You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1514 lines
56KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.h
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "dsputil.h"
  30. #include "cabac.h"
  31. #include "mpegvideo.h"
  32. #include "h264pred.h"
  33. #include "rectangle.h"
  34. #define interlaced_dct interlaced_dct_is_a_bad_name
  35. #define mb_intra mb_intra_is_not_initialized_see_mb_type
  36. #define LUMA_DC_BLOCK_INDEX 25
  37. #define CHROMA_DC_BLOCK_INDEX 26
  38. #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
  39. #define COEFF_TOKEN_VLC_BITS 8
  40. #define TOTAL_ZEROS_VLC_BITS 9
  41. #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
  42. #define RUN_VLC_BITS 3
  43. #define RUN7_VLC_BITS 6
  44. #define MAX_SPS_COUNT 32
  45. #define MAX_PPS_COUNT 256
  46. #define MAX_MMCO_COUNT 66
  47. #define MAX_DELAYED_PIC_COUNT 16
  48. /* Compiling in interlaced support reduces the speed
  49. * of progressive decoding by about 2%. */
  50. #define ALLOW_INTERLACE
  51. #define ALLOW_NOCHROMA
  52. #define FMO 0
  53. /**
  54. * The maximum number of slices supported by the decoder.
  55. * must be a power of 2
  56. */
  57. #define MAX_SLICES 16
  58. #ifdef ALLOW_INTERLACE
  59. #define MB_MBAFF h->mb_mbaff
  60. #define MB_FIELD h->mb_field_decoding_flag
  61. #define FRAME_MBAFF h->mb_aff_frame
  62. #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
  63. #else
  64. #define MB_MBAFF 0
  65. #define MB_FIELD 0
  66. #define FRAME_MBAFF 0
  67. #define FIELD_PICTURE 0
  68. #undef IS_INTERLACED
  69. #define IS_INTERLACED(mb_type) 0
  70. #endif
  71. #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
  72. #ifdef ALLOW_NOCHROMA
  73. #define CHROMA h->sps.chroma_format_idc
  74. #else
  75. #define CHROMA 1
  76. #endif
  77. #ifndef CABAC
  78. #define CABAC h->pps.cabac
  79. #endif
  80. #define EXTENDED_SAR 255
  81. #define MB_TYPE_REF0 MB_TYPE_ACPRED //dirty but it fits in 16 bit
  82. #define MB_TYPE_8x8DCT 0x01000000
  83. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  84. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  85. /**
  86. * Value of Picture.reference when Picture is not a reference picture, but
  87. * is held for delayed output.
  88. */
  89. #define DELAYED_PIC_REF 4
  90. /* NAL unit types */
  91. enum {
  92. NAL_SLICE=1,
  93. NAL_DPA,
  94. NAL_DPB,
  95. NAL_DPC,
  96. NAL_IDR_SLICE,
  97. NAL_SEI,
  98. NAL_SPS,
  99. NAL_PPS,
  100. NAL_AUD,
  101. NAL_END_SEQUENCE,
  102. NAL_END_STREAM,
  103. NAL_FILLER_DATA,
  104. NAL_SPS_EXT,
  105. NAL_AUXILIARY_SLICE=19
  106. };
  107. /**
  108. * SEI message types
  109. */
  110. typedef enum {
  111. SEI_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  112. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  113. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  114. SEI_TYPE_RECOVERY_POINT = 6 ///< recovery point (frame # to decoder sync)
  115. } SEI_Type;
  116. /**
  117. * pic_struct in picture timing SEI message
  118. */
  119. typedef enum {
  120. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  121. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  122. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  123. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  124. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  125. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  126. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  127. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  128. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  129. } SEI_PicStructType;
  130. /**
  131. * Sequence parameter set
  132. */
  133. typedef struct SPS{
  134. int profile_idc;
  135. int level_idc;
  136. int chroma_format_idc;
  137. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  138. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  139. int poc_type; ///< pic_order_cnt_type
  140. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  141. int delta_pic_order_always_zero_flag;
  142. int offset_for_non_ref_pic;
  143. int offset_for_top_to_bottom_field;
  144. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  145. int ref_frame_count; ///< num_ref_frames
  146. int gaps_in_frame_num_allowed_flag;
  147. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  148. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  149. int frame_mbs_only_flag;
  150. int mb_aff; ///<mb_adaptive_frame_field_flag
  151. int direct_8x8_inference_flag;
  152. int crop; ///< frame_cropping_flag
  153. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  154. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  155. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  156. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  157. int vui_parameters_present_flag;
  158. AVRational sar;
  159. int video_signal_type_present_flag;
  160. int full_range;
  161. int colour_description_present_flag;
  162. enum AVColorPrimaries color_primaries;
  163. enum AVColorTransferCharacteristic color_trc;
  164. enum AVColorSpace colorspace;
  165. int timing_info_present_flag;
  166. uint32_t num_units_in_tick;
  167. uint32_t time_scale;
  168. int fixed_frame_rate_flag;
  169. short offset_for_ref_frame[256]; //FIXME dyn aloc?
