You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3285 lines
108KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** The VC1 Context
  192. * @fixme Change size wherever another size is more efficient
  193. * Many members are only used for Advanced Profile
  194. */
  195. typedef struct VC1Context{
  196. MpegEncContext s;
  197. int bits;
  198. /** Simple/Main Profile sequence header */
  199. //@{
  200. int res_sm; ///< reserved, 2b
  201. int res_x8; ///< reserved
  202. int multires; ///< frame-level RESPIC syntax element present
  203. int res_fasttx; ///< reserved, always 1
  204. int res_transtab; ///< reserved, always 0
  205. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  206. ///< at frame level
  207. int res_rtm_flag; ///< reserved, set to 1
  208. int reserved; ///< reserved
  209. //@}
  210. /** Advanced Profile */
  211. //@{
  212. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  213. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  214. int postprocflag; ///< Per-frame processing suggestion flag present
  215. int broadcast; ///< TFF/RFF present
  216. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  217. int tfcntrflag; ///< TFCNTR present
  218. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  219. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  220. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  221. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  222. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  223. int hrd_param_flag; ///< Presence of Hypothetical Reference
  224. ///< Decoder parameters
  225. //@}
  226. /** Sequence header data for all Profiles
  227. * TODO: choose between ints, uint8_ts and monobit flags
  228. */
  229. //@{
  230. int profile; ///< 2bits, Profile
  231. int frmrtq_postproc; ///< 3bits,
  232. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  233. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  234. int extended_mv; ///< Ext MV in P/B (not in Simple)
  235. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  236. int vstransform; ///< variable-size [48]x[48] transform type + info
  237. int overlap; ///< overlapped transforms in use
  238. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  239. int finterpflag; ///< INTERPFRM present
  240. //@}
  241. /** Frame decoding info for all profiles */
  242. //@{
  243. uint8_t mv_mode; ///< MV coding monde
  244. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  245. int k_x; ///< Number of bits for MVs (depends on MV range)
  246. int k_y; ///< Number of bits for MVs (depends on MV range)
  247. int range_x, range_y; ///< MV range
  248. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  249. /** pquant parameters */
  250. //@{
  251. uint8_t dquantfrm;
  252. uint8_t dqprofile;
  253. uint8_t dqsbedge;
  254. uint8_t dqbilevel;
  255. //@}
  256. /** AC coding set indexes
  257. * @see 8.1.1.10, p(1)10
  258. */
  259. //@{
  260. int c_ac_table_index; ///< Chroma index from ACFRM element
  261. int y_ac_table_index; ///< Luma index from AC2FRM element
  262. //@}
  263. int ttfrm; ///< Transform type info present at frame level
  264. uint8_t ttmbf; ///< Transform type flag
  265. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  266. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  267. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  268. int pqindex; ///< raw pqindex used in coding set selection
  269. int a_avail, c_avail;
  270. uint8_t *mb_type_base, *mb_type[3];
  271. /** Luma compensation parameters */
  272. //@{
  273. uint8_t lumscale;
  274. uint8_t lumshift;
  275. //@}
  276. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  277. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  278. uint8_t respic; ///< Frame-level flag for resized images
  279. int buffer_fullness; ///< HRD info
  280. /** Ranges:
  281. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  282. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  283. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  284. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  285. */
  286. uint8_t mvrange;
  287. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  288. VLC *cbpcy_vlc; ///< CBPCY VLC table
  289. int tt_index; ///< Index for Transform Type tables
  290. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  291. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  292. int mv_type_is_raw; ///< mv type mb plane is not coded
  293. int dmb_is_raw; ///< direct mb plane is raw
  294. int skip_is_raw; ///< skip mb plane is not coded
  295. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  296. int rnd; ///< rounding control
  297. /** Frame decoding info for S/M profiles only */
  298. //@{
  299. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  300. uint8_t interpfrm;
  301. //@}
  302. /** Frame decoding info for Advanced profile */
  303. //@{
  304. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  305. uint8_t numpanscanwin;
  306. uint8_t tfcntr;
  307. uint8_t rptfrm, tff, rff;
  308. uint16_t topleftx;
  309. uint16_t toplefty;
  310. uint16_t bottomrightx;
  311. uint16_t bottomrighty;
  312. uint8_t uvsamp;
  313. uint8_t postproc;
  314. int hrd_num_leaky_buckets;
  315. uint8_t bit_rate_exponent;
  316. uint8_t buffer_size_exponent;
  317. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  318. // BitPlane over_flags_plane; ///< Overflags bitplane
  319. uint8_t condover;
  320. uint16_t *hrd_rate, *hrd_buffer;
  321. uint8_t *hrd_fullness;
  322. uint8_t range_mapy_flag;
  323. uint8_t range_mapuv_flag;
  324. uint8_t range_mapy;
  325. uint8_t range_mapuv;
  326. //@}
  327. } VC1Context;
  328. /**
  329. * Get unary code of limited length
  330. * @fixme FIXME Slow and ugly
  331. * @param gb GetBitContext
  332. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  333. * @param[in] len Maximum length
  334. * @return Unary length/index
  335. */
  336. static int get_prefix(GetBitContext *gb, int stop, int len)
  337. {
  338. #if 1
  339. int i;
  340. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  341. return i;
  342. /* int i = 0, tmp = !stop;
  343. while (i != len && tmp != stop)
  344. {
  345. tmp = get_bits(gb, 1);
  346. i++;
  347. }
  348. if (i == len && tmp != stop) return len+1;
  349. return i;*/
  350. #else
  351. unsigned int buf;
  352. int log;
  353. OPEN_READER(re, gb);
  354. UPDATE_CACHE(re, gb);
  355. buf=GET_CACHE(re, gb); //Still not sure
  356. if (stop) buf = ~buf;
  357. log= av_log2(-buf); //FIXME: -?
  358. if (log < limit){
  359. LAST_SKIP_BITS(re, gb, log+1);
  360. CLOSE_READER(re, gb);
  361. return log;
  362. }
  363. LAST_SKIP_BITS(re, gb, limit);
  364. CLOSE_READER(re, gb);
  365. return limit;
  366. #endif
  367. }
  368. static inline int decode210(GetBitContext *gb){
  369. int n;
  370. n = get_bits1(gb);
  371. if (n == 1)
  372. return 0;
  373. else
  374. return 2 - get_bits1(gb);
  375. }
  376. /**
  377. * Init VC-1 specific tables and VC1Context members
  378. * @param v The VC1Context to initialize
  379. * @return Status
  380. */
  381. static int vc1_init_common(VC1Context *v)
  382. {
  383. static int done = 0;
  384. int i = 0;
  385. v->hrd_rate = v->hrd_buffer = NULL;
  386. /* VLC tables */
  387. if(!done)
  388. {
  389. done = 1;
  390. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  391. vc1_bfraction_bits, 1, 1,
  392. vc1_bfraction_codes, 1, 1, 1);
  393. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  394. vc1_norm2_bits, 1, 1,
  395. vc1_norm2_codes, 1, 1, 1);
  396. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  397. vc1_norm6_bits, 1, 1,
  398. vc1_norm6_codes, 2, 2, 1);
  399. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  400. vc1_imode_bits, 1, 1,
  401. vc1_imode_codes, 1, 1, 1);
  402. for (i=0; i<3; i++)
  403. {
  404. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  405. vc1_ttmb_bits[i], 1, 1,
  406. vc1_ttmb_codes[i], 2, 2, 1);
  407. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  408. vc1_ttblk_bits[i], 1, 1,
  409. vc1_ttblk_codes[i], 1, 1, 1);
  410. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  411. vc1_subblkpat_bits[i], 1, 1,
  412. vc1_subblkpat_codes[i], 1, 1, 1);
  413. }
  414. for(i=0; i<4; i++)
  415. {
  416. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  417. vc1_4mv_block_pattern_bits[i], 1, 1,
  418. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  419. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  420. vc1_cbpcy_p_bits[i], 1, 1,
  421. vc1_cbpcy_p_codes[i], 2, 2, 1);
  422. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  423. vc1_mv_diff_bits[i], 1, 1,
  424. vc1_mv_diff_codes[i], 2, 2, 1);
  425. }
  426. for(i=0; i<8; i++)
  427. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  428. &vc1_ac_tables[i][0][1], 8, 4,
  429. &vc1_ac_tables[i][0][0], 8, 4, 1);
  430. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  431. &ff_msmp4_mb_i_table[0][1], 4, 2,
  432. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  433. }
  434. /* Other defaults */
  435. v->pq = -1;
  436. v->mvrange = 0; /* 7.1.1.18, p80 */
  437. return 0;
  438. }
  439. /***********************************************************************/
  440. /**
  441. * @defgroup bitplane VC9 Bitplane decoding
  442. * @see 8.7, p56
  443. * @{
  444. */
  445. /** @addtogroup bitplane
  446. * Imode types
  447. * @{
  448. */
  449. enum Imode {
  450. IMODE_RAW,
  451. IMODE_NORM2,
  452. IMODE_DIFF2,
  453. IMODE_NORM6,
  454. IMODE_DIFF6,
  455. IMODE_ROWSKIP,
  456. IMODE_COLSKIP
  457. };
  458. /** @} */ //imode defines
  459. /** Decode rows by checking if they are skipped
  460. * @param plane Buffer to store decoded bits
  461. * @param[in] width Width of this buffer
  462. * @param[in] height Height of this buffer
  463. * @param[in] stride of this buffer
  464. */
  465. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  466. int x, y;
  467. for (y=0; y<height; y++){
  468. if (!get_bits(gb, 1)) //rowskip
  469. memset(plane, 0, width);
  470. else
  471. for (x=0; x<width; x++)
  472. plane[x] = get_bits(gb, 1);
  473. plane += stride;
  474. }
  475. }
  476. /** Decode columns by checking if they are skipped
  477. * @param plane Buffer to store decoded bits
  478. * @param[in] width Width of this buffer
  479. * @param[in] height Height of this buffer
  480. * @param[in] stride of this buffer
  481. * @fixme FIXME: Optimize
  482. */
  483. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  484. int x, y;
  485. for (x=0; x<width; x++){
  486. if (!get_bits(gb, 1)) //colskip
  487. for (y=0; y<height; y++)
  488. plane[y*stride] = 0;
  489. else
  490. for (y=0; y<height; y++)
  491. plane[y*stride] = get_bits(gb, 1);
  492. plane ++;
  493. }
  494. }
  495. /** Decode a bitplane's bits
  496. * @param bp Bitplane where to store the decode bits
  497. * @param v VC-1 context for bit reading and logging
  498. * @return Status
  499. * @fixme FIXME: Optimize
  500. * @todo TODO: Decide if a struct is needed
  501. */
  502. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  503. {
  504. GetBitContext *gb = &v->s.gb;
  505. int imode, x, y, code, offset;
  506. uint8_t invert, *planep = data;
  507. int width, height, stride;
  508. width = v->s.mb_width;
  509. height = v->s.mb_height;
  510. stride = v->s.mb_stride;
  511. invert = get_bits(gb, 1);
  512. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  513. *raw_flag = 0;
  514. switch (imode)
  515. {
  516. case IMODE_RAW:
  517. //Data is actually read in the MB layer (same for all tests == "raw")
  518. *raw_flag = 1; //invert ignored
  519. return invert;
  520. case IMODE_DIFF2:
  521. case IMODE_NORM2:
  522. if ((height * width) & 1)
  523. {
  524. *planep++ = get_bits(gb, 1);
  525. offset = 1;
  526. }
  527. else offset = 0;
  528. // decode bitplane as one long line
  529. for (y = offset; y < height * width; y += 2) {
  530. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  531. *planep++ = code & 1;
  532. offset++;
  533. if(offset == width) {
  534. offset = 0;
  535. planep += stride - width;
  536. }
  537. *planep++ = code >> 1;
  538. offset++;
  539. if(offset == width) {
  540. offset = 0;
  541. planep += stride - width;
  542. }
  543. }
  544. break;
  545. case IMODE_DIFF6:
  546. case IMODE_NORM6:
  547. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  548. for(y = 0; y < height; y+= 3) {
  549. for(x = width & 1; x < width; x += 2) {
  550. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  551. if(code < 0){
  552. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  553. return -1;
  554. }
  555. planep[x + 0] = (code >> 0) & 1;
  556. planep[x + 1] = (code >> 1) & 1;
  557. planep[x + 0 + stride] = (code >> 2) & 1;
  558. planep[x + 1 + stride] = (code >> 3) & 1;
  559. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  560. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  561. }
