You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

753 lines
35KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... loop filter
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264_loopfilter.c
  23. * H.264 / AVC / MPEG4 part10 loop filter.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/intreadwrite.h"
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h264.h"
  32. #include "mathops.h"
  33. #include "rectangle.h"
  34. //#undef NDEBUG
  35. #include <assert.h>
  36. /* Deblocking filter (p153) */
  37. static const uint8_t alpha_table[52*3] = {
  38. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  39. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  40. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  41. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  42. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  43. 0, 0, 0, 0, 0, 0, 4, 4, 5, 6,
  44. 7, 8, 9, 10, 12, 13, 15, 17, 20, 22,
  45. 25, 28, 32, 36, 40, 45, 50, 56, 63, 71,
  46. 80, 90,101,113,127,144,162,182,203,226,
  47. 255,255,
  48. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  49. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  50. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  51. 255,255,255,255,255,255,255,255,255,255,255,255,255,
  52. };
  53. static const uint8_t beta_table[52*3] = {
  54. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  55. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  56. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  57. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  58. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  59. 0, 0, 0, 0, 0, 0, 2, 2, 2, 3,
  60. 3, 3, 3, 4, 4, 4, 6, 6, 7, 7,
  61. 8, 8, 9, 9, 10, 10, 11, 11, 12, 12,
  62. 13, 13, 14, 14, 15, 15, 16, 16, 17, 17,
  63. 18, 18,
  64. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  65. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  66. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  67. 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18,
  68. };
  69. static const uint8_t tc0_table[52*3][4] = {
  70. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  71. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  72. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  73. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  74. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  75. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  76. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  77. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  78. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  79. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  80. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 },
  81. {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 0 }, {-1, 0, 0, 1 },
  82. {-1, 0, 0, 1 }, {-1, 0, 0, 1 }, {-1, 0, 0, 1 }, {-1, 0, 1, 1 }, {-1, 0, 1, 1 }, {-1, 1, 1, 1 },
  83. {-1, 1, 1, 1 }, {-1, 1, 1, 1 }, {-1, 1, 1, 1 }, {-1, 1, 1, 2 }, {-1, 1, 1, 2 }, {-1, 1, 1, 2 },
  84. {-1, 1, 1, 2 }, {-1, 1, 2, 3 }, {-1, 1, 2, 3 }, {-1, 2, 2, 3 }, {-1, 2, 2, 4 }, {-1, 2, 3, 4 },
  85. {-1, 2, 3, 4 }, {-1, 3, 3, 5 }, {-1, 3, 4, 6 }, {-1, 3, 4, 6 }, {-1, 4, 5, 7 }, {-1, 4, 5, 8 },
  86. {-1, 4, 6, 9 }, {-1, 5, 7,10 }, {-1, 6, 8,11 }, {-1, 6, 8,13 }, {-1, 7,10,14 }, {-1, 8,11,16 },
  87. {-1, 9,12,18 }, {-1,10,13,20 }, {-1,11,15,23 }, {-1,13,17,25 },
  88. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  89. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  90. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  91. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  92. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  93. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  94. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  95. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  96. {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 }, {-1,13,17,25 },
