You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3273 lines
110KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * the C code (not assembly, mmx, ...) of this file can be used
  21. * under the LGPL license too
  22. */
  23. /*
  24. supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR32_1, BGR24, BGR16, BGR15, RGB32, RGB32_1, RGB24, Y8/Y800, YVU9/IF09, PAL8
  25. supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
  26. {BGR,RGB}{1,4,8,15,16} support dithering
  27. unscaled special converters (YV12=I420=IYUV, Y800=Y8)
  28. YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
  29. x -> x
  30. YUV9 -> YV12
  31. YUV9/YV12 -> Y800
  32. Y800 -> YUV9/YV12
  33. BGR24 -> BGR32 & RGB24 -> RGB32
  34. BGR32 -> BGR24 & RGB32 -> RGB24
  35. BGR15 -> BGR16
  36. */
  37. /*
  38. tested special converters (most are tested actually, but I did not write it down ...)
  39. YV12 -> BGR16
  40. YV12 -> YV12
  41. BGR15 -> BGR16
  42. BGR16 -> BGR16
  43. YVU9 -> YV12
  44. untested special converters
  45. YV12/I420 -> BGR15/BGR24/BGR32 (it is the yuv2rgb stuff, so it should be OK)
  46. YV12/I420 -> YV12/I420
  47. YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
  48. BGR24 -> BGR32 & RGB24 -> RGB32
  49. BGR32 -> BGR24 & RGB32 -> RGB24
  50. BGR24 -> YV12
  51. */
  52. #define _SVID_SOURCE //needed for MAP_ANONYMOUS
  53. #include <inttypes.h>
  54. #include <string.h>
  55. #include <math.h>
  56. #include <stdio.h>
  57. #include <unistd.h>
  58. #include "config.h"
  59. #include <assert.h>
  60. #if HAVE_SYS_MMAN_H
  61. #include <sys/mman.h>
  62. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  63. #define MAP_ANONYMOUS MAP_ANON
  64. #endif
  65. #endif
  66. #if HAVE_VIRTUALALLOC
  67. #define WIN32_LEAN_AND_MEAN
  68. #include <windows.h>
  69. #endif
  70. #include "swscale.h"
  71. #include "swscale_internal.h"
  72. #include "rgb2rgb.h"
  73. #include "libavutil/x86_cpu.h"
  74. #include "libavutil/bswap.h"
  75. unsigned swscale_version(void)
  76. {
  77. return LIBSWSCALE_VERSION_INT;
  78. }
  79. #undef MOVNTQ
  80. #undef PAVGB
  81. //#undef HAVE_MMX2
  82. //#define HAVE_AMD3DNOW
  83. //#undef HAVE_MMX
  84. //#undef ARCH_X86
  85. //#define WORDS_BIGENDIAN
  86. #define DITHER1XBPP
  87. #define FAST_BGR2YV12 // use 7 bit coefficients instead of 15 bit
  88. #define RET 0xC3 //near return opcode for x86
  89. #ifdef M_PI
  90. #define PI M_PI
  91. #else
  92. #define PI 3.14159265358979323846
  93. #endif
  94. #define isSupportedIn(x) ( \
  95. (x)==PIX_FMT_YUV420P \
  96. || (x)==PIX_FMT_YUVA420P \
  97. || (x)==PIX_FMT_YUYV422 \
  98. || (x)==PIX_FMT_UYVY422 \
  99. || (x)==PIX_FMT_RGB32 \
  100. || (x)==PIX_FMT_RGB32_1 \
  101. || (x)==PIX_FMT_BGR24 \
  102. || (x)==PIX_FMT_BGR565 \
  103. || (x)==PIX_FMT_BGR555 \
  104. || (x)==PIX_FMT_BGR32 \
  105. || (x)==PIX_FMT_BGR32_1 \
  106. || (x)==PIX_FMT_RGB24 \
  107. || (x)==PIX_FMT_RGB565 \
  108. || (x)==PIX_FMT_RGB555 \
  109. || (x)==PIX_FMT_GRAY8 \
  110. || (x)==PIX_FMT_YUV410P \
  111. || (x)==PIX_FMT_YUV440P \
  112. || (x)==PIX_FMT_GRAY16BE \
  113. || (x)==PIX_FMT_GRAY16LE \
  114. || (x)==PIX_FMT_YUV444P \
  115. || (x)==PIX_FMT_YUV422P \
  116. || (x)==PIX_FMT_YUV411P \
  117. || (x)==PIX_FMT_PAL8 \
  118. || (x)==PIX_FMT_BGR8 \
  119. || (x)==PIX_FMT_RGB8 \
  120. || (x)==PIX_FMT_BGR4_BYTE \
  121. || (x)==PIX_FMT_RGB4_BYTE \
  122. || (x)==PIX_FMT_YUV440P \
  123. || (x)==PIX_FMT_MONOWHITE \
  124. || (x)==PIX_FMT_MONOBLACK \
  125. )
  126. #define isSupportedOut(x) ( \
  127. (x)==PIX_FMT_YUV420P \
  128. || (x)==PIX_FMT_YUYV422 \
  129. || (x)==PIX_FMT_UYVY422 \
  130. || (x)==PIX_FMT_YUV444P \
  131. || (x)==PIX_FMT_YUV422P \
  132. || (x)==PIX_FMT_YUV411P \
  133. || isRGB(x) \
  134. || isBGR(x) \
  135. || (x)==PIX_FMT_NV12 \
  136. || (x)==PIX_FMT_NV21 \
  137. || (x)==PIX_FMT_GRAY16BE \
  138. || (x)==PIX_FMT_GRAY16LE \
  139. || (x)==PIX_FMT_GRAY8 \
  140. || (x)==PIX_FMT_YUV410P \
  141. || (x)==PIX_FMT_YUV440P \
  142. )
  143. #define isPacked(x) ( \
  144. (x)==PIX_FMT_PAL8 \
  145. || (x)==PIX_FMT_YUYV422 \
  146. || (x)==PIX_FMT_UYVY422 \
  147. || isRGB(x) \
  148. || isBGR(x) \
  149. )
  150. #define usePal(x) ( \
  151. (x)==PIX_FMT_PAL8 \
  152. || (x)==PIX_FMT_BGR4_BYTE \
  153. || (x)==PIX_FMT_RGB4_BYTE \
  154. || (x)==PIX_FMT_BGR8 \
  155. || (x)==PIX_FMT_RGB8 \
  156. )
  157. #define RGB2YUV_SHIFT 15
  158. #define BY ( (int)(0.114*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  159. #define BV (-(int)(0.081*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  160. #define BU ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  161. #define GY ( (int)(0.587*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  162. #define GV (-(int)(0.419*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  163. #define GU (-(int)(0.331*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  164. #define RY ( (int)(0.299*219/255*(1<<RGB2YUV_SHIFT)+0.5))
  165. #define RV ( (int)(0.500*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  166. #define RU (-(int)(0.169*224/255*(1<<RGB2YUV_SHIFT)+0.5))
  167. extern const int32_t ff_yuv2rgb_coeffs[8][4];
  168. static const double rgb2yuv_table[8][9]={
  169. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  170. {0.7152, 0.0722, 0.2126, -0.386, 0.5, -0.115, -0.454, -0.046, 0.5},
  171. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  172. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  173. {0.59 , 0.11 , 0.30 , -0.331, 0.5, -0.169, -0.421, -0.079, 0.5}, //FCC
  174. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5},
  175. {0.587 , 0.114 , 0.299 , -0.331, 0.5, -0.169, -0.419, -0.081, 0.5}, //SMPTE 170M
  176. {0.701 , 0.087 , 0.212 , -0.384, 0.5 -0.116, -0.445, -0.055, 0.5}, //SMPTE 240M
  177. };
  178. /*
  179. NOTES
  180. Special versions: fast Y 1:1 scaling (no interpolation in y direction)
  181. TODO
  182. more intelligent misalignment avoidance for the horizontal scaler
  183. write special vertical cubic upscale version
  184. optimize C code (YV12 / minmax)
  185. add support for packed pixel YUV input & output
  186. add support for Y8 output
  187. optimize BGR24 & BGR32
  188. add BGR4 output support
  189. write special BGR->BGR scaler
  190. */
  191. #if ARCH_X86 && CONFIG_GPL
  192. DECLARE_ASM_CONST(8, uint64_t, bF8)= 0xF8F8F8F8F8F8F8F8LL;
  193. DECLARE_ASM_CONST(8, uint64_t, bFC)= 0xFCFCFCFCFCFCFCFCLL;
  194. DECLARE_ASM_CONST(8, uint64_t, w10)= 0x0010001000100010LL;
  195. DECLARE_ASM_CONST(8, uint64_t, w02)= 0x0002000200020002LL;
  196. DECLARE_ASM_CONST(8, uint64_t, bm00001111)=0x00000000FFFFFFFFLL;
  197. DECLARE_ASM_CONST(8, uint64_t, bm00000111)=0x0000000000FFFFFFLL;
  198. DECLARE_ASM_CONST(8, uint64_t, bm11111000)=0xFFFFFFFFFF000000LL;
  199. DECLARE_ASM_CONST(8, uint64_t, bm01010101)=0x00FF00FF00FF00FFLL;
  200. const DECLARE_ALIGNED(8, uint64_t, ff_dither4[2]) = {
  201. 0x0103010301030103LL,
  202. 0x0200020002000200LL,};
  203. const DECLARE_ALIGNED(8, uint64_t, ff_dither8[2]) = {
  204. 0x0602060206020602LL,
  205. 0x0004000400040004LL,};
  206. DECLARE_ASM_CONST(8, uint64_t, b16Mask)= 0x001F001F001F001FLL;
  207. DECLARE_ASM_CONST(8, uint64_t, g16Mask)= 0x07E007E007E007E0LL;
  208. DECLARE_ASM_CONST(8, uint64_t, r16Mask)= 0xF800F800F800F800LL;
  209. DECLARE_ASM_CONST(8, uint64_t, b15Mask)= 0x001F001F001F001FLL;
  210. DECLARE_ASM_CONST(8, uint64_t, g15Mask)= 0x03E003E003E003E0LL;
  211. DECLARE_ASM_CONST(8, uint64_t, r15Mask)= 0x7C007C007C007C00LL;
  212. DECLARE_ALIGNED(8, const uint64_t, ff_M24A) = 0x00FF0000FF0000FFLL;
  213. DECLARE_ALIGNED(8, const uint64_t, ff_M24B) = 0xFF0000FF0000FF00LL;
  214. DECLARE_ALIGNED(8, const uint64_t, ff_M24C) = 0x0000FF0000FF0000LL;
  215. #ifdef FAST_BGR2YV12
  216. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000000210041000DULL;
  217. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000FFEEFFDC0038ULL;
  218. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00000038FFD2FFF8ULL;
  219. #else
  220. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YCoeff) = 0x000020E540830C8BULL;
  221. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UCoeff) = 0x0000ED0FDAC23831ULL;
  222. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2VCoeff) = 0x00003831D0E6F6EAULL;
  223. #endif /* FAST_BGR2YV12 */
  224. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2YOffset) = 0x1010101010101010ULL;
  225. DECLARE_ALIGNED(8, const uint64_t, ff_bgr2UVOffset) = 0x8080808080808080ULL;
  226. DECLARE_ALIGNED(8, const uint64_t, ff_w1111) = 0x0001000100010001ULL;
  227. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY1Coeff) = 0x0C88000040870C88ULL;
  228. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toY2Coeff) = 0x20DE4087000020DEULL;
  229. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY1Coeff) = 0x20DE0000408720DEULL;
  230. DECLARE_ASM_CONST(8, uint64_t, ff_rgb24toY2Coeff) = 0x0C88408700000C88ULL;
  231. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toYOffset) = 0x0008400000084000ULL;
  232. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUV[2][4]) = {
  233. {0x38380000DAC83838ULL, 0xECFFDAC80000ECFFULL, 0xF6E40000D0E3F6E4ULL, 0x3838D0E300003838ULL},
  234. {0xECFF0000DAC8ECFFULL, 0x3838DAC800003838ULL, 0x38380000D0E33838ULL, 0xF6E4D0E30000F6E4ULL},
  235. };
  236. DECLARE_ASM_CONST(8, uint64_t, ff_bgr24toUVOffset)= 0x0040400000404000ULL;
  237. #endif /* ARCH_X86 && CONFIG_GPL */
  238. // clipping helper table for C implementations:
  239. static unsigned char clip_table[768];
  240. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
  241. static const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  242. { 1, 3, 1, 3, 1, 3, 1, 3, },
  243. { 2, 0, 2, 0, 2, 0, 2, 0, },
  244. };
  245. static const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  246. { 6, 2, 6, 2, 6, 2, 6, 2, },
  247. { 0, 4, 0, 4, 0, 4, 0, 4, },
  248. };
  249. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  250. { 17, 9, 23, 15, 16, 8, 22, 14, },
  251. { 5, 29, 3, 27, 4, 28, 2, 26, },
  252. { 21, 13, 19, 11, 20, 12, 18, 10, },
  253. { 0, 24, 6, 30, 1, 25, 7, 31, },
  254. { 16, 8, 22, 14, 17, 9, 23, 15, },
  255. { 4, 28, 2, 26, 5, 29, 3, 27, },
  256. { 20, 12, 18, 10, 21, 13, 19, 11, },
  257. { 1, 25, 7, 31, 0, 24, 6, 30, },
  258. };
  259. #if 0
  260. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  261. { 0, 48, 12, 60, 3, 51, 15, 63, },
  262. { 32, 16, 44, 28, 35, 19, 47, 31, },
  263. { 8, 56, 4, 52, 11, 59, 7, 55, },
  264. { 40, 24, 36, 20, 43, 27, 39, 23, },
  265. { 2, 50, 14, 62, 1, 49, 13, 61, },
  266. { 34, 18, 46, 30, 33, 17, 45, 29, },
  267. { 10, 58, 6, 54, 9, 57, 5, 53, },
  268. { 42, 26, 38, 22, 41, 25, 37, 21, },
  269. };
  270. #endif
  271. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  272. { 0, 55, 14, 68, 3, 58, 17, 72, },
  273. { 37, 18, 50, 32, 40, 22, 54, 35, },
  274. { 9, 64, 5, 59, 13, 67, 8, 63, },
  275. { 46, 27, 41, 23, 49, 31, 44, 26, },
  276. { 2, 57, 16, 71, 1, 56, 15, 70, },
  277. { 39, 21, 52, 34, 38, 19, 51, 33, },
  278. { 11, 66, 7, 62, 10, 65, 6, 60, },
  279. { 48, 30, 43, 25, 47, 29, 42, 24, },
  280. };
  281. #if 0
  282. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  283. { 68, 36, 92, 60, 66, 34, 90, 58, },
  284. { 20, 116, 12, 108, 18, 114, 10, 106, },
  285. { 84, 52, 76, 44, 82, 50, 74, 42, },
  286. { 0, 96, 24, 120, 6, 102, 30, 126, },
  287. { 64, 32, 88, 56, 70, 38, 94, 62, },
  288. { 16, 112, 8, 104, 22, 118, 14, 110, },
  289. { 80, 48, 72, 40, 86, 54, 78, 46, },
  290. { 4, 100, 28, 124, 2, 98, 26, 122, },
  291. };
  292. #endif
  293. #if 1
  294. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  295. {117, 62, 158, 103, 113, 58, 155, 100, },
  296. { 34, 199, 21, 186, 31, 196, 17, 182, },
  297. {144, 89, 131, 76, 141, 86, 127, 72, },
  298. { 0, 165, 41, 206, 10, 175, 52, 217, },
  299. {110, 55, 151, 96, 120, 65, 162, 107, },
  300. { 28, 193, 14, 179, 38, 203, 24, 189, },
  301. {138, 83, 124, 69, 148, 93, 134, 79, },
  302. { 7, 172, 48, 213, 3, 168, 45, 210, },
  303. };
  304. #elif 1
  305. // tries to correct a gamma of 1.5
  306. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  307. { 0, 143, 18, 200, 2, 156, 25, 215, },
  308. { 78, 28, 125, 64, 89, 36, 138, 74, },
  309. { 10, 180, 3, 161, 16, 195, 8, 175, },
  310. {109, 51, 93, 38, 121, 60, 105, 47, },
  311. { 1, 152, 23, 210, 0, 147, 20, 205, },
  312. { 85, 33, 134, 71, 81, 30, 130, 67, },