  562. planep += stride * 3;
  563. }
  564. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  565. } else { // 3x2
  566. planep += (height & 1) * stride;
  567. for(y = height & 1; y < height; y += 2) {
  568. for(x = width % 3; x < width; x += 3) {
  569. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  570. if(code < 0){
  571. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  572. return -1;
  573. }
  574. planep[x + 0] = (code >> 0) & 1;
  575. planep[x + 1] = (code >> 1) & 1;
  576. planep[x + 2] = (code >> 2) & 1;
  577. planep[x + 0 + stride] = (code >> 3) & 1;
  578. planep[x + 1 + stride] = (code >> 4) & 1;
  579. planep[x + 2 + stride] = (code >> 5) & 1;
  580. }
  581. planep += stride * 2;
  582. }
  583. x = width % 3;
  584. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  585. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  586. }
  587. break;
  588. case IMODE_ROWSKIP:
  589. decode_rowskip(data, width, height, stride, &v->s.gb);
  590. break;
  591. case IMODE_COLSKIP:
  592. decode_colskip(data, width, height, stride, &v->s.gb);
  593. break;
  594. default: break;
  595. }
  596. /* Applying diff operator */
  597. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  598. {
  599. planep = data;
  600. planep[0] ^= invert;
  601. for (x=1; x<width; x++)
  602. planep[x] ^= planep[x-1];
  603. for (y=1; y<height; y++)
  604. {
  605. planep += stride;
  606. planep[0] ^= planep[-stride];
  607. for (x=1; x<width; x++)
  608. {
  609. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  610. else planep[x] ^= planep[x-1];
  611. }
  612. }
  613. }
  614. else if (invert)
  615. {
  616. planep = data;
  617. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  618. }
  619. return (imode<<1) + invert;
  620. }
  621. /** @} */ //Bitplane group
  622. /***********************************************************************/
  623. /** VOP Dquant decoding
  624. * @param v VC-1 Context
  625. */
  626. static int vop_dquant_decoding(VC1Context *v)
  627. {
  628. GetBitContext *gb = &v->s.gb;
  629. int pqdiff;
  630. //variable size
  631. if (v->dquant == 2)
  632. {
  633. pqdiff = get_bits(gb, 3);
  634. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  635. else v->altpq = v->pq + pqdiff + 1;
  636. }
  637. else
  638. {
  639. v->dquantfrm = get_bits(gb, 1);
  640. if ( v->dquantfrm )
  641. {
  642. v->dqprofile = get_bits(gb, 2);
  643. switch (v->dqprofile)
  644. {
  645. case DQPROFILE_SINGLE_EDGE:
  646. case DQPROFILE_DOUBLE_EDGES:
  647. v->dqsbedge = get_bits(gb, 2);
  648. break;
  649. case DQPROFILE_ALL_MBS:
  650. v->dqbilevel = get_bits(gb, 1);
  651. default: break; //Forbidden ?
  652. }
  653. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  654. {
  655. pqdiff = get_bits(gb, 3);
  656. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  657. else v->altpq = v->pq + pqdiff + 1;
  658. }
  659. }
  660. }
  661. return 0;
  662. }
  663. /** Do inverse transform
  664. */
  665. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  666. {
  667. int i;
  668. register int t1,t2,t3,t4,t5,t6,t7,t8;
  669. DCTELEM *src, *dst;
  670. src = block;
  671. dst = block;
  672. if(M==4){
  673. for(i = 0; i < N; i++){
  674. t1 = 17 * (src[0] + src[2]);
  675. t2 = 17 * (src[0] - src[2]);
  676. t3 = 22 * src[1];
  677. t4 = 22 * src[3];
  678. t5 = 10 * src[1];
  679. t6 = 10 * src[3];
  680. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  681. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  682. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  683. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  684. src += 8;
  685. dst += 8;
  686. }
  687. }else{
  688. for(i = 0; i < N; i++){
  689. t1 = 12 * (src[0] + src[4]);
  690. t2 = 12 * (src[0] - src[4]);
  691. t3 = 16 * src[2] + 6 * src[6];
  692. t4 = 6 * src[2] - 16 * src[6];
  693. t5 = t1 + t3;
  694. t6 = t2 + t4;
  695. t7 = t2 - t4;
  696. t8 = t1 - t3;
  697. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  698. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  699. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  700. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  701. dst[0] = (t5 + t1 + 4) >> 3;
  702. dst[1] = (t6 + t2 + 4) >> 3;
  703. dst[2] = (t7 + t3 + 4) >> 3;
  704. dst[3] = (t8 + t4 + 4) >> 3;
  705. dst[4] = (t8 - t4 + 4) >> 3;
  706. dst[5] = (t7 - t3 + 4) >> 3;
  707. dst[6] = (t6 - t2 + 4) >> 3;
  708. dst[7] = (t5 - t1 + 4) >> 3;
  709. src += 8;
  710. dst += 8;
  711. }
  712. }
  713. src = block;
  714. dst = block;
  715. if(N==4){
  716. for(i = 0; i < M; i++){
  717. t1 = 17 * (src[ 0] + src[16]);
  718. t2 = 17 * (src[ 0] - src[16]);
  719. t3 = 22 * src[ 8];
  720. t4 = 22 * src[24];
  721. t5 = 10 * src[ 8];
  722. t6 = 10 * src[24];
  723. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  724. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  725. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  726. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  727. src ++;
  728. dst ++;
  729. }
  730. }else{
  731. for(i = 0; i < M; i++){
  732. t1 = 12 * (src[ 0] + src[32]);
  733. t2 = 12 * (src[ 0] - src[32]);
  734. t3 = 16 * src[16] + 6 * src[48];
  735. t4 = 6 * src[16] - 16 * src[48];
  736. t5 = t1 + t3;
  737. t6 = t2 + t4;
  738. t7 = t2 - t4;
  739. t8 = t1 - t3;
  740. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  741. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  742. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  743. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  744. dst[ 0] = (t5 + t1 + 64) >> 7;
  745. dst[ 8] = (t6 + t2 + 64) >> 7;
  746. dst[16] = (t7 + t3 + 64) >> 7;
  747. dst[24] = (t8 + t4 + 64) >> 7;
  748. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  749. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  750. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  751. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  752. src++;
  753. dst++;
  754. }
  755. }
  756. }
  757. /** Apply overlap transform to vertical edge
  758. * @todo optimize
  759. * @todo move to DSPContext
  760. */
  761. static void vc1_v_overlap(uint8_t* src, int stride, int rnd)
  762. {
  763. int i;
  764. int a, b, c, d;
  765. for(i = 0; i < 8; i++) {
  766. a = src[-2*stride];
  767. b = src[-stride];
  768. c = src[0];
  769. d = src[stride];
  770. src[-2*stride] = clip_uint8((7*a + d + 4 - rnd) >> 3);
  771. src[-stride] = clip_uint8((-a + 7*b + c + d + 3 + rnd) >> 3);
  772. src[0] = clip_uint8((a + b + 7*c - d + 4 - rnd) >> 3);
  773. src[stride] = clip_uint8((a + 7*d + 3 + rnd) >> 3);
  774. src++;
  775. }
  776. }
  777. /** Apply overlap transform to horizontal edge
  778. * @todo optimize
  779. * @todo move to DSPContext
  780. */
  781. static void vc1_h_overlap(uint8_t* src, int stride, int rnd)
  782. {
  783. int i;
  784. int a, b, c, d;
  785. for(i = 0; i < 8; i++) {
  786. a = src[-2];
  787. b = src[-1];
  788. c = src[0];
  789. d = src[1];
  790. src[-2] = clip_uint8((7*a + d + 4 - rnd) >> 3);
  791. src[-1] = clip_uint8((-a + 7*b + c + d + 3 + rnd) >> 3);
  792. src[0] = clip_uint8((a + b + 7*c - d + 4 - rnd) >> 3);
  793. src[1] = clip_uint8((a + 7*d + 3 + rnd) >> 3);
  794. src += stride;
  795. }
  796. }
  797. /** Put block onto picture
  798. * @todo move to DSPContext
  799. */
  800. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  801. {
  802. uint8_t *Y;
  803. int ys, us, vs;
  804. DSPContext *dsp = &v->s.dsp;
  805. ys = v->s.current_picture.linesize[0];
  806. us = v->s.current_picture.linesize[1];
  807. vs = v->s.current_picture.linesize[2];
  808. Y = v->s.dest[0];
  809. dsp->put_pixels_clamped(block[0], Y, ys);
  810. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  811. Y += ys * 8;
  812. dsp->put_pixels_clamped(block[2], Y, ys);
  813. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  814. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  815. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  816. }
  817. /** Do motion compensation over 1 macroblock
  818. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  819. */
  820. static void vc1_mc_1mv(VC1Context *v, int dir)
  821. {
  822. MpegEncContext *s = &v->s;
  823. DSPContext *dsp = &v->s.dsp;
  824. uint8_t *srcY, *srcU, *srcV;
  825. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  826. if(!v->s.last_picture.data[0])return;
  827. mx = s->mv[0][0][0];
  828. my = s->mv[0][0][1];
  829. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  830. uvmy = (my + ((my & 3) == 3)) >> 1;
  831. if(!dir) {
  832. srcY = s->last_picture.data[0];
  833. srcU = s->last_picture.data[1];
  834. srcV = s->last_picture.data[2];
  835. } else {
  836. srcY = s->next_picture.data[0];
  837. srcU = s->next_picture.data[1];
  838. srcV = s->next_picture.data[2];
  839. }
  840. src_x = s->mb_x * 16 + (mx >> 2);
  841. src_y = s->mb_y * 16 + (my >> 2);
  842. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  843. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  844. src_x = clip( src_x, -16, s->mb_width * 16);
  845. src_y = clip( src_y, -16, s->mb_height * 16);
  846. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  847. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  848. srcY += src_y * s->linesize + src_x;
  849. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  850. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  851. if((v->mv_mode == MV_PMODE_INTENSITY_COMP)
  852. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  853. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  854. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  855. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  856. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  857. srcY = s->edge_emu_buffer;
  858. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  859. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  860. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  861. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  862. srcU = uvbuf;
  863. srcV = uvbuf + 16;
  864. /* if we deal with intensity compensation we need to scale source blocks */
  865. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  866. int i, j;
  867. uint8_t *src, *src2;
  868. src = srcY;
  869. for(j = 0; j < 17; j++) {
  870. for(i = 0; i < 17; i++) src[i] = v->luty[src[i]];
  871. src += s->linesize;
  872. }
  873. src = srcU; src2 = srcV;
  874. for(j = 0; j < 9; j++) {
  875. for(i = 0; i < 9; i++) {
  876. src[i] = v->lutuv[src[i]];
  877. src2[i] = v->lutuv[src2[i]];
  878. }
  879. src += s->uvlinesize;
  880. src2 += s->uvlinesize;
  881. }
  882. }
  883. }
  884. if(v->fastuvmc) {
  885. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  886. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  887. }
  888. if(!s->quarter_sample) { // hpel mc
  889. mx >>= 1;
  890. my >>= 1;
  891. dxy = ((my & 1) << 1) | (mx & 1);
  892. if(!v->rnd)
  893. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  894. else
  895. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  896. } else {
  897. dxy = ((my & 3) << 2) | (mx & 3);
  898. if(!v->rnd)
  899. dsp->put_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  900. else
  901. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  902. }
  903. /* Chroma MC always uses qpel blilinear */
  904. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  905. if(!v->rnd){
  906. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  907. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  908. }else{
  909. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  910. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  911. }
  912. }
  913. /** Do motion compensation for 4-MV macroblock - luminance block
  914. */
  915. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  916. {
  917. MpegEncContext *s = &v->s;
  918. DSPContext *dsp = &v->s.dsp;
  919. uint8_t *srcY;
  920. int dxy, mx, my, src_x, src_y;
  921. int off;
  922. if(!v->s.last_picture.data[0])return;
  923. mx = s->mv[0][n][0];
  924. my = s->mv[0][n][1];
  925. srcY = s->last_picture.data[0];
  926. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  927. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  928. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  929. src_x = clip( src_x, -16, s->mb_width * 16);
  930. src_y = clip( src_y, -16, s->mb_height * 16);
  931. srcY += src_y * s->linesize + src_x;
  932. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  933. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  934. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  935. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  936. srcY = s->edge_emu_buffer;
  937. }
  938. if(!s->quarter_sample) { // hpel mc
  939. mx >>= 1;
  940. my >>= 1;
  941. dxy = ((my & 1) << 1) | (mx & 1);
  942. if(!v->rnd)
  943. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  944. else