  97. };
  98. static void av_always_inline filter_mb_edgev( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h) {
  99. const unsigned int index_a = qp + h->slice_alpha_c0_offset;
  100. const int alpha = alpha_table[index_a];
  101. const int beta = beta_table[qp + h->slice_beta_offset];
  102. if (alpha ==0 || beta == 0) return;
  103. if( bS[0] < 4 ) {
  104. int8_t tc[4];
  105. tc[0] = tc0_table[index_a][bS[0]];
  106. tc[1] = tc0_table[index_a][bS[1]];
  107. tc[2] = tc0_table[index_a][bS[2]];
  108. tc[3] = tc0_table[index_a][bS[3]];
  109. h->s.dsp.h264_h_loop_filter_luma(pix, stride, alpha, beta, tc);
  110. } else {
  111. h->s.dsp.h264_h_loop_filter_luma_intra(pix, stride, alpha, beta);
  112. }
  113. }
  114. static void av_always_inline filter_mb_edgecv( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
  115. const unsigned int index_a = qp + h->slice_alpha_c0_offset;
  116. const int alpha = alpha_table[index_a];
  117. const int beta = beta_table[qp + h->slice_beta_offset];
  118. if (alpha ==0 || beta == 0) return;
  119. if( bS[0] < 4 ) {
  120. int8_t tc[4];
  121. tc[0] = tc0_table[index_a][bS[0]]+1;
  122. tc[1] = tc0_table[index_a][bS[1]]+1;
  123. tc[2] = tc0_table[index_a][bS[2]]+1;
  124. tc[3] = tc0_table[index_a][bS[3]]+1;
  125. h->s.dsp.h264_h_loop_filter_chroma(pix, stride, alpha, beta, tc);
  126. } else {
  127. h->s.dsp.h264_h_loop_filter_chroma_intra(pix, stride, alpha, beta);
  128. }
  129. }
  130. static void filter_mb_mbaff_edgev( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int bsi, int qp ) {
  131. int i;
  132. int index_a = qp + h->slice_alpha_c0_offset;
  133. int alpha = alpha_table[index_a];
  134. int beta = beta_table[qp + h->slice_beta_offset];
  135. for( i = 0; i < 8; i++, pix += stride) {
  136. const int bS_index = (i >> 1) * bsi;
  137. if( bS[bS_index] == 0 ) {
  138. continue;
  139. }
  140. if( bS[bS_index] < 4 ) {
  141. const int tc0 = tc0_table[index_a][bS[bS_index]];
  142. const int p0 = pix[-1];
  143. const int p1 = pix[-2];
  144. const int p2 = pix[-3];
  145. const int q0 = pix[0];
  146. const int q1 = pix[1];
  147. const int q2 = pix[2];
  148. if( FFABS( p0 - q0 ) < alpha &&
  149. FFABS( p1 - p0 ) < beta &&
  150. FFABS( q1 - q0 ) < beta ) {
  151. int tc = tc0;
  152. int i_delta;
  153. if( FFABS( p2 - p0 ) < beta ) {
  154. if(tc0)
  155. pix[-2] = p1 + av_clip( ( p2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( p1 << 1 ) ) >> 1, -tc0, tc0 );
  156. tc++;
  157. }
  158. if( FFABS( q2 - q0 ) < beta ) {
  159. if(tc0)
  160. pix[1] = q1 + av_clip( ( q2 + ( ( p0 + q0 + 1 ) >> 1 ) - ( q1 << 1 ) ) >> 1, -tc0, tc0 );
  161. tc++;
  162. }
  163. i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  164. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  165. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  166. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  167. }
  168. }else{
  169. const int p0 = pix[-1];
  170. const int p1 = pix[-2];
  171. const int p2 = pix[-3];
  172. const int q0 = pix[0];
  173. const int q1 = pix[1];
  174. const int q2 = pix[2];
  175. if( FFABS( p0 - q0 ) < alpha &&
  176. FFABS( p1 - p0 ) < beta &&
  177. FFABS( q1 - q0 ) < beta ) {
  178. if(FFABS( p0 - q0 ) < (( alpha >> 2 ) + 2 )){
  179. if( FFABS( p2 - p0 ) < beta)
  180. {
  181. const int p3 = pix[-4];
  182. /* p0', p1', p2' */
  183. pix[-1] = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3;
  184. pix[-2] = ( p2 + p1 + p0 + q0 + 2 ) >> 2;
  185. pix[-3] = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3;
  186. } else {
  187. /* p0' */
