {
  308. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
  309. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  310. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  311. DSPContext *dsp = &ctx->m.dsp;
  312. dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize);
  313. dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
  314. dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize);
  315. dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize);
  316. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  317. if (ctx->interlaced) {
  318. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  319. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  320. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  321. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  322. } else {
  323. dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]);
  324. dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]);
  325. }
  326. } else {
  327. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  328. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  329. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  330. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  331. }
  332. }
  333. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  334. {
  335. if (i&2) {
  336. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  337. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  338. return 1 + (i&1);
  339. } else {
  340. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  341. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  342. return 0;
  343. }
  344. }
  345. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  346. {
  347. DNXHDEncContext *ctx = avctx->priv_data;
  348. int mb_y = jobnr, mb_x;
  349. int qscale = ctx->qscale;
  350. ctx = ctx->thread[threadnr];
  351. ctx->m.last_dc[0] =
  352. ctx->m.last_dc[1] =
  353. ctx->m.last_dc[2] = 1024;
  354. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  355. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  356. int ssd = 0;
  357. int ac_bits = 0;
  358. int dc_bits = 0;
  359. int i;
  360. dnxhd_get_blocks(ctx, mb_x, mb_y);
  361. for (i = 0; i < 8; i++) {
  362. DECLARE_ALIGNED_16(DCTELEM, block)[64];
  363. DCTELEM *src_block = ctx->blocks[i];
  364. int overflow, nbits, diff, last_index;
  365. int n = dnxhd_switch_matrix(ctx, i);
  366. memcpy(block, src_block, sizeof(block));
  367. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  368. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  369. diff = block[0] - ctx->m.last_dc[n];
  370. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  371. else nbits = av_log2_16bit( 2*diff);
  372. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  373. ctx->m.last_dc[n] = block[0];
  374. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  375. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  376. ctx->m.dsp.idct(block);
  377. ssd += dnxhd_ssd_block(block, src_block);
  378. }
  379. }
  380. ctx->mb_rc[qscale][mb].ssd = ssd;
  381. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  382. }
  383. return 0;
  384. }
  385. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  386. {
  387. DNXHDEncContext *ctx = avctx->priv_data;
  388. int mb_y = jobnr, mb_x;
  389. ctx = ctx->thread[threadnr];
  390. init_put_bits(&ctx->m.pb, (uint8_t *)arg + 640 + ctx->slice_offs[jobnr], ctx->slice_size[jobnr]);
  391. ctx->m.last_dc[0] =
  392. ctx->m.last_dc[1] =
  393. ctx->m.last_dc[2] = 1024;
  394. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  395. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  396. int qscale = ctx->mb_qscale[mb];
  397. int i;
  398. put_bits(&ctx->m.pb, 12, qscale<<1);
  399. dnxhd_get_blocks(ctx, mb_x, mb_y);
  400. for (i = 0; i < 8; i++) {
  401. DCTELEM *block = ctx->blocks[i];
  402. int last_index, overflow;
  403. int n = dnxhd_switch_matrix(ctx, i);
  404. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  405. //START_TIMER;
  406. dnxhd_encode_block(ctx, block, last_index, n);
  407. //STOP_TIMER("encode_block");
  408. }
  409. }
  410. if (put_bits_count(&ctx->m.pb)&31)
  411. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  412. flush_put_bits(&ctx->m.pb);
  413. return 0;
  414. }
  415. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
  416. {
  417. int mb_y, mb_x;
  418. int offset = 0;
  419. for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
  420. int thread_size;
  421. ctx->slice_offs[mb_y] = offset;
  422. ctx->slice_size[mb_y] = 0;
  423. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  424. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  425. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  426. }
  427. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  428. ctx->slice_size[mb_y] >>= 3;
  429. thread_size = ctx->slice_size[mb_y];
  430. offset += thread_size;
  431. }
  432. }
  433. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg, int jobnr, int threadnr)
  434. {
  435. DNXHDEncContext *ctx = avctx->priv_data;
  436. int mb_y = jobnr, mb_x;
  437. ctx = ctx->thread[threadnr];
  438. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  439. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  440. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
  441. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  442. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  443. ctx->mb_cmp[mb].value = varc;
  444. ctx->mb_cmp[mb].mb = mb;
  445. }
  446. return 0;
  447. }
  448. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  449. {
  450. int lambda, up_step, down_step;
  451. int last_lower = INT_MAX, last_higher = 0;
  452. int x, y, q;
  453. for (q = 1; q < avctx->qmax; q++) {
  454. ctx->qscale = q;
  455. avctx->execute2(avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  456. }
  457. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  458. lambda = ctx->lambda;
  459. for (;;) {
  460. int bits = 0;
  461. int end = 0;
  462. if (lambda == last_higher) {
  463. lambda++;
  464. end = 1; // need to set final qscales/bits
  465. }
  466. for (y = 0; y < ctx->m.mb_height; y++) {
  467. for (x = 0; x < ctx->m.mb_width; x++) {
  468. unsigned min = UINT_MAX;
  469. int qscale = 1;
  470. int mb = y*ctx->m.mb_width+x;
  471. for (q = 1; q < avctx->qmax; q++) {
  472. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  473. if (score < min) {
  474. min = score;
  475. qscale = q;
  476. }
  477. }
  478. bits += ctx->mb_rc[qscale][mb].bits;
  479. ctx->mb_qscale[mb] = qscale;
  480. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  481. }
  482. bits = (bits+31)&~31; // padding
  483. if (bits > ctx->frame_bits)
  484. break;
  485. }
  486. //dprintf(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  487. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  488. if (end) {
  489. if (bits > ctx->frame_bits)
  490. return -1;
  491. break;
  492. }
  493. if (bits < ctx->frame_bits) {
  494. last_lower = FFMIN(lambda, last_lower);
  495. if (last_higher != 0)
  496. lambda = (lambda+last_higher)>>1;
  497. else
  498. lambda -= down_step;
  499. down_step *= 5; // XXX tune ?