  313. { 14, 190, 6, 171, 12, 185, 5, 166, },
  314. {117, 57, 101, 44, 113, 54, 97, 41, },
  315. };
  316. #elif 1
  317. // tries to correct a gamma of 2.0
  318. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  319. { 0, 124, 8, 193, 0, 140, 12, 213, },
  320. { 55, 14, 104, 42, 66, 19, 119, 52, },
  321. { 3, 168, 1, 145, 6, 187, 3, 162, },
  322. { 86, 31, 70, 21, 99, 39, 82, 28, },
  323. { 0, 134, 11, 206, 0, 129, 9, 200, },
  324. { 62, 17, 114, 48, 58, 16, 109, 45, },
  325. { 5, 181, 2, 157, 4, 175, 1, 151, },
  326. { 95, 36, 78, 26, 90, 34, 74, 24, },
  327. };
  328. #else
  329. // tries to correct a gamma of 2.5
  330. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  331. { 0, 107, 3, 187, 0, 125, 6, 212, },
  332. { 39, 7, 86, 28, 49, 11, 102, 36, },
  333. { 1, 158, 0, 131, 3, 180, 1, 151, },
  334. { 68, 19, 52, 12, 81, 25, 64, 17, },
  335. { 0, 119, 5, 203, 0, 113, 4, 195, },
  336. { 45, 9, 96, 33, 42, 8, 91, 30, },
  337. { 2, 172, 1, 144, 2, 165, 0, 137, },
  338. { 77, 23, 60, 15, 72, 21, 56, 14, },
  339. };
  340. #endif
  341. const char *sws_format_name(enum PixelFormat format)
  342. {
  343. switch (format) {
  344. case PIX_FMT_YUV420P:
  345. return "yuv420p";
  346. case PIX_FMT_YUVA420P:
  347. return "yuva420p";
  348. case PIX_FMT_YUYV422:
  349. return "yuyv422";
  350. case PIX_FMT_RGB24:
  351. return "rgb24";
  352. case PIX_FMT_BGR24:
  353. return "bgr24";
  354. case PIX_FMT_YUV422P:
  355. return "yuv422p";
  356. case PIX_FMT_YUV444P:
  357. return "yuv444p";
  358. case PIX_FMT_RGB32:
  359. return "rgb32";
  360. case PIX_FMT_YUV410P:
  361. return "yuv410p";
  362. case PIX_FMT_YUV411P:
  363. return "yuv411p";
  364. case PIX_FMT_RGB565:
  365. return "rgb565";
  366. case PIX_FMT_RGB555:
  367. return "rgb555";
  368. case PIX_FMT_GRAY16BE:
  369. return "gray16be";
  370. case PIX_FMT_GRAY16LE:
  371. return "gray16le";
  372. case PIX_FMT_GRAY8:
  373. return "gray8";
  374. case PIX_FMT_MONOWHITE:
  375. return "mono white";
  376. case PIX_FMT_MONOBLACK:
  377. return "mono black";
  378. case PIX_FMT_PAL8:
  379. return "Palette";
  380. case PIX_FMT_YUVJ420P:
  381. return "yuvj420p";
  382. case PIX_FMT_YUVJ422P:
  383. return "yuvj422p";
  384. case PIX_FMT_YUVJ444P:
  385. return "yuvj444p";
  386. case PIX_FMT_XVMC_MPEG2_MC:
  387. return "xvmc_mpeg2_mc";
  388. case PIX_FMT_XVMC_MPEG2_IDCT:
  389. return "xvmc_mpeg2_idct";
  390. case PIX_FMT_UYVY422:
  391. return "uyvy422";
  392. case PIX_FMT_UYYVYY411:
  393. return "uyyvyy411";
  394. case PIX_FMT_RGB32_1:
  395. return "rgb32x";
  396. case PIX_FMT_BGR32_1:
  397. return "bgr32x";
  398. case PIX_FMT_BGR32:
  399. return "bgr32";
  400. case PIX_FMT_BGR565:
  401. return "bgr565";
  402. case PIX_FMT_BGR555:
  403. return "bgr555";
  404. case PIX_FMT_BGR8:
  405. return "bgr8";
  406. case PIX_FMT_BGR4:
  407. return "bgr4";
  408. case PIX_FMT_BGR4_BYTE:
  409. return "bgr4 byte";
  410. case PIX_FMT_RGB8:
  411. return "rgb8";
  412. case PIX_FMT_RGB4:
  413. return "rgb4";
  414. case PIX_FMT_RGB4_BYTE:
  415. return "rgb4 byte";
  416. case PIX_FMT_NV12:
  417. return "nv12";
  418. case PIX_FMT_NV21:
  419. return "nv21";
  420. case PIX_FMT_YUV440P:
  421. return "yuv440p";
  422. case PIX_FMT_VDPAU_H264:
  423. return "vdpau_h264";
  424. case PIX_FMT_VDPAU_MPEG1:
  425. return "vdpau_mpeg1";
  426. case PIX_FMT_VDPAU_MPEG2:
  427. return "vdpau_mpeg2";
  428. case PIX_FMT_VDPAU_WMV3:
  429. return "vdpau_wmv3";
  430. case PIX_FMT_VDPAU_VC1:
  431. return "vdpau_vc1";
  432. default:
  433. return "Unknown format";
  434. }
  435. }
  436. static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  437. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  438. uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
  439. {
  440. //FIXME Optimize (just quickly written not optimized..)
  441. int i;
  442. for (i=0; i<dstW; i++)
  443. {
  444. int val=1<<18;
  445. int j;
  446. for (j=0; j<lumFilterSize; j++)
  447. val += lumSrc[j][i] * lumFilter[j];
  448. dest[i]= av_clip_uint8(val>>19);
  449. }
  450. if (uDest)
  451. for (i=0; i<chrDstW; i++)
  452. {
  453. int u=1<<18;
  454. int v=1<<18;
  455. int j;
  456. for (j=0; j<chrFilterSize; j++)
  457. {
  458. u += chrSrc[j][i] * chrFilter[j];
  459. v += chrSrc[j][i + VOFW] * chrFilter[j];
  460. }
  461. uDest[i]= av_clip_uint8(u>>19);
  462. vDest[i]= av_clip_uint8(v>>19);
  463. }
  464. }
  465. static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  466. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  467. uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
  468. {
  469. //FIXME Optimize (just quickly written not optimized..)
  470. int i;
  471. for (i=0; i<dstW; i++)
  472. {
  473. int val=1<<18;
  474. int j;
  475. for (j=0; j<lumFilterSize; j++)
  476. val += lumSrc[j][i] * lumFilter[j];
  477. dest[i]= av_clip_uint8(val>>19);
  478. }
  479. if (!uDest)
  480. return;
  481. if (dstFormat == PIX_FMT_NV12)
  482. for (i=0; i<chrDstW; i++)
  483. {
  484. int u=1<<18;
  485. int v=1<<18;
  486. int j;
  487. for (j=0; j<chrFilterSize; j++)
  488. {
  489. u += chrSrc[j][i] * chrFilter[j];
  490. v += chrSrc[j][i + VOFW] * chrFilter[j];
  491. }
  492. uDest[2*i]= av_clip_uint8(u>>19);
  493. uDest[2*i+1]= av_clip_uint8(v>>19);
  494. }
  495. else
  496. for (i=0; i<chrDstW; i++)
  497. {
  498. int u=1<<18;
  499. int v=1<<18;
  500. int j;
  501. for (j=0; j<chrFilterSize; j++)
  502. {
  503. u += chrSrc[j][i] * chrFilter[j];
  504. v += chrSrc[j][i + VOFW] * chrFilter[j];
  505. }
  506. uDest[2*i]= av_clip_uint8(v>>19);
  507. uDest[2*i+1]= av_clip_uint8(u>>19);
  508. }
  509. }
  510. #define YSCALE_YUV_2_PACKEDX_NOCLIP_C(type) \
  511. for (i=0; i<(dstW>>1); i++){\
  512. int j;\
  513. int Y1 = 1<<18;\
  514. int Y2 = 1<<18;\
  515. int U = 1<<18;\
  516. int V = 1<<18;\
  517. type av_unused *r, *b, *g;\
  518. const int i2= 2*i;\
  519. \
  520. for (j=0; j<lumFilterSize; j++)\
  521. {\
  522. Y1 += lumSrc[j][i2] * lumFilter[j];\
  523. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  524. }\
  525. for (j=0; j<chrFilterSize; j++)\
  526. {\
  527. U += chrSrc[j][i] * chrFilter[j];\
  528. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  529. }\
  530. Y1>>=19;\
  531. Y2>>=19;\
  532. U >>=19;\
  533. V >>=19;\
  534. #define YSCALE_YUV_2_PACKEDX_C(type) \
  535. YSCALE_YUV_2_PACKEDX_NOCLIP_C(type)\
  536. if ((Y1|Y2|U|V)&256)\
  537. {\
  538. if (Y1>255) Y1=255; \
  539. else if (Y1<0)Y1=0; \
  540. if (Y2>255) Y2=255; \
  541. else if (Y2<0)Y2=0; \
  542. if (U>255) U=255; \
  543. else if (U<0) U=0; \
  544. if (V>255) V=255; \
  545. else if (V<0) V=0; \
  546. }
  547. #define YSCALE_YUV_2_PACKEDX_FULL_C \
  548. for (i=0; i<dstW; i++){\
  549. int j;\
  550. int Y = 0;\
  551. int U = -128<<19;\
  552. int V = -128<<19;\
  553. int R,G,B;\
  554. \
  555. for (j=0; j<lumFilterSize; j++){\
  556. Y += lumSrc[j][i ] * lumFilter[j];\
  557. }\
  558. for (j=0; j<chrFilterSize; j++){\
  559. U += chrSrc[j][i ] * chrFilter[j];\
  560. V += chrSrc[j][i+VOFW] * chrFilter[j];\
  561. }\
  562. Y >>=10;\
  563. U >>=10;\
  564. V >>=10;\
  565. #define YSCALE_YUV_2_RGBX_FULL_C(rnd) \
  566. YSCALE_YUV_2_PACKEDX_FULL_C\
  567. Y-= c->yuv2rgb_y_offset;\
  568. Y*= c->yuv2rgb_y_coeff;\
  569. Y+= rnd;\
  570. R= Y + V*c->yuv2rgb_v2r_coeff;\
  571. G= Y + V*c->yuv2rgb_v2g_coeff + U*c->yuv2rgb_u2g_coeff;\
  572. B= Y + U*c->yuv2rgb_u2b_coeff;\
  573. if ((R|G|B)&(0xC0000000)){\
  574. if (R>=(256<<22)) R=(256<<22)-1; \
  575. else if (R<0)R=0; \
  576. if (G>=(256<<22)) G=(256<<22)-1; \
  577. else if (G<0)G=0; \
  578. if (B>=(256<<22)) B=(256<<22)-1; \
  579. else if (B<0)B=0; \
  580. }\
  581. #define YSCALE_YUV_2_GRAY16_C \
  582. for (i=0; i<(dstW>>1); i++){\
  583. int j;\
  584. int Y1 = 1<<18;\
  585. int Y2 = 1<<18;\
  586. int U = 1<<18;\
  587. int V = 1<<18;\
  588. \
  589. const int i2= 2*i;\
  590. \
  591. for (j=0; j<lumFilterSize; j++)\
  592. {\
  593. Y1 += lumSrc[j][i2] * lumFilter[j];\
  594. Y2 += lumSrc[j][i2+1] * lumFilter[j];\
  595. }\
  596. Y1>>=11;\
  597. Y2>>=11;\
  598. if ((Y1|Y2|U|V)&65536)\
  599. {\
  600. if (Y1>65535) Y1=65535; \
  601. else if (Y1<0)Y1=0; \
  602. if (Y2>65535) Y2=65535; \
  603. else if (Y2<0)Y2=0; \
  604. }
  605. #define YSCALE_YUV_2_RGBX_C(type) \
  606. YSCALE_YUV_2_PACKEDX_C(type) /* FIXME fix tables so that clipping is not needed and then use _NOCLIP*/\
  607. r = (type *)c->table_rV[V]; \
  608. g = (type *)(c->table_gU[U] + c->table_gV[V]); \
  609. b = (type *)c->table_bU[U]; \
  610. #define YSCALE_YUV_2_PACKED2_C \
  611. for (i=0; i<(dstW>>1); i++){ \
  612. const int i2= 2*i; \
  613. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19; \
  614. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19; \
  615. int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19; \
  616. int V= (uvbuf0[i+VOFW]*uvalpha1+uvbuf1[i+VOFW]*uvalpha)>>19; \
  617. #define YSCALE_YUV_2_GRAY16_2_C \
  618. for (i=0; i<(dstW>>1); i++){ \
  619. const int i2= 2*i; \
  620. int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>11; \
  621. int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>11; \
  622. #define YSCALE_YUV_2_RGB2_C(type) \
  623. YSCALE_YUV_2_PACKED2_C\
  624. type *r, *b, *g;\
  625. r = (type *)c->table_rV[V];\
  626. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  627. b = (type *)c->table_bU[U];\
  628. #define YSCALE_YUV_2_PACKED1_C \
  629. for (i=0; i<(dstW>>1); i++){\
  630. const int i2= 2*i;\
  631. int Y1= buf0[i2 ]>>7;\
  632. int Y2= buf0[i2+1]>>7;\
  633. int U= (uvbuf1[i ])>>7;\
  634. int V= (uvbuf1[i+VOFW])>>7;\
  635. #define YSCALE_YUV_2_GRAY16_1_C \
  636. for (i=0; i<(dstW>>1); i++){\
  637. const int i2= 2*i;\
  638. int Y1= buf0[i2 ]<<1;\
  639. int Y2= buf0[i2+1]<<1;\
  640. #define YSCALE_YUV_2_RGB1_C(type) \
  641. YSCALE_YUV_2_PACKED1_C\
  642. type *r, *b, *g;\
  643. r = (type *)c->table_rV[V];\
  644. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  645. b = (type *)c->table_bU[U];\
  646. #define YSCALE_YUV_2_PACKED1B_C \
  647. for (i=0; i<(dstW>>1); i++){\
  648. const int i2= 2*i;\
  649. int Y1= buf0[i2 ]>>7;\
  650. int Y2= buf0[i2+1]>>7;\
  651. int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
  652. int V= (uvbuf0[i+VOFW] + uvbuf1[i+VOFW])>>8;\
  653. #define YSCALE_YUV_2_RGB1B_C(type) \
  654. YSCALE_YUV_2_PACKED1B_C\
  655. type *r, *b, *g;\
  656. r = (type *)c->table_rV[V];\
  657. g = (type *)(c->table_gU[U] + c->table_gV[V]);\
  658. b = (type *)c->table_bU[U];\
  659. #define YSCALE_YUV_2_MONO2_C \
  660. const uint8_t * const d128=dither_8x8_220[y&7];\
  661. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  662. for (i=0; i<dstW-7; i+=8){\
  663. int acc;\
  664. acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
  665. acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
  666. acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
  667. acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
  668. acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
  669. acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
  670. acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
  671. acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
  672. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  673. dest++;\
  674. }\
  675. #define YSCALE_YUV_2_MONOX_C \
  676. const uint8_t * const d128=dither_8x8_220[y&7];\
  677. uint8_t *g= c->table_gU[128] + c->table_gV[128];\
  678. int acc=0;\
  679. for (i=0; i<dstW-1; i+=2){\
  680. int j;\
  681. int Y1=1<<18;\
  682. int Y2=1<<18;\
  683. \
  684. for (j=0; j<lumFilterSize; j++)\
  685. {\
  686. Y1 += lumSrc[j][i] * lumFilter[j];\
  687. Y2 += lumSrc[j][i+1] * lumFilter[j];\
  688. }\
  689. Y1>>=19;\
  690. Y2>>=19;\
  691. if ((Y1|Y2)&256)\
  692. {\
  693. if (Y1>255) Y1=255;\
  694. else if (Y1<0)Y1=0;\
  695. if (Y2>255) Y2=255;\
  696. else if (Y2<0)Y2=0;\
  697. }\
  698. acc+= acc + g[Y1+d128[(i+0)&7]];\
  699. acc+= acc + g[Y2+d128[(i+1)&7]];\
  700. if ((i&7)==6){\
  701. ((uint8_t*)dest)[0]= c->dstFormat == PIX_FMT_MONOBLACK ? acc : ~acc;\
  702. dest++;\
  703. }\
  704. }
  705. #define YSCALE_YUV_2_ANYRGB_C(func, func2, func_g16, func_monoblack)\
  706. switch(c->dstFormat)\
  707. {\
  708. case PIX_FMT_RGB32:\
  709. case PIX_FMT_BGR32:\
  710. case PIX_FMT_RGB32_1:\
  711. case PIX_FMT_BGR32_1:\