  945. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  946. } else {
  947. dxy = ((my & 3) << 2) | (mx & 3);
  948. if(!v->rnd)
  949. dsp->put_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  950. else
  951. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  952. }
  953. }
  954. static inline int median4(int a, int b, int c, int d)
  955. {
  956. if(a < b) {
  957. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  958. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  959. } else {
  960. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  961. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  962. }
  963. }
  964. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  965. */
  966. static void vc1_mc_4mv_chroma(VC1Context *v)
  967. {
  968. MpegEncContext *s = &v->s;
  969. DSPContext *dsp = &v->s.dsp;
  970. uint8_t *srcU, *srcV;
  971. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  972. int i, idx, tx = 0, ty = 0;
  973. int mvx[4], mvy[4], intra[4];
  974. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  975. if(!v->s.last_picture.data[0])return;
  976. for(i = 0; i < 4; i++) {
  977. mvx[i] = s->mv[0][i][0];
  978. mvy[i] = s->mv[0][i][1];
  979. intra[i] = v->mb_type[0][s->block_index[i]];
  980. }
  981. /* calculate chroma MV vector from four luma MVs */
  982. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  983. if(!idx) { // all blocks are inter
  984. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  985. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  986. } else if(count[idx] == 1) { // 3 inter blocks
  987. switch(idx) {
  988. case 0x1:
  989. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  990. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  991. break;
  992. case 0x2:
  993. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  994. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  995. break;
  996. case 0x4:
  997. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  998. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  999. break;
  1000. case 0x8:
  1001. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  1002. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  1003. break;
  1004. }
  1005. } else if(count[idx] == 2) {
  1006. int t1 = 0, t2 = 0;
  1007. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  1008. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  1009. tx = (mvx[t1] + mvx[t2]) / 2;
  1010. ty = (mvy[t1] + mvy[t2]) / 2;
  1011. } else
  1012. return; //no need to do MC for inter blocks
  1013. uvmx = (tx + ((tx&3) == 3)) >> 1;
  1014. uvmy = (ty + ((ty&3) == 3)) >> 1;
  1015. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1016. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1017. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1018. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1019. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1020. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1021. if((unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  1022. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  1023. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1024. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1025. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1026. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1027. srcU = s->edge_emu_buffer;
  1028. srcV = s->edge_emu_buffer + 16;
  1029. }
  1030. if(v->fastuvmc) {
  1031. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1032. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1033. }
  1034. /* Chroma MC always uses qpel blilinear */
  1035. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1036. if(!v->rnd){
  1037. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1038. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1039. }else{
  1040. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1041. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1042. }
  1043. }
  1044. /**
  1045. * Decode Simple/Main Profiles sequence header
  1046. * @see Figure 7-8, p16-17
  1047. * @param avctx Codec context
  1048. * @param gb GetBit context initialized from Codec context extra_data
  1049. * @return Status
  1050. */
  1051. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1052. {
  1053. VC1Context *v = avctx->priv_data;
  1054. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1055. v->profile = get_bits(gb, 2);
  1056. if (v->profile == 2)
  1057. {
  1058. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1059. return -1;
  1060. }
  1061. if (v->profile == PROFILE_ADVANCED)
  1062. {
  1063. v->level = get_bits(gb, 3);
  1064. if(v->level >= 5)
  1065. {
  1066. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1067. }
  1068. v->chromaformat = get_bits(gb, 2);
  1069. if (v->chromaformat != 1)
  1070. {
  1071. av_log(avctx, AV_LOG_ERROR,
  1072. "Only 4:2:0 chroma format supported\n");
  1073. return -1;
  1074. }
  1075. }
  1076. else
  1077. {
  1078. v->res_sm = get_bits(gb, 2); //reserved
  1079. if (v->res_sm)
  1080. {
  1081. av_log(avctx, AV_LOG_ERROR,
  1082. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1083. return -1;
  1084. }
  1085. }
  1086. // (fps-2)/4 (->30)
  1087. v->frmrtq_postproc = get_bits(gb, 3); //common
  1088. // (bitrate-32kbps)/64kbps
  1089. v->bitrtq_postproc = get_bits(gb, 5); //common
  1090. v->s.loop_filter = get_bits(gb, 1); //common
  1091. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1092. {
  1093. av_log(avctx, AV_LOG_ERROR,
  1094. "LOOPFILTER shell not be enabled in simple profile\n");
  1095. }
  1096. if (v->profile < PROFILE_ADVANCED)
  1097. {
  1098. v->res_x8 = get_bits(gb, 1); //reserved
  1099. if (v->res_x8)
  1100. {
  1101. av_log(avctx, AV_LOG_ERROR,
  1102. "1 for reserved RES_X8 is forbidden\n");
  1103. //return -1;
  1104. }
  1105. v->multires = get_bits(gb, 1);
  1106. v->res_fasttx = get_bits(gb, 1);
  1107. if (!v->res_fasttx)
  1108. {
  1109. av_log(avctx, AV_LOG_ERROR,
  1110. "0 for reserved RES_FASTTX is forbidden\n");
  1111. //return -1;
  1112. }
  1113. }
  1114. v->fastuvmc = get_bits(gb, 1); //common
  1115. if (!v->profile && !v->fastuvmc)
  1116. {
  1117. av_log(avctx, AV_LOG_ERROR,
  1118. "FASTUVMC unavailable in Simple Profile\n");
  1119. return -1;
  1120. }
  1121. v->extended_mv = get_bits(gb, 1); //common
  1122. if (!v->profile && v->extended_mv)
  1123. {
  1124. av_log(avctx, AV_LOG_ERROR,
  1125. "Extended MVs unavailable in Simple Profile\n");
  1126. return -1;
  1127. }
  1128. v->dquant = get_bits(gb, 2); //common
  1129. v->vstransform = get_bits(gb, 1); //common
  1130. if (v->profile < PROFILE_ADVANCED)
  1131. {
  1132. v->res_transtab = get_bits(gb, 1);
  1133. if (v->res_transtab)
  1134. {
  1135. av_log(avctx, AV_LOG_ERROR,
  1136. "1 for reserved RES_TRANSTAB is forbidden\n");
  1137. return -1;
  1138. }
  1139. }
  1140. v->overlap = get_bits(gb, 1); //common
  1141. if (v->profile < PROFILE_ADVANCED)
  1142. {
  1143. v->s.resync_marker = get_bits(gb, 1);
  1144. v->rangered = get_bits(gb, 1);
  1145. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1146. {
  1147. av_log(avctx, AV_LOG_INFO,
  1148. "RANGERED should be set to 0 in simple profile\n");
  1149. }
  1150. }
  1151. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1152. v->quantizer_mode = get_bits(gb, 2); //common
  1153. if (v->profile < PROFILE_ADVANCED)
  1154. {
  1155. v->finterpflag = get_bits(gb, 1); //common
  1156. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1157. if (!v->res_rtm_flag)
  1158. {
  1159. av_log(avctx, AV_LOG_ERROR,
  1160. "0 for reserved RES_RTM_FLAG is forbidden\n");
  1161. //return -1;
  1162. }
  1163. av_log(avctx, AV_LOG_DEBUG,
  1164. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1165. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1166. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1167. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1168. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1169. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1170. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1171. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1172. );
  1173. return 0;
  1174. }
  1175. return -1;
  1176. }
  1177. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1178. {
  1179. int pqindex, lowquant, status;
  1180. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1181. skip_bits(gb, 2); //framecnt unused
  1182. v->rangeredfrm = 0;
  1183. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1184. v->s.pict_type = get_bits(gb, 1);
  1185. if (v->s.avctx->max_b_frames) {
  1186. if (!v->s.pict_type) {
  1187. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1188. else v->s.pict_type = B_TYPE;
  1189. } else v->s.pict_type = P_TYPE;
  1190. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1191. if(v->s.pict_type == I_TYPE)
  1192. get_bits(gb, 7); // skip buffer fullness
  1193. if(v->s.pict_type == B_TYPE) {
  1194. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1195. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1196. if(v->bfraction == -1) {
  1197. v->s.pict_type = BI_TYPE;
  1198. }
  1199. }
  1200. /* calculate RND */
  1201. if(v->s.pict_type == I_TYPE)
  1202. v->rnd = 1;
  1203. if(v->s.pict_type == P_TYPE)
  1204. v->rnd ^= 1;
  1205. /* Quantizer stuff */
  1206. pqindex = get_bits(gb, 5);
  1207. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1208. v->pq = pquant_table[0][pqindex];
  1209. else
  1210. v->pq = pquant_table[1][pqindex];
  1211. v->pquantizer = 1;
  1212. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1213. v->pquantizer = pqindex < 9;
  1214. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1215. v->pquantizer = 0;
  1216. v->pqindex = pqindex;
  1217. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1218. else v->halfpq = 0;
  1219. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1220. v->pquantizer = get_bits(gb, 1);
  1221. v->dquantfrm = 0;
  1222. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1223. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1224. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1225. v->range_x = 1 << (v->k_x - 1);
  1226. v->range_y = 1 << (v->k_y - 1);
  1227. if (v->profile == PROFILE_ADVANCED)
  1228. {
  1229. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1230. }
  1231. else
  1232. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1233. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1234. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1235. //TODO: complete parsing for P/B/BI frames
  1236. switch(v->s.pict_type) {
  1237. case P_TYPE:
  1238. if (v->pq < 5) v->tt_index = 0;
  1239. else if(v->pq < 13) v->tt_index = 1;
  1240. else v->tt_index = 2;
  1241. lowquant = (v->pq > 12) ? 0 : 1;
  1242. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1243. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1244. {
  1245. int scale, shift, i;
  1246. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1247. v->lumscale = get_bits(gb, 6);
  1248. v->lumshift = get_bits(gb, 6);
  1249. /* fill lookup tables for intensity compensation */
  1250. if(!v->lumscale) {
  1251. scale = -64;
  1252. shift = (255 - v->lumshift * 2) << 6;
  1253. if(v->lumshift > 31)
  1254. shift += 128 << 6;
  1255. } else {
  1256. scale = v->lumscale + 32;
  1257. if(v->lumshift > 31)
  1258. shift = (v->lumshift - 64) << 6;
  1259. else
  1260. shift = v->lumshift << 6;
  1261. }
  1262. for(i = 0; i < 256; i++) {
  1263. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1264. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1265. }
  1266. }
  1267. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1268. v->s.quarter_sample = 0;
  1269. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1270. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1271. v->s.quarter_sample = 0;
  1272. else
  1273. v->s.quarter_sample = 1;
  1274. } else
  1275. v->s.quarter_sample = 1;
  1276. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1277. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1278. || v->mv_mode == MV_PMODE_MIXED_MV)
  1279. {
  1280. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1281. if (status < 0) return -1;
  1282. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1283. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1284. } else {
  1285. v->mv_type_is_raw = 0;
  1286. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1287. }
  1288. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1289. if (status < 0) return -1;
  1290. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1291. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1292. /* Hopefully this is correct for P frames */
  1293. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1294. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1295. if (v->dquant)
  1296. {
  1297. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1298. vop_dquant_decoding(v);
  1299. }
  1300. v->ttfrm = 0; //FIXME Is that so ?