  170. int bitstream_restriction_flag;
  171. int num_reorder_frames;
  172. int scaling_matrix_present;
  173. uint8_t scaling_matrix4[6][16];
  174. uint8_t scaling_matrix8[2][64];
  175. int nal_hrd_parameters_present_flag;
  176. int vcl_hrd_parameters_present_flag;
  177. int pic_struct_present_flag;
  178. int time_offset_length;
  179. int cpb_cnt; ///< See H.264 E.1.2
  180. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
  181. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  182. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  183. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  184. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  185. int residual_color_transform_flag; ///< residual_colour_transform_flag
  186. }SPS;
  187. /**
  188. * Picture parameter set
  189. */
  190. typedef struct PPS{
  191. unsigned int sps_id;
  192. int cabac; ///< entropy_coding_mode_flag
  193. int pic_order_present; ///< pic_order_present_flag
  194. int slice_group_count; ///< num_slice_groups_minus1 + 1
  195. int mb_slice_group_map_type;
  196. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  197. int weighted_pred; ///< weighted_pred_flag
  198. int weighted_bipred_idc;
  199. int init_qp; ///< pic_init_qp_minus26 + 26
  200. int init_qs; ///< pic_init_qs_minus26 + 26
  201. int chroma_qp_index_offset[2];
  202. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  203. int constrained_intra_pred; ///< constrained_intra_pred_flag
  204. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  205. int transform_8x8_mode; ///< transform_8x8_mode_flag
  206. uint8_t scaling_matrix4[6][16];
  207. uint8_t scaling_matrix8[2][64];
  208. uint8_t chroma_qp_table[2][64]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  209. int chroma_qp_diff;
  210. }PPS;
  211. /**
  212. * Memory management control operation opcode.
  213. */
  214. typedef enum MMCOOpcode{
  215. MMCO_END=0,
  216. MMCO_SHORT2UNUSED,
  217. MMCO_LONG2UNUSED,
  218. MMCO_SHORT2LONG,
  219. MMCO_SET_MAX_LONG,
  220. MMCO_RESET,
  221. MMCO_LONG,
  222. } MMCOOpcode;
  223. /**
  224. * Memory management control operation.
  225. */
  226. typedef struct MMCO{
  227. MMCOOpcode opcode;
  228. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  229. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  230. } MMCO;
  231. /**
  232. * H264Context
  233. */
  234. typedef struct H264Context{
  235. MpegEncContext s;
  236. int chroma_qp[2]; //QPc
  237. int qp_thresh; ///< QP threshold to skip loopfilter
  238. int prev_mb_skipped;
  239. int next_mb_skipped;
  240. //prediction stuff
  241. int chroma_pred_mode;
  242. int intra16x16_pred_mode;
  243. int topleft_mb_xy;
  244. int top_mb_xy;
  245. int topright_mb_xy;
  246. int left_mb_xy[2];
  247. int topleft_type;
  248. int top_type;
  249. int topright_type;
  250. int left_type[2];
  251. const uint8_t * left_block;
  252. int topleft_partition;
  253. int8_t intra4x4_pred_mode_cache[5*8];
  254. int8_t (*intra4x4_pred_mode);
  255. H264PredContext hpc;
  256. unsigned int topleft_samples_available;
  257. unsigned int top_samples_available;
  258. unsigned int topright_samples_available;
  259. unsigned int left_samples_available;
  260. uint8_t (*top_borders[2])[16+2*8];
  261. /**
  262. * non zero coeff count cache.