  712. func(uint32_t)\
  713. ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
  714. ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
  715. } \
  716. break;\
  717. case PIX_FMT_RGB24:\
  718. func(uint8_t)\
  719. ((uint8_t*)dest)[0]= r[Y1];\
  720. ((uint8_t*)dest)[1]= g[Y1];\
  721. ((uint8_t*)dest)[2]= b[Y1];\
  722. ((uint8_t*)dest)[3]= r[Y2];\
  723. ((uint8_t*)dest)[4]= g[Y2];\
  724. ((uint8_t*)dest)[5]= b[Y2];\
  725. dest+=6;\
  726. }\
  727. break;\
  728. case PIX_FMT_BGR24:\
  729. func(uint8_t)\
  730. ((uint8_t*)dest)[0]= b[Y1];\
  731. ((uint8_t*)dest)[1]= g[Y1];\
  732. ((uint8_t*)dest)[2]= r[Y1];\
  733. ((uint8_t*)dest)[3]= b[Y2];\
  734. ((uint8_t*)dest)[4]= g[Y2];\
  735. ((uint8_t*)dest)[5]= r[Y2];\
  736. dest+=6;\
  737. }\
  738. break;\
  739. case PIX_FMT_RGB565:\
  740. case PIX_FMT_BGR565:\
  741. {\
  742. const int dr1= dither_2x2_8[y&1 ][0];\
  743. const int dg1= dither_2x2_4[y&1 ][0];\
  744. const int db1= dither_2x2_8[(y&1)^1][0];\
  745. const int dr2= dither_2x2_8[y&1 ][1];\
  746. const int dg2= dither_2x2_4[y&1 ][1];\
  747. const int db2= dither_2x2_8[(y&1)^1][1];\
  748. func(uint16_t)\
  749. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  750. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  751. }\
  752. }\
  753. break;\
  754. case PIX_FMT_RGB555:\
  755. case PIX_FMT_BGR555:\
  756. {\
  757. const int dr1= dither_2x2_8[y&1 ][0];\
  758. const int dg1= dither_2x2_8[y&1 ][1];\
  759. const int db1= dither_2x2_8[(y&1)^1][0];\
  760. const int dr2= dither_2x2_8[y&1 ][1];\
  761. const int dg2= dither_2x2_8[y&1 ][0];\
  762. const int db2= dither_2x2_8[(y&1)^1][1];\
  763. func(uint16_t)\
  764. ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
  765. ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
  766. }\
  767. }\
  768. break;\
  769. case PIX_FMT_RGB8:\
  770. case PIX_FMT_BGR8:\
  771. {\
  772. const uint8_t * const d64= dither_8x8_73[y&7];\
  773. const uint8_t * const d32= dither_8x8_32[y&7];\
  774. func(uint8_t)\
  775. ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
  776. ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
  777. }\
  778. }\
  779. break;\
  780. case PIX_FMT_RGB4:\
  781. case PIX_FMT_BGR4:\
  782. {\
  783. const uint8_t * const d64= dither_8x8_73 [y&7];\
  784. const uint8_t * const d128=dither_8x8_220[y&7];\
  785. func(uint8_t)\
  786. ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
  787. + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
  788. }\
  789. }\
  790. break;\
  791. case PIX_FMT_RGB4_BYTE:\
  792. case PIX_FMT_BGR4_BYTE:\
  793. {\
  794. const uint8_t * const d64= dither_8x8_73 [y&7];\
  795. const uint8_t * const d128=dither_8x8_220[y&7];\
  796. func(uint8_t)\
  797. ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
  798. ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
  799. }\
  800. }\
  801. break;\
  802. case PIX_FMT_MONOBLACK:\
  803. case PIX_FMT_MONOWHITE:\
  804. {\
  805. func_monoblack\
  806. }\
  807. break;\
  808. case PIX_FMT_YUYV422:\
  809. func2\
  810. ((uint8_t*)dest)[2*i2+0]= Y1;\
  811. ((uint8_t*)dest)[2*i2+1]= U;\
  812. ((uint8_t*)dest)[2*i2+2]= Y2;\
  813. ((uint8_t*)dest)[2*i2+3]= V;\
  814. } \
  815. break;\
  816. case PIX_FMT_UYVY422:\
  817. func2\
  818. ((uint8_t*)dest)[2*i2+0]= U;\
  819. ((uint8_t*)dest)[2*i2+1]= Y1;\
  820. ((uint8_t*)dest)[2*i2+2]= V;\
  821. ((uint8_t*)dest)[2*i2+3]= Y2;\
  822. } \
  823. break;\
  824. case PIX_FMT_GRAY16BE:\
  825. func_g16\
  826. ((uint8_t*)dest)[2*i2+0]= Y1>>8;\
  827. ((uint8_t*)dest)[2*i2+1]= Y1;\
  828. ((uint8_t*)dest)[2*i2+2]= Y2>>8;\
  829. ((uint8_t*)dest)[2*i2+3]= Y2;\
  830. } \
  831. break;\
  832. case PIX_FMT_GRAY16LE:\
  833. func_g16\
  834. ((uint8_t*)dest)[2*i2+0]= Y1;\
  835. ((uint8_t*)dest)[2*i2+1]= Y1>>8;\
  836. ((uint8_t*)dest)[2*i2+2]= Y2;\
  837. ((uint8_t*)dest)[2*i2+3]= Y2>>8;\
  838. } \
  839. break;\
  840. }\
  841. static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  842. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  843. uint8_t *dest, int dstW, int y)
  844. {
  845. int i;
  846. YSCALE_YUV_2_ANYRGB_C(YSCALE_YUV_2_RGBX_C, YSCALE_YUV_2_PACKEDX_C(void), YSCALE_YUV_2_GRAY16_C, YSCALE_YUV_2_MONOX_C)
  847. }
  848. static inline void yuv2rgbXinC_full(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
  849. int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
  850. uint8_t *dest, int dstW, int y)
  851. {
  852. int i;
  853. int step= fmt_depth(c->dstFormat)/8;
  854. int aidx= 3;
  855. switch(c->dstFormat){
  856. case PIX_FMT_ARGB:
  857. dest++;
  858. aidx= 0;
  859. case PIX_FMT_RGB24:
  860. aidx--;
  861. case PIX_FMT_RGBA:
  862. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  863. dest[aidx]= 255;
  864. dest[0]= R>>22;
  865. dest[1]= G>>22;
  866. dest[2]= B>>22;
  867. dest+= step;
  868. }
  869. break;
  870. case PIX_FMT_ABGR:
  871. dest++;
  872. aidx= 0;
  873. case PIX_FMT_BGR24:
  874. aidx--;
  875. case PIX_FMT_BGRA:
  876. YSCALE_YUV_2_RGBX_FULL_C(1<<21)
  877. dest[aidx]= 255;
  878. dest[0]= B>>22;
  879. dest[1]= G>>22;
  880. dest[2]= R>>22;
  881. dest+= step;
  882. }
  883. break;
  884. default:
  885. assert(0);
  886. }
  887. }
  888. static void fillPlane(uint8_t* plane, int stride, int width, int height, int y, uint8_t val){
  889. int i;
  890. uint8_t *ptr = plane + stride*y;
  891. for (i=0; i<height; i++){
  892. memset(ptr, val, width);
  893. ptr += stride;
  894. }
  895. }
  896. //Note: we have C, X86, MMX, MMX2, 3DNOW versions, there is no 3DNOW+MMX2 one
  897. //Plain C versions
  898. #if !HAVE_MMX || defined (RUNTIME_CPUDETECT) || !CONFIG_GPL
  899. #define COMPILE_C
  900. #endif
  901. #if ARCH_PPC
  902. #if (HAVE_ALTIVEC || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  903. #undef COMPILE_C
  904. #define COMPILE_ALTIVEC
  905. #endif
  906. #endif //ARCH_PPC
  907. #if ARCH_X86
  908. #if ((HAVE_MMX && !HAVE_AMD3DNOW && !HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  909. #define COMPILE_MMX
  910. #endif
  911. #if (HAVE_MMX2 || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  912. #define COMPILE_MMX2
  913. #endif
  914. #if ((HAVE_AMD3DNOW && !HAVE_MMX2) || defined (RUNTIME_CPUDETECT)) && CONFIG_GPL
  915. #define COMPILE_3DNOW
  916. #endif
  917. #endif //ARCH_X86
  918. #undef HAVE_MMX
  919. #undef HAVE_MMX2
  920. #undef HAVE_AMD3DNOW
  921. #undef HAVE_ALTIVEC
  922. #define HAVE_MMX 0
  923. #define HAVE_MMX2 0
  924. #define HAVE_AMD3DNOW 0
  925. #define HAVE_ALTIVEC 0
  926. #ifdef COMPILE_C
  927. #define RENAME(a) a ## _C
  928. #include "swscale_template.c"
  929. #endif
  930. #ifdef COMPILE_ALTIVEC
  931. #undef RENAME
  932. #undef HAVE_ALTIVEC
  933. #define HAVE_ALTIVEC 1
  934. #define RENAME(a) a ## _altivec
  935. #include "swscale_template.c"
  936. #endif
  937. #if ARCH_X86
  938. //x86 versions
  939. /*
  940. #undef RENAME
  941. #undef HAVE_MMX
  942. #undef HAVE_MMX2
  943. #undef HAVE_AMD3DNOW
  944. #define ARCH_X86
  945. #define RENAME(a) a ## _X86
  946. #include "swscale_template.c"
  947. */
  948. //MMX versions
  949. #ifdef COMPILE_MMX
  950. #undef RENAME
  951. #undef HAVE_MMX
  952. #undef HAVE_MMX2
  953. #undef HAVE_AMD3DNOW
  954. #define HAVE_MMX 1
  955. #define HAVE_MMX2 0
  956. #define HAVE_AMD3DNOW 0
  957. #define RENAME(a) a ## _MMX
  958. #include "swscale_template.c"
  959. #endif
  960. //MMX2 versions
  961. #ifdef COMPILE_MMX2
  962. #undef RENAME
  963. #undef HAVE_MMX
  964. #undef HAVE_MMX2
  965. #undef HAVE_AMD3DNOW
  966. #define HAVE_MMX 1
  967. #define HAVE_MMX2 1
  968. #define HAVE_AMD3DNOW 0
  969. #define RENAME(a) a ## _MMX2
  970. #include "swscale_template.c"
  971. #endif
  972. //3DNOW versions
  973. #ifdef COMPILE_3DNOW
  974. #undef RENAME
  975. #undef HAVE_MMX
  976. #undef HAVE_MMX2
  977. #undef HAVE_AMD3DNOW
  978. #define HAVE_MMX 1
  979. #define HAVE_MMX2 0
  980. #define HAVE_AMD3DNOW 1
  981. #define RENAME(a) a ## _3DNow
  982. #include "swscale_template.c"
  983. #endif
  984. #endif //ARCH_X86
  985. // minor note: the HAVE_xyz are messed up after this line so don't use them
  986. static double getSplineCoeff(double a, double b, double c, double d, double dist)
  987. {
  988. // printf("%f %f %f %f %f\n", a,b,c,d,dist);
  989. if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
  990. else return getSplineCoeff( 0.0,
  991. b+ 2.0*c + 3.0*d,
  992. c + 3.0*d,
  993. -b- 3.0*c - 6.0*d,
  994. dist-1.0);
  995. }
  996. static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
  997. int srcW, int dstW, int filterAlign, int one, int flags,
  998. SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
  999. {
  1000. int i;
  1001. int filterSize;
  1002. int filter2Size;
  1003. int minFilterSize;
  1004. int64_t *filter=NULL;
  1005. int64_t *filter2=NULL;
  1006. const int64_t fone= 1LL<<54;
  1007. int ret= -1;
  1008. #if ARCH_X86
  1009. if (flags & SWS_CPU_CAPS_MMX)
  1010. __asm__ volatile("emms\n\t"::: "memory"); //FIXME this should not be required but it IS (even for non-MMX versions)
  1011. #endif
  1012. // NOTE: the +1 is for the MMX scaler which reads over the end
  1013. *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
  1014. if (FFABS(xInc - 0x10000) <10) // unscaled
  1015. {
  1016. int i;
  1017. filterSize= 1;
  1018. filter= av_mallocz(dstW*sizeof(*filter)*filterSize);
  1019. for (i=0; i<dstW; i++)
  1020. {
  1021. filter[i*filterSize]= fone;
  1022. (*filterPos)[i]=i;
  1023. }
  1024. }
  1025. else if (flags&SWS_POINT) // lame looking point sampling mode
  1026. {
  1027. int i;
  1028. int xDstInSrc;
  1029. filterSize= 1;
  1030. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1031. xDstInSrc= xInc/2 - 0x8000;
  1032. for (i=0; i<dstW; i++)
  1033. {
  1034. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1035. (*filterPos)[i]= xx;
  1036. filter[i]= fone;
  1037. xDstInSrc+= xInc;
  1038. }
  1039. }
  1040. else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
  1041. {
  1042. int i;
  1043. int xDstInSrc;
  1044. if (flags&SWS_BICUBIC) filterSize= 4;
  1045. else if (flags&SWS_X ) filterSize= 4;
  1046. else filterSize= 2; // SWS_BILINEAR / SWS_AREA
  1047. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1048. xDstInSrc= xInc/2 - 0x8000;
  1049. for (i=0; i<dstW; i++)
  1050. {
  1051. int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
  1052. int j;
  1053. (*filterPos)[i]= xx;
  1054. //bilinear upscale / linear interpolate / area averaging
  1055. for (j=0; j<filterSize; j++)
  1056. {
  1057. int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
  1058. if (coeff<0) coeff=0;
  1059. filter[i*filterSize + j]= coeff;
  1060. xx++;
  1061. }
  1062. xDstInSrc+= xInc;
  1063. }
  1064. }
  1065. else
  1066. {
  1067. int xDstInSrc;
  1068. int sizeFactor;
  1069. if (flags&SWS_BICUBIC) sizeFactor= 4;
  1070. else if (flags&SWS_X) sizeFactor= 8;
  1071. else if (flags&SWS_AREA) sizeFactor= 1; //downscale only, for upscale it is bilinear
  1072. else if (flags&SWS_GAUSS) sizeFactor= 8; // infinite ;)
  1073. else if (flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
  1074. else if (flags&SWS_SINC) sizeFactor= 20; // infinite ;)
  1075. else if (flags&SWS_SPLINE) sizeFactor= 20; // infinite ;)
  1076. else if (flags&SWS_BILINEAR) sizeFactor= 2;
  1077. else {
  1078. sizeFactor= 0; //GCC warning killer
  1079. assert(0);
  1080. }
  1081. if (xInc <= 1<<16) filterSize= 1 + sizeFactor; // upscale
  1082. else filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
  1083. if (filterSize > srcW-2) filterSize=srcW-2;
  1084. filter= av_malloc(dstW*sizeof(*filter)*filterSize);
  1085. xDstInSrc= xInc - 0x10000;
  1086. for (i=0; i<dstW; i++)
  1087. {
  1088. int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
  1089. int j;
  1090. (*filterPos)[i]= xx;
  1091. for (j=0; j<filterSize; j++)
  1092. {
  1093. int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
  1094. double floatd;
  1095. int64_t coeff;
  1096. if (xInc > 1<<16)
  1097. d= d*dstW/srcW;
  1098. floatd= d * (1.0/(1<<30));
  1099. if (flags & SWS_BICUBIC)
  1100. {
  1101. int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1<<24);
  1102. int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
  1103. int64_t dd = ( d*d)>>30;
  1104. int64_t ddd= (dd*d)>>30;
  1105. if (d < 1LL<<30)
  1106. coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