  188. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  189. }
  190. if( FFABS( q2 - q0 ) < beta)
  191. {
  192. const int q3 = pix[3];
  193. /* q0', q1', q2' */
  194. pix[0] = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3;
  195. pix[1] = ( p0 + q0 + q1 + q2 + 2 ) >> 2;
  196. pix[2] = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3;
  197. } else {
  198. /* q0' */
  199. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  200. }
  201. }else{
  202. /* p0', q0' */
  203. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2;
  204. pix[ 0] = ( 2*q1 + q0 + p1 + 2 ) >> 2;
  205. }
  206. tprintf(h->s.avctx, "filter_mb_mbaff_edgev i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, p2, p1, p0, q0, q1, q2, pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  207. }
  208. }
  209. }
  210. }
  211. static void filter_mb_mbaff_edgecv( H264Context *h, uint8_t *pix, int stride, int16_t bS[4], int bsi, int qp ) {
  212. int i;
  213. int index_a = qp + h->slice_alpha_c0_offset;
  214. int alpha = alpha_table[index_a];
  215. int beta = beta_table[qp + h->slice_beta_offset];
  216. for( i = 0; i < 4; i++, pix += stride) {
  217. const int bS_index = i*bsi;
  218. if( bS[bS_index] == 0 ) {
  219. continue;
  220. }
  221. if( bS[bS_index] < 4 ) {
  222. const int tc = tc0_table[index_a][bS[bS_index]] + 1;
  223. const int p0 = pix[-1];
  224. const int p1 = pix[-2];
  225. const int q0 = pix[0];
  226. const int q1 = pix[1];
  227. if( FFABS( p0 - q0 ) < alpha &&
  228. FFABS( p1 - p0 ) < beta &&
  229. FFABS( q1 - q0 ) < beta ) {
  230. const int i_delta = av_clip( (((q0 - p0 ) << 2) + (p1 - q1) + 4) >> 3, -tc, tc );
  231. pix[-1] = av_clip_uint8( p0 + i_delta ); /* p0' */
  232. pix[0] = av_clip_uint8( q0 - i_delta ); /* q0' */
  233. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d, qp:%d, indexA:%d, alpha:%d, beta:%d, tc:%d\n# bS:%d -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x]\n", i, qp[qp_index], index_a, alpha, beta, tc, bS[bS_index], pix[-3], p1, p0, q0, q1, pix[2], p1, pix[-1], pix[0], q1);
  234. }
  235. }else{
  236. const int p0 = pix[-1];
  237. const int p1 = pix[-2];
  238. const int q0 = pix[0];
  239. const int q1 = pix[1];
  240. if( FFABS( p0 - q0 ) < alpha &&
  241. FFABS( p1 - p0 ) < beta &&
  242. FFABS( q1 - q0 ) < beta ) {
  243. pix[-1] = ( 2*p1 + p0 + q1 + 2 ) >> 2; /* p0' */
  244. pix[0] = ( 2*q1 + q0 + p1 + 2 ) >> 2; /* q0' */
  245. tprintf(h->s.avctx, "filter_mb_mbaff_edgecv i:%d\n# bS:4 -> [%02x, %02x, %02x, %02x, %02x, %02x] =>[%02x, %02x, %02x, %02x, %02x, %02x]\n", i, pix[-3], p1, p0, q0, q1, pix[2], pix[-3], pix[-2], pix[-1], pix[0], pix[1], pix[2]);
  246. }
  247. }
  248. }
  249. }
  250. static void av_always_inline filter_mb_edgeh( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
  251. const unsigned int index_a = qp + h->slice_alpha_c0_offset;
  252. const int alpha = alpha_table[index_a];
  253. const int beta = beta_table[qp + h->slice_beta_offset];
  254. if (alpha ==0 || beta == 0) return;
  255. if( bS[0] < 4 ) {
  256. int8_t tc[4];
  257. tc[0] = tc0_table[index_a][bS[0]];
  258. tc[1] = tc0_table[index_a][bS[1]];
  259. tc[2] = tc0_table[index_a][bS[2]];
  260. tc[3] = tc0_table[index_a][bS[3]];
  261. h->s.dsp.h264_v_loop_filter_luma(pix, stride, alpha, beta, tc);
  262. } else {
  263. h->s.dsp.h264_v_loop_filter_luma_intra(pix, stride, alpha, beta);
  264. }
  265. }
  266. static void av_always_inline filter_mb_edgech( uint8_t *pix, int stride, int16_t bS[4], unsigned int qp, H264Context *h ) {
  267. const unsigned int index_a = qp + h->slice_alpha_c0_offset;
  268. const int alpha = alpha_table[index_a];
  269. const int beta = beta_table[qp + h->slice_beta_offset];
  270. if (alpha ==0 || beta == 0) return;