  263. * is 64 if not available.
  264. */
  265. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[6*8];
  266. /*
  267. .UU.YYYY
  268. .UU.YYYY
  269. .vv.YYYY
  270. .VV.YYYY
  271. */
  272. uint8_t (*non_zero_count)[32];
  273. /**
  274. * Motion vector cache.
  275. */
  276. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5*8][2];
  277. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5*8];
  278. #define LIST_NOT_USED -1 //FIXME rename?
  279. #define PART_NOT_AVAILABLE -2
  280. /**
  281. * is 1 if the specific list MV&references are set to 0,0,-2.
  282. */
  283. int mv_cache_clean[2];
  284. /**
  285. * number of neighbors (top and/or left) that used 8x8 dct
  286. */
  287. int neighbor_transform_size;
  288. /**
  289. * block_offset[ 0..23] for frame macroblocks
  290. * block_offset[24..47] for field macroblocks
  291. */
  292. int block_offset[2*(16+8)];
  293. uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
  294. uint32_t *mb2br_xy;
  295. int b_stride; //FIXME use s->b4_stride
  296. int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
  297. int mb_uvlinesize;
  298. int emu_edge_width;
  299. int emu_edge_height;
  300. SPS sps; ///< current sps
  301. /**
  302. * current pps
  303. */
  304. PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
  305. uint32_t dequant4_buffer[6][52][16]; //FIXME should these be moved down?
  306. uint32_t dequant8_buffer[2][52][64];
  307. uint32_t (*dequant4_coeff[6])[16];
  308. uint32_t (*dequant8_coeff[2])[64];
  309. int slice_num;
  310. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  311. int slice_type;
  312. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  313. int slice_type_fixed;
  314. //interlacing specific flags
  315. int mb_aff_frame;
  316. int mb_field_decoding_flag;
  317. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  318. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  319. //Weighted pred stuff
  320. int use_weight;
  321. int use_weight_chroma;
  322. int luma_log2_weight_denom;
  323. int chroma_log2_weight_denom;
  324. //The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  325. int luma_weight[48][2][2];
  326. int chroma_weight[48][2][2][2];
  327. int implicit_weight[48][48];
  328. int direct_spatial_mv_pred;
  329. int col_parity;
  330. int col_fieldoff;
  331. int dist_scale_factor[16];
  332. int dist_scale_factor_field[2][32];
  333. int map_col_to_list0[2][16+32];
  334. int map_col_to_list0_field[2][2][16+32];
  335. /**
  336. * num_ref_idx_l0/1_active_minus1 + 1
  337. */
  338. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  339. unsigned int list_count;
  340. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  341. Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  342. Reordered version of default_ref_list
  343. according to picture reordering in slice header */
  344. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  345. //data partitioning
  346. GetBitContext intra_gb;
  347. GetBitContext inter_gb;
  348. GetBitContext *intra_gb_ptr;
  349. GetBitContext *inter_gb_ptr;
  350. DECLARE_ALIGNED(16, DCTELEM, mb)[16*24];
  351. DCTELEM mb_padding[256]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  352. /**
  353. * Cabac
  354. */
  355. CABACContext cabac;
  356. uint8_t cabac_state[460];
  357. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
  358. uint16_t *cbp_table;
  359. int cbp;
  360. int top_cbp;
  361. int left_cbp;
  362. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  363. uint8_t *chroma_pred_mode_table;
  364. int last_qscale_diff;
  365. uint8_t (*mvd_table[2])[2];
  366. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5*8][2];
  367. uint8_t *direct_table;
  368. uint8_t direct_cache[5*8];