  1107. else if (d < 1LL<<31)
  1108. coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
  1109. else
  1110. coeff=0.0;
  1111. coeff *= fone>>(30+24);
  1112. }
  1113. /* else if (flags & SWS_X)
  1114. {
  1115. double p= param ? param*0.01 : 0.3;
  1116. coeff = d ? sin(d*PI)/(d*PI) : 1.0;
  1117. coeff*= pow(2.0, - p*d*d);
  1118. }*/
  1119. else if (flags & SWS_X)
  1120. {
  1121. double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  1122. double c;
  1123. if (floatd<1.0)
  1124. c = cos(floatd*PI);
  1125. else
  1126. c=-1.0;
  1127. if (c<0.0) c= -pow(-c, A);
  1128. else c= pow( c, A);
  1129. coeff= (c*0.5 + 0.5)*fone;
  1130. }
  1131. else if (flags & SWS_AREA)
  1132. {
  1133. int64_t d2= d - (1<<29);
  1134. if (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
  1135. else if (d2*xInc < (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
  1136. else coeff=0.0;
  1137. coeff *= fone>>(30+16);
  1138. }
  1139. else if (flags & SWS_GAUSS)
  1140. {
  1141. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1142. coeff = (pow(2.0, - p*floatd*floatd))*fone;
  1143. }
  1144. else if (flags & SWS_SINC)
  1145. {
  1146. coeff = (d ? sin(floatd*PI)/(floatd*PI) : 1.0)*fone;
  1147. }
  1148. else if (flags & SWS_LANCZOS)
  1149. {
  1150. double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  1151. coeff = (d ? sin(floatd*PI)*sin(floatd*PI/p)/(floatd*floatd*PI*PI/p) : 1.0)*fone;
  1152. if (floatd>p) coeff=0;
  1153. }
  1154. else if (flags & SWS_BILINEAR)
  1155. {
  1156. coeff= (1<<30) - d;
  1157. if (coeff<0) coeff=0;
  1158. coeff *= fone >> 30;
  1159. }
  1160. else if (flags & SWS_SPLINE)
  1161. {
  1162. double p=-2.196152422706632;
  1163. coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
  1164. }
  1165. else {
  1166. coeff= 0.0; //GCC warning killer
  1167. assert(0);
  1168. }
  1169. filter[i*filterSize + j]= coeff;
  1170. xx++;
  1171. }
  1172. xDstInSrc+= 2*xInc;
  1173. }
  1174. }
  1175. /* apply src & dst Filter to filter -> filter2
  1176. av_free(filter);
  1177. */
  1178. assert(filterSize>0);
  1179. filter2Size= filterSize;
  1180. if (srcFilter) filter2Size+= srcFilter->length - 1;
  1181. if (dstFilter) filter2Size+= dstFilter->length - 1;
  1182. assert(filter2Size>0);
  1183. filter2= av_mallocz(filter2Size*dstW*sizeof(*filter2));
  1184. for (i=0; i<dstW; i++)
  1185. {
  1186. int j, k;
  1187. if(srcFilter){
  1188. for (k=0; k<srcFilter->length; k++){
  1189. for (j=0; j<filterSize; j++)
  1190. filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
  1191. }
  1192. }else{
  1193. for (j=0; j<filterSize; j++)
  1194. filter2[i*filter2Size + j]= filter[i*filterSize + j];
  1195. }
  1196. //FIXME dstFilter
  1197. (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
  1198. }
  1199. av_freep(&filter);
  1200. /* try to reduce the filter-size (step1 find size and shift left) */
  1201. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  1202. minFilterSize= 0;
  1203. for (i=dstW-1; i>=0; i--)
  1204. {
  1205. int min= filter2Size;
  1206. int j;
  1207. int64_t cutOff=0.0;
  1208. /* get rid off near zero elements on the left by shifting left */
  1209. for (j=0; j<filter2Size; j++)
  1210. {
  1211. int k;
  1212. cutOff += FFABS(filter2[i*filter2Size]);
  1213. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1214. /* preserve monotonicity because the core can't handle the filter otherwise */
  1215. if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
  1216. // move filter coefficients left
  1217. for (k=1; k<filter2Size; k++)
  1218. filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
  1219. filter2[i*filter2Size + k - 1]= 0;
  1220. (*filterPos)[i]++;
  1221. }
  1222. cutOff=0;
  1223. /* count near zeros on the right */
  1224. for (j=filter2Size-1; j>0; j--)
  1225. {
  1226. cutOff += FFABS(filter2[i*filter2Size + j]);
  1227. if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
  1228. min--;
  1229. }
  1230. if (min>minFilterSize) minFilterSize= min;
  1231. }
  1232. if (flags & SWS_CPU_CAPS_ALTIVEC) {
  1233. // we can handle the special case 4,
  1234. // so we don't want to go to the full 8
  1235. if (minFilterSize < 5)
  1236. filterAlign = 4;
  1237. // We really don't want to waste our time
  1238. // doing useless computation, so fall back on
  1239. // the scalar C code for very small filters.
  1240. // Vectorizing is worth it only if you have a
  1241. // decent-sized vector.
  1242. if (minFilterSize < 3)
  1243. filterAlign = 1;
  1244. }
  1245. if (flags & SWS_CPU_CAPS_MMX) {
  1246. // special case for unscaled vertical filtering
  1247. if (minFilterSize == 1 && filterAlign == 2)
  1248. filterAlign= 1;
  1249. }
  1250. assert(minFilterSize > 0);
  1251. filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
  1252. assert(filterSize > 0);
  1253. filter= av_malloc(filterSize*dstW*sizeof(*filter));
  1254. if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  1255. goto error;
  1256. *outFilterSize= filterSize;
  1257. if (flags&SWS_PRINT_INFO)
  1258. av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
  1259. /* try to reduce the filter-size (step2 reduce it) */
  1260. for (i=0; i<dstW; i++)
  1261. {
  1262. int j;
  1263. for (j=0; j<filterSize; j++)
  1264. {
  1265. if (j>=filter2Size) filter[i*filterSize + j]= 0;
  1266. else filter[i*filterSize + j]= filter2[i*filter2Size + j];
  1267. if((flags & SWS_BITEXACT) && j>=minFilterSize)
  1268. filter[i*filterSize + j]= 0;
  1269. }
  1270. }
  1271. //FIXME try to align filterPos if possible
  1272. //fix borders
  1273. for (i=0; i<dstW; i++)
  1274. {
  1275. int j;
  1276. if ((*filterPos)[i] < 0)
  1277. {
  1278. // move filter coefficients left to compensate for filterPos
  1279. for (j=1; j<filterSize; j++)
  1280. {
  1281. int left= FFMAX(j + (*filterPos)[i], 0);
  1282. filter[i*filterSize + left] += filter[i*filterSize + j];
  1283. filter[i*filterSize + j]=0;
  1284. }
  1285. (*filterPos)[i]= 0;
  1286. }
  1287. if ((*filterPos)[i] + filterSize > srcW)
  1288. {
  1289. int shift= (*filterPos)[i] + filterSize - srcW;
  1290. // move filter coefficients right to compensate for filterPos
  1291. for (j=filterSize-2; j>=0; j--)
  1292. {
  1293. int right= FFMIN(j + shift, filterSize-1);
  1294. filter[i*filterSize +right] += filter[i*filterSize +j];
  1295. filter[i*filterSize +j]=0;
  1296. }
  1297. (*filterPos)[i]= srcW - filterSize;
  1298. }
  1299. }
  1300. // Note the +1 is for the MMX scaler which reads over the end
  1301. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  1302. *outFilter= av_mallocz(*outFilterSize*(dstW+1)*sizeof(int16_t));
  1303. /* normalize & store in outFilter */
  1304. for (i=0; i<dstW; i++)
  1305. {
  1306. int j;
  1307. int64_t error=0;
  1308. int64_t sum=0;
  1309. for (j=0; j<filterSize; j++)
  1310. {
  1311. sum+= filter[i*filterSize + j];
  1312. }
  1313. sum= (sum + one/2)/ one;
  1314. for (j=0; j<*outFilterSize; j++)
  1315. {
  1316. int64_t v= filter[i*filterSize + j] + error;
  1317. int intV= ROUNDED_DIV(v, sum);
  1318. (*outFilter)[i*(*outFilterSize) + j]= intV;
  1319. error= v - intV*sum;
  1320. }
  1321. }
  1322. (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
  1323. for (i=0; i<*outFilterSize; i++)
  1324. {
  1325. int j= dstW*(*outFilterSize);
  1326. (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
  1327. }
  1328. ret=0;
  1329. error:
  1330. av_free(filter);
  1331. av_free(filter2);
  1332. return ret;
  1333. }
  1334. #ifdef COMPILE_MMX2
  1335. static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
  1336. {
  1337. uint8_t *fragmentA;
  1338. x86_reg imm8OfPShufW1A;
  1339. x86_reg imm8OfPShufW2A;
  1340. x86_reg fragmentLengthA;
  1341. uint8_t *fragmentB;
  1342. x86_reg imm8OfPShufW1B;
  1343. x86_reg imm8OfPShufW2B;
  1344. x86_reg fragmentLengthB;
  1345. int fragmentPos;
  1346. int xpos, i;
  1347. // create an optimized horizontal scaling routine
  1348. //code fragment
  1349. __asm__ volatile(
  1350. "jmp 9f \n\t"
  1351. // Begin
  1352. "0: \n\t"
  1353. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1354. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1355. "movd 1(%%"REG_c", %%"REG_S"), %%mm1 \n\t"
  1356. "punpcklbw %%mm7, %%mm1 \n\t"
  1357. "punpcklbw %%mm7, %%mm0 \n\t"
  1358. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  1359. "1: \n\t"
  1360. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1361. "2: \n\t"
  1362. "psubw %%mm1, %%mm0 \n\t"
  1363. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1364. "pmullw %%mm3, %%mm0 \n\t"
  1365. "psllw $7, %%mm1 \n\t"
  1366. "paddw %%mm1, %%mm0 \n\t"
  1367. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1368. "add $8, %%"REG_a" \n\t"
  1369. // End
  1370. "9: \n\t"
  1371. // "int $3 \n\t"
  1372. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1373. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1374. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1375. "dec %1 \n\t"
  1376. "dec %2 \n\t"
  1377. "sub %0, %1 \n\t"
  1378. "sub %0, %2 \n\t"
  1379. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1380. "sub %0, %3 \n\t"
  1381. :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  1382. "=r" (fragmentLengthA)
  1383. );
  1384. __asm__ volatile(
  1385. "jmp 9f \n\t"
  1386. // Begin
  1387. "0: \n\t"
  1388. "movq (%%"REG_d", %%"REG_a"), %%mm3 \n\t"
  1389. "movd (%%"REG_c", %%"REG_S"), %%mm0 \n\t"
  1390. "punpcklbw %%mm7, %%mm0 \n\t"
  1391. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  1392. "1: \n\t"
  1393. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  1394. "2: \n\t"
  1395. "psubw %%mm1, %%mm0 \n\t"
  1396. "movl 8(%%"REG_b", %%"REG_a"), %%esi \n\t"
  1397. "pmullw %%mm3, %%mm0 \n\t"
  1398. "psllw $7, %%mm1 \n\t"
  1399. "paddw %%mm1, %%mm0 \n\t"
  1400. "movq %%mm0, (%%"REG_D", %%"REG_a") \n\t"
  1401. "add $8, %%"REG_a" \n\t"
  1402. // End
  1403. "9: \n\t"
  1404. // "int $3 \n\t"
  1405. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  1406. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  1407. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  1408. "dec %1 \n\t"
  1409. "dec %2 \n\t"
  1410. "sub %0, %1 \n\t"
  1411. "sub %0, %2 \n\t"
  1412. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  1413. "sub %0, %3 \n\t"
  1414. :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  1415. "=r" (fragmentLengthB)
  1416. );
  1417. xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
  1418. fragmentPos=0;
  1419. for (i=0; i<dstW/numSplits; i++)
  1420. {
  1421. int xx=xpos>>16;
  1422. if ((i&3) == 0)
  1423. {
  1424. int a=0;
  1425. int b=((xpos+xInc)>>16) - xx;
  1426. int c=((xpos+xInc*2)>>16) - xx;
  1427. int d=((xpos+xInc*3)>>16) - xx;
  1428. filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
  1429. filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
  1430. filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
  1431. filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
  1432. filterPos[i/2]= xx;
  1433. if (d+1<4)
  1434. {
  1435. int maxShift= 3-(d+1);
  1436. int shift=0;
  1437. memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
  1438. funnyCode[fragmentPos + imm8OfPShufW1B]=
  1439. (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
  1440. funnyCode[fragmentPos + imm8OfPShufW2B]=
  1441. a | (b<<2) | (c<<4) | (d<<6);
  1442. if (i+3>=dstW) shift=maxShift; //avoid overread
  1443. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
  1444. if (shift && i>=shift)
  1445. {
  1446. funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
  1447. funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
  1448. filterPos[i/2]-=shift;
  1449. }
  1450. fragmentPos+= fragmentLengthB;
  1451. }
  1452. else
  1453. {
  1454. int maxShift= 3-d;
  1455. int shift=0;
  1456. memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
  1457. funnyCode[fragmentPos + imm8OfPShufW1A]=
  1458. funnyCode[fragmentPos + imm8OfPShufW2A]=
  1459. a | (b<<2) | (c<<4) | (d<<6);
  1460. if (i+4>=dstW) shift=maxShift; //avoid overread
  1461. else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
  1462. if (shift && i>=shift)
  1463. {
  1464. funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
  1465. funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
  1466. filterPos[i/2]-=shift;
  1467. }
  1468. fragmentPos+= fragmentLengthA;
