You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1143 lines
37KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #ifndef INT64_MAX
  31. #define INT64_MAX 9223372036854775807LL
  32. #endif
  33. #define VLC_BITS 11
  34. typedef enum Predictor{
  35. LEFT= 0,
  36. PLANE,
  37. MEDIAN,
  38. } Predictor;
  39. typedef struct HYuvContext{
  40. AVCodecContext *avctx;
  41. Predictor predictor;
  42. GetBitContext gb;
  43. PutBitContext pb;
  44. int interlaced;
  45. int decorrelate;
  46. int bitstream_bpp;
  47. int version;
  48. int yuy2; //use yuy2 instead of 422P
  49. int bgr32; //use bgr32 instead of bgr24
  50. int width, height;
  51. int flags;
  52. int picture_number;
  53. int last_slice_end;
  54. uint8_t __align8 temp[3][2500];
  55. uint64_t stats[3][256];
  56. uint8_t len[3][256];
  57. uint32_t bits[3][256];
  58. VLC vlc[3];
  59. AVFrame picture;
  60. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  61. DSPContext dsp;
  62. }HYuvContext;
  63. static const unsigned char classic_shift_luma[] = {
  64. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  65. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  66. 69,68, 0
  67. };
  68. static const unsigned char classic_shift_chroma[] = {
  69. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  70. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  71. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  72. };
  73. static const unsigned char classic_add_luma[256] = {
  74. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  75. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  76. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  77. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  78. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  79. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  80. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  81. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  82. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  83. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  84. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  85. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  86. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  87. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  88. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  89. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  90. };
  91. static const unsigned char classic_add_chroma[256] = {
  92. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  93. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  94. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  95. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  96. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  97. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  98. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  99. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  100. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  101. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  102. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  103. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  104. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  105. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  106. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  107. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  108. };
  109. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  110. int i;
  111. for(i=0; i<w-1; i++){
  112. acc+= src[i];
  113. dst[i]= acc;
  114. i++;
  115. acc+= src[i];
  116. dst[i]= acc;
  117. }
  118. for(; i<w; i++){
  119. acc+= src[i];
  120. dst[i]= acc;
  121. }
  122. return acc;
  123. }
  124. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  125. int i;
  126. uint8_t l, lt;
  127. l= *left;
  128. lt= *left_top;
  129. for(i=0; i<w; i++){
  130. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  131. lt= src1[i];
  132. dst[i]= l;
  133. }
  134. *left= l;
  135. *left_top= lt;
  136. }
  137. //FIXME optimize
  138. static inline void sub_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *src2, int w, int *left, int *left_top){
  139. int i;
  140. uint8_t l, lt;
  141. l= *left;
  142. lt= *left_top;
  143. for(i=0; i<w; i++){
  144. const int pred= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF);
  145. lt= src1[i];
  146. l= src2[i];
  147. dst[i]= l - pred;
  148. }
  149. *left= l;
  150. *left_top= lt;
  151. }
  152. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  153. int i;
  154. int r,g,b;
  155. r= *red;