  500. up_step = 1<<LAMBDA_FRAC_BITS;
  501. lambda = FFMAX(1, lambda);
  502. if (lambda == last_lower)
  503. break;
  504. } else {
  505. last_higher = FFMAX(lambda, last_higher);
  506. if (last_lower != INT_MAX)
  507. lambda = (lambda+last_lower)>>1;
  508. else if ((int64_t)lambda + up_step > INT_MAX)
  509. return -1;
  510. else
  511. lambda += up_step;
  512. up_step = FFMIN((int64_t)up_step*5, INT_MAX);
  513. down_step = 1<<LAMBDA_FRAC_BITS;
  514. }
  515. }
  516. //dprintf(ctx->m.avctx, "out lambda %d\n", lambda);
  517. ctx->lambda = lambda;
  518. return 0;
  519. }
  520. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  521. {
  522. int bits = 0;
  523. int up_step = 1;
  524. int down_step = 1;
  525. int last_higher = 0;
  526. int last_lower = INT_MAX;
  527. int qscale;
  528. int x, y;
  529. qscale = ctx->qscale;
  530. for (;;) {
  531. bits = 0;
  532. ctx->qscale = qscale;
  533. // XXX avoid recalculating bits
  534. ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread, NULL, NULL, ctx->m.mb_height);
  535. for (y = 0; y < ctx->m.mb_height; y++) {
  536. for (x = 0; x < ctx->m.mb_width; x++)
  537. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  538. bits = (bits+31)&~31; // padding
  539. if (bits > ctx->frame_bits)
  540. break;
  541. }
  542. //dprintf(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  543. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  544. if (bits < ctx->frame_bits) {
  545. if (qscale == 1)
  546. return 1;
  547. if (last_higher == qscale - 1) {
  548. qscale = last_higher;
  549. break;
  550. }
  551. last_lower = FFMIN(qscale, last_lower);
  552. if (last_higher != 0)
  553. qscale = (qscale+last_higher)>>1;
  554. else
  555. qscale -= down_step++;
  556. if (qscale < 1)
  557. qscale = 1;
  558. up_step = 1;
  559. } else {
  560. if (last_lower == qscale + 1)
  561. break;
  562. last_higher = FFMAX(qscale, last_higher);
  563. if (last_lower != INT_MAX)
  564. qscale = (qscale+last_lower)>>1;
  565. else
  566. qscale += up_step++;
  567. down_step = 1;
  568. if (qscale >= ctx->m.avctx->qmax)
  569. return -1;
  570. }
  571. }
  572. //dprintf(ctx->m.avctx, "out qscale %d\n", qscale);
  573. ctx->qscale = qscale;
  574. return 0;
  575. }
  576. #define BUCKET_BITS 8
  577. #define RADIX_PASSES 4
  578. #define NBUCKETS (1 << BUCKET_BITS)
  579. static inline int get_bucket(int value, int shift)
  580. {
  581. value >>= shift;
  582. value &= NBUCKETS - 1;
  583. return NBUCKETS - 1 - value;
  584. }
  585. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  586. {
  587. int i, j;
  588. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  589. for (i = 0; i < size; i++) {
  590. int v = data[i].value;
  591. for (j = 0; j < RADIX_PASSES; j++) {
  592. buckets[j][get_bucket(v, 0)]++;
  593. v >>= BUCKET_BITS;
  594. }
  595. assert(!v);
  596. }
  597. for (j = 0; j < RADIX_PASSES; j++) {
  598. int offset = size;
  599. for (i = NBUCKETS - 1; i >= 0; i--)
  600. buckets[j][i] = offset -= buckets[j][i];
  601. assert(!buckets[j][0]);
  602. }
  603. }
  604. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  605. {
  606. int shift = pass * BUCKET_BITS;
  607. int i;
  608. for (i = 0; i < size; i++) {
  609. int v = get_bucket(data[i].value, shift);
  610. int pos = buckets[v]++;
  611. dst[pos] = data[i];
  612. }
  613. }
  614. static void radix_sort(RCCMPEntry *data, int size)
  615. {
  616. int buckets[RADIX_PASSES][NBUCKETS];
  617. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  618. radix_count(data, size, buckets);
  619. radix_sort_pass(tmp, data, size, buckets[0], 0);
  620. radix_sort_pass(data, tmp, size, buckets[1], 1);
  621. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  622. radix_sort_pass(tmp, data, size, buckets[2], 2);
  623. radix_sort_pass(data, tmp, size, buckets[3], 3);
  624. }
  625. av_free(tmp);
  626. }
  627. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  628. {
  629. int max_bits = 0;
  630. int ret, x, y;
  631. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  632. return -1;
  633. for (y = 0; y < ctx->m.mb_height; y++) {
  634. for (x = 0; x < ctx->m.mb_width; x++) {
  635. int mb = y*ctx->m.mb_width+x;
  636. int delta_bits;
  637. ctx->mb_qscale[mb] = ctx->qscale;
  638. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  639. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  640. if (!RC_VARIANCE) {
  641. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  642. ctx->mb_cmp[mb].mb = mb;
  643. ctx->mb_cmp[mb].value = delta_bits ?