  369. uint8_t zigzag_scan[16];
  370. uint8_t zigzag_scan8x8[64];
  371. uint8_t zigzag_scan8x8_cavlc[64];
  372. uint8_t field_scan[16];
  373. uint8_t field_scan8x8[64];
  374. uint8_t field_scan8x8_cavlc[64];
  375. const uint8_t *zigzag_scan_q0;
  376. const uint8_t *zigzag_scan8x8_q0;
  377. const uint8_t *zigzag_scan8x8_cavlc_q0;
  378. const uint8_t *field_scan_q0;
  379. const uint8_t *field_scan8x8_q0;
  380. const uint8_t *field_scan8x8_cavlc_q0;
  381. int x264_build;
  382. int mb_xy;
  383. int is_complex;
  384. //deblock
  385. int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
  386. int slice_alpha_c0_offset;
  387. int slice_beta_offset;
  388. //=============================================================
  389. //Things below are not used in the MB or more inner code
  390. int nal_ref_idc;
  391. int nal_unit_type;
  392. uint8_t *rbsp_buffer[2];
  393. unsigned int rbsp_buffer_size[2];
  394. /**
  395. * Used to parse AVC variant of h264
  396. */
  397. int is_avc; ///< this flag is != 0 if codec is avc1
  398. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  399. SPS *sps_buffers[MAX_SPS_COUNT];
  400. PPS *pps_buffers[MAX_PPS_COUNT];
  401. int dequant_coeff_pps; ///< reinit tables when pps changes
  402. uint16_t *slice_table_base;
  403. //POC stuff
  404. int poc_lsb;
  405. int poc_msb;
  406. int delta_poc_bottom;
  407. int delta_poc[2];
  408. int frame_num;
  409. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  410. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  411. int frame_num_offset; ///< for POC type 2
  412. int prev_frame_num_offset; ///< for POC type 2
  413. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  414. /**
  415. * frame_num for frames or 2*frame_num+1 for field pics.
  416. */
  417. int curr_pic_num;
  418. /**
  419. * max_frame_num or 2*max_frame_num for field pics.
  420. */
  421. int max_pic_num;
  422. int redundant_pic_count;
  423. Picture *short_ref[32];
  424. Picture *long_ref[32];
  425. Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  426. Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
  427. int outputed_poc;
  428. /**
  429. * memory management control operations buffer.
  430. */
  431. MMCO mmco[MAX_MMCO_COUNT];
  432. int mmco_index;
  433. int long_ref_count; ///< number of actual long term references
  434. int short_ref_count; ///< number of actual short term references
  435. int cabac_init_idc;
  436. /**
  437. * @defgroup multithreading Members for slice based multithreading
  438. * @{
  439. */
  440. struct H264Context *thread_context[MAX_THREADS];
  441. /**
  442. * current slice number, used to initalize slice_num of each thread/context
  443. */
  444. int current_slice;
  445. /**
  446. * Max number of threads / contexts.
  447. * This is equal to AVCodecContext.thread_count unless
  448. * multithreaded decoding is impossible, in which case it is
  449. * reduced to 1.
  450. */
  451. int max_contexts;
  452. /**
  453. * 1 if the single thread fallback warning has already been
  454. * displayed, 0 otherwise.
  455. */
  456. int single_decode_warning;
  457. int last_slice_type;
  458. /** @} */
  459. /**
  460. * pic_struct in picture timing SEI message
  461. */
  462. SEI_PicStructType sei_pic_struct;
  463. /**
  464. * Complement sei_pic_struct
  465. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  466. * However, soft telecined frames may have these values.
  467. * This is used in an attempt to flag soft telecine progressive.
  468. */
  469. int prev_interlaced_frame;
  470. /**
  471. * Bit set of clock types for fields/frames in picture timing SEI message.
  472. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  473. * interlaced).