  156. g= *green;
  157. b= *blue;
  158. for(i=0; i<w; i++){
  159. b+= src[4*i+0];
  160. g+= src[4*i+1];
  161. r+= src[4*i+2];
  162. dst[4*i+0]= b;
  163. dst[4*i+1]= g;
  164. dst[4*i+2]= r;
  165. }
  166. *red= r;
  167. *green= g;
  168. *blue= b;
  169. }
  170. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  171. int i;
  172. if(w<32){
  173. for(i=0; i<w; i++){
  174. const int temp= src[i];
  175. dst[i]= temp - left;
  176. left= temp;
  177. }
  178. return left;
  179. }else{
  180. for(i=0; i<16; i++){
  181. const int temp= src[i];
  182. dst[i]= temp - left;
  183. left= temp;
  184. }
  185. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  186. return src[w-1];
  187. }
  188. }
  189. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  190. int i, val, repeat;
  191. for(i=0; i<256;){
  192. repeat= get_bits(gb, 3);
  193. val = get_bits(gb, 5);
  194. if(repeat==0)
  195. repeat= get_bits(gb, 8);
  196. //printf("%d %d\n", val, repeat);
  197. while (repeat--)
  198. dst[i++] = val;
  199. }
  200. }
  201. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  202. int len, index;
  203. uint32_t bits=0;
  204. for(len=32; len>0; len--){
  205. for(index=0; index<256; index++){
  206. if(len_table[index]==len)
  207. dst[index]= bits++;
  208. }
  209. if(bits & 1){
  210. fprintf(stderr, "Error generating huffman table\n");
  211. return -1;
  212. }
  213. bits >>= 1;
  214. }
  215. return 0;
  216. }
  217. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  218. uint64_t counts[2*size];
  219. int up[2*size];
  220. int offset, i, next;
  221. for(offset=1; ; offset<<=1){
  222. for(i=0; i<size; i++){
  223. counts[i]= stats[i] + offset - 1;
  224. }
  225. for(next=size; next<size*2; next++){
  226. uint64_t min1, min2;
  227. int min1_i, min2_i;
  228. min1=min2= INT64_MAX;
  229. min1_i= min2_i=-1;
  230. for(i=0; i<next; i++){
  231. if(min2 > counts[i]){
  232. if(min1 > counts[i]){
  233. min2= min1;
  234. min2_i= min1_i;
  235. min1= counts[i];
  236. min1_i= i;
  237. }else{
  238. min2= counts[i];
  239. min2_i= i;
  240. }
  241. }
  242. }
  243. if(min2==INT64_MAX) break;
  244. counts[next]= min1 + min2;
  245. counts[min1_i]=
  246. counts[min2_i]= INT64_MAX;
  247. up[min1_i]=
  248. up[min2_i]= next;
  249. up[next]= -1;
  250. }
  251. for(i=0; i<size; i++){
  252. int len;
  253. int index=i;
  254. for(len=0; up[index] != -1; len++)
  255. index= up[index];
  256. if(len > 32) break;
  257. dst[i]= len;
  258. }
  259. if(i==size) break;
  260. }
  261. }
  262. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  263. GetBitContext gb;
  264. int i;
  265. init_get_bits(&gb, src, length*8);
  266. for(i=0; i<3; i++){
  267. read_len_table(s->len[i], &gb);
  268. if(generate_bits_table(s->bits[i], s->len[i])<0){
  269. return -1;
  270. }
  271. #if 0
  272. for(j=0; j<256; j++){
  273. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  274. }
  275. #endif
  276. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  277. }
  278. return 0;
  279. }
  280. static int read_old_huffman_tables(HYuvContext *s){
  281. #if 1
  282. GetBitContext gb;
  283. int i;
  284. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  285. read_len_table(s->len[0], &gb);
  286. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  287. read_len_table(s->len[1], &gb);
  288. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  289. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  290. if(s->bitstream_bpp >= 24){
  291. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  292. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  293. }
  294. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  295. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  296. for(i=0; i<3; i++)
  297. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  298. return 0;
  299. #else
  300. fprintf(stderr, "v1 huffyuv is not supported \n");
  301. return -1;
  302. #endif
  303. }
  304. static int decode_init(AVCodecContext *avctx)
  305. {
  306. HYuvContext *s = avctx->priv_data;
  307. int width, height;
  308. s->avctx= avctx;
  309. s->flags= avctx->flags;
  310. dsputil_init(&s->dsp, avctx);
  311. width= s->width= avctx->width;
  312. height= s->height= avctx->height;
  313. avctx->coded_frame= &s->picture;
  314. s->bgr32=1;
  315. assert(width && height);
  316. //if(avctx->extradata)
  317. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  318. if(avctx->extradata_size){
  319. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  320. s->version=1; // do such files exist at all?