  271. if( bS[0] < 4 ) {
  272. int8_t tc[4];
  273. tc[0] = tc0_table[index_a][bS[0]]+1;
  274. tc[1] = tc0_table[index_a][bS[1]]+1;
  275. tc[2] = tc0_table[index_a][bS[2]]+1;
  276. tc[3] = tc0_table[index_a][bS[3]]+1;
  277. h->s.dsp.h264_v_loop_filter_chroma(pix, stride, alpha, beta, tc);
  278. } else {
  279. h->s.dsp.h264_v_loop_filter_chroma_intra(pix, stride, alpha, beta);
  280. }
  281. }
  282. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  283. MpegEncContext * const s = &h->s;
  284. int mb_xy;
  285. int mb_type, left_type;
  286. int qp, qp0, qp1, qpc, qpc0, qpc1, qp_thresh;
  287. mb_xy = h->mb_xy;
  288. if(!h->top_type || !s->dsp.h264_loop_filter_strength || h->pps.chroma_qp_diff) {
  289. ff_h264_filter_mb(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize);
  290. return;
  291. }
  292. assert(!FRAME_MBAFF);
  293. left_type= h->left_type[0];
  294. mb_type = s->current_picture.mb_type[mb_xy];
  295. qp = s->current_picture.qscale_table[mb_xy];
  296. qp0 = s->current_picture.qscale_table[mb_xy-1];
  297. qp1 = s->current_picture.qscale_table[h->top_mb_xy];
  298. qpc = get_chroma_qp( h, 0, qp );
  299. qpc0 = get_chroma_qp( h, 0, qp0 );
  300. qpc1 = get_chroma_qp( h, 0, qp1 );
  301. qp0 = (qp + qp0 + 1) >> 1;
  302. qp1 = (qp + qp1 + 1) >> 1;
  303. qpc0 = (qpc + qpc0 + 1) >> 1;
  304. qpc1 = (qpc + qpc1 + 1) >> 1;
  305. qp_thresh = 15+52 - h->slice_alpha_c0_offset;
  306. if(qp <= qp_thresh && qp0 <= qp_thresh && qp1 <= qp_thresh &&
  307. qpc <= qp_thresh && qpc0 <= qp_thresh && qpc1 <= qp_thresh)
  308. return;
  309. if( IS_INTRA(mb_type) ) {
  310. int16_t bS4[4] = {4,4,4,4};
  311. int16_t bS3[4] = {3,3,3,3};
  312. int16_t *bSH = FIELD_PICTURE ? bS3 : bS4;
  313. if(left_type)
  314. filter_mb_edgev( &img_y[4*0], linesize, bS4, qp0, h);
  315. if( IS_8x8DCT(mb_type) ) {
  316. filter_mb_edgev( &img_y[4*2], linesize, bS3, qp, h);
  317. filter_mb_edgeh( &img_y[4*0*linesize], linesize, bSH, qp1, h);
  318. filter_mb_edgeh( &img_y[4*2*linesize], linesize, bS3, qp, h);
  319. } else {
  320. filter_mb_edgev( &img_y[4*1], linesize, bS3, qp, h);
  321. filter_mb_edgev( &img_y[4*2], linesize, bS3, qp, h);
  322. filter_mb_edgev( &img_y[4*3], linesize, bS3, qp, h);
  323. filter_mb_edgeh( &img_y[4*0*linesize], linesize, bSH, qp1, h);
  324. filter_mb_edgeh( &img_y[4*1*linesize], linesize, bS3, qp, h);
  325. filter_mb_edgeh( &img_y[4*2*linesize], linesize, bS3, qp, h);
  326. filter_mb_edgeh( &img_y[4*3*linesize], linesize, bS3, qp, h);
  327. }
  328. if(left_type){
  329. filter_mb_edgecv( &img_cb[2*0], uvlinesize, bS4, qpc0, h);
  330. filter_mb_edgecv( &img_cr[2*0], uvlinesize, bS4, qpc0, h);
  331. }
  332. filter_mb_edgecv( &img_cb[2*2], uvlinesize, bS3, qpc, h);
  333. filter_mb_edgecv( &img_cr[2*2], uvlinesize, bS3, qpc, h);
  334. filter_mb_edgech( &img_cb[2*0*uvlinesize], uvlinesize, bSH, qpc1, h);
  335. filter_mb_edgech( &img_cb[2*2*uvlinesize], uvlinesize, bS3, qpc, h);
  336. filter_mb_edgech( &img_cr[2*0*uvlinesize], uvlinesize, bSH, qpc1, h);
  337. filter_mb_edgech( &img_cr[2*2*uvlinesize], uvlinesize, bS3, qpc, h);
  338. return;
  339. } else {
  340. LOCAL_ALIGNED_8(int16_t, bS, [2], [4][4]);
  341. int edges;
  342. if( IS_8x8DCT(mb_type) && (h->cbp&7) == 7 ) {
  343. edges = 4;
  344. AV_WN64A(bS[0][0], 0x0002000200020002ULL);
  345. AV_WN64A(bS[0][2], 0x0002000200020002ULL);
  346. AV_WN64A(bS[1][0], 0x0002000200020002ULL);
  347. AV_WN64A(bS[1][2], 0x0002000200020002ULL);
  348. } else {
  349. int mask_edge1 = (3*(((5*mb_type)>>5)&1)) | (mb_type>>4); //(mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : (mb_type & MB_TYPE_16x8) ? 1 : 0;
  350. int mask_edge0 = 3*((mask_edge1>>1) & ((5*left_type)>>5)&1); // (mb_type & (MB_TYPE_16x16 | MB_TYPE_8x16)) && (h->left_type[0] & (MB_TYPE_16x16 | MB_TYPE_8x16)) ? 3 : 0;