  1469. }
  1470. funnyCode[fragmentPos]= RET;
  1471. }
  1472. xpos+=xInc;
  1473. }
  1474. filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
  1475. }
  1476. #endif /* COMPILE_MMX2 */
  1477. static void globalInit(void){
  1478. // generating tables:
  1479. int i;
  1480. for (i=0; i<768; i++){
  1481. int c= av_clip_uint8(i-256);
  1482. clip_table[i]=c;
  1483. }
  1484. }
  1485. static SwsFunc getSwsFunc(int flags){
  1486. #if defined(RUNTIME_CPUDETECT) && CONFIG_GPL
  1487. #if ARCH_X86
  1488. // ordered per speed fastest first
  1489. if (flags & SWS_CPU_CAPS_MMX2)
  1490. return swScale_MMX2;
  1491. else if (flags & SWS_CPU_CAPS_3DNOW)
  1492. return swScale_3DNow;
  1493. else if (flags & SWS_CPU_CAPS_MMX)
  1494. return swScale_MMX;
  1495. else
  1496. return swScale_C;
  1497. #else
  1498. #if ARCH_PPC
  1499. if (flags & SWS_CPU_CAPS_ALTIVEC)
  1500. return swScale_altivec;
  1501. else
  1502. return swScale_C;
  1503. #endif
  1504. return swScale_C;
  1505. #endif /* ARCH_X86 */
  1506. #else //RUNTIME_CPUDETECT
  1507. #if HAVE_MMX2
  1508. return swScale_MMX2;
  1509. #elif HAVE_AMD3DNOW
  1510. return swScale_3DNow;
  1511. #elif HAVE_MMX
  1512. return swScale_MMX;
  1513. #elif HAVE_ALTIVEC
  1514. return swScale_altivec;
  1515. #else
  1516. return swScale_C;
  1517. #endif
  1518. #endif //!RUNTIME_CPUDETECT
  1519. }
  1520. static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1521. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1522. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1523. /* Copy Y plane */
  1524. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1525. memcpy(dst, src[0], srcSliceH*dstStride[0]);
  1526. else
  1527. {
  1528. int i;
  1529. uint8_t *srcPtr= src[0];
  1530. uint8_t *dstPtr= dst;
  1531. for (i=0; i<srcSliceH; i++)
  1532. {
  1533. memcpy(dstPtr, srcPtr, c->srcW);
  1534. srcPtr+= srcStride[0];
  1535. dstPtr+= dstStride[0];
  1536. }
  1537. }
  1538. dst = dstParam[1] + dstStride[1]*srcSliceY/2;
  1539. if (c->dstFormat == PIX_FMT_NV12)
  1540. interleaveBytes(src[1], src[2], dst, c->srcW/2, srcSliceH/2, srcStride[1], srcStride[2], dstStride[0]);
  1541. else
  1542. interleaveBytes(src[2], src[1], dst, c->srcW/2, srcSliceH/2, srcStride[2], srcStride[1], dstStride[0]);
  1543. return srcSliceH;
  1544. }
  1545. static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1546. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1547. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1548. yv12toyuy2(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1549. return srcSliceH;
  1550. }
  1551. static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1552. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1553. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1554. yv12touyvy(src[0], src[1], src[2], dst, c->srcW, srcSliceH, srcStride[0], srcStride[1], dstStride[0]);
  1555. return srcSliceH;
  1556. }
  1557. static int YUV422PToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1558. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1559. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1560. yuv422ptoyuy2(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1561. return srcSliceH;
  1562. }
  1563. static int YUV422PToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1564. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1565. uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
  1566. yuv422ptouyvy(src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0]);
  1567. return srcSliceH;
  1568. }
  1569. static int YUYV2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1570. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1571. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1572. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1573. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1574. yuyvtoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1575. return srcSliceH;
  1576. }
  1577. static int YUYV2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1578. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1579. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1580. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1581. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1582. yuyvtoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1583. return srcSliceH;
  1584. }
  1585. static int UYVY2YUV420Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1586. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1587. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1588. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY/2;
  1589. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY/2;
  1590. uyvytoyuv420(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1591. return srcSliceH;
  1592. }
  1593. static int UYVY2YUV422Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1594. int srcSliceH, uint8_t* dstParam[], int dstStride[]){
  1595. uint8_t *ydst=dstParam[0] + dstStride[0]*srcSliceY;
  1596. uint8_t *udst=dstParam[1] + dstStride[1]*srcSliceY;
  1597. uint8_t *vdst=dstParam[2] + dstStride[2]*srcSliceY;
  1598. uyvytoyuv422(ydst, udst, vdst, src[0], c->srcW, srcSliceH, dstStride[0], dstStride[1], srcStride[0]);
  1599. return srcSliceH;
  1600. }
  1601. static int pal2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1602. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1603. const enum PixelFormat srcFormat= c->srcFormat;
  1604. const enum PixelFormat dstFormat= c->dstFormat;
  1605. void (*conv)(const uint8_t *src, uint8_t *dst, long num_pixels,
  1606. const uint8_t *palette)=NULL;
  1607. int i;
  1608. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1609. uint8_t *srcPtr= src[0];
  1610. if (!usePal(srcFormat))
  1611. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1612. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1613. switch(dstFormat){
  1614. case PIX_FMT_RGB32 : conv = palette8topacked32; break;
  1615. case PIX_FMT_BGR32 : conv = palette8topacked32; break;
  1616. case PIX_FMT_BGR32_1: conv = palette8topacked32; break;
  1617. case PIX_FMT_RGB32_1: conv = palette8topacked32; break;
  1618. case PIX_FMT_RGB24 : conv = palette8topacked24; break;
  1619. case PIX_FMT_BGR24 : conv = palette8topacked24; break;
  1620. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1621. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1622. }
  1623. for (i=0; i<srcSliceH; i++) {
  1624. conv(srcPtr, dstPtr, c->srcW, (uint8_t *) c->pal_rgb);
  1625. srcPtr+= srcStride[0];
  1626. dstPtr+= dstStride[0];
  1627. }
  1628. return srcSliceH;
  1629. }
  1630. /* {RGB,BGR}{15,16,24,32,32_1} -> {RGB,BGR}{15,16,24,32} */
  1631. static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1632. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1633. const enum PixelFormat srcFormat= c->srcFormat;
  1634. const enum PixelFormat dstFormat= c->dstFormat;
  1635. const int srcBpp= (fmt_depth(srcFormat) + 7) >> 3;
  1636. const int dstBpp= (fmt_depth(dstFormat) + 7) >> 3;
  1637. const int srcId= fmt_depth(srcFormat) >> 2; /* 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 */
  1638. const int dstId= fmt_depth(dstFormat) >> 2;
  1639. void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
  1640. /* BGR -> BGR */
  1641. if ( (isBGR(srcFormat) && isBGR(dstFormat))
  1642. || (isRGB(srcFormat) && isRGB(dstFormat))){
  1643. switch(srcId | (dstId<<4)){
  1644. case 0x34: conv= rgb16to15; break;
  1645. case 0x36: conv= rgb24to15; break;
  1646. case 0x38: conv= rgb32to15; break;
  1647. case 0x43: conv= rgb15to16; break;
  1648. case 0x46: conv= rgb24to16; break;
  1649. case 0x48: conv= rgb32to16; break;
  1650. case 0x63: conv= rgb15to24; break;
  1651. case 0x64: conv= rgb16to24; break;
  1652. case 0x68: conv= rgb32to24; break;
  1653. case 0x83: conv= rgb15to32; break;
  1654. case 0x84: conv= rgb16to32; break;
  1655. case 0x86: conv= rgb24to32; break;
  1656. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1657. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1658. }
  1659. }else if ( (isBGR(srcFormat) && isRGB(dstFormat))
  1660. || (isRGB(srcFormat) && isBGR(dstFormat))){
  1661. switch(srcId | (dstId<<4)){
  1662. case 0x33: conv= rgb15tobgr15; break;
  1663. case 0x34: conv= rgb16tobgr15; break;
  1664. case 0x36: conv= rgb24tobgr15; break;
  1665. case 0x38: conv= rgb32tobgr15; break;
  1666. case 0x43: conv= rgb15tobgr16; break;
  1667. case 0x44: conv= rgb16tobgr16; break;
  1668. case 0x46: conv= rgb24tobgr16; break;
  1669. case 0x48: conv= rgb32tobgr16; break;
  1670. case 0x63: conv= rgb15tobgr24; break;
  1671. case 0x64: conv= rgb16tobgr24; break;
  1672. case 0x66: conv= rgb24tobgr24; break;
  1673. case 0x68: conv= rgb32tobgr24; break;
  1674. case 0x83: conv= rgb15tobgr32; break;
  1675. case 0x84: conv= rgb16tobgr32; break;
  1676. case 0x86: conv= rgb24tobgr32; break;
  1677. case 0x88: conv= rgb32tobgr32; break;
  1678. default: av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1679. sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
  1680. }
  1681. }else{
  1682. av_log(c, AV_LOG_ERROR, "internal error %s -> %s converter\n",
  1683. sws_format_name(srcFormat), sws_format_name(dstFormat));
  1684. }
  1685. if(conv)
  1686. {
  1687. uint8_t *srcPtr= src[0];
  1688. if(srcFormat == PIX_FMT_RGB32_1 || srcFormat == PIX_FMT_BGR32_1)
  1689. srcPtr += ALT32_CORR;
  1690. if (dstStride[0]*srcBpp == srcStride[0]*dstBpp && srcStride[0] > 0)
  1691. conv(srcPtr, dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
  1692. else
  1693. {
  1694. int i;
  1695. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1696. for (i=0; i<srcSliceH; i++)
  1697. {
  1698. conv(srcPtr, dstPtr, c->srcW*srcBpp);
  1699. srcPtr+= srcStride[0];
  1700. dstPtr+= dstStride[0];
  1701. }
  1702. }
  1703. }
  1704. return srcSliceH;
  1705. }
  1706. static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1707. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1708. rgb24toyv12(
  1709. src[0],
  1710. dst[0]+ srcSliceY *dstStride[0],
  1711. dst[1]+(srcSliceY>>1)*dstStride[1],
  1712. dst[2]+(srcSliceY>>1)*dstStride[2],
  1713. c->srcW, srcSliceH,
  1714. dstStride[0], dstStride[1], srcStride[0]);
  1715. return srcSliceH;
  1716. }
  1717. static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1718. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1719. int i;
  1720. /* copy Y */
  1721. if (srcStride[0]==dstStride[0] && srcStride[0] > 0)
  1722. memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
  1723. else{
  1724. uint8_t *srcPtr= src[0];
  1725. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1726. for (i=0; i<srcSliceH; i++)
  1727. {
  1728. memcpy(dstPtr, srcPtr, c->srcW);
  1729. srcPtr+= srcStride[0];
  1730. dstPtr+= dstStride[0];
  1731. }
  1732. }
  1733. if (c->dstFormat==PIX_FMT_YUV420P){
  1734. planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
  1735. planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
  1736. }else{
  1737. planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
  1738. planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
  1739. }
  1740. return srcSliceH;
  1741. }
  1742. /* unscaled copy like stuff (assumes nearly identical formats) */
  1743. static int packedCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1744. int srcSliceH, uint8_t* dst[], int dstStride[])
  1745. {
  1746. if (dstStride[0]==srcStride[0] && srcStride[0] > 0)
  1747. memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
  1748. else
  1749. {
  1750. int i;
  1751. uint8_t *srcPtr= src[0];
  1752. uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
  1753. int length=0;
  1754. /* universal length finder */
  1755. while(length+c->srcW <= FFABS(dstStride[0])
  1756. && length+c->srcW <= FFABS(srcStride[0])) length+= c->srcW;
  1757. assert(length!=0);
  1758. for (i=0; i<srcSliceH; i++)
  1759. {
  1760. memcpy(dstPtr, srcPtr, length);
  1761. srcPtr+= srcStride[0];
  1762. dstPtr+= dstStride[0];
  1763. }
  1764. }
  1765. return srcSliceH;
  1766. }
  1767. static int planarCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1768. int srcSliceH, uint8_t* dst[], int dstStride[])
  1769. {
  1770. int plane;
  1771. for (plane=0; plane<3; plane++)
  1772. {
  1773. int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
  1774. int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