  321. else
  322. s->version=2;
  323. }else
  324. s->version=0;
  325. if(s->version==2){
  326. int method;
  327. method= ((uint8_t*)avctx->extradata)[0];
  328. s->decorrelate= method&64 ? 1 : 0;
  329. s->predictor= method&63;
  330. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  331. if(s->bitstream_bpp==0)
  332. s->bitstream_bpp= avctx->bits_per_sample&~7;
  333. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  334. return -1;
  335. }else{
  336. switch(avctx->bits_per_sample&7){
  337. case 1:
  338. s->predictor= LEFT;
  339. s->decorrelate= 0;
  340. break;
  341. case 2:
  342. s->predictor= LEFT;
  343. s->decorrelate= 1;
  344. break;
  345. case 3:
  346. s->predictor= PLANE;
  347. s->decorrelate= avctx->bits_per_sample >= 24;
  348. break;
  349. case 4:
  350. s->predictor= MEDIAN;
  351. s->decorrelate= 0;
  352. break;
  353. default:
  354. s->predictor= LEFT; //OLD
  355. s->decorrelate= 0;
  356. break;
  357. }
  358. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  359. if(read_old_huffman_tables(s) < 0)
  360. return -1;
  361. }
  362. s->interlaced= height > 288;
  363. switch(s->bitstream_bpp){
  364. case 12:
  365. avctx->pix_fmt = PIX_FMT_YUV420P;
  366. break;
  367. case 16:
  368. if(s->yuy2){
  369. avctx->pix_fmt = PIX_FMT_YUV422;
  370. }else{
  371. avctx->pix_fmt = PIX_FMT_YUV422P;
  372. }
  373. break;
  374. case 24:
  375. case 32:
  376. if(s->bgr32){
  377. avctx->pix_fmt = PIX_FMT_RGBA32;
  378. }else{
  379. avctx->pix_fmt = PIX_FMT_BGR24;
  380. }
  381. break;
  382. default:
  383. assert(0);
  384. }
  385. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  386. return 0;
  387. }
  388. static void store_table(HYuvContext *s, uint8_t *len){
  389. int i;
  390. int index= s->avctx->extradata_size;
  391. for(i=0; i<256;){
  392. int cur=i;
  393. int val= len[i];
  394. int repeat;
  395. for(; i<256 && len[i]==val; i++);
  396. repeat= i - cur;
  397. if(repeat>7){
  398. ((uint8_t*)s->avctx->extradata)[index++]= val;
  399. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  400. }else{
  401. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  402. }
  403. }
  404. s->avctx->extradata_size= index;
  405. }
  406. static int encode_init(AVCodecContext *avctx)
  407. {
  408. HYuvContext *s = avctx->priv_data;
  409. int i, j, width, height;
  410. s->avctx= avctx;
  411. s->flags= avctx->flags;
  412. dsputil_init(&s->dsp, avctx);
  413. width= s->width= avctx->width;
  414. height= s->height= avctx->height;
  415. assert(width && height);
  416. avctx->extradata= av_mallocz(1024*10);
  417. avctx->stats_out= av_mallocz(1024*10);
  418. s->version=2;
  419. avctx->coded_frame= &s->picture;
  420. switch(avctx->pix_fmt){
  421. case PIX_FMT_YUV420P:
  422. if(avctx->strict_std_compliance>=0){
  423. fprintf(stderr, "YV12-huffyuv is experimental, there WILL be no compatbility! (use (v)strict=-1)\n");
  424. return -1;
  425. }
  426. s->bitstream_bpp= 12;
  427. break;
  428. case PIX_FMT_YUV422P:
  429. s->bitstream_bpp= 16;
  430. break;
  431. default:
  432. fprintf(stderr, "format not supported\n");
  433. return -1;
  434. }
  435. avctx->bits_per_sample= s->bitstream_bpp;
  436. s->decorrelate= s->bitstream_bpp >= 24;
  437. s->predictor= avctx->prediction_method;
  438. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  439. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  440. ((uint8_t*)avctx->extradata)[2]=
  441. ((uint8_t*)avctx->extradata)[3]= 0;
  442. s->avctx->extradata_size= 4;
  443. if(avctx->stats_in){
  444. char *p= avctx->stats_in;
  445. for(i=0; i<3; i++)
  446. for(j=0; j<256; j++)
  447. s->stats[i][j]= 1;
  448. for(;;){
  449. for(i=0; i<3; i++){
  450. char *next;
  451. for(j=0; j<256; j++){
  452. s->stats[i][j]+= strtol(p, &next, 0);
  453. if(next==p) return -1;
  454. p=next;
  455. }
  456. }
  457. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  458. }
  459. }else{
  460. for(i=0; i<3; i++)
  461. for(j=0; j<256; j++){
  462. int d= FFMIN(j, 256-j);
  463. s->stats[i][j]= 100000000/(d+1);
  464. }
  465. }
  466. for(i=0; i<3; i++){
  467. generate_len_table(s->len[i], s->stats[i], 256);