  1301. if (v->vstransform)
  1302. {
  1303. v->ttmbf = get_bits(gb, 1);
  1304. if (v->ttmbf)
  1305. {
  1306. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1307. }
  1308. } else {
  1309. v->ttmbf = 1;
  1310. v->ttfrm = TT_8X8;
  1311. }
  1312. break;
  1313. case B_TYPE:
  1314. if (v->pq < 5) v->tt_index = 0;
  1315. else if(v->pq < 13) v->tt_index = 1;
  1316. else v->tt_index = 2;
  1317. lowquant = (v->pq > 12) ? 0 : 1;
  1318. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1319. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1320. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1321. if (status < 0) return -1;
  1322. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1323. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1324. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1325. if (status < 0) return -1;
  1326. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1327. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1328. v->s.mv_table_index = get_bits(gb, 2);
  1329. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1330. if (v->dquant)
  1331. {
  1332. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1333. vop_dquant_decoding(v);
  1334. }
  1335. v->ttfrm = 0;
  1336. if (v->vstransform)
  1337. {
  1338. v->ttmbf = get_bits(gb, 1);
  1339. if (v->ttmbf)
  1340. {
  1341. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1342. }
  1343. } else {
  1344. v->ttmbf = 1;
  1345. v->ttfrm = TT_8X8;
  1346. }
  1347. break;
  1348. }
  1349. /* AC Syntax */
  1350. v->c_ac_table_index = decode012(gb);
  1351. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1352. {
  1353. v->y_ac_table_index = decode012(gb);
  1354. }
  1355. /* DC Syntax */
  1356. v->s.dc_table_index = get_bits(gb, 1);
  1357. return 0;
  1358. }
  1359. /***********************************************************************/
  1360. /**
  1361. * @defgroup block VC-1 Block-level functions
  1362. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1363. * @todo TODO: Integrate to MpegEncContext facilities
  1364. * @{
  1365. */
  1366. /**
  1367. * @def GET_MQUANT
  1368. * @brief Get macroblock-level quantizer scale
  1369. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1370. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1371. */
  1372. #define GET_MQUANT() \
  1373. if (v->dquantfrm) \
  1374. { \
  1375. int edges = 0; \
  1376. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1377. { \
  1378. if (v->dqbilevel) \
  1379. { \
  1380. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1381. } \
  1382. else \
  1383. { \
  1384. mqdiff = get_bits(gb, 3); \
  1385. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1386. else mquant = get_bits(gb, 5); \
  1387. } \
  1388. } \
  1389. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1390. edges = 1 << v->dqsbedge; \
  1391. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1392. edges = (3 << v->dqsbedge) % 15; \
  1393. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1394. edges = 15; \
  1395. if((edges&1) && !s->mb_x) \
  1396. mquant = v->altpq; \
  1397. if((edges&2) && s->first_slice_line) \
  1398. mquant = v->altpq; \
  1399. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1400. mquant = v->altpq; \
  1401. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1402. mquant = v->altpq; \
  1403. }
  1404. /**
  1405. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1406. * @brief Get MV differentials
  1407. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1408. * @param _dmv_x Horizontal differential for decoded MV
  1409. * @param _dmv_y Vertical differential for decoded MV
  1410. * @todo TODO: Use MpegEncContext arrays to store them
  1411. */
  1412. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1413. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1414. VC1_MV_DIFF_VLC_BITS, 2); \
  1415. if (index > 36) \
  1416. { \
  1417. mb_has_coeffs = 1; \
  1418. index -= 37; \
  1419. } \
  1420. else mb_has_coeffs = 0; \
  1421. s->mb_intra = 0; \
  1422. if (!index) { _dmv_x = _dmv_y = 0; } \
  1423. else if (index == 35) \
  1424. { \
  1425. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1426. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1427. } \
  1428. else if (index == 36) \
  1429. { \
  1430. _dmv_x = 0; \
  1431. _dmv_y = 0; \
  1432. s->mb_intra = 1; \
  1433. } \
  1434. else \
  1435. { \
  1436. index1 = index%6; \
  1437. if (!s->quarter_sample && index1 == 5) val = 1; \
  1438. else val = 0; \
  1439. if(size_table[index1] - val > 0) \
  1440. val = get_bits(gb, size_table[index1] - val); \
  1441. else val = 0; \
  1442. sign = 0 - (val&1); \
  1443. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1444. \
  1445. index1 = index/6; \
  1446. if (!s->quarter_sample && index1 == 5) val = 1; \
  1447. else val = 0; \
  1448. if(size_table[index1] - val > 0) \
  1449. val = get_bits(gb, size_table[index1] - val); \
  1450. else val = 0; \
  1451. sign = 0 - (val&1); \
  1452. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1453. }
  1454. /** Predict and set motion vector
  1455. */
  1456. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1457. {
  1458. int xy, wrap, off = 0;
  1459. int16_t *A, *B, *C;
  1460. int px, py;
  1461. int sum;
  1462. /* scale MV difference to be quad-pel */
  1463. dmv_x <<= 1 - s->quarter_sample;
  1464. dmv_y <<= 1 - s->quarter_sample;
  1465. wrap = s->b8_stride;
  1466. xy = s->block_index[n];
  1467. if(s->mb_intra){
  1468. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1469. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1470. if(mv1) { /* duplicate motion data for 1-MV block */
  1471. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1472. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1473. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1474. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1475. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1476. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1477. }
  1478. return;
  1479. }
  1480. C = s->current_picture.motion_val[0][xy - 1];
  1481. A = s->current_picture.motion_val[0][xy - wrap];
  1482. if(mv1)
  1483. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1484. else {
  1485. //in 4-MV mode different blocks have different B predictor position
  1486. switch(n){
  1487. case 0:
  1488. off = (s->mb_x > 0) ? -1 : 1;
  1489. break;
  1490. case 1:
  1491. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1492. break;
  1493. case 2:
  1494. off = 1;
  1495. break;
  1496. case 3:
  1497. off = -1;
  1498. }
  1499. }
  1500. B = s->current_picture.motion_val[0][xy - wrap + off];
  1501. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1502. if(s->mb_width == 1) {
  1503. px = A[0];
  1504. py = A[1];
  1505. } else {
  1506. px = mid_pred(A[0], B[0], C[0]);
  1507. py = mid_pred(A[1], B[1], C[1]);
  1508. }
  1509. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1510. px = C[0];
  1511. py = C[1];
  1512. } else {
  1513. px = py = 0;
  1514. }
  1515. /* Pullback MV as specified in 8.3.5.3.4 */
  1516. {
  1517. int qx, qy, X, Y;
  1518. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1519. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1520. X = (s->mb_width << 6) - 4;
  1521. Y = (s->mb_height << 6) - 4;
  1522. if(mv1) {
  1523. if(qx + px < -60) px = -60 - qx;
  1524. if(qy + py < -60) py = -60 - qy;
  1525. } else {
  1526. if(qx + px < -28) px = -28 - qx;
  1527. if(qy + py < -28) py = -28 - qy;
  1528. }
  1529. if(qx + px > X) px = X - qx;
  1530. if(qy + py > Y) py = Y - qy;
  1531. }
  1532. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1533. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1534. if(is_intra[xy - wrap])
  1535. sum = ABS(px) + ABS(py);
  1536. else
  1537. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1538. if(sum > 32) {
  1539. if(get_bits1(&s->gb)) {
  1540. px = A[0];
  1541. py = A[1];
  1542. } else {
  1543. px = C[0];
  1544. py = C[1];
  1545. }
  1546. } else {
  1547. if(is_intra[xy - 1])
  1548. sum = ABS(px) + ABS(py);
  1549. else
  1550. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1551. if(sum > 32) {
  1552. if(get_bits1(&s->gb)) {
  1553. px = A[0];
  1554. py = A[1];
  1555. } else {
  1556. px = C[0];
  1557. py = C[1];
  1558. }
  1559. }
  1560. }
  1561. }
  1562. /* store MV using signed modulus of MV range defined in 4.11 */
  1563. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1564. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1565. if(mv1) { /* duplicate motion data for 1-MV block */
  1566. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1567. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1568. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1569. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1570. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1571. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1572. }
  1573. }
  1574. /** Reconstruct motion vector for B-frame and do motion compensation
  1575. */
  1576. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1577. {
  1578. MpegEncContext *s = &v->s;
  1579. int mx[4], my[4], mv_x, mv_y;
  1580. int i;
  1581. /* scale MV difference to be quad-pel */
  1582. dmv_x[0] <<= 1 - s->quarter_sample;
  1583. dmv_y[0] <<= 1 - s->quarter_sample;
  1584. dmv_x[1] <<= 1 - s->quarter_sample;
  1585. dmv_y[1] <<= 1 - s->quarter_sample;
  1586. if(direct || mode == BMV_TYPE_INTERPOLATED) {
  1587. /* TODO */
  1588. return;
  1589. }
  1590. if(mode == BMV_TYPE_BACKWARD) {
  1591. for(i = 0; i < 4; i++) {
  1592. mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
  1593. my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
  1594. }
  1595. } else {
  1596. for(i = 0; i < 4; i++) {
  1597. mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
  1598. my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
  1599. }
  1600. }
  1601. /* XXX: not right but how to determine 4-MV intra/inter in another frame? */
  1602. mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
  1603. mv_y = median4(my[0], my[1], my[2], my[3]);
  1604. s->mv[0][0][0] = mv_x;
  1605. s->mv[0][0][1] = mv_y;
  1606. vc1_mc_1mv(v, (mode == BMV_TYPE_FORWARD));
  1607. }
  1608. /** Get predicted DC value for I-frames only
  1609. * prediction dir: left=0, top=1
  1610. * @param s MpegEncContext
  1611. * @param[in] n block index in the current MB
  1612. * @param dc_val_ptr Pointer to DC predictor
  1613. * @param dir_ptr Prediction direction for use in AC prediction
  1614. */
  1615. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1616. int16_t **dc_val_ptr, int *dir_ptr)
  1617. {
  1618. int a, b, c, wrap, pred, scale;
  1619. int16_t *dc_val;
  1620. static const uint16_t dcpred[32] = {
  1621. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1622. 114, 102, 93, 85, 79, 73, 68, 64,
  1623. 60, 57, 54, 51, 49, 47, 45, 43,
  1624. 41, 39, 38, 37, 35, 34, 33
  1625. };
  1626. /* find prediction - wmv3_dc_scale always used here in fact */
  1627. if (n < 4) scale = s->y_dc_scale;