  644. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  645. : INT_MIN; //avoid increasing qscale
  646. }
  647. }
  648. max_bits += 31; //worst padding
  649. }
  650. if (!ret) {
  651. if (RC_VARIANCE)
  652. avctx->execute2(avctx, dnxhd_mb_var_thread, NULL, NULL, ctx->m.mb_height);
  653. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  654. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  655. int mb = ctx->mb_cmp[x].mb;
  656. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  657. ctx->mb_qscale[mb] = ctx->qscale+1;
  658. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  659. }
  660. }
  661. return 0;
  662. }
  663. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  664. {
  665. int i;
  666. for (i = 0; i < 3; i++) {
  667. ctx->frame.data[i] = frame->data[i];
  668. ctx->frame.linesize[i] = frame->linesize[i];
  669. }
  670. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  671. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  672. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  673. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  674. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  675. }
  676. ctx->frame.interlaced_frame = frame->interlaced_frame;
  677. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  678. }
  679. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
  680. {
  681. DNXHDEncContext *ctx = avctx->priv_data;
  682. int first_field = 1;
  683. int offset, i, ret;
  684. if (buf_size < ctx->cid_table->frame_size) {
  685. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  686. return -1;
  687. }
  688. dnxhd_load_picture(ctx, data);
  689. encode_coding_unit:
  690. for (i = 0; i < 3; i++) {
  691. ctx->src[i] = ctx->frame.data[i];
  692. if (ctx->interlaced && ctx->cur_field)
  693. ctx->src[i] += ctx->frame.linesize[i];
  694. }
  695. dnxhd_write_header(avctx, buf);
  696. if (avctx->mb_decision == FF_MB_DECISION_RD)
  697. ret = dnxhd_encode_rdo(avctx, ctx);
  698. else
  699. ret = dnxhd_encode_fast(avctx, ctx);
  700. if (ret < 0) {
  701. av_log(avctx, AV_LOG_ERROR,
  702. "picture could not fit ratecontrol constraints, increase qmax\n");
  703. return -1;
  704. }
  705. dnxhd_setup_threads_slices(ctx);
  706. offset = 0;
  707. for (i = 0; i < ctx->m.mb_height; i++) {
  708. AV_WB32(ctx->msip + i * 4, offset);
  709. offset += ctx->slice_size[i];
  710. assert(!(ctx->slice_size[i] & 3));
  711. }
  712. avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
  713. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  714. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  715. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  716. if (ctx->interlaced && first_field) {
  717. first_field = 0;
  718. ctx->cur_field ^= 1;
  719. buf += ctx->cid_table->coding_unit_size;
  720. buf_size -= ctx->cid_table->coding_unit_size;
  721. goto encode_coding_unit;
  722. }
  723. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  724. return ctx->cid_table->frame_size;
  725. }
  726. static int dnxhd_encode_end(AVCodecContext *avctx)
  727. {
  728. DNXHDEncContext *ctx = avctx->priv_data;
  729. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  730. int i;
  731. av_free(ctx->vlc_codes-max_level*2);
  732. av_free(ctx->vlc_bits -max_level*2);
  733. av_freep(&ctx->run_codes);
  734. av_freep(&ctx->run_bits);
  735. av_freep(&ctx->mb_bits);
  736. av_freep(&ctx->mb_qscale);
  737. av_freep(&ctx->mb_rc);
  738. av_freep(&ctx->mb_cmp);
  739. av_freep(&ctx->slice_size);
  740. av_freep(&ctx->slice_offs);
  741. av_freep(&ctx->qmatrix_c);
  742. av_freep(&ctx->qmatrix_l);
  743. av_freep(&ctx->qmatrix_c16);
  744. av_freep(&ctx->qmatrix_l16);
  745. for (i = 1; i < avctx->thread_count; i++)
  746. av_freep(&ctx->thread[i]);
  747. return 0;
  748. }
  749. AVCodec dnxhd_encoder = {
  750. "dnxhd",
  751. CODEC_TYPE_VIDEO,
  752. CODEC_ID_DNXHD,
  753. sizeof(DNXHDEncContext),
  754. dnxhd_encode_init,
  755. dnxhd_encode_picture,
  756. dnxhd_encode_end,
  757. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE},
  758. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  759. };