  468. if(generate_bits_table(s->bits[i], s->len[i])<0){
  469. return -1;
  470. }
  471. store_table(s, s->len[i]);
  472. }
  473. for(i=0; i<3; i++)
  474. for(j=0; j<256; j++)
  475. s->stats[i][j]= 0;
  476. s->interlaced= height > 288;
  477. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  478. s->picture_number=0;
  479. return 0;
  480. }
  481. static void decode_422_bitstream(HYuvContext *s, int count){
  482. int i;
  483. count/=2;
  484. for(i=0; i<count; i++){
  485. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  486. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  487. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  488. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  489. }
  490. }
  491. static void decode_gray_bitstream(HYuvContext *s, int count){
  492. int i;
  493. count/=2;
  494. for(i=0; i<count; i++){
  495. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  496. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  497. }
  498. }
  499. static void encode_422_bitstream(HYuvContext *s, int count){
  500. int i;
  501. count/=2;
  502. if(s->flags&CODEC_FLAG_PASS1){
  503. for(i=0; i<count; i++){
  504. s->stats[0][ s->temp[0][2*i ] ]++;
  505. s->stats[1][ s->temp[1][ i ] ]++;
  506. s->stats[0][ s->temp[0][2*i+1] ]++;
  507. s->stats[2][ s->temp[2][ i ] ]++;
  508. }
  509. }else{
  510. for(i=0; i<count; i++){
  511. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  512. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  513. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  514. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  515. }
  516. }
  517. }
  518. static void encode_gray_bitstream(HYuvContext *s, int count){
  519. int i;
  520. count/=2;
  521. if(s->flags&CODEC_FLAG_PASS1){
  522. for(i=0; i<count; i++){
  523. s->stats[0][ s->temp[0][2*i ] ]++;
  524. s->stats[0][ s->temp[0][2*i+1] ]++;
  525. }
  526. }else{
  527. for(i=0; i<count; i++){
  528. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  529. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  530. }
  531. }
  532. }
  533. static void decode_bgr_bitstream(HYuvContext *s, int count){
  534. int i;
  535. if(s->decorrelate){
  536. if(s->bitstream_bpp==24){
  537. for(i=0; i<count; i++){
  538. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  539. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  540. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  541. }
  542. }else{
  543. for(i=0; i<count; i++){
  544. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  545. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  546. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  547. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  548. }
  549. }
  550. }else{
  551. if(s->bitstream_bpp==24){
  552. for(i=0; i<count; i++){
  553. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  554. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  555. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  556. }
  557. }else{
  558. for(i=0; i<count; i++){
  559. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  560. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  561. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  562. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  563. }
  564. }
  565. }
  566. }
  567. static void draw_slice(HYuvContext *s, int y){
  568. int h, cy;
  569. int offset[4];
  570. if(s->avctx->draw_horiz_band==NULL)
  571. return;
  572. h= y - s->last_slice_end;
  573. y -= h;
  574. if(s->bitstream_bpp==12){
  575. cy= y>>1;
  576. }else{
  577. cy= y;
  578. }
  579. offset[0] = s->picture.linesize[0]*y;
  580. offset[1] = s->picture.linesize[1]*cy;
  581. offset[2] = s->picture.linesize[2]*cy;
  582. offset[3] = 0;
  583. emms_c();
  584. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  585. s->last_slice_end= y + h;
  586. }
  587. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  588. HYuvContext *s = avctx->priv_data;
  589. const int width= s->width;
  590. const int width2= s->width>>1;
  591. const int height= s->height;
  592. int fake_ystride, fake_ustride, fake_vstride;
  593. AVFrame * const p= &s->picture;
  594. AVFrame *picture = data;