  1628. else scale = s->c_dc_scale;
  1629. wrap = s->block_wrap[n];
  1630. dc_val= s->dc_val[0] + s->block_index[n];
  1631. /* B A
  1632. * C X
  1633. */
  1634. c = dc_val[ - 1];
  1635. b = dc_val[ - 1 - wrap];
  1636. a = dc_val[ - wrap];
  1637. if (pq < 9 || !overlap)
  1638. {
  1639. /* Set outer values */
  1640. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1641. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1642. }
  1643. else
  1644. {
  1645. /* Set outer values */
  1646. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1647. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1648. }
  1649. if (abs(a - b) <= abs(b - c)) {
  1650. pred = c;
  1651. *dir_ptr = 1;//left
  1652. } else {
  1653. pred = a;
  1654. *dir_ptr = 0;//top
  1655. }
  1656. /* update predictor */
  1657. *dc_val_ptr = &dc_val[0];
  1658. return pred;
  1659. }
  1660. /** Get predicted DC value
  1661. * prediction dir: left=0, top=1
  1662. * @param s MpegEncContext
  1663. * @param[in] n block index in the current MB
  1664. * @param dc_val_ptr Pointer to DC predictor
  1665. * @param dir_ptr Prediction direction for use in AC prediction
  1666. */
  1667. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1668. int a_avail, int c_avail,
  1669. int16_t **dc_val_ptr, int *dir_ptr)
  1670. {
  1671. int a, b, c, wrap, pred, scale;
  1672. int16_t *dc_val;
  1673. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1674. int q1, q2 = 0;
  1675. /* find prediction - wmv3_dc_scale always used here in fact */
  1676. if (n < 4) scale = s->y_dc_scale;
  1677. else scale = s->c_dc_scale;
  1678. wrap = s->block_wrap[n];
  1679. dc_val= s->dc_val[0] + s->block_index[n];
  1680. /* B A
  1681. * C X
  1682. */
  1683. c = dc_val[ - 1];
  1684. b = dc_val[ - 1 - wrap];
  1685. a = dc_val[ - wrap];
  1686. /* scale predictors if needed */
  1687. q1 = s->current_picture.qscale_table[mb_pos];
  1688. if(c_avail && (n!= 1 && n!=3)) {
  1689. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1690. if(q2 && q2 != q1)
  1691. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1692. }
  1693. if(a_avail && (n!= 2 && n!=3)) {
  1694. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1695. if(q2 && q2 != q1)
  1696. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1697. }
  1698. if(a_avail && c_avail && (n!=3)) {
  1699. int off = mb_pos;
  1700. if(n != 1) off--;
  1701. if(n != 2) off -= s->mb_stride;
  1702. q2 = s->current_picture.qscale_table[off];
  1703. if(q2 && q2 != q1)
  1704. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1705. }
  1706. if(a_avail && c_avail) {
  1707. if(abs(a - b) <= abs(b - c)) {
  1708. pred = c;
  1709. *dir_ptr = 1;//left
  1710. } else {
  1711. pred = a;
  1712. *dir_ptr = 0;//top
  1713. }
  1714. } else if(a_avail) {
  1715. pred = a;
  1716. *dir_ptr = 0;//top
  1717. } else if(c_avail) {
  1718. pred = c;
  1719. *dir_ptr = 1;//left
  1720. } else {
  1721. pred = 0;
  1722. *dir_ptr = 1;//left
  1723. }
  1724. /* update predictor */
  1725. *dc_val_ptr = &dc_val[0];
  1726. return pred;
  1727. }
  1728. /**
  1729. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1730. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1731. * @todo TODO: Integrate to MpegEncContext facilities
  1732. * @{
  1733. */
  1734. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1735. {
  1736. int xy, wrap, pred, a, b, c;
  1737. xy = s->block_index[n];
  1738. wrap = s->b8_stride;
  1739. /* B C
  1740. * A X
  1741. */
  1742. a = s->coded_block[xy - 1 ];
  1743. b = s->coded_block[xy - 1 - wrap];
  1744. c = s->coded_block[xy - wrap];
  1745. if (b == c) {
  1746. pred = a;
  1747. } else {
  1748. pred = c;
  1749. }
  1750. /* store value */
  1751. *coded_block_ptr = &s->coded_block[xy];
  1752. return pred;
  1753. }
  1754. /**
  1755. * Decode one AC coefficient
  1756. * @param v The VC1 context
  1757. * @param last Last coefficient
  1758. * @param skip How much zero coefficients to skip
  1759. * @param value Decoded AC coefficient value
  1760. * @see 8.1.3.4
  1761. */
  1762. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1763. {
  1764. GetBitContext *gb = &v->s.gb;
  1765. int index, escape, run = 0, level = 0, lst = 0;
  1766. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1767. if (index != vc1_ac_sizes[codingset] - 1) {
  1768. run = vc1_index_decode_table[codingset][index][0];
  1769. level = vc1_index_decode_table[codingset][index][1];
  1770. lst = index >= vc1_last_decode_table[codingset];
  1771. if(get_bits(gb, 1))
  1772. level = -level;
  1773. } else {
  1774. escape = decode210(gb);
  1775. if (escape != 2) {
  1776. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1777. run = vc1_index_decode_table[codingset][index][0];
  1778. level = vc1_index_decode_table[codingset][index][1];
  1779. lst = index >= vc1_last_decode_table[codingset];
  1780. if(escape == 0) {
  1781. if(lst)
  1782. level += vc1_last_delta_level_table[codingset][run];
  1783. else
  1784. level += vc1_delta_level_table[codingset][run];
  1785. } else {
  1786. if(lst)
  1787. run += vc1_last_delta_run_table[codingset][level] + 1;
  1788. else
  1789. run += vc1_delta_run_table[codingset][level] + 1;
  1790. }
  1791. if(get_bits(gb, 1))
  1792. level = -level;
  1793. } else {
  1794. int sign;
  1795. lst = get_bits(gb, 1);
  1796. if(v->s.esc3_level_length == 0) {
  1797. if(v->pq < 8 || v->dquantfrm) { // table 59
  1798. v->s.esc3_level_length = get_bits(gb, 3);
  1799. if(!v->s.esc3_level_length)
  1800. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1801. } else { //table 60
  1802. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1803. }
  1804. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1805. }
  1806. run = get_bits(gb, v->s.esc3_run_length);
  1807. sign = get_bits(gb, 1);
  1808. level = get_bits(gb, v->s.esc3_level_length);
  1809. if(sign)
  1810. level = -level;
  1811. }
  1812. }
  1813. *last = lst;
  1814. *skip = run;
  1815. *value = level;
  1816. }
  1817. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1818. * @param v VC1Context
  1819. * @param block block to decode
  1820. * @param coded are AC coeffs present or not
  1821. * @param codingset set of VLC to decode data
  1822. */
  1823. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1824. {
  1825. GetBitContext *gb = &v->s.gb;
  1826. MpegEncContext *s = &v->s;
  1827. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1828. int run_diff, i;
  1829. int16_t *dc_val;
  1830. int16_t *ac_val, *ac_val2;
  1831. int dcdiff;
  1832. /* Get DC differential */
  1833. if (n < 4) {
  1834. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1835. } else {
  1836. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1837. }
  1838. if (dcdiff < 0){
  1839. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1840. return -1;
  1841. }
  1842. if (dcdiff)
  1843. {
  1844. if (dcdiff == 119 /* ESC index value */)
  1845. {
  1846. /* TODO: Optimize */
  1847. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1848. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1849. else dcdiff = get_bits(gb, 8);
  1850. }
  1851. else
  1852. {
  1853. if (v->pq == 1)
  1854. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1855. else if (v->pq == 2)
  1856. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1857. }
  1858. if (get_bits(gb, 1))
  1859. dcdiff = -dcdiff;
  1860. }
  1861. /* Prediction */
  1862. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1863. *dc_val = dcdiff;
  1864. /* Store the quantized DC coeff, used for prediction */
  1865. if (n < 4) {
  1866. block[0] = dcdiff * s->y_dc_scale;
  1867. } else {
  1868. block[0] = dcdiff * s->c_dc_scale;
  1869. }
  1870. /* Skip ? */
  1871. run_diff = 0;
  1872. i = 0;
  1873. if (!coded) {
  1874. goto not_coded;
  1875. }
  1876. //AC Decoding
  1877. i = 1;
  1878. {
  1879. int last = 0, skip, value;
  1880. const int8_t *zz_table;
  1881. int scale;
  1882. int k;
  1883. scale = v->pq * 2 + v->halfpq;
  1884. if(v->s.ac_pred) {
  1885. if(!dc_pred_dir)
  1886. zz_table = vc1_horizontal_zz;
  1887. else
  1888. zz_table = vc1_vertical_zz;
  1889. } else
  1890. zz_table = vc1_normal_zz;
  1891. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1892. ac_val2 = ac_val;
  1893. if(dc_pred_dir) //left
  1894. ac_val -= 16;
  1895. else //top
  1896. ac_val -= 16 * s->block_wrap[n];
  1897. while (!last) {
  1898. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1899. i += skip;
  1900. if(i > 63)
  1901. break;
  1902. block[zz_table[i++]] = value;
  1903. }
  1904. /* apply AC prediction if needed */
  1905. if(s->ac_pred) {
  1906. if(dc_pred_dir) { //left
  1907. for(k = 1; k < 8; k++)
  1908. block[k << 3] += ac_val[k];
  1909. } else { //top
  1910. for(k = 1; k < 8; k++)
  1911. block[k] += ac_val[k + 8];
  1912. }
  1913. }
  1914. /* save AC coeffs for further prediction */
  1915. for(k = 1; k < 8; k++) {
  1916. ac_val2[k] = block[k << 3];
  1917. ac_val2[k + 8] = block[k];
  1918. }
  1919. /* scale AC coeffs */
  1920. for(k = 1; k < 64; k++)
  1921. if(block[k]) {
  1922. block[k] *= scale;
  1923. if(!v->pquantizer)
  1924. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1925. }
  1926. if(s->ac_pred) i = 63;
  1927. }
  1928. not_coded:
  1929. if(!coded) {
  1930. int k, scale;
  1931. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1932. ac_val2 = ac_val;
  1933. scale = v->pq * 2 + v->halfpq;
  1934. memset(ac_val2, 0, 16 * 2);
  1935. if(dc_pred_dir) {//left
  1936. ac_val -= 16;
  1937. if(s->ac_pred)
  1938. memcpy(ac_val2, ac_val, 8 * 2);
  1939. } else {//top
  1940. ac_val -= 16 * s->block_wrap[n];
  1941. if(s->ac_pred)
  1942. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1943. }
  1944. /* apply AC prediction if needed */
  1945. if(s->ac_pred) {
  1946. if(dc_pred_dir) { //left
  1947. for(k = 1; k < 8; k++) {
  1948. block[k << 3] = ac_val[k] * scale;
  1949. if(!v->pquantizer && block[k << 3])
  1950. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1951. }
  1952. } else { //top
  1953. for(k = 1; k < 8; k++) {
  1954. block[k] = ac_val[k + 8] * scale;
  1955. if(!v->pquantizer && block[k])
  1956. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1957. }
  1958. }
  1959. i = 63;
  1960. }
  1961. }
  1962. s->block_last_index[n] = i;
  1963. return 0;
  1964. }
  1965. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1966. * @param v VC1Context
  1967. * @param block block to decode
  1968. * @param coded are AC coeffs present or not
  1969. * @param mquant block quantizer
  1970. * @param codingset set of VLC to decode data
  1971. */
  1972. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1973. {
  1974. GetBitContext *gb = &v->s.gb;
  1975. MpegEncContext *s = &v->s;
  1976. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1977. int run_diff, i;
  1978. int16_t *dc_val;
  1979. int16_t *ac_val, *ac_val2;
  1980. int dcdiff;
  1981. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1982. int a_avail = v->a_avail, c_avail = v->c_avail;
  1983. int use_pred = s->ac_pred;
  1984. int scale;