  474. */
  475. int sei_ct_type;
  476. /**
  477. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  478. */
  479. int sei_dpb_output_delay;
  480. /**
  481. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  482. */
  483. int sei_cpb_removal_delay;
  484. /**
  485. * recovery_frame_cnt from SEI message
  486. *
  487. * Set to -1 if no recovery point SEI message found or to number of frames
  488. * before playback synchronizes. Frames having recovery point are key
  489. * frames.
  490. */
  491. int sei_recovery_frame_cnt;
  492. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  493. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  494. // Timestamp stuff
  495. int sei_buffering_period_present; ///< Buffering period SEI flag
  496. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  497. //SVQ3 specific fields
  498. int halfpel_flag;
  499. int thirdpel_flag;
  500. int unknown_svq3_flag;
  501. int next_slice_index;
  502. uint32_t svq3_watermark_key;
  503. }H264Context;
  504. extern const uint8_t ff_h264_chroma_qp[52];
  505. void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  506. void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  507. /**
  508. * Decode SEI
  509. */
  510. int ff_h264_decode_sei(H264Context *h);
  511. /**
  512. * Decode SPS
  513. */
  514. int ff_h264_decode_seq_parameter_set(H264Context *h);
  515. /**
  516. * Decode PPS
  517. */
  518. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  519. /**
  520. * Decodes a network abstraction layer unit.
  521. * @param consumed is the number of bytes used as input
  522. * @param length is the length of the array
  523. * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
  524. * @returns decoded bytes, might be src+1 if no escapes
  525. */
  526. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
  527. /**
  528. * identifies the exact end of the bitstream
  529. * @return the length of the trailing, or 0 if damaged
  530. */
  531. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
  532. /**
  533. * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
  534. */
  535. av_cold void ff_h264_free_context(H264Context *h);
  536. /**
  537. * reconstructs bitstream slice_type.
  538. */
  539. int ff_h264_get_slice_type(const H264Context *h);
  540. /**
  541. * allocates tables.
  542. * needs width/height
  543. */
  544. int ff_h264_alloc_tables(H264Context *h);
  545. /**
  546. * fills the default_ref_list.
  547. */
  548. int ff_h264_fill_default_ref_list(H264Context *h);
  549. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  550. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  551. void ff_h264_remove_all_refs(H264Context *h);
  552. /**
  553. * Executes the reference picture marking (memory management control operations).
  554. */
  555. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  556. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
  557. /**
  558. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  559. */
  560. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  561. /**
  562. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  563. */
  564. int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
  565. void ff_h264_write_back_intra_pred_mode(H264Context *h);
  566. void ff_h264_hl_decode_mb(H264Context *h);
  567. int ff_h264_frame_start(H264Context *h);
  568. av_cold int ff_h264_decode_init(AVCodecContext *avctx);
  569. av_cold int ff_h264_decode_end(AVCodecContext *avctx);
  570. av_cold void ff_h264_decode_init_vlc(void);
  571. /**
  572. * decodes a macroblock
  573. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  574. */
  575. int ff_h264_decode_mb_cavlc(H264Context *h);
  576. /**
  577. * decodes a CABAC coded macroblock
  578. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  579. */
  580. int ff_h264_decode_mb_cabac(H264Context *h);
  581. void ff_h264_init_cabac_states(H264Context *h);
  582. void ff_h264_direct_dist_scale_factor(H264Context * const h);
  583. void ff_h264_direct_ref_list_init(H264Context * const h);
  584. void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
  585. void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  586. void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
  587. /**
  588. * Reset SEI values at the beginning of the frame.
  589. *
  590. * @param h H.264 context.