  595. *data_size = 0;
  596. /* no supplementary picture */
  597. if (buf_size == 0)
  598. return 0;
  599. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  600. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  601. if(p->data[0])
  602. avctx->release_buffer(avctx, p);
  603. p->reference= 0;
  604. if(avctx->get_buffer(avctx, p) < 0){
  605. fprintf(stderr, "get_buffer() failed\n");
  606. return -1;
  607. }
  608. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  609. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  610. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  611. s->last_slice_end= 0;
  612. if(s->bitstream_bpp<24){
  613. int y, cy;
  614. int lefty, leftu, leftv;
  615. int lefttopy, lefttopu, lefttopv;
  616. if(s->yuy2){
  617. p->data[0][3]= get_bits(&s->gb, 8);
  618. p->data[0][2]= get_bits(&s->gb, 8);
  619. p->data[0][1]= get_bits(&s->gb, 8);
  620. p->data[0][0]= get_bits(&s->gb, 8);
  621. fprintf(stderr, "YUY2 output isnt implemenetd yet\n");
  622. return -1;
  623. }else{
  624. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  625. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  626. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  627. p->data[0][0]= get_bits(&s->gb, 8);
  628. switch(s->predictor){
  629. case LEFT:
  630. case PLANE:
  631. decode_422_bitstream(s, width-2);
  632. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  633. if(!(s->flags&CODEC_FLAG_GRAY)){
  634. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  635. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  636. }
  637. for(cy=y=1; y<s->height; y++,cy++){
  638. uint8_t *ydst, *udst, *vdst;
  639. if(s->bitstream_bpp==12){
  640. decode_gray_bitstream(s, width);
  641. ydst= p->data[0] + p->linesize[0]*y;
  642. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  643. if(s->predictor == PLANE){
  644. if(y>s->interlaced)
  645. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  646. }
  647. y++;
  648. if(y>=s->height) break;
  649. }
  650. draw_slice(s, y);
  651. ydst= p->data[0] + p->linesize[0]*y;
  652. udst= p->data[1] + p->linesize[1]*cy;
  653. vdst= p->data[2] + p->linesize[2]*cy;
  654. decode_422_bitstream(s, width);
  655. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  656. if(!(s->flags&CODEC_FLAG_GRAY)){
  657. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  658. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  659. }
  660. if(s->predictor == PLANE){
  661. if(cy>s->interlaced){
  662. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  663. if(!(s->flags&CODEC_FLAG_GRAY)){
  664. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  665. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  666. }
  667. }
  668. }
  669. }
  670. draw_slice(s, height);
  671. break;
  672. case MEDIAN:
  673. /* first line except first 2 pixels is left predicted */
  674. decode_422_bitstream(s, width-2);
  675. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  676. if(!(s->flags&CODEC_FLAG_GRAY)){
  677. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  678. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  679. }
  680. cy=y=1;
  681. /* second line is left predicted for interlaced case */
  682. if(s->interlaced){
  683. decode_422_bitstream(s, width);
  684. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  685. if(!(s->flags&CODEC_FLAG_GRAY)){
  686. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  687. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  688. }
  689. y++; cy++;
  690. }
  691. /* next 4 pixels are left predicted too */
  692. decode_422_bitstream(s, 4);
  693. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  694. if(!(s->flags&CODEC_FLAG_GRAY)){
  695. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  696. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  697. }
  698. /* next line except the first 4 pixels is median predicted */
  699. lefttopy= p->data[0][3];
  700. decode_422_bitstream(s, width-4);
  701. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  702. if(!(s->flags&CODEC_FLAG_GRAY)){
  703. lefttopu= p->data[1][1];
  704. lefttopv= p->data[2][1];