  351. int step = 1+(mb_type>>24); //IS_8x8DCT(mb_type) ? 2 : 1;
  352. edges = 4 - 3*((mb_type>>3) & !(h->cbp & 15)); //(mb_type & MB_TYPE_16x16) && !(h->cbp & 15) ? 1 : 4;
  353. s->dsp.h264_loop_filter_strength( bS, h->non_zero_count_cache, h->ref_cache, h->mv_cache,
  354. h->list_count==2, edges, step, mask_edge0, mask_edge1, FIELD_PICTURE);
  355. }
  356. if( IS_INTRA(left_type) )
  357. AV_WN64A(bS[0][0], 0x0004000400040004ULL);
  358. if( IS_INTRA(h->top_type) )
  359. AV_WN64A(bS[1][0], FIELD_PICTURE ? 0x0003000300030003ULL : 0x0004000400040004ULL);
  360. #define FILTER(hv,dir,edge)\
  361. if(AV_RN64A(bS[dir][edge])) { \
  362. filter_mb_edge##hv( &img_y[4*edge*(dir?linesize:1)], linesize, bS[dir][edge], edge ? qp : qp##dir, h );\
  363. if(!(edge&1)) {\
  364. filter_mb_edgec##hv( &img_cb[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir, h );\
  365. filter_mb_edgec##hv( &img_cr[2*edge*(dir?uvlinesize:1)], uvlinesize, bS[dir][edge], edge ? qpc : qpc##dir, h );\
  366. }\
  367. }
  368. if(left_type)
  369. FILTER(v,0,0);
  370. if( edges == 1 ) {
  371. FILTER(h,1,0);
  372. } else if( IS_8x8DCT(mb_type) ) {
  373. FILTER(v,0,2);
  374. FILTER(h,1,0);
  375. FILTER(h,1,2);
  376. } else {
  377. FILTER(v,0,1);
  378. FILTER(v,0,2);
  379. FILTER(v,0,3);
  380. FILTER(h,1,0);
  381. FILTER(h,1,1);
  382. FILTER(h,1,2);
  383. FILTER(h,1,3);
  384. }
  385. #undef FILTER
  386. }
  387. }
  388. static int check_mv(H264Context *h, long b_idx, long bn_idx, int mvy_limit){
  389. int v;
  390. v= h->ref_cache[0][b_idx] != h->ref_cache[0][bn_idx];
  391. if(!v && h->ref_cache[0][b_idx]!=-1)
  392. v= h->mv_cache[0][b_idx][0] - h->mv_cache[0][bn_idx][0] + 3 >= 7U |
  393. FFABS( h->mv_cache[0][b_idx][1] - h->mv_cache[0][bn_idx][1] ) >= mvy_limit;
  394. if(h->list_count==2){
  395. if(!v)
  396. v = h->ref_cache[1][b_idx] != h->ref_cache[1][bn_idx] |
  397. h->mv_cache[1][b_idx][0] - h->mv_cache[1][bn_idx][0] + 3 >= 7U |
  398. FFABS( h->mv_cache[1][b_idx][1] - h->mv_cache[1][bn_idx][1] ) >= mvy_limit;
  399. if(v){
  400. if(h->ref_cache[0][b_idx] != h->ref_cache[1][bn_idx] |
  401. h->ref_cache[1][b_idx] != h->ref_cache[0][bn_idx])
  402. return 1;
  403. return
  404. h->mv_cache[0][b_idx][0] - h->mv_cache[1][bn_idx][0] + 3 >= 7U |
  405. FFABS( h->mv_cache[0][b_idx][1] - h->mv_cache[1][bn_idx][1] ) >= mvy_limit |
  406. h->mv_cache[1][b_idx][0] - h->mv_cache[0][bn_idx][0] + 3 >= 7U |
  407. FFABS( h->mv_cache[1][b_idx][1] - h->mv_cache[0][bn_idx][1] ) >= mvy_limit;
  408. }
  409. }
  410. return v;
  411. }
  412. static av_always_inline void filter_mb_dir(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize, int mb_xy, int mb_type, int mvy_limit, int first_vertical_edge_done, int dir) {
  413. MpegEncContext * const s = &h->s;
  414. int edge;
  415. const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy;
  416. const int mbm_type = dir == 0 ? h->left_type[0] : h->top_type;
  417. // how often to recheck mv-based bS when iterating between edges
  418. static const uint8_t mask_edge_tab[2][8]={{0,3,3,3,1,1,1,1},
  419. {0,3,1,1,3,3,3,3}};
  420. const int mask_edge = mask_edge_tab[dir][(mb_type>>3)&7];
  421. const int edges = mask_edge== 3 && !(h->cbp&15) ? 1 : 4;
  422. // how often to recheck mv-based bS when iterating along each edge
  423. const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir));
  424. if(mbm_type && !first_vertical_edge_done){
  425. if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0)
  426. && IS_INTERLACED(mbm_type&~mb_type)
  427. ) {
  428. // This is a special case in the norm where the filtering must
  429. // be done twice (one each of the field) even if we are in a
  430. // frame macroblock.