  591. */
  592. void ff_h264_reset_sei(H264Context *h);
  593. /*
  594. o-o o-o
  595. / / /
  596. o-o o-o
  597. ,---'
  598. o-o o-o
  599. / / /
  600. o-o o-o
  601. */
  602. //This table must be here because scan8[constant] must be known at compiletime
  603. static const uint8_t scan8[16 + 2*4]={
  604. 4+1*8, 5+1*8, 4+2*8, 5+2*8,
  605. 6+1*8, 7+1*8, 6+2*8, 7+2*8,
  606. 4+3*8, 5+3*8, 4+4*8, 5+4*8,
  607. 6+3*8, 7+3*8, 6+4*8, 7+4*8,
  608. 1+1*8, 2+1*8,
  609. 1+2*8, 2+2*8,
  610. 1+4*8, 2+4*8,
  611. 1+5*8, 2+5*8,
  612. };
  613. static av_always_inline uint32_t pack16to32(int a, int b){
  614. #if HAVE_BIGENDIAN
  615. return (b&0xFFFF) + (a<<16);
  616. #else
  617. return (a&0xFFFF) + (b<<16);
  618. #endif
  619. }
  620. static av_always_inline uint16_t pack8to16(int a, int b){
  621. #if HAVE_BIGENDIAN
  622. return (b&0xFF) + (a<<8);
  623. #else
  624. return (a&0xFF) + (b<<8);
  625. #endif
  626. }
  627. /**
  628. * gets the chroma qp.
  629. */
  630. static inline int get_chroma_qp(H264Context *h, int t, int qscale){
  631. return h->pps.chroma_qp_table[t][qscale];
  632. }
  633. static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
  634. static void fill_decode_neighbors(H264Context *h, int mb_type){
  635. MpegEncContext * const s = &h->s;
  636. const int mb_xy= h->mb_xy;
  637. int topleft_xy, top_xy, topright_xy, left_xy[2];
  638. static const uint8_t left_block_options[4][16]={
  639. {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
  640. {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
  641. {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
  642. {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
  643. };
  644. h->topleft_partition= -1;
  645. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  646. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  647. * stuff, I can't imagine that these complex rules are worth it. */
  648. topleft_xy = top_xy - 1;
  649. topright_xy= top_xy + 1;
  650. left_xy[1] = left_xy[0] = mb_xy-1;
  651. h->left_block = left_block_options[0];
  652. if(FRAME_MBAFF){
  653. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  654. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  655. if(s->mb_y&1){
  656. if (left_mb_field_flag != curr_mb_field_flag) {
  657. left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
  658. if (curr_mb_field_flag) {
  659. left_xy[1] += s->mb_stride;
  660. h->left_block = left_block_options[3];
  661. } else {
  662. topleft_xy += s->mb_stride;
  663. // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
  664. h->topleft_partition = 0;
  665. h->left_block = left_block_options[1];
  666. }
  667. }
  668. }else{
  669. if(curr_mb_field_flag){
  670. topleft_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
  671. topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
  672. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  673. }
  674. if (left_mb_field_flag != curr_mb_field_flag) {
  675. if (curr_mb_field_flag) {
  676. left_xy[1] += s->mb_stride;
  677. h->left_block = left_block_options[3];
  678. } else {
  679. h->left_block = left_block_options[2];
  680. }
  681. }
  682. }
  683. }
  684. h->topleft_mb_xy = topleft_xy;
  685. h->top_mb_xy = top_xy;
  686. h->topright_mb_xy= topright_xy;
  687. h->left_mb_xy[0] = left_xy[0];
  688. h->left_mb_xy[1] = left_xy[1];
  689. //FIXME do we need all in the context?