  705. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  706. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  707. }
  708. y++; cy++;
  709. for(; y<height; y++,cy++){
  710. uint8_t *ydst, *udst, *vdst;
  711. if(s->bitstream_bpp==12){
  712. while(2*cy > y){
  713. decode_gray_bitstream(s, width);
  714. ydst= p->data[0] + p->linesize[0]*y;
  715. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  716. y++;
  717. }
  718. if(y>=height) break;
  719. }
  720. draw_slice(s, y);
  721. decode_422_bitstream(s, width);
  722. ydst= p->data[0] + p->linesize[0]*y;
  723. udst= p->data[1] + p->linesize[1]*cy;
  724. vdst= p->data[2] + p->linesize[2]*cy;
  725. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  726. if(!(s->flags&CODEC_FLAG_GRAY)){
  727. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  728. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  729. }
  730. }
  731. draw_slice(s, height);
  732. break;
  733. }
  734. }
  735. }else{
  736. int y;
  737. int leftr, leftg, leftb;
  738. const int last_line= (height-1)*p->linesize[0];
  739. if(s->bitstream_bpp==32){
  740. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  741. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  742. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  743. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  744. }else{
  745. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  746. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  747. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  748. skip_bits(&s->gb, 8);
  749. }
  750. if(s->bgr32){
  751. switch(s->predictor){
  752. case LEFT:
  753. case PLANE:
  754. decode_bgr_bitstream(s, width-1);
  755. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  756. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  757. decode_bgr_bitstream(s, width);
  758. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  759. if(s->predictor == PLANE){
  760. if((y&s->interlaced)==0){
  761. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  762. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  763. }
  764. }
  765. }
  766. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  767. break;
  768. default:
  769. fprintf(stderr, "prediction type not supported!\n");
  770. }
  771. }else{
  772. fprintf(stderr, "BGR24 output isnt implemenetd yet\n");
  773. return -1;
  774. }
  775. }
  776. emms_c();
  777. *picture= *p;
  778. *data_size = sizeof(AVFrame);
  779. return (get_bits_count(&s->gb)+31)/32*4;
  780. }
  781. static int decode_end(AVCodecContext *avctx)
  782. {
  783. HYuvContext *s = avctx->priv_data;
  784. int i;
  785. for(i=0; i<3; i++){
  786. free_vlc(&s->vlc[i]);
  787. }
  788. avcodec_default_free_buffers(avctx);
  789. return 0;
  790. }
  791. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  792. HYuvContext *s = avctx->priv_data;
  793. AVFrame *pict = data;
  794. const int width= s->width;
  795. const int width2= s->width>>1;
  796. const int height= s->height;
  797. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  798. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  799. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  800. AVFrame * const p= &s->picture;
  801. int i, size;
  802. init_put_bits(&s->pb, buf, buf_size, NULL, NULL);
  803. *p = *pict;
  804. p->pict_type= FF_I_TYPE;
  805. p->key_frame= 1;
  806. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  807. int lefty, leftu, leftv, y, cy;
  808. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  809. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  810. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  811. put_bits(&s->pb, 8, p->data[0][0]);
  812. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  813. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  814. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  815. encode_422_bitstream(s, width-2);
  816. if(s->predictor==MEDIAN){
  817. int lefttopy, lefttopu, lefttopv;
  818. cy=y=1;
  819. if(s->interlaced){
  820. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  821. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  822. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  823. encode_422_bitstream(s, width);