  1985. int q1, q2 = 0;
  1986. /* XXX: Guard against dumb values of mquant */
  1987. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1988. /* Set DC scale - y and c use the same */
  1989. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1990. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1991. /* Get DC differential */
  1992. if (n < 4) {
  1993. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1994. } else {
  1995. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1996. }
  1997. if (dcdiff < 0){
  1998. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1999. return -1;
  2000. }
  2001. if (dcdiff)
  2002. {
  2003. if (dcdiff == 119 /* ESC index value */)
  2004. {
  2005. /* TODO: Optimize */
  2006. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2007. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2008. else dcdiff = get_bits(gb, 8);
  2009. }
  2010. else
  2011. {
  2012. if (mquant == 1)
  2013. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2014. else if (mquant == 2)
  2015. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2016. }
  2017. if (get_bits(gb, 1))
  2018. dcdiff = -dcdiff;
  2019. }
  2020. /* Prediction */
  2021. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2022. *dc_val = dcdiff;
  2023. /* Store the quantized DC coeff, used for prediction */
  2024. if (n < 4) {
  2025. block[0] = dcdiff * s->y_dc_scale;
  2026. } else {
  2027. block[0] = dcdiff * s->c_dc_scale;
  2028. }
  2029. /* Skip ? */
  2030. run_diff = 0;
  2031. i = 0;
  2032. //AC Decoding
  2033. i = 1;
  2034. /* check if AC is needed at all and adjust direction if needed */
  2035. if(!a_avail) dc_pred_dir = 1;
  2036. if(!c_avail) dc_pred_dir = 0;
  2037. if(!a_avail && !c_avail) use_pred = 0;
  2038. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2039. ac_val2 = ac_val;
  2040. scale = mquant * 2 + v->halfpq;
  2041. if(dc_pred_dir) //left
  2042. ac_val -= 16;
  2043. else //top
  2044. ac_val -= 16 * s->block_wrap[n];
  2045. q1 = s->current_picture.qscale_table[mb_pos];
  2046. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2047. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2048. if(n && n<4) q2 = q1;
  2049. if(coded) {
  2050. int last = 0, skip, value;
  2051. const int8_t *zz_table;
  2052. int k;
  2053. zz_table = vc1_simple_progressive_8x8_zz;
  2054. while (!last) {
  2055. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2056. i += skip;
  2057. if(i > 63)
  2058. break;
  2059. block[zz_table[i++]] = value;
  2060. }
  2061. /* apply AC prediction if needed */
  2062. if(use_pred) {
  2063. /* scale predictors if needed*/
  2064. if(q2 && q1!=q2) {
  2065. q1 = q1 * 2 - 1;
  2066. q2 = q2 * 2 - 1;
  2067. if(dc_pred_dir) { //left
  2068. for(k = 1; k < 8; k++)
  2069. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2070. } else { //top
  2071. for(k = 1; k < 8; k++)
  2072. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2073. }
  2074. } else {
  2075. if(dc_pred_dir) { //left
  2076. for(k = 1; k < 8; k++)
  2077. block[k << 3] += ac_val[k];
  2078. } else { //top
  2079. for(k = 1; k < 8; k++)
  2080. block[k] += ac_val[k + 8];
  2081. }
  2082. }
  2083. }
  2084. /* save AC coeffs for further prediction */
  2085. for(k = 1; k < 8; k++) {
  2086. ac_val2[k] = block[k << 3];
  2087. ac_val2[k + 8] = block[k];
  2088. }
  2089. /* scale AC coeffs */
  2090. for(k = 1; k < 64; k++)
  2091. if(block[k]) {
  2092. block[k] *= scale;
  2093. if(!v->pquantizer)
  2094. block[k] += (block[k] < 0) ? -mquant : mquant;
  2095. }
  2096. if(use_pred) i = 63;
  2097. } else { // no AC coeffs
  2098. int k;
  2099. memset(ac_val2, 0, 16 * 2);
  2100. if(dc_pred_dir) {//left
  2101. if(use_pred) {
  2102. memcpy(ac_val2, ac_val, 8 * 2);
  2103. if(q2 && q1!=q2) {
  2104. q1 = q1 * 2 - 1;
  2105. q2 = q2 * 2 - 1;
  2106. for(k = 1; k < 8; k++)
  2107. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2108. }
  2109. }
  2110. } else {//top
  2111. if(use_pred) {
  2112. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2113. if(q2 && q1!=q2) {
  2114. q1 = q1 * 2 - 1;
  2115. q2 = q2 * 2 - 1;
  2116. for(k = 1; k < 8; k++)
  2117. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2118. }
  2119. }
  2120. }
  2121. /* apply AC prediction if needed */
  2122. if(use_pred) {
  2123. if(dc_pred_dir) { //left
  2124. for(k = 1; k < 8; k++) {
  2125. block[k << 3] = ac_val2[k] * scale;
  2126. if(!v->pquantizer && block[k << 3])
  2127. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2128. }
  2129. } else { //top
  2130. for(k = 1; k < 8; k++) {
  2131. block[k] = ac_val2[k + 8] * scale;
  2132. if(!v->pquantizer && block[k])
  2133. block[k] += (block[k] < 0) ? -mquant : mquant;
  2134. }
  2135. }
  2136. i = 63;
  2137. }
  2138. }
  2139. s->block_last_index[n] = i;
  2140. return 0;
  2141. }
  2142. /** Decode P block
  2143. */
  2144. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2145. {
  2146. MpegEncContext *s = &v->s;
  2147. GetBitContext *gb = &s->gb;
  2148. int i, j;
  2149. int subblkpat = 0;
  2150. int scale, off, idx, last, skip, value;
  2151. int ttblk = ttmb & 7;
  2152. if(ttmb == -1) {
  2153. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2154. }
  2155. if(ttblk == TT_4X4) {
  2156. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2157. }
  2158. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2159. subblkpat = decode012(gb);
  2160. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2161. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2162. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2163. }
  2164. scale = 2 * mquant + v->halfpq;
  2165. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2166. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2167. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2168. ttblk = TT_8X4;
  2169. }
  2170. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2171. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2172. ttblk = TT_4X8;
  2173. }
  2174. switch(ttblk) {
  2175. case TT_8X8:
  2176. i = 0;
  2177. last = 0;
  2178. while (!last) {
  2179. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2180. i += skip;
  2181. if(i > 63)
  2182. break;
  2183. idx = vc1_simple_progressive_8x8_zz[i++];
  2184. block[idx] = value * scale;
  2185. if(!v->pquantizer)
  2186. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2187. }
  2188. vc1_inv_trans(block, 8, 8);
  2189. break;
  2190. case TT_4X4:
  2191. for(j = 0; j < 4; j++) {
  2192. last = subblkpat & (1 << (3 - j));
  2193. i = 0;
  2194. off = (j & 1) * 4 + (j & 2) * 16;
  2195. while (!last) {
  2196. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2197. i += skip;
  2198. if(i > 15)
  2199. break;
  2200. idx = vc1_simple_progressive_4x4_zz[i++];
  2201. block[idx + off] = value * scale;
  2202. if(!v->pquantizer)
  2203. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2204. }
  2205. if(!(subblkpat & (1 << (3 - j))))
  2206. vc1_inv_trans(block + off, 4, 4);
  2207. }
  2208. break;
  2209. case TT_8X4:
  2210. for(j = 0; j < 2; j++) {
  2211. last = subblkpat & (1 << (1 - j));
  2212. i = 0;
  2213. off = j * 32;
  2214. while (!last) {
  2215. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2216. i += skip;
  2217. if(i > 31)
  2218. break;
  2219. idx = vc1_simple_progressive_8x4_zz[i++];
  2220. block[idx + off] = value * scale;
  2221. if(!v->pquantizer)
  2222. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2223. }
  2224. if(!(subblkpat & (1 << (1 - j))))
  2225. vc1_inv_trans(block + off, 8, 4);
  2226. }
  2227. break;
  2228. case TT_4X8:
  2229. for(j = 0; j < 2; j++) {
  2230. last = subblkpat & (1 << (1 - j));
  2231. i = 0;
  2232. off = j * 4;
  2233. while (!last) {
  2234. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2235. i += skip;
  2236. if(i > 31)
  2237. break;
  2238. idx = vc1_simple_progressive_4x8_zz[i++];
  2239. block[idx + off] = value * scale;
  2240. if(!v->pquantizer)
  2241. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2242. }
  2243. if(!(subblkpat & (1 << (1 - j))))
  2244. vc1_inv_trans(block + off, 4, 8);
  2245. }
  2246. break;
  2247. }
  2248. return 0;
  2249. }
  2250. /** Decode one P-frame MB (in Simple/Main profile)
  2251. * @todo TODO: Extend to AP
  2252. * @fixme FIXME: DC value for inter blocks not set
  2253. */
  2254. static int vc1_decode_p_mb(VC1Context *v)
  2255. {
  2256. MpegEncContext *s = &v->s;
  2257. GetBitContext *gb = &s->gb;
  2258. int i, j;
  2259. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2260. int cbp; /* cbp decoding stuff */
  2261. int mqdiff, mquant; /* MB quantization */
  2262. int ttmb = v->ttfrm; /* MB Transform type */
  2263. int status;
  2264. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2265. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2266. int mb_has_coeffs = 1; /* last_flag */
  2267. int dmv_x, dmv_y; /* Differential MV components */
  2268. int index, index1; /* LUT indices */
  2269. int val, sign; /* temp values */
  2270. int first_block = 1;
  2271. int dst_idx, off;
  2272. int skipped, fourmv;
  2273. mquant = v->pq; /* Loosy initialization */
  2274. if (v->mv_type_is_raw)
  2275. fourmv = get_bits1(gb);
  2276. else
  2277. fourmv = v->mv_type_mb_plane[mb_pos];
  2278. if (v->skip_is_raw)
  2279. skipped = get_bits1(gb);
  2280. else
  2281. skipped = v->s.mbskip_table[mb_pos];
  2282. s->dsp.clear_blocks(s->block[0]);
  2283. if (!fourmv) /* 1MV mode */
  2284. {
  2285. if (!skipped)
  2286. {
  2287. GET_MVDATA(dmv_x, dmv_y);
  2288. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2289. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2290. /* FIXME Set DC val for inter block ? */
  2291. if (s->mb_intra && !mb_has_coeffs)
  2292. {
  2293. GET_MQUANT();
  2294. s->ac_pred = get_bits(gb, 1);
  2295. cbp = 0;
  2296. }
  2297. else if (mb_has_coeffs)
  2298. {
  2299. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2300. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2301. GET_MQUANT();
  2302. }
  2303. else
  2304. {
  2305. mquant = v->pq;
  2306. cbp = 0;
  2307. }
  2308. s->current_picture.qscale_table[mb_pos] = mquant;
  2309. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2310. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2311. VC1_TTMB_VLC_BITS, 2);
  2312. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2313. dst_idx = 0;
  2314. for (i=0; i<6; i++)
  2315. {
  2316. s->dc_val[0][s->block_index[i]] = 0;
  2317. dst_idx += i >> 2;
  2318. val = ((cbp >> (5 - i)) & 1);
  2319. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2320. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2321. if(s->mb_intra) {
  2322. /* check if prediction blocks A and C are available */
  2323. v->a_avail = v->c_avail = 0;
  2324. if(i == 2 || i == 3 || !s->first_slice_line)
  2325. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2326. if(i == 1 || i == 3 || s->mb_x)
  2327. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2328. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2329. vc1_inv_trans(s->block[i], 8, 8);