  690. h->topleft_type = s->current_picture.mb_type[topleft_xy] ;
  691. h->top_type = s->current_picture.mb_type[top_xy] ;
  692. h->topright_type= s->current_picture.mb_type[topright_xy];
  693. h->left_type[0] = s->current_picture.mb_type[left_xy[0]] ;
  694. h->left_type[1] = s->current_picture.mb_type[left_xy[1]] ;
  695. if(FMO){
  696. if(h->slice_table[topleft_xy ] != h->slice_num) h->topleft_type = 0;
  697. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  698. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  699. }else{
  700. if(h->slice_table[topleft_xy ] != h->slice_num){
  701. h->topleft_type = 0;
  702. if(h->slice_table[top_xy ] != h->slice_num) h->top_type = 0;
  703. if(h->slice_table[left_xy[0] ] != h->slice_num) h->left_type[0] = h->left_type[1] = 0;
  704. }
  705. }
  706. if(h->slice_table[topright_xy] != h->slice_num) h->topright_type= 0;
  707. }
  708. static void fill_decode_caches(H264Context *h, int mb_type){
  709. MpegEncContext * const s = &h->s;
  710. int topleft_xy, top_xy, topright_xy, left_xy[2];
  711. int topleft_type, top_type, topright_type, left_type[2];
  712. const uint8_t * left_block= h->left_block;
  713. int i;
  714. topleft_xy = h->topleft_mb_xy ;
  715. top_xy = h->top_mb_xy ;
  716. topright_xy = h->topright_mb_xy;
  717. left_xy[0] = h->left_mb_xy[0] ;
  718. left_xy[1] = h->left_mb_xy[1] ;
  719. topleft_type = h->topleft_type ;
  720. top_type = h->top_type ;
  721. topright_type= h->topright_type ;
  722. left_type[0] = h->left_type[0] ;
  723. left_type[1] = h->left_type[1] ;
  724. if(!IS_SKIP(mb_type)){
  725. if(IS_INTRA(mb_type)){
  726. int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
  727. h->topleft_samples_available=
  728. h->top_samples_available=
  729. h->left_samples_available= 0xFFFF;
  730. h->topright_samples_available= 0xEEEA;
  731. if(!(top_type & type_mask)){
  732. h->topleft_samples_available= 0xB3FF;
  733. h->top_samples_available= 0x33FF;
  734. h->topright_samples_available= 0x26EA;
  735. }
  736. if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
  737. if(IS_INTERLACED(mb_type)){
  738. if(!(left_type[0] & type_mask)){
  739. h->topleft_samples_available&= 0xDFFF;
  740. h->left_samples_available&= 0x5FFF;
  741. }
  742. if(!(left_type[1] & type_mask)){
  743. h->topleft_samples_available&= 0xFF5F;
  744. h->left_samples_available&= 0xFF5F;
  745. }
  746. }else{
  747. int left_typei = s->current_picture.mb_type[left_xy[0] + s->mb_stride];
  748. assert(left_xy[0] == left_xy[1]);
  749. if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
  750. h->topleft_samples_available&= 0xDF5F;
  751. h->left_samples_available&= 0x5F5F;
  752. }
  753. }
  754. }else{
  755. if(!(left_type[0] & type_mask)){
  756. h->topleft_samples_available&= 0xDF5F;
  757. h->left_samples_available&= 0x5F5F;
  758. }
  759. }
  760. if(!(topleft_type & type_mask))
  761. h->topleft_samples_available&= 0x7FFF;
  762. if(!(topright_type & type_mask))
  763. h->topright_samples_available&= 0xFBFF;
  764. if(IS_INTRA4x4(mb_type)){
  765. if(IS_INTRA4x4(top_type)){
  766. AV_COPY32(h->intra4x4_pred_mode_cache+4+8*0, h->intra4x4_pred_mode + h->mb2br_xy[top_xy]);
  767. }else{
  768. h->intra4x4_pred_mode_cache[4+8*0]=
  769. h->intra4x4_pred_mode_cache[5+8*0]=
  770. h->intra4x4_pred_mode_cache[6+8*0]=
  771. h->intra4x4_pred_mode_cache[7+8*0]= 2 - 3*!(top_type & type_mask);
  772. }
  773. for(i=0; i<2; i++){
  774. if(IS_INTRA4x4(left_type[i])){
  775. int8_t *mode= h->intra4x4_pred_mode + h->mb2br_xy[left_xy[i]];
  776. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= mode[6-left_block[0+2*i]];
  777. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= mode[6-left_block[1+2*i]];
  778. }else{
  779. h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
  780. h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= 2 - 3*!(left_type[i] & type_mask);
  781. }
  782. }
  783. }
  784. }
  785. /*
  786. 0 . T T. T T T T
  787. 1 L . .L . . . .