  824. y++; cy++;
  825. }
  826. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  827. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  828. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  829. encode_422_bitstream(s, 4);
  830. lefttopy= p->data[0][3];
  831. lefttopu= p->data[1][1];
  832. lefttopv= p->data[2][1];
  833. sub_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  834. sub_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  835. sub_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  836. encode_422_bitstream(s, width-4);
  837. y++; cy++;
  838. for(; y<height; y++,cy++){
  839. uint8_t *ydst, *udst, *vdst;
  840. if(s->bitstream_bpp==12){
  841. while(2*cy > y){
  842. ydst= p->data[0] + p->linesize[0]*y;
  843. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  844. encode_gray_bitstream(s, width);
  845. y++;
  846. }
  847. if(y>=height) break;
  848. }
  849. ydst= p->data[0] + p->linesize[0]*y;
  850. udst= p->data[1] + p->linesize[1]*cy;
  851. vdst= p->data[2] + p->linesize[2]*cy;
  852. sub_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  853. sub_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  854. sub_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  855. encode_422_bitstream(s, width);
  856. }
  857. }else{
  858. for(cy=y=1; y<height; y++,cy++){
  859. uint8_t *ydst, *udst, *vdst;
  860. /* encode a luma only line & y++ */
  861. if(s->bitstream_bpp==12){
  862. ydst= p->data[0] + p->linesize[0]*y;
  863. if(s->predictor == PLANE && s->interlaced < y){
  864. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  865. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  866. }else{
  867. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  868. }
  869. encode_gray_bitstream(s, width);
  870. y++;
  871. if(y>=height) break;
  872. }
  873. ydst= p->data[0] + p->linesize[0]*y;
  874. udst= p->data[1] + p->linesize[1]*cy;
  875. vdst= p->data[2] + p->linesize[2]*cy;
  876. if(s->predictor == PLANE && s->interlaced < cy){
  877. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  878. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  879. s->dsp.diff_bytes(s->temp[3], vdst, vdst - fake_vstride, width2);
  880. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  881. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  882. leftv= sub_left_prediction(s, s->temp[2], s->temp[3], width2, leftv);
  883. }else{
  884. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  885. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  886. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  887. }
  888. encode_422_bitstream(s, width);
  889. }
  890. }
  891. }else{
  892. fprintf(stderr, "Format not supported!\n");
  893. }
  894. emms_c();
  895. size= (get_bit_count(&s->pb)+31)/32;
  896. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  897. int j;
  898. char *p= avctx->stats_out;
  899. for(i=0; i<3; i++){
  900. for(j=0; j<256; j++){
  901. sprintf(p, "%llu ", s->stats[i][j]);
  902. p+= strlen(p);
  903. s->stats[i][j]= 0;
  904. }
  905. sprintf(p, "\n");
  906. p++;
  907. }
  908. }else{
  909. flush_put_bits(&s->pb);
  910. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  911. }
  912. s->picture_number++;
  913. return size*4;
  914. }
  915. static int encode_end(AVCodecContext *avctx)
  916. {
  917. // HYuvContext *s = avctx->priv_data;
  918. av_freep(&avctx->extradata);
  919. av_freep(&avctx->stats_out);
  920. return 0;
  921. }
  922. static const AVOption huffyuv_options[] =
  923. {
  924. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  925. AVOPTION_END()
  926. };
  927. AVCodec huffyuv_decoder = {
  928. "huffyuv",
  929. CODEC_TYPE_VIDEO,
  930. CODEC_ID_HUFFYUV,
  931. sizeof(HYuvContext),
  932. decode_init,
  933. NULL,
  934. decode_end,
  935. decode_frame,
  936. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  937. NULL
  938. };
  939. #ifdef CONFIG_ENCODERS
  940. AVCodec huffyuv_encoder = {
  941. "huffyuv",
  942. CODEC_TYPE_VIDEO,
  943. CODEC_ID_HUFFYUV,
  944. sizeof(HYuvContext),
  945. encode_init,
  946. encode_frame,
  947. encode_end,
  948. .options = huffyuv_options,
  949. };
  950. #endif //CONFIG_ENCODERS