  431. //
  432. unsigned int tmp_linesize = 2 * linesize;
  433. unsigned int tmp_uvlinesize = 2 * uvlinesize;
  434. int mbn_xy = mb_xy - 2 * s->mb_stride;
  435. int j;
  436. for(j=0; j<2; j++, mbn_xy += s->mb_stride){
  437. DECLARE_ALIGNED(8, int16_t, bS)[4];
  438. int qp;
  439. if( IS_INTRA(mb_type|s->current_picture.mb_type[mbn_xy]) ) {
  440. AV_WN64A(bS, 0x0003000300030003ULL);
  441. } else {
  442. if(!CABAC && IS_8x8DCT(s->current_picture.mb_type[mbn_xy])){
  443. bS[0]= 1+((h->cbp_table[mbn_xy] & 4)||h->non_zero_count_cache[scan8[0]+0]);
  444. bS[1]= 1+((h->cbp_table[mbn_xy] & 4)||h->non_zero_count_cache[scan8[0]+1]);
  445. bS[2]= 1+((h->cbp_table[mbn_xy] & 8)||h->non_zero_count_cache[scan8[0]+2]);
  446. bS[3]= 1+((h->cbp_table[mbn_xy] & 8)||h->non_zero_count_cache[scan8[0]+3]);
  447. }else{
  448. const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy] + 4+3*8;
  449. int i;
  450. for( i = 0; i < 4; i++ ) {
  451. bS[i] = 1 + !!(h->non_zero_count_cache[scan8[0]+i] | mbn_nnz[i]);
  452. }
  453. }
  454. }
  455. // Do not use s->qscale as luma quantizer because it has not the same
  456. // value in IPCM macroblocks.
  457. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1;
  458. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize);
  459. { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  460. filter_mb_edgeh( &img_y[j*linesize], tmp_linesize, bS, qp, h );
  461. filter_mb_edgech( &img_cb[j*uvlinesize], tmp_uvlinesize, bS,
  462. ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h);
  463. filter_mb_edgech( &img_cr[j*uvlinesize], tmp_uvlinesize, bS,
  464. ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h);
  465. }
  466. }else{
  467. DECLARE_ALIGNED(8, int16_t, bS)[4];
  468. int qp;
  469. if( IS_INTRA(mb_type|mbm_type)) {
  470. AV_WN64A(bS, 0x0003000300030003ULL);
  471. if ( (!IS_INTERLACED(mb_type|mbm_type))
  472. || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0))
  473. )
  474. AV_WN64A(bS, 0x0004000400040004ULL);
  475. } else {
  476. int i;
  477. int mv_done;
  478. if( dir && FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbm_type)) {
  479. AV_WN64A(bS, 0x0001000100010001ULL);
  480. mv_done = 1;
  481. }
  482. else if( mask_par0 && ((mbm_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) {
  483. int b_idx= 8 + 4;
  484. int bn_idx= b_idx - (dir ? 8:1);
  485. bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, 8 + 4, bn_idx, mvy_limit);
  486. mv_done = 1;
  487. }
  488. else
  489. mv_done = 0;
  490. for( i = 0; i < 4; i++ ) {
  491. int x = dir == 0 ? 0 : i;
  492. int y = dir == 0 ? i : 0;
  493. int b_idx= 8 + 4 + x + 8*y;
  494. int bn_idx= b_idx - (dir ? 8:1);
  495. if( h->non_zero_count_cache[b_idx] |
  496. h->non_zero_count_cache[bn_idx] ) {
  497. bS[i] = 2;
  498. }
  499. else if(!mv_done)
  500. {
  501. bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit);
  502. }
  503. }
  504. }
  505. /* Filter edge */
  506. // Do not use s->qscale as luma quantizer because it has not the same
  507. // value in IPCM macroblocks.