  1775. int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
  1776. if ((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
  1777. {
  1778. if (!isGray(c->dstFormat))
  1779. fillPlane(dst[plane], dstStride[plane], length, height, y, 128);
  1780. }
  1781. else
  1782. {
  1783. if (dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
  1784. memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
  1785. else
  1786. {
  1787. int i;
  1788. uint8_t *srcPtr= src[plane];
  1789. uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
  1790. for (i=0; i<height; i++)
  1791. {
  1792. memcpy(dstPtr, srcPtr, length);
  1793. srcPtr+= srcStride[plane];
  1794. dstPtr+= dstStride[plane];
  1795. }
  1796. }
  1797. }
  1798. }
  1799. return srcSliceH;
  1800. }
  1801. static int gray16togray(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1802. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1803. int length= c->srcW;
  1804. int y= srcSliceY;
  1805. int height= srcSliceH;
  1806. int i, j;
  1807. uint8_t *srcPtr= src[0];
  1808. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1809. if (!isGray(c->dstFormat)){
  1810. int height= -((-srcSliceH)>>c->chrDstVSubSample);
  1811. memset(dst[1], 128, dstStride[1]*height);
  1812. memset(dst[2], 128, dstStride[2]*height);
  1813. }
  1814. if (c->srcFormat == PIX_FMT_GRAY16LE) srcPtr++;
  1815. for (i=0; i<height; i++)
  1816. {
  1817. for (j=0; j<length; j++) dstPtr[j] = srcPtr[j<<1];
  1818. srcPtr+= srcStride[0];
  1819. dstPtr+= dstStride[0];
  1820. }
  1821. return srcSliceH;
  1822. }
  1823. static int graytogray16(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1824. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1825. int length= c->srcW;
  1826. int y= srcSliceY;
  1827. int height= srcSliceH;
  1828. int i, j;
  1829. uint8_t *srcPtr= src[0];
  1830. uint8_t *dstPtr= dst[0] + dstStride[0]*y;
  1831. for (i=0; i<height; i++)
  1832. {
  1833. for (j=0; j<length; j++)
  1834. {
  1835. dstPtr[j<<1] = srcPtr[j];
  1836. dstPtr[(j<<1)+1] = srcPtr[j];
  1837. }
  1838. srcPtr+= srcStride[0];
  1839. dstPtr+= dstStride[0];
  1840. }
  1841. return srcSliceH;
  1842. }
  1843. static int gray16swap(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  1844. int srcSliceH, uint8_t* dst[], int dstStride[]){
  1845. int length= c->srcW;
  1846. int y= srcSliceY;
  1847. int height= srcSliceH;
  1848. int i, j;
  1849. uint16_t *srcPtr= (uint16_t*)src[0];
  1850. uint16_t *dstPtr= (uint16_t*)(dst[0] + dstStride[0]*y/2);
  1851. for (i=0; i<height; i++)
  1852. {
  1853. for (j=0; j<length; j++) dstPtr[j] = bswap_16(srcPtr[j]);
  1854. srcPtr+= srcStride[0]/2;
  1855. dstPtr+= dstStride[0]/2;
  1856. }
  1857. return srcSliceH;
  1858. }
  1859. static void getSubSampleFactors(int *h, int *v, int format){
  1860. switch(format){
  1861. case PIX_FMT_UYVY422:
  1862. case PIX_FMT_YUYV422:
  1863. *h=1;
  1864. *v=0;
  1865. break;
  1866. case PIX_FMT_YUV420P:
  1867. case PIX_FMT_YUVA420P:
  1868. case PIX_FMT_GRAY16BE:
  1869. case PIX_FMT_GRAY16LE:
  1870. case PIX_FMT_GRAY8: //FIXME remove after different subsamplings are fully implemented
  1871. case PIX_FMT_NV12:
  1872. case PIX_FMT_NV21:
  1873. *h=1;
  1874. *v=1;
  1875. break;
  1876. case PIX_FMT_YUV440P:
  1877. *h=0;
  1878. *v=1;
  1879. break;
  1880. case PIX_FMT_YUV410P:
  1881. *h=2;
  1882. *v=2;
  1883. break;
  1884. case PIX_FMT_YUV444P:
  1885. *h=0;
  1886. *v=0;
  1887. break;
  1888. case PIX_FMT_YUV422P:
  1889. *h=1;
  1890. *v=0;
  1891. break;
  1892. case PIX_FMT_YUV411P:
  1893. *h=2;
  1894. *v=0;
  1895. break;
  1896. default:
  1897. *h=0;
  1898. *v=0;
  1899. break;
  1900. }
  1901. }
  1902. static uint16_t roundToInt16(int64_t f){
  1903. int r= (f + (1<<15))>>16;
  1904. if (r<-0x7FFF) return 0x8000;
  1905. else if (r> 0x7FFF) return 0x7FFF;
  1906. else return r;
  1907. }
  1908. /**
  1909. * @param inv_table the yuv2rgb coefficients, normally ff_yuv2rgb_coeffs[x]
  1910. * @param fullRange if 1 then the luma range is 0..255 if 0 it is 16..235
  1911. * @return -1 if not supported
  1912. */
  1913. int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
  1914. int64_t crv = inv_table[0];
  1915. int64_t cbu = inv_table[1];
  1916. int64_t cgu = -inv_table[2];
  1917. int64_t cgv = -inv_table[3];
  1918. int64_t cy = 1<<16;
  1919. int64_t oy = 0;
  1920. memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
  1921. memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
  1922. c->brightness= brightness;
  1923. c->contrast = contrast;
  1924. c->saturation= saturation;
  1925. c->srcRange = srcRange;
  1926. c->dstRange = dstRange;
  1927. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return 0;
  1928. c->uOffset= 0x0400040004000400LL;
  1929. c->vOffset= 0x0400040004000400LL;
  1930. if (!srcRange){
  1931. cy= (cy*255) / 219;
  1932. oy= 16<<16;
  1933. }else{
  1934. crv= (crv*224) / 255;
  1935. cbu= (cbu*224) / 255;
  1936. cgu= (cgu*224) / 255;
  1937. cgv= (cgv*224) / 255;
  1938. }
  1939. cy = (cy *contrast )>>16;
  1940. crv= (crv*contrast * saturation)>>32;
  1941. cbu= (cbu*contrast * saturation)>>32;
  1942. cgu= (cgu*contrast * saturation)>>32;
  1943. cgv= (cgv*contrast * saturation)>>32;
  1944. oy -= 256*brightness;
  1945. c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
  1946. c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
  1947. c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
  1948. c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
  1949. c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
  1950. c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
  1951. c->yuv2rgb_y_coeff = (int16_t)roundToInt16(cy <<13);
  1952. c->yuv2rgb_y_offset = (int16_t)roundToInt16(oy << 9);
  1953. c->yuv2rgb_v2r_coeff= (int16_t)roundToInt16(crv<<13);
  1954. c->yuv2rgb_v2g_coeff= (int16_t)roundToInt16(cgv<<13);
  1955. c->yuv2rgb_u2g_coeff= (int16_t)roundToInt16(cgu<<13);
  1956. c->yuv2rgb_u2b_coeff= (int16_t)roundToInt16(cbu<<13);
  1957. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
  1958. //FIXME factorize
  1959. #ifdef COMPILE_ALTIVEC
  1960. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  1961. ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
  1962. #endif
  1963. return 0;
  1964. }
  1965. /**
  1966. * @return -1 if not supported
  1967. */
  1968. int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
  1969. if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
  1970. *inv_table = c->srcColorspaceTable;
  1971. *table = c->dstColorspaceTable;
  1972. *srcRange = c->srcRange;
  1973. *dstRange = c->dstRange;
  1974. *brightness= c->brightness;
  1975. *contrast = c->contrast;
  1976. *saturation= c->saturation;
  1977. return 0;
  1978. }
  1979. static int handle_jpeg(enum PixelFormat *format)
  1980. {
  1981. switch (*format) {
  1982. case PIX_FMT_YUVJ420P:
  1983. *format = PIX_FMT_YUV420P;
  1984. return 1;
  1985. case PIX_FMT_YUVJ422P:
  1986. *format = PIX_FMT_YUV422P;
  1987. return 1;
  1988. case PIX_FMT_YUVJ444P:
  1989. *format = PIX_FMT_YUV444P;
  1990. return 1;
  1991. case PIX_FMT_YUVJ440P:
  1992. *format = PIX_FMT_YUV440P;
  1993. return 1;
  1994. default:
  1995. return 0;
  1996. }
  1997. }
  1998. SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat, int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  1999. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
  2000. SwsContext *c;
  2001. int i;
  2002. int usesVFilter, usesHFilter;
  2003. int unscaled, needsDither;
  2004. int srcRange, dstRange;
  2005. SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
  2006. #if ARCH_X86
  2007. if (flags & SWS_CPU_CAPS_MMX)
  2008. __asm__ volatile("emms\n\t"::: "memory");
  2009. #endif
  2010. #if !defined(RUNTIME_CPUDETECT) || !CONFIG_GPL //ensure that the flags match the compiled variant if cpudetect is off
  2011. flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC|SWS_CPU_CAPS_BFIN);
  2012. #if HAVE_MMX2
  2013. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
  2014. #elif HAVE_AMD3DNOW
  2015. flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
  2016. #elif HAVE_MMX
  2017. flags |= SWS_CPU_CAPS_MMX;
  2018. #elif HAVE_ALTIVEC
  2019. flags |= SWS_CPU_CAPS_ALTIVEC;
  2020. #elif ARCH_BFIN
  2021. flags |= SWS_CPU_CAPS_BFIN;
  2022. #endif
  2023. #endif /* RUNTIME_CPUDETECT */
  2024. if (clip_table[512] != 255) globalInit();
  2025. if (!rgb15to16) sws_rgb2rgb_init(flags);
  2026. unscaled = (srcW == dstW && srcH == dstH);
  2027. needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
  2028. && (fmt_depth(dstFormat))<24
  2029. && ((fmt_depth(dstFormat))<(fmt_depth(srcFormat)) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
  2030. srcRange = handle_jpeg(&srcFormat);
  2031. dstRange = handle_jpeg(&dstFormat);
  2032. if (!isSupportedIn(srcFormat))
  2033. {
  2034. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as input pixel format\n", sws_format_name(srcFormat));
  2035. return NULL;
  2036. }
  2037. if (!isSupportedOut(dstFormat))
  2038. {
  2039. av_log(NULL, AV_LOG_ERROR, "swScaler: %s is not supported as output pixel format\n", sws_format_name(dstFormat));
  2040. return NULL;
  2041. }
  2042. i= flags & ( SWS_POINT
  2043. |SWS_AREA
  2044. |SWS_BILINEAR
  2045. |SWS_FAST_BILINEAR
  2046. |SWS_BICUBIC
  2047. |SWS_X
  2048. |SWS_GAUSS
  2049. |SWS_LANCZOS
  2050. |SWS_SINC
  2051. |SWS_SPLINE
  2052. |SWS_BICUBLIN);
  2053. if(!i || (i & (i-1)))
  2054. {
  2055. av_log(NULL, AV_LOG_ERROR, "swScaler: Exactly one scaler algorithm must be chosen\n");
  2056. return NULL;
  2057. }
  2058. /* sanity check */
  2059. if (srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
  2060. {
  2061. av_log(NULL, AV_LOG_ERROR, "swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
  2062. srcW, srcH, dstW, dstH);
  2063. return NULL;
  2064. }
  2065. if(srcW > VOFW || dstW > VOFW){
  2066. av_log(NULL, AV_LOG_ERROR, "swScaler: Compile-time maximum width is "AV_STRINGIFY(VOFW)" change VOF/VOFW and recompile\n");
  2067. return NULL;
  2068. }
  2069. if (!dstFilter) dstFilter= &dummyFilter;
  2070. if (!srcFilter) srcFilter= &dummyFilter;
  2071. c= av_mallocz(sizeof(SwsContext));
  2072. c->av_class = &sws_context_class;
  2073. c->srcW= srcW;
  2074. c->srcH= srcH;
  2075. c->dstW= dstW;
  2076. c->dstH= dstH;
  2077. c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
  2078. c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
  2079. c->flags= flags;
  2080. c->dstFormat= dstFormat;
  2081. c->srcFormat= srcFormat;
  2082. c->vRounder= 4* 0x0001000100010001ULL;
  2083. usesHFilter= usesVFilter= 0;
  2084. if (dstFilter->lumV && dstFilter->lumV->length>1) usesVFilter=1;
  2085. if (dstFilter->lumH && dstFilter->lumH->length>1) usesHFilter=1;
  2086. if (dstFilter->chrV && dstFilter->chrV->length>1) usesVFilter=1;
  2087. if (dstFilter->chrH && dstFilter->chrH->length>1) usesHFilter=1;
  2088. if (srcFilter->lumV && srcFilter->lumV->length>1) usesVFilter=1;
  2089. if (srcFilter->lumH && srcFilter->lumH->length>1) usesHFilter=1;
  2090. if (srcFilter->chrV && srcFilter->chrV->length>1) usesVFilter=1;
  2091. if (srcFilter->chrH && srcFilter->chrH->length>1) usesHFilter=1;
  2092. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  2093. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  2094. // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
  2095. if ((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
  2096. // drop some chroma lines if the user wants it
  2097. c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
  2098. c->chrSrcVSubSample+= c->vChrDrop;
  2099. // drop every other pixel for chroma calculation unless user wants full chroma
  2100. if ((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)
  2101. && srcFormat!=PIX_FMT_RGB8 && srcFormat!=PIX_FMT_BGR8
  2102. && srcFormat!=PIX_FMT_RGB4 && srcFormat!=PIX_FMT_BGR4
  2103. && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
  2104. && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2105. c->chrSrcHSubSample=1;
  2106. if (param){
  2107. c->param[0] = param[0];
  2108. c->param[1] = param[1];
  2109. }else{
  2110. c->param[0] =
  2111. c->param[1] = SWS_PARAM_DEFAULT;
  2112. }
  2113. c->chrIntHSubSample= c->chrDstHSubSample;
  2114. c->chrIntVSubSample= c->chrSrcVSubSample;
  2115. // Note the -((-x)>>y) is so that we always round toward +inf.