  2330. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2331. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2332. /* TODO: proper loop filtering */
  2333. if(v->pq >= 9 && v->overlap) {
  2334. if(v->a_avail)
  2335. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2336. if(v->c_avail)
  2337. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2338. }
  2339. } else if(val) {
  2340. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2341. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2342. first_block = 0;
  2343. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2344. }
  2345. }
  2346. }
  2347. else //Skipped
  2348. {
  2349. s->mb_intra = 0;
  2350. for(i = 0; i < 6; i++) {
  2351. v->mb_type[0][s->block_index[i]] = 0;
  2352. s->dc_val[0][s->block_index[i]] = 0;
  2353. }
  2354. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2355. s->current_picture.qscale_table[mb_pos] = 0;
  2356. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2357. vc1_mc_1mv(v, 0);
  2358. return 0;
  2359. }
  2360. } //1MV mode
  2361. else //4MV mode
  2362. {
  2363. if (!skipped /* unskipped MB */)
  2364. {
  2365. int intra_count = 0, coded_inter = 0;
  2366. int is_intra[6], is_coded[6];
  2367. /* Get CBPCY */
  2368. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2369. for (i=0; i<6; i++)
  2370. {
  2371. val = ((cbp >> (5 - i)) & 1);
  2372. s->dc_val[0][s->block_index[i]] = 0;
  2373. s->mb_intra = 0;
  2374. if(i < 4) {
  2375. dmv_x = dmv_y = 0;
  2376. s->mb_intra = 0;
  2377. mb_has_coeffs = 0;
  2378. if(val) {
  2379. GET_MVDATA(dmv_x, dmv_y);
  2380. }
  2381. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2382. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2383. intra_count += s->mb_intra;
  2384. is_intra[i] = s->mb_intra;
  2385. is_coded[i] = mb_has_coeffs;
  2386. }
  2387. if(i&4){
  2388. is_intra[i] = (intra_count >= 3);
  2389. is_coded[i] = val;
  2390. }
  2391. if(i == 4) vc1_mc_4mv_chroma(v);
  2392. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2393. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2394. }
  2395. // if there are no coded blocks then don't do anything more
  2396. if(!intra_count && !coded_inter) return 0;
  2397. dst_idx = 0;
  2398. GET_MQUANT();
  2399. s->current_picture.qscale_table[mb_pos] = mquant;
  2400. /* test if block is intra and has pred */
  2401. {
  2402. int intrapred = 0;
  2403. for(i=0; i<6; i++)
  2404. if(is_intra[i]) {
  2405. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2406. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2407. intrapred = 1;
  2408. break;
  2409. }
  2410. }
  2411. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2412. else s->ac_pred = 0;
  2413. }
  2414. if (!v->ttmbf && coded_inter)
  2415. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2416. for (i=0; i<6; i++)
  2417. {
  2418. dst_idx += i >> 2;
  2419. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2420. s->mb_intra = is_intra[i];
  2421. if (is_intra[i]) {
  2422. /* check if prediction blocks A and C are available */
  2423. v->a_avail = v->c_avail = 0;
  2424. if(i == 2 || i == 3 || !s->first_slice_line)
  2425. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2426. if(i == 1 || i == 3 || s->mb_x)
  2427. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2428. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2429. vc1_inv_trans(s->block[i], 8, 8);
  2430. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2431. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2432. /* TODO: proper loop filtering */
  2433. if(v->pq >= 9 && v->overlap) {
  2434. if(v->a_avail)
  2435. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2436. if(v->c_avail)
  2437. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2438. }
  2439. } else if(is_coded[i]) {
  2440. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2441. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2442. first_block = 0;
  2443. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2444. }
  2445. }
  2446. return status;
  2447. }
  2448. else //Skipped MB
  2449. {
  2450. s->mb_intra = 0;
  2451. s->current_picture.qscale_table[mb_pos] = 0;
  2452. for (i=0; i<6; i++) {
  2453. v->mb_type[0][s->block_index[i]] = 0;
  2454. s->dc_val[0][s->block_index[i]] = 0;
  2455. }
  2456. for (i=0; i<4; i++)
  2457. {
  2458. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2459. vc1_mc_4mv_luma(v, i);
  2460. }
  2461. vc1_mc_4mv_chroma(v);
  2462. s->current_picture.qscale_table[mb_pos] = 0;
  2463. return 0;
  2464. }
  2465. }
  2466. /* Should never happen */
  2467. return -1;
  2468. }
  2469. /** Decode one B-frame MB (in Main profile)
  2470. */
  2471. static void vc1_decode_b_mb(VC1Context *v)
  2472. {
  2473. MpegEncContext *s = &v->s;
  2474. GetBitContext *gb = &s->gb;
  2475. int i, j;
  2476. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2477. int cbp; /* cbp decoding stuff */
  2478. int mqdiff, mquant; /* MB quantization */
  2479. int ttmb = v->ttfrm; /* MB Transform type */
  2480. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2481. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2482. int mb_has_coeffs = 0; /* last_flag */
  2483. int index, index1; /* LUT indices */
  2484. int val, sign; /* temp values */
  2485. int first_block = 1;
  2486. int dst_idx, off;
  2487. int skipped, direct;
  2488. int dmv_x[2], dmv_y[2];
  2489. int bmvtype = BMV_TYPE_BACKWARD; /* XXX: is it so? */
  2490. mquant = v->pq; /* Loosy initialization */
  2491. s->mb_intra = 0;
  2492. if (v->dmb_is_raw)
  2493. direct = get_bits1(gb);
  2494. else
  2495. direct = v->direct_mb_plane[mb_pos];
  2496. if (v->skip_is_raw)
  2497. skipped = get_bits1(gb);
  2498. else
  2499. skipped = v->s.mbskip_table[mb_pos];
  2500. s->dsp.clear_blocks(s->block[0]);
  2501. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2502. for(i = 0; i < 6; i++) {
  2503. v->mb_type[0][s->block_index[i]] = 0;
  2504. s->dc_val[0][s->block_index[i]] = 0;
  2505. }
  2506. s->current_picture.qscale_table[mb_pos] = 0;
  2507. if (!direct) {
  2508. if (!skipped) {
  2509. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2510. }
  2511. if(skipped || !s->mb_intra) {
  2512. bmvtype = decode012(gb);
  2513. switch(bmvtype) {
  2514. case 0:
  2515. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2516. break;
  2517. case 1:
  2518. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2519. break;
  2520. case 2:
  2521. bmvtype = BMV_TYPE_INTERPOLATED;
  2522. }
  2523. }
  2524. }
  2525. if (skipped) {
  2526. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2527. return;
  2528. }
  2529. if (direct) {
  2530. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2531. GET_MQUANT();
  2532. s->current_picture.qscale_table[mb_pos] = mquant;
  2533. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2534. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2535. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2536. } else {
  2537. if(!mb_has_coeffs && !s->mb_intra) {
  2538. /* no coded blocks - effectively skipped */
  2539. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2540. return;
  2541. }
  2542. if(s->mb_intra && !mb_has_coeffs) {
  2543. GET_MQUANT();
  2544. s->current_picture.qscale_table[mb_pos] = mquant;
  2545. s->ac_pred = get_bits1(gb);
  2546. cbp = 0;
  2547. } else {
  2548. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2549. GET_MVDATA(dmv_x[1], dmv_y[1]);
  2550. if(!mb_has_coeffs) {
  2551. /* interpolated skipped block */
  2552. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2553. return;
  2554. }
  2555. }
  2556. if(!s->mb_intra)
  2557. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2558. if(s->mb_intra)
  2559. s->ac_pred = get_bits1(gb);
  2560. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2561. GET_MQUANT();
  2562. s->current_picture.qscale_table[mb_pos] = mquant;
  2563. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2564. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2565. }
  2566. }
  2567. dst_idx = 0;
  2568. for (i=0; i<6; i++)
  2569. {
  2570. s->dc_val[0][s->block_index[i]] = 0;
  2571. dst_idx += i >> 2;
  2572. val = ((cbp >> (5 - i)) & 1);
  2573. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2574. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2575. if(s->mb_intra) {
  2576. /* check if prediction blocks A and C are available */
  2577. v->a_avail = v->c_avail = 0;
  2578. if(i == 2 || i == 3 || !s->first_slice_line)
  2579. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2580. if(i == 1 || i == 3 || s->mb_x)
  2581. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2582. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2583. vc1_inv_trans(s->block[i], 8, 8);
  2584. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2585. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2586. /* TODO: proper loop filtering */
  2587. if(v->pq >= 9 && v->overlap) {
  2588. if(v->a_avail)
  2589. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2590. if(v->c_avail)
  2591. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2592. }
  2593. } else if(val) {
  2594. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2595. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2596. first_block = 0;
  2597. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2598. }
  2599. }
  2600. }
  2601. /** Decode blocks of I-frame
  2602. */
  2603. static void vc1_decode_i_blocks(VC1Context *v)
  2604. {
  2605. int k, j;
  2606. MpegEncContext *s = &v->s;
  2607. int cbp, val;
  2608. uint8_t *coded_val;
  2609. int mb_pos;
  2610. /* select codingmode used for VLC tables selection */
  2611. switch(v->y_ac_table_index){
  2612. case 0:
  2613. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2614. break;
  2615. case 1:
  2616. v->codingset = CS_HIGH_MOT_INTRA;
  2617. break;
  2618. case 2:
  2619. v->codingset = CS_MID_RATE_INTRA;
  2620. break;
  2621. }
  2622. switch(v->c_ac_table_index){
  2623. case 0:
  2624. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2625. break;
  2626. case 1:
  2627. v->codingset2 = CS_HIGH_MOT_INTER;
  2628. break;
  2629. case 2:
  2630. v->codingset2 = CS_MID_RATE_INTER;
  2631. break;
  2632. }
  2633. /* Set DC scale - y and c use the same */
  2634. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2635. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2636. //do frame decode
  2637. s->mb_x = s->mb_y = 0;
  2638. s->mb_intra = 1;
  2639. s->first_slice_line = 1;
  2640. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2641. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2642. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2643. ff_init_block_index(s);
  2644. ff_update_block_index(s);
  2645. s->dsp.clear_blocks(s->block[0]);
  2646. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2647. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2648. s->current_picture.qscale_table[mb_pos] = v->pq;
  2649. // do actual MB decoding and displaying
  2650. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2651. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2652. for(k = 0; k < 6; k++) {