  508. if(bS[0]+bS[1]+bS[2]+bS[3]){
  509. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbm_xy] + 1 ) >> 1;
  510. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
  511. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  512. //{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  513. if( dir == 0 ) {
  514. filter_mb_edgev( &img_y[0], linesize, bS, qp, h );
  515. {
  516. int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  517. filter_mb_edgecv( &img_cb[0], uvlinesize, bS, qp, h);
  518. if(h->pps.chroma_qp_diff)
  519. qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  520. filter_mb_edgecv( &img_cr[0], uvlinesize, bS, qp, h);
  521. }
  522. } else {
  523. filter_mb_edgeh( &img_y[0], linesize, bS, qp, h );
  524. {
  525. int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  526. filter_mb_edgech( &img_cb[0], uvlinesize, bS, qp, h);
  527. if(h->pps.chroma_qp_diff)
  528. qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1;
  529. filter_mb_edgech( &img_cr[0], uvlinesize, bS, qp, h);
  530. }
  531. }
  532. }
  533. }
  534. }
  535. /* Calculate bS */
  536. for( edge = 1; edge < edges; edge++ ) {
  537. DECLARE_ALIGNED(8, int16_t, bS)[4];
  538. int qp;
  539. if( IS_8x8DCT(mb_type & (edge<<24)) ) // (edge&1) && IS_8x8DCT(mb_type)
  540. continue;
  541. if( IS_INTRA(mb_type)) {
  542. AV_WN64A(bS, 0x0003000300030003ULL);
  543. } else {
  544. int i;
  545. int mv_done;
  546. if( edge & mask_edge ) {
  547. AV_ZERO64(bS);
  548. mv_done = 1;
  549. }
  550. else if( mask_par0 ) {
  551. int b_idx= 8 + 4 + edge * (dir ? 8:1);
  552. int bn_idx= b_idx - (dir ? 8:1);
  553. bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, b_idx, bn_idx, mvy_limit);
  554. mv_done = 1;
  555. }
  556. else
  557. mv_done = 0;
  558. for( i = 0; i < 4; i++ ) {
  559. int x = dir == 0 ? edge : i;
  560. int y = dir == 0 ? i : edge;
  561. int b_idx= 8 + 4 + x + 8*y;
  562. int bn_idx= b_idx - (dir ? 8:1);
  563. if( h->non_zero_count_cache[b_idx] |
  564. h->non_zero_count_cache[bn_idx] ) {
  565. bS[i] = 2;
  566. }
  567. else if(!mv_done)
  568. {
  569. bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit);
  570. }
  571. }
  572. if(bS[0]+bS[1]+bS[2]+bS[3] == 0)
  573. continue;
  574. }
  575. /* Filter edge */
  576. // Do not use s->qscale as luma quantizer because it has not the same
  577. // value in IPCM macroblocks.
  578. qp = s->current_picture.qscale_table[mb_xy];
  579. //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]);
  580. tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize);
  581. //{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  582. if( dir == 0 ) {
  583. filter_mb_edgev( &img_y[4*edge], linesize, bS, qp, h );
  584. if( (edge&1) == 0 ) {
  585. filter_mb_edgecv( &img_cb[2*edge], uvlinesize, bS, h->chroma_qp[0], h);
  586. filter_mb_edgecv( &img_cr[2*edge], uvlinesize, bS, h->chroma_qp[1], h);
  587. }
  588. } else {
  589. filter_mb_edgeh( &img_y[4*edge*linesize], linesize, bS, qp, h );
  590. if( (edge&1) == 0 ) {
  591. filter_mb_edgech( &img_cb[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[0], h);
  592. filter_mb_edgech( &img_cr[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[1], h);
  593. }
  594. }
  595. }
  596. }
  597. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize) {
  598. MpegEncContext * const s = &h->s;
  599. const int mb_xy= mb_x + mb_y*s->mb_stride;
  600. const int mb_type = s->current_picture.mb_type[mb_xy];
  601. const int mvy_limit = IS_INTERLACED(mb_type) ? 2 : 4;
  602. int first_vertical_edge_done = 0;
  603. av_unused int dir;
  604. if (FRAME_MBAFF
  605. // and current and left pair do not have the same interlaced type
  606. && IS_INTERLACED(mb_type^h->left_type[0])
  607. // and left mb is in available to us
  608. && h->left_type[0]) {
  609. /* First vertical edge is different in MBAFF frames
  610. * There are 8 different bS to compute and 2 different Qp
  611. */
  612. DECLARE_ALIGNED(8, int16_t, bS)[8];
  613. int qp[2];
  614. int bqp[2];
  615. int rqp[2];
  616. int mb_qp, mbn0_qp, mbn1_qp;
  617. int i;
  618. first_vertical_edge_done = 1;
  619. if( IS_INTRA(mb_type) ) {
  620. AV_WN64A(&bS[0], 0x0004000400040004ULL);
  621. AV_WN64A(&bS[4], 0x0004000400040004ULL);
  622. } else {
  623. static const uint8_t offset[2][2][8]={
  624. {
  625. {7+8*0, 7+8*0, 7+8*0, 7+8*0, 7+8*1, 7+8*1, 7+8*1, 7+8*1},
  626. {7+8*2, 7+8*2, 7+8*2, 7+8*2, 7+8*3, 7+8*3, 7+8*3, 7+8*3},
  627. },{
  628. {7+8*0, 7+8*1, 7+8*2, 7+8*3, 7+8*0, 7+8*1, 7+8*2, 7+8*3},
  629. {7+8*0, 7+8*1, 7+8*2, 7+8*3, 7+8*0, 7+8*1, 7+8*2, 7+8*3},
  630. }
  631. };
  632. const uint8_t *off= offset[MB_FIELD][mb_y&1];
  633. for( i = 0; i < 8; i++ ) {
  634. int j= MB_FIELD ? i>>2 : i&1;
  635. int mbn_xy = h->left_mb_xy[j];
  636. int mbn_type= h->left_type[j];
  637. if( IS_INTRA( mbn_type ) )
  638. bS[i] = 4;
  639. else{
  640. bS[i] = 1 + !!(h->non_zero_count_cache[12+8*(i>>1)] |
  641. ((!h->pps.cabac && IS_8x8DCT(mbn_type)) ?