  2116. c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
  2117. c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
  2118. c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
  2119. c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
  2120. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, dstRange, 0, 1<<16, 1<<16);
  2121. /* unscaled special cases */
  2122. if (unscaled && !usesHFilter && !usesVFilter && (srcRange == dstRange || isBGR(dstFormat) || isRGB(dstFormat)))
  2123. {
  2124. /* yv12_to_nv12 */
  2125. if ((srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P) && (dstFormat == PIX_FMT_NV12 || dstFormat == PIX_FMT_NV21))
  2126. {
  2127. c->swScale= PlanarToNV12Wrapper;
  2128. }
  2129. /* yuv2bgr */
  2130. if ((srcFormat==PIX_FMT_YUV420P || srcFormat==PIX_FMT_YUV422P || srcFormat==PIX_FMT_YUVA420P) && (isBGR(dstFormat) || isRGB(dstFormat))
  2131. && !(flags & SWS_ACCURATE_RND) && !(dstH&1))
  2132. {
  2133. c->swScale= ff_yuv2rgb_get_func_ptr(c);
  2134. }
  2135. if (srcFormat==PIX_FMT_YUV410P && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_BITEXACT))
  2136. {
  2137. c->swScale= yvu9toyv12Wrapper;
  2138. }
  2139. /* bgr24toYV12 */
  2140. if (srcFormat==PIX_FMT_BGR24 && dstFormat==PIX_FMT_YUV420P && !(flags & SWS_ACCURATE_RND))
  2141. c->swScale= bgr24toyv12Wrapper;
  2142. /* RGB/BGR -> RGB/BGR (no dither needed forms) */
  2143. if ( (isBGR(srcFormat) || isRGB(srcFormat))
  2144. && (isBGR(dstFormat) || isRGB(dstFormat))
  2145. && srcFormat != PIX_FMT_BGR8 && dstFormat != PIX_FMT_BGR8
  2146. && srcFormat != PIX_FMT_RGB8 && dstFormat != PIX_FMT_RGB8
  2147. && srcFormat != PIX_FMT_BGR4 && dstFormat != PIX_FMT_BGR4
  2148. && srcFormat != PIX_FMT_RGB4 && dstFormat != PIX_FMT_RGB4
  2149. && srcFormat != PIX_FMT_BGR4_BYTE && dstFormat != PIX_FMT_BGR4_BYTE
  2150. && srcFormat != PIX_FMT_RGB4_BYTE && dstFormat != PIX_FMT_RGB4_BYTE
  2151. && srcFormat != PIX_FMT_MONOBLACK && dstFormat != PIX_FMT_MONOBLACK
  2152. && srcFormat != PIX_FMT_MONOWHITE && dstFormat != PIX_FMT_MONOWHITE
  2153. && dstFormat != PIX_FMT_RGB32_1
  2154. && dstFormat != PIX_FMT_BGR32_1
  2155. && (!needsDither || (c->flags&(SWS_FAST_BILINEAR|SWS_POINT))))
  2156. c->swScale= rgb2rgbWrapper;
  2157. if ((usePal(srcFormat) && (
  2158. dstFormat == PIX_FMT_RGB32 ||
  2159. dstFormat == PIX_FMT_RGB32_1 ||
  2160. dstFormat == PIX_FMT_RGB24 ||
  2161. dstFormat == PIX_FMT_BGR32 ||
  2162. dstFormat == PIX_FMT_BGR32_1 ||
  2163. dstFormat == PIX_FMT_BGR24)))
  2164. c->swScale= pal2rgbWrapper;
  2165. if (srcFormat == PIX_FMT_YUV422P)
  2166. {
  2167. if (dstFormat == PIX_FMT_YUYV422)
  2168. c->swScale= YUV422PToYuy2Wrapper;
  2169. else if (dstFormat == PIX_FMT_UYVY422)
  2170. c->swScale= YUV422PToUyvyWrapper;
  2171. }
  2172. /* LQ converters if -sws 0 or -sws 4*/
  2173. if (c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
  2174. /* yv12_to_yuy2 */
  2175. if (srcFormat == PIX_FMT_YUV420P || srcFormat == PIX_FMT_YUVA420P)
  2176. {
  2177. if (dstFormat == PIX_FMT_YUYV422)
  2178. c->swScale= PlanarToYuy2Wrapper;
  2179. else if (dstFormat == PIX_FMT_UYVY422)
  2180. c->swScale= PlanarToUyvyWrapper;
  2181. }
  2182. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV420P)
  2183. c->swScale= YUYV2YUV420Wrapper;
  2184. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV420P)
  2185. c->swScale= UYVY2YUV420Wrapper;
  2186. }
  2187. if(srcFormat == PIX_FMT_YUYV422 && dstFormat == PIX_FMT_YUV422P)
  2188. c->swScale= YUYV2YUV422Wrapper;
  2189. if(srcFormat == PIX_FMT_UYVY422 && dstFormat == PIX_FMT_YUV422P)
  2190. c->swScale= UYVY2YUV422Wrapper;
  2191. #ifdef COMPILE_ALTIVEC
  2192. if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
  2193. !(c->flags & SWS_BITEXACT) &&
  2194. srcFormat == PIX_FMT_YUV420P) {
  2195. // unscaled YV12 -> packed YUV, we want speed
  2196. if (dstFormat == PIX_FMT_YUYV422)
  2197. c->swScale= yv12toyuy2_unscaled_altivec;
  2198. else if (dstFormat == PIX_FMT_UYVY422)
  2199. c->swScale= yv12touyvy_unscaled_altivec;
  2200. }
  2201. #endif
  2202. /* simple copy */
  2203. if ( srcFormat == dstFormat
  2204. || (srcFormat == PIX_FMT_YUVA420P && dstFormat == PIX_FMT_YUV420P)
  2205. || (isPlanarYUV(srcFormat) && isGray(dstFormat))
  2206. || (isPlanarYUV(dstFormat) && isGray(srcFormat)))
  2207. {
  2208. if (isPacked(c->srcFormat))
  2209. c->swScale= packedCopy;
  2210. else /* Planar YUV or gray */
  2211. c->swScale= planarCopy;
  2212. }
  2213. /* gray16{le,be} conversions */
  2214. if (isGray16(srcFormat) && (isPlanarYUV(dstFormat) || (dstFormat == PIX_FMT_GRAY8)))
  2215. {
  2216. c->swScale= gray16togray;
  2217. }
  2218. if ((isPlanarYUV(srcFormat) || (srcFormat == PIX_FMT_GRAY8)) && isGray16(dstFormat))
  2219. {
  2220. c->swScale= graytogray16;
  2221. }
  2222. if (srcFormat != dstFormat && isGray16(srcFormat) && isGray16(dstFormat))
  2223. {
  2224. c->swScale= gray16swap;
  2225. }
  2226. #if ARCH_BFIN
  2227. if (flags & SWS_CPU_CAPS_BFIN)
  2228. ff_bfin_get_unscaled_swscale (c);
  2229. #endif
  2230. if (c->swScale){
  2231. if (flags&SWS_PRINT_INFO)
  2232. av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
  2233. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2234. return c;
  2235. }
  2236. }
  2237. if (flags & SWS_CPU_CAPS_MMX2)
  2238. {
  2239. c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
  2240. if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
  2241. {
  2242. if (flags&SWS_PRINT_INFO)
  2243. av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
  2244. }
  2245. if (usesHFilter) c->canMMX2BeUsed=0;
  2246. }
  2247. else
  2248. c->canMMX2BeUsed=0;
  2249. c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
  2250. c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
  2251. // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
  2252. // but only for the FAST_BILINEAR mode otherwise do correct scaling
  2253. // n-2 is the last chrominance sample available
  2254. // this is not perfect, but no one should notice the difference, the more correct variant
  2255. // would be like the vertical one, but that would require some special code for the
  2256. // first and last pixel
  2257. if (flags&SWS_FAST_BILINEAR)
  2258. {
  2259. if (c->canMMX2BeUsed)
  2260. {
  2261. c->lumXInc+= 20;
  2262. c->chrXInc+= 20;
  2263. }
  2264. //we don't use the x86 asm scaler if MMX is available
  2265. else if (flags & SWS_CPU_CAPS_MMX)
  2266. {
  2267. c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
  2268. c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
  2269. }
  2270. }
  2271. /* precalculate horizontal scaler filter coefficients */
  2272. {
  2273. const int filterAlign=
  2274. (flags & SWS_CPU_CAPS_MMX) ? 4 :
  2275. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2276. 1;
  2277. initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
  2278. srcW , dstW, filterAlign, 1<<14,
  2279. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2280. srcFilter->lumH, dstFilter->lumH, c->param);
  2281. initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
  2282. c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
  2283. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2284. srcFilter->chrH, dstFilter->chrH, c->param);
  2285. #define MAX_FUNNY_CODE_SIZE 10000
  2286. #if defined(COMPILE_MMX2)
  2287. // can't downscale !!!
  2288. if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
  2289. {
  2290. #ifdef MAP_ANONYMOUS
  2291. c->funnyYCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2292. c->funnyUVCode = mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
  2293. #elif HAVE_VIRTUALALLOC
  2294. c->funnyYCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2295. c->funnyUVCode = VirtualAlloc(NULL, MAX_FUNNY_CODE_SIZE, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
  2296. #else
  2297. c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2298. c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
  2299. #endif
  2300. c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
  2301. c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
  2302. c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
  2303. c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
  2304. initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
  2305. initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
  2306. }
  2307. #endif /* defined(COMPILE_MMX2) */
  2308. } // initialize horizontal stuff
  2309. /* precalculate vertical scaler filter coefficients */
  2310. {
  2311. const int filterAlign=
  2312. (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
  2313. (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
  2314. 1;
  2315. initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
  2316. srcH , dstH, filterAlign, (1<<12),
  2317. (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
  2318. srcFilter->lumV, dstFilter->lumV, c->param);
  2319. initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
  2320. c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
  2321. (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
  2322. srcFilter->chrV, dstFilter->chrV, c->param);
  2323. #if HAVE_ALTIVEC
  2324. c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
  2325. c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
  2326. for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
  2327. int j;
  2328. short *p = (short *)&c->vYCoeffsBank[i];
  2329. for (j=0;j<8;j++)
  2330. p[j] = c->vLumFilter[i];
  2331. }
  2332. for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
  2333. int j;
  2334. short *p = (short *)&c->vCCoeffsBank[i];
  2335. for (j=0;j<8;j++)
  2336. p[j] = c->vChrFilter[i];
  2337. }
  2338. #endif
  2339. }
  2340. // calculate buffer sizes so that they won't run out while handling these damn slices
  2341. c->vLumBufSize= c->vLumFilterSize;
  2342. c->vChrBufSize= c->vChrFilterSize;
  2343. for (i=0; i<dstH; i++)
  2344. {
  2345. int chrI= i*c->chrDstH / dstH;
  2346. int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
  2347. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
  2348. nextSlice>>= c->chrSrcVSubSample;
  2349. nextSlice<<= c->chrSrcVSubSample;
  2350. if (c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
  2351. c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
  2352. if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
  2353. c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
  2354. }
  2355. // allocate pixbufs (we use dynamic allocation because otherwise we would need to
  2356. c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
  2357. c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
  2358. //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
  2359. /* align at 16 bytes for AltiVec */
  2360. for (i=0; i<c->vLumBufSize; i++)
  2361. c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_mallocz(VOF+1);
  2362. for (i=0; i<c->vChrBufSize; i++)
  2363. c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc((VOF+1)*2);
  2364. //try to avoid drawing green stuff between the right end and the stride end
  2365. for (i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, (VOF+1)*2);
  2366. assert(2*VOFW == VOF);
  2367. assert(c->chrDstH <= dstH);
  2368. if (flags&SWS_PRINT_INFO)
  2369. {
  2370. #ifdef DITHER1XBPP
  2371. const char *dither= " dithered";
  2372. #else
  2373. const char *dither= "";
  2374. #endif
  2375. if (flags&SWS_FAST_BILINEAR)
  2376. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  2377. else if (flags&SWS_BILINEAR)
  2378. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  2379. else if (flags&SWS_BICUBIC)
  2380. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  2381. else if (flags&SWS_X)
  2382. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  2383. else if (flags&SWS_POINT)
  2384. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  2385. else if (flags&SWS_AREA)
  2386. av_log(c, AV_LOG_INFO, "Area Averageing scaler, ");
  2387. else if (flags&SWS_BICUBLIN)
  2388. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  2389. else if (flags&SWS_GAUSS)
  2390. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  2391. else if (flags&SWS_SINC)
  2392. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  2393. else if (flags&SWS_LANCZOS)
  2394. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  2395. else if (flags&SWS_SPLINE)
  2396. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  2397. else
  2398. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  2399. if (dstFormat==PIX_FMT_BGR555 || dstFormat==PIX_FMT_BGR565)
  2400. av_log(c, AV_LOG_INFO, "from %s to%s %s ",
  2401. sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
  2402. else
  2403. av_log(c, AV_LOG_INFO, "from %s to %s ",
  2404. sws_format_name(srcFormat), sws_format_name(dstFormat));
  2405. if (flags & SWS_CPU_CAPS_MMX2)
  2406. av_log(c, AV_LOG_INFO, "using MMX2\n");
  2407. else if (flags & SWS_CPU_CAPS_3DNOW)
  2408. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  2409. else if (flags & SWS_CPU_CAPS_MMX)
  2410. av_log(c, AV_LOG_INFO, "using MMX\n");
  2411. else if (flags & SWS_CPU_CAPS_ALTIVEC)
  2412. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  2413. else
  2414. av_log(c, AV_LOG_INFO, "using C\n");
  2415. }
  2416. if (flags & SWS_PRINT_INFO)
  2417. {
  2418. if (flags & SWS_CPU_CAPS_MMX)
  2419. {
  2420. if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
  2421. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
  2422. else
  2423. {
  2424. if (c->hLumFilterSize==4)
  2425. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
  2426. else if (c->hLumFilterSize==8)
  2427. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
  2428. else
  2429. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
  2430. if (c->hChrFilterSize==4)
  2431. av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
  2432. else if (c->hChrFilterSize==8)
  2433. av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
  2434. else
  2435. av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
  2436. }
  2437. }
  2438. else
  2439. {
  2440. #if ARCH_X86
  2441. av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
  2442. #else
  2443. if (flags & SWS_FAST_BILINEAR)
  2444. av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
  2445. else
  2446. av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
  2447. #endif
  2448. }
  2449. if (isPlanarYUV(dstFormat))
  2450. {
  2451. if (c->vLumFilterSize==1)
  2452. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2453. else
  2454. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2455. }
  2456. else
  2457. {
  2458. if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
  2459. av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
  2460. " 2-tap scaler for vertical chrominance scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2461. else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
  2462. av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2463. else
  2464. av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2465. }
  2466. if (dstFormat==PIX_FMT_BGR24)
  2467. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
  2468. (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
  2469. else if (dstFormat==PIX_FMT_RGB32)
  2470. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2471. else if (dstFormat==PIX_FMT_BGR565)
  2472. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2473. else if (dstFormat==PIX_FMT_BGR555)
  2474. av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
  2475. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  2476. }
  2477. if (flags & SWS_PRINT_INFO)
  2478. {
  2479. av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2480. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  2481. av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  2482. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
  2483. }
  2484. c->swScale= getSwsFunc(flags);
  2485. return c;
  2486. }
  2487. /**
  2488. * swscale wrapper, so we don't need to export the SwsContext.
  2489. * Assumes planar YUV to be in YUV order instead of YVU.