  788. 2 L . .L . . . .
  789. 3 . T TL . . . .
  790. 4 L . .L . . . .
  791. 5 L . .. . . . .
  792. */
  793. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  794. if(top_type){
  795. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  796. h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
  797. h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
  798. h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
  799. h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
  800. }else {
  801. h->non_zero_count_cache[1+8*0]=
  802. h->non_zero_count_cache[2+8*0]=
  803. h->non_zero_count_cache[1+8*3]=
  804. h->non_zero_count_cache[2+8*3]=
  805. AV_WN32A(&h->non_zero_count_cache[4+8*0], CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040);
  806. }
  807. for (i=0; i<2; i++) {
  808. if(left_type[i]){
  809. h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
  810. h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
  811. h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
  812. h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
  813. }else{
  814. h->non_zero_count_cache[3+8*1 + 2*8*i]=
  815. h->non_zero_count_cache[3+8*2 + 2*8*i]=
  816. h->non_zero_count_cache[0+8*1 + 8*i]=
  817. h->non_zero_count_cache[0+8*4 + 8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
  818. }
  819. }
  820. if( CABAC ) {
  821. // top_cbp
  822. if(top_type) {
  823. h->top_cbp = h->cbp_table[top_xy];
  824. } else {
  825. h->top_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  826. }
  827. // left_cbp
  828. if (left_type[0]) {
  829. h->left_cbp = (h->cbp_table[left_xy[0]] & 0x1f0)
  830. | ((h->cbp_table[left_xy[0]]>>(left_block[0]&(~1)))&2)
  831. | (((h->cbp_table[left_xy[1]]>>(left_block[2]&(~1)))&2) << 2);
  832. } else {
  833. h->left_cbp = IS_INTRA(mb_type) ? 0x1CF : 0x00F;
  834. }
  835. }
  836. }
  837. #if 1
  838. if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
  839. int list;
  840. for(list=0; list<h->list_count; list++){
  841. if(!USES_LIST(mb_type, list)){
  842. /*if(!h->mv_cache_clean[list]){
  843. memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
  844. memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
  845. h->mv_cache_clean[list]= 1;
  846. }*/
  847. continue;
  848. }
  849. assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
  850. h->mv_cache_clean[list]= 0;
  851. if(USES_LIST(top_type, list)){
  852. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  853. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  854. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  855. h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 2];
  856. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  857. h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][4*top_xy + 3];
  858. }else{
  859. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  860. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101);
  861. }
  862. if(mb_type & (MB_TYPE_16x8|MB_TYPE_8x8)){
  863. for(i=0; i<2; i++){
  864. int cache_idx = scan8[0] - 1 + i*2*8;
  865. if(USES_LIST(left_type[i], list)){
  866. const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
  867. const int b8_xy= 4*left_xy[i] + 1;
  868. AV_COPY32(h->mv_cache[list][cache_idx ], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]]);
  869. AV_COPY32(h->mv_cache[list][cache_idx+8], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]]);
  870. h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + (left_block[0+i*2]&~1)];
  871. h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + (left_block[1+i*2]&~1)];
  872. }else{
  873. AV_ZERO32(h->mv_cache [list][cache_idx ]);
  874. AV_ZERO32(h->mv_cache [list][cache_idx+8]);
  875. h->ref_cache[list][cache_idx ]=
  876. h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  877. }
  878. }
  879. }else{
  880. if(USES_LIST(left_type[0], list)){
  881. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  882. const int b8_xy= 4*left_xy[0] + 1;
  883. AV_COPY32(h->mv_cache[list][scan8[0] - 1], s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]]);
  884. h->ref_cache[list][scan8[0] - 1]= s->current_picture.ref_index[list][b8_xy + (left_block[0]&~1)];
  885. }else{
  886. AV_ZERO32(h->mv_cache [list][scan8[0] - 1]);
  887. h->ref_cache[list][scan8[0] - 1]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