  642. (h->cbp_table[mbn_xy] & ((MB_FIELD ? (i&2) : (mb_y&1)) ? 8 : 2))
  643. :
  644. h->non_zero_count[mbn_xy][ off[i] ]));
  645. }
  646. }
  647. }
  648. mb_qp = s->current_picture.qscale_table[mb_xy];
  649. mbn0_qp = s->current_picture.qscale_table[h->left_mb_xy[0]];
  650. mbn1_qp = s->current_picture.qscale_table[h->left_mb_xy[1]];
  651. qp[0] = ( mb_qp + mbn0_qp + 1 ) >> 1;
  652. bqp[0] = ( get_chroma_qp( h, 0, mb_qp ) +
  653. get_chroma_qp( h, 0, mbn0_qp ) + 1 ) >> 1;
  654. rqp[0] = ( get_chroma_qp( h, 1, mb_qp ) +
  655. get_chroma_qp( h, 1, mbn0_qp ) + 1 ) >> 1;
  656. qp[1] = ( mb_qp + mbn1_qp + 1 ) >> 1;
  657. bqp[1] = ( get_chroma_qp( h, 0, mb_qp ) +
  658. get_chroma_qp( h, 0, mbn1_qp ) + 1 ) >> 1;
  659. rqp[1] = ( get_chroma_qp( h, 1, mb_qp ) +
  660. get_chroma_qp( h, 1, mbn1_qp ) + 1 ) >> 1;
  661. /* Filter edge */
  662. tprintf(s->avctx, "filter mb:%d/%d MBAFF, QPy:%d/%d, QPb:%d/%d QPr:%d/%d ls:%d uvls:%d", mb_x, mb_y, qp[0], qp[1], bqp[0], bqp[1], rqp[0], rqp[1], linesize, uvlinesize);
  663. { int i; for (i = 0; i < 8; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); }
  664. if(MB_FIELD){
  665. filter_mb_mbaff_edgev ( h, img_y , linesize, bS , 1, qp [0] );
  666. filter_mb_mbaff_edgev ( h, img_y + 8* linesize, linesize, bS+4, 1, qp [1] );
  667. filter_mb_mbaff_edgecv( h, img_cb, uvlinesize, bS , 1, bqp[0] );
  668. filter_mb_mbaff_edgecv( h, img_cb + 4*uvlinesize, uvlinesize, bS+4, 1, bqp[1] );
  669. filter_mb_mbaff_edgecv( h, img_cr, uvlinesize, bS , 1, rqp[0] );
  670. filter_mb_mbaff_edgecv( h, img_cr + 4*uvlinesize, uvlinesize, bS+4, 1, rqp[1] );
  671. }else{
  672. filter_mb_mbaff_edgev ( h, img_y , 2* linesize, bS , 2, qp [0] );
  673. filter_mb_mbaff_edgev ( h, img_y + linesize, 2* linesize, bS+1, 2, qp [1] );
  674. filter_mb_mbaff_edgecv( h, img_cb, 2*uvlinesize, bS , 2, bqp[0] );
  675. filter_mb_mbaff_edgecv( h, img_cb + uvlinesize, 2*uvlinesize, bS+1, 2, bqp[1] );
  676. filter_mb_mbaff_edgecv( h, img_cr, 2*uvlinesize, bS , 2, rqp[0] );
  677. filter_mb_mbaff_edgecv( h, img_cr + uvlinesize, 2*uvlinesize, bS+1, 2, rqp[1] );
  678. }
  679. }
  680. #if CONFIG_SMALL
  681. for( dir = 0; dir < 2; dir++ )
  682. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, dir ? 0 : first_vertical_edge_done, dir);
  683. #else
  684. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, first_vertical_edge_done, 0);
  685. filter_mb_dir(h, mb_x, mb_y, img_y, img_cb, img_cr, linesize, uvlinesize, mb_xy, mb_type, mvy_limit, 0, 1);
  686. #endif
  687. }