  2490. */
  2491. int sws_scale(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2492. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2493. int i;
  2494. uint8_t* src2[4]= {src[0], src[1], src[2], src[3]};
  2495. if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
  2496. av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
  2497. return 0;
  2498. }
  2499. if (c->sliceDir == 0) {
  2500. if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
  2501. }
  2502. if (usePal(c->srcFormat)){
  2503. for (i=0; i<256; i++){
  2504. int p, r, g, b,y,u,v;
  2505. if(c->srcFormat == PIX_FMT_PAL8){
  2506. p=((uint32_t*)(src[1]))[i];
  2507. r= (p>>16)&0xFF;
  2508. g= (p>> 8)&0xFF;
  2509. b= p &0xFF;
  2510. }else if(c->srcFormat == PIX_FMT_RGB8){
  2511. r= (i>>5 )*36;
  2512. g= ((i>>2)&7)*36;
  2513. b= (i&3 )*85;
  2514. }else if(c->srcFormat == PIX_FMT_BGR8){
  2515. b= (i>>6 )*85;
  2516. g= ((i>>3)&7)*36;
  2517. r= (i&7 )*36;
  2518. }else if(c->srcFormat == PIX_FMT_RGB4_BYTE){
  2519. r= (i>>3 )*255;
  2520. g= ((i>>1)&3)*85;
  2521. b= (i&1 )*255;
  2522. }else {
  2523. assert(c->srcFormat == PIX_FMT_BGR4_BYTE);
  2524. b= (i>>3 )*255;
  2525. g= ((i>>1)&3)*85;
  2526. r= (i&1 )*255;
  2527. }
  2528. y= av_clip_uint8((RY*r + GY*g + BY*b + ( 33<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2529. u= av_clip_uint8((RU*r + GU*g + BU*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2530. v= av_clip_uint8((RV*r + GV*g + BV*b + (257<<(RGB2YUV_SHIFT-1)))>>RGB2YUV_SHIFT);
  2531. c->pal_yuv[i]= y + (u<<8) + (v<<16);
  2532. switch(c->dstFormat) {
  2533. case PIX_FMT_BGR32:
  2534. #ifndef WORDS_BIGENDIAN
  2535. case PIX_FMT_RGB24:
  2536. #endif
  2537. c->pal_rgb[i]= r + (g<<8) + (b<<16);
  2538. break;
  2539. case PIX_FMT_BGR32_1:
  2540. #ifdef WORDS_BIGENDIAN
  2541. case PIX_FMT_BGR24:
  2542. #endif
  2543. c->pal_rgb[i]= (r + (g<<8) + (b<<16)) << 8;
  2544. break;
  2545. case PIX_FMT_RGB32_1:
  2546. #ifdef WORDS_BIGENDIAN
  2547. case PIX_FMT_RGB24:
  2548. #endif
  2549. c->pal_rgb[i]= (b + (g<<8) + (r<<16)) << 8;
  2550. break;
  2551. case PIX_FMT_RGB32:
  2552. #ifndef WORDS_BIGENDIAN
  2553. case PIX_FMT_BGR24:
  2554. #endif
  2555. default:
  2556. c->pal_rgb[i]= b + (g<<8) + (r<<16);
  2557. }
  2558. }
  2559. }
  2560. // copy strides, so they can safely be modified
  2561. if (c->sliceDir == 1) {
  2562. // slices go from top to bottom
  2563. int srcStride2[4]= {srcStride[0], srcStride[1], srcStride[2], srcStride[3]};
  2564. int dstStride2[4]= {dstStride[0], dstStride[1], dstStride[2], dstStride[3]};
  2565. return c->swScale(c, src2, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
  2566. } else {
  2567. // slices go from bottom to top => we flip the image internally
  2568. uint8_t* dst2[4]= {dst[0] + (c->dstH-1)*dstStride[0],
  2569. dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
  2570. dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2],
  2571. dst[3] + (c->dstH-1)*dstStride[3]};
  2572. int srcStride2[4]= {-srcStride[0], -srcStride[1], -srcStride[2], -srcStride[3]};
  2573. int dstStride2[4]= {-dstStride[0], -dstStride[1], -dstStride[2], -dstStride[3]};
  2574. src2[0] += (srcSliceH-1)*srcStride[0];
  2575. if (!usePal(c->srcFormat))
  2576. src2[1] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1];
  2577. src2[2] += ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2];
  2578. src2[3] += (srcSliceH-1)*srcStride[3];
  2579. return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
  2580. }
  2581. }
  2582. #if LIBSWSCALE_VERSION_MAJOR < 1
  2583. int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
  2584. int srcSliceH, uint8_t* dst[], int dstStride[]){
  2585. return sws_scale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
  2586. }
  2587. #endif
  2588. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  2589. float lumaSharpen, float chromaSharpen,
  2590. float chromaHShift, float chromaVShift,
  2591. int verbose)
  2592. {
  2593. SwsFilter *filter= av_malloc(sizeof(SwsFilter));
  2594. if (lumaGBlur!=0.0){
  2595. filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
  2596. filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
  2597. }else{
  2598. filter->lumH= sws_getIdentityVec();
  2599. filter->lumV= sws_getIdentityVec();
  2600. }
  2601. if (chromaGBlur!=0.0){
  2602. filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
  2603. filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
  2604. }else{
  2605. filter->chrH= sws_getIdentityVec();
  2606. filter->chrV= sws_getIdentityVec();
  2607. }
  2608. if (chromaSharpen!=0.0){
  2609. SwsVector *id= sws_getIdentityVec();
  2610. sws_scaleVec(filter->chrH, -chromaSharpen);
  2611. sws_scaleVec(filter->chrV, -chromaSharpen);
  2612. sws_addVec(filter->chrH, id);
  2613. sws_addVec(filter->chrV, id);
  2614. sws_freeVec(id);
  2615. }
  2616. if (lumaSharpen!=0.0){
  2617. SwsVector *id= sws_getIdentityVec();
  2618. sws_scaleVec(filter->lumH, -lumaSharpen);
  2619. sws_scaleVec(filter->lumV, -lumaSharpen);
  2620. sws_addVec(filter->lumH, id);
  2621. sws_addVec(filter->lumV, id);
  2622. sws_freeVec(id);
  2623. }
  2624. if (chromaHShift != 0.0)
  2625. sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
  2626. if (chromaVShift != 0.0)
  2627. sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
  2628. sws_normalizeVec(filter->chrH, 1.0);
  2629. sws_normalizeVec(filter->chrV, 1.0);
  2630. sws_normalizeVec(filter->lumH, 1.0);
  2631. sws_normalizeVec(filter->lumV, 1.0);
  2632. if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  2633. if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  2634. return filter;
  2635. }
  2636. SwsVector *sws_getGaussianVec(double variance, double quality){
  2637. const int length= (int)(variance*quality + 0.5) | 1;
  2638. int i;
  2639. double *coeff= av_malloc(length*sizeof(double));
  2640. double middle= (length-1)*0.5;
  2641. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2642. vec->coeff= coeff;
  2643. vec->length= length;
  2644. for (i=0; i<length; i++)
  2645. {
  2646. double dist= i-middle;
  2647. coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*PI);
  2648. }
  2649. sws_normalizeVec(vec, 1.0);
  2650. return vec;
  2651. }
  2652. SwsVector *sws_getConstVec(double c, int length){
  2653. int i;
  2654. double *coeff= av_malloc(length*sizeof(double));
  2655. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2656. vec->coeff= coeff;
  2657. vec->length= length;
  2658. for (i=0; i<length; i++)
  2659. coeff[i]= c;
  2660. return vec;
  2661. }
  2662. SwsVector *sws_getIdentityVec(void){
  2663. return sws_getConstVec(1.0, 1);
  2664. }
  2665. double sws_dcVec(SwsVector *a){
  2666. int i;
  2667. double sum=0;
  2668. for (i=0; i<a->length; i++)
  2669. sum+= a->coeff[i];
  2670. return sum;
  2671. }
  2672. void sws_scaleVec(SwsVector *a, double scalar){
  2673. int i;
  2674. for (i=0; i<a->length; i++)
  2675. a->coeff[i]*= scalar;
  2676. }
  2677. void sws_normalizeVec(SwsVector *a, double height){
  2678. sws_scaleVec(a, height/sws_dcVec(a));
  2679. }
  2680. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
  2681. int length= a->length + b->length - 1;
  2682. double *coeff= av_malloc(length*sizeof(double));
  2683. int i, j;
  2684. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2685. vec->coeff= coeff;
  2686. vec->length= length;
  2687. for (i=0; i<length; i++) coeff[i]= 0.0;
  2688. for (i=0; i<a->length; i++)
  2689. {
  2690. for (j=0; j<b->length; j++)
  2691. {
  2692. coeff[i+j]+= a->coeff[i]*b->coeff[j];
  2693. }
  2694. }
  2695. return vec;
  2696. }
  2697. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
  2698. int length= FFMAX(a->length, b->length);
  2699. double *coeff= av_malloc(length*sizeof(double));
  2700. int i;
  2701. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2702. vec->coeff= coeff;
  2703. vec->length= length;
  2704. for (i=0; i<length; i++) coeff[i]= 0.0;
  2705. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2706. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
  2707. return vec;
  2708. }
  2709. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
  2710. int length= FFMAX(a->length, b->length);
  2711. double *coeff= av_malloc(length*sizeof(double));
  2712. int i;
  2713. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2714. vec->coeff= coeff;
  2715. vec->length= length;
  2716. for (i=0; i<length; i++) coeff[i]= 0.0;
  2717. for (i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
  2718. for (i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
  2719. return vec;
  2720. }
  2721. /* shift left / or right if "shift" is negative */
  2722. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
  2723. int length= a->length + FFABS(shift)*2;
  2724. double *coeff= av_malloc(length*sizeof(double));
  2725. int i;
  2726. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2727. vec->coeff= coeff;
  2728. vec->length= length;
  2729. for (i=0; i<length; i++) coeff[i]= 0.0;
  2730. for (i=0; i<a->length; i++)
  2731. {
  2732. coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
  2733. }
  2734. return vec;
  2735. }
  2736. void sws_shiftVec(SwsVector *a, int shift){
  2737. SwsVector *shifted= sws_getShiftedVec(a, shift);
  2738. av_free(a->coeff);
  2739. a->coeff= shifted->coeff;
  2740. a->length= shifted->length;
  2741. av_free(shifted);
  2742. }
  2743. void sws_addVec(SwsVector *a, SwsVector *b){
  2744. SwsVector *sum= sws_sumVec(a, b);
  2745. av_free(a->coeff);
  2746. a->coeff= sum->coeff;
  2747. a->length= sum->length;
  2748. av_free(sum);
  2749. }
  2750. void sws_subVec(SwsVector *a, SwsVector *b){
  2751. SwsVector *diff= sws_diffVec(a, b);
  2752. av_free(a->coeff);
  2753. a->coeff= diff->coeff;
  2754. a->length= diff->length;
  2755. av_free(diff);
  2756. }
  2757. void sws_convVec(SwsVector *a, SwsVector *b){
  2758. SwsVector *conv= sws_getConvVec(a, b);
  2759. av_free(a->coeff);
  2760. a->coeff= conv->coeff;
  2761. a->length= conv->length;
  2762. av_free(conv);
  2763. }
  2764. SwsVector *sws_cloneVec(SwsVector *a){
  2765. double *coeff= av_malloc(a->length*sizeof(double));
  2766. int i;
  2767. SwsVector *vec= av_malloc(sizeof(SwsVector));
  2768. vec->coeff= coeff;
  2769. vec->length= a->length;
  2770. for (i=0; i<a->length; i++) coeff[i]= a->coeff[i];
  2771. return vec;
  2772. }
  2773. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level){
  2774. int i;
  2775. double max=0;
  2776. double min=0;
  2777. double range;
  2778. for (i=0; i<a->length; i++)
  2779. if (a->coeff[i]>max) max= a->coeff[i];
  2780. for (i=0; i<a->length; i++)
  2781. if (a->coeff[i]<min) min= a->coeff[i];
  2782. range= max - min;
  2783. for (i=0; i<a->length; i++)
  2784. {
  2785. int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
  2786. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  2787. for (;x>0; x--) av_log(log_ctx, log_level, " ");
  2788. av_log(log_ctx, log_level, "|\n");
  2789. }
  2790. }
  2791. #if LIBSWSCALE_VERSION_MAJOR < 1
  2792. void sws_printVec(SwsVector *a){
  2793. sws_printVec2(a, NULL, AV_LOG_DEBUG);
  2794. }
  2795. #endif
  2796. void sws_freeVec(SwsVector *a){
  2797. if (!a) return;
  2798. av_freep(&a->coeff);
  2799. a->length=0;
  2800. av_free(a);
  2801. }
  2802. void sws_freeFilter(SwsFilter *filter){
  2803. if (!filter) return;
  2804. if (filter->lumH) sws_freeVec(filter->lumH);
  2805. if (filter->lumV) sws_freeVec(filter->lumV);
  2806. if (filter->chrH) sws_freeVec(filter->chrH);
  2807. if (filter->chrV) sws_freeVec(filter->chrV);
  2808. av_free(filter);
  2809. }
  2810. void sws_freeContext(SwsContext *c){
  2811. int i;
  2812. if (!c) return;
  2813. if (c->lumPixBuf)
  2814. {
  2815. for (i=0; i<c->vLumBufSize; i++)
  2816. av_freep(&c->lumPixBuf[i]);
  2817. av_freep(&c->lumPixBuf);
  2818. }
  2819. if (c->chrPixBuf)
  2820. {
  2821. for (i=0; i<c->vChrBufSize; i++)
  2822. av_freep(&c->chrPixBuf[i]);
  2823. av_freep(&c->chrPixBuf);
  2824. }
  2825. av_freep(&c->vLumFilter);
  2826. av_freep(&c->vChrFilter);
  2827. av_freep(&c->hLumFilter);
  2828. av_freep(&c->hChrFilter);
  2829. #if HAVE_ALTIVEC
  2830. av_freep(&c->vYCoeffsBank);
  2831. av_freep(&c->vCCoeffsBank);
  2832. #endif
  2833. av_freep(&c->vLumFilterPos);
  2834. av_freep(&c->vChrFilterPos);
  2835. av_freep(&c->hLumFilterPos);
  2836. av_freep(&c->hChrFilterPos);
  2837. #if ARCH_X86 && CONFIG_GPL
  2838. #ifdef MAP_ANONYMOUS
  2839. if (c->funnyYCode ) munmap(c->funnyYCode , MAX_FUNNY_CODE_SIZE);
  2840. if (c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
  2841. #elif HAVE_VIRTUALALLOC
  2842. if (c->funnyYCode ) VirtualFree(c->funnyYCode , MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  2843. if (c->funnyUVCode) VirtualFree(c->funnyUVCode, MAX_FUNNY_CODE_SIZE, MEM_RELEASE);
  2844. #else
  2845. av_free(c->funnyYCode );
  2846. av_free(c->funnyUVCode);
  2847. #endif
  2848. c->funnyYCode=NULL;
  2849. c->funnyUVCode=NULL;
  2850. #endif /* ARCH_X86 && CONFIG_GPL */
  2851. av_freep(&c->lumMmx2Filter);
  2852. av_freep(&c->chrMmx2Filter);
  2853. av_freep(&c->lumMmx2FilterPos);
  2854. av_freep(&c->chrMmx2FilterPos);
  2855. av_freep(&c->yuvTable);
  2856. av_free(c);
  2857. }
  2858. struct SwsContext *sws_getCachedContext(struct SwsContext *context,
  2859. int srcW, int srcH, enum PixelFormat srcFormat,
  2860. int dstW, int dstH, enum PixelFormat dstFormat, int flags,
  2861. SwsFilter *srcFilter, SwsFilter *dstFilter, double *param)
  2862. {
  2863. static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
  2864. if (!param)
  2865. param = default_param;
  2866. if (context) {
  2867. if (context->srcW != srcW || context->srcH != srcH ||
  2868. context->srcFormat != srcFormat ||
  2869. context->dstW != dstW || context->dstH != dstH ||
  2870. context->dstFormat != dstFormat || context->flags != flags ||
  2871. context->param[0] != param[0] || context->param[1] != param[1])
  2872. {
  2873. sws_freeContext(context);
  2874. context = NULL;
  2875. }
  2876. }
  2877. if (!context) {
  2878. return sws_getContext(srcW, srcH, srcFormat,
  2879. dstW, dstH, dstFormat, flags,
  2880. srcFilter, dstFilter, param);
  2881. }
  2882. return context;
  2883. }