  2653. val = ((cbp >> (5 - k)) & 1);
  2654. if (k < 4) {
  2655. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2656. val = val ^ pred;
  2657. *coded_val = val;
  2658. }
  2659. cbp |= val << (5 - k);
  2660. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2661. vc1_inv_trans(s->block[k], 8, 8);
  2662. if(v->pq >= 9 && v->overlap) {
  2663. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2664. }
  2665. }
  2666. vc1_put_block(v, s->block);
  2667. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2668. if(!s->first_slice_line) {
  2669. vc1_v_overlap(s->dest[0], s->linesize, 0);
  2670. vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  2671. vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  2672. vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  2673. }
  2674. vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  2675. vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2676. if(s->mb_x) {
  2677. vc1_h_overlap(s->dest[0], s->linesize, 0);
  2678. vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  2679. vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  2680. vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  2681. }
  2682. vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  2683. vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2684. }
  2685. if(get_bits_count(&s->gb) > v->bits) {
  2686. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2687. return;
  2688. }
  2689. }
  2690. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2691. s->first_slice_line = 0;
  2692. }
  2693. }
  2694. static void vc1_decode_p_blocks(VC1Context *v)
  2695. {
  2696. MpegEncContext *s = &v->s;
  2697. /* select codingmode used for VLC tables selection */
  2698. switch(v->c_ac_table_index){
  2699. case 0:
  2700. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2701. break;
  2702. case 1:
  2703. v->codingset = CS_HIGH_MOT_INTRA;
  2704. break;
  2705. case 2:
  2706. v->codingset = CS_MID_RATE_INTRA;
  2707. break;
  2708. }
  2709. switch(v->c_ac_table_index){
  2710. case 0:
  2711. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2712. break;
  2713. case 1:
  2714. v->codingset2 = CS_HIGH_MOT_INTER;
  2715. break;
  2716. case 2:
  2717. v->codingset2 = CS_MID_RATE_INTER;
  2718. break;
  2719. }
  2720. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2721. s->first_slice_line = 1;
  2722. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2723. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2724. ff_init_block_index(s);
  2725. ff_update_block_index(s);
  2726. s->dsp.clear_blocks(s->block[0]);
  2727. vc1_decode_p_mb(v);
  2728. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2729. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2730. return;
  2731. }
  2732. }
  2733. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2734. s->first_slice_line = 0;
  2735. }
  2736. }
  2737. static void vc1_decode_b_blocks(VC1Context *v)
  2738. {
  2739. MpegEncContext *s = &v->s;
  2740. /* select codingmode used for VLC tables selection */
  2741. switch(v->c_ac_table_index){
  2742. case 0:
  2743. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2744. break;
  2745. case 1:
  2746. v->codingset = CS_HIGH_MOT_INTRA;
  2747. break;
  2748. case 2:
  2749. v->codingset = CS_MID_RATE_INTRA;
  2750. break;
  2751. }
  2752. switch(v->c_ac_table_index){
  2753. case 0:
  2754. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2755. break;
  2756. case 1:
  2757. v->codingset2 = CS_HIGH_MOT_INTER;
  2758. break;
  2759. case 2:
  2760. v->codingset2 = CS_MID_RATE_INTER;
  2761. break;
  2762. }
  2763. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2764. s->first_slice_line = 1;
  2765. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2766. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2767. ff_init_block_index(s);
  2768. ff_update_block_index(s);
  2769. s->dsp.clear_blocks(s->block[0]);
  2770. vc1_decode_b_mb(v);
  2771. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2772. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2773. return;
  2774. }
  2775. }
  2776. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2777. s->first_slice_line = 0;
  2778. }
  2779. }
  2780. static void vc1_decode_blocks(VC1Context *v)
  2781. {
  2782. v->s.esc3_level_length = 0;
  2783. switch(v->s.pict_type) {
  2784. case I_TYPE:
  2785. vc1_decode_i_blocks(v);
  2786. break;
  2787. case P_TYPE:
  2788. vc1_decode_p_blocks(v);
  2789. break;
  2790. case B_TYPE:
  2791. vc1_decode_b_blocks(v);
  2792. break;
  2793. }
  2794. }
  2795. /** Initialize a VC1/WMV3 decoder
  2796. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2797. * @todo TODO: Decypher remaining bits in extra_data
  2798. */
  2799. static int vc1_decode_init(AVCodecContext *avctx)
  2800. {
  2801. VC1Context *v = avctx->priv_data;
  2802. MpegEncContext *s = &v->s;
  2803. GetBitContext gb;
  2804. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2805. avctx->pix_fmt = PIX_FMT_YUV420P;
  2806. v->s.avctx = avctx;
  2807. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2808. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2809. if(ff_h263_decode_init(avctx) < 0)
  2810. return -1;
  2811. if (vc1_init_common(v) < 0) return -1;
  2812. avctx->coded_width = avctx->width;
  2813. avctx->coded_height = avctx->height;
  2814. if (avctx->codec_id == CODEC_ID_WMV3)
  2815. {
  2816. int count = 0;
  2817. // looks like WMV3 has a sequence header stored in the extradata
  2818. // advanced sequence header may be before the first frame
  2819. // the last byte of the extradata is a version number, 1 for the
  2820. // samples we can decode
  2821. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2822. if (decode_sequence_header(avctx, &gb) < 0)
  2823. return -1;
  2824. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2825. if (count>0)
  2826. {
  2827. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2828. count, get_bits(&gb, count));
  2829. }
  2830. else if (count < 0)
  2831. {
  2832. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2833. }
  2834. }
  2835. avctx->has_b_frames= !!(avctx->max_b_frames);
  2836. s->mb_width = (avctx->coded_width+15)>>4;
  2837. s->mb_height = (avctx->coded_height+15)>>4;
  2838. /* Allocate mb bitplanes */
  2839. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2840. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2841. /* allocate block type info in that way so it could be used with s->block_index[] */
  2842. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2843. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2844. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2845. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2846. /* Init coded blocks info */
  2847. if (v->profile == PROFILE_ADVANCED)
  2848. {
  2849. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2850. // return -1;
  2851. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2852. // return -1;
  2853. }
  2854. return 0;
  2855. }
  2856. /** Decode a VC1/WMV3 frame
  2857. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2858. * @warning Initial try at using MpegEncContext stuff
  2859. */
  2860. static int vc1_decode_frame(AVCodecContext *avctx,
  2861. void *data, int *data_size,
  2862. uint8_t *buf, int buf_size)
  2863. {
  2864. VC1Context *v = avctx->priv_data;
  2865. MpegEncContext *s = &v->s;
  2866. AVFrame *pict = data;
  2867. /* no supplementary picture */
  2868. if (buf_size == 0) {
  2869. /* special case for last picture */
  2870. if (s->low_delay==0 && s->next_picture_ptr) {
  2871. *pict= *(AVFrame*)s->next_picture_ptr;
  2872. s->next_picture_ptr= NULL;
  2873. *data_size = sizeof(AVFrame);
  2874. }
  2875. return 0;
  2876. }
  2877. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2878. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2879. int i= ff_find_unused_picture(s, 0);
  2880. s->current_picture_ptr= &s->picture[i];
  2881. }
  2882. avctx->has_b_frames= !s->low_delay;
  2883. init_get_bits(&s->gb, buf, buf_size*8);
  2884. // do parse frame header
  2885. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2886. return -1;
  2887. // if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2888. // for hurry_up==5
  2889. s->current_picture.pict_type= s->pict_type;
  2890. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2891. /* skip B-frames if we don't have reference frames */
  2892. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2893. /* skip b frames if we are in a hurry */
  2894. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2895. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2896. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2897. || avctx->skip_frame >= AVDISCARD_ALL)
  2898. return buf_size;
  2899. /* skip everything if we are in a hurry>=5 */
  2900. if(avctx->hurry_up>=5) return -1;//buf_size;
  2901. if(s->next_p_frame_damaged){
  2902. if(s->pict_type==B_TYPE)
  2903. return buf_size;
  2904. else
  2905. s->next_p_frame_damaged=0;
  2906. }
  2907. if(MPV_frame_start(s, avctx) < 0)
  2908. return -1;
  2909. ff_er_frame_start(s);
  2910. v->bits = buf_size * 8;
  2911. vc1_decode_blocks(v);
  2912. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2913. // if(get_bits_count(&s->gb) > buf_size * 8)
  2914. // return -1;
  2915. ff_er_frame_end(s);
  2916. MPV_frame_end(s);
  2917. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2918. assert(s->current_picture.pict_type == s->pict_type);
  2919. if (s->pict_type == B_TYPE || s->low_delay) {
  2920. *pict= *(AVFrame*)s->current_picture_ptr;
  2921. } else if (s->last_picture_ptr != NULL) {
  2922. *pict= *(AVFrame*)s->last_picture_ptr;
  2923. }
  2924. if(s->last_picture_ptr || s->low_delay){
  2925. *data_size = sizeof(AVFrame);
  2926. ff_print_debug_info(s, pict);
  2927. }
  2928. /* Return the Picture timestamp as the frame number */
  2929. /* we substract 1 because it is added on utils.c */
  2930. avctx->frame_number = s->picture_number - 1;
  2931. return buf_size;
  2932. }
  2933. /** Close a VC1/WMV3 decoder
  2934. * @warning Initial try at using MpegEncContext stuff
  2935. */
  2936. static int vc1_decode_end(AVCodecContext *avctx)
  2937. {
  2938. VC1Context *v = avctx->priv_data;
  2939. av_freep(&v->hrd_rate);
  2940. av_freep(&v->hrd_buffer);
  2941. MPV_common_end(&v->s);
  2942. av_freep(&v->mv_type_mb_plane);
  2943. av_freep(&v->direct_mb_plane);
  2944. av_freep(&v->mb_type_base);
  2945. return 0;
  2946. }
  2947. AVCodec vc1_decoder = {
  2948. "vc1",
  2949. CODEC_TYPE_VIDEO,
  2950. CODEC_ID_VC1,
  2951. sizeof(VC1Context),
  2952. vc1_decode_init,
  2953. NULL,
  2954. vc1_decode_end,
  2955. vc1_decode_frame,
  2956. CODEC_CAP_DELAY,
  2957. NULL
  2958. };
  2959. AVCodec wmv3_decoder = {
  2960. "wmv3",
  2961. CODEC_TYPE_VIDEO,
  2962. CODEC_ID_WMV3,
  2963. sizeof(VC1Context),
  2964. vc1_decode_init,
  2965. NULL,
  2966. vc1_decode_end,
  2967. vc1_decode_frame,
  2968. CODEC_CAP_DELAY,
  2969. NULL
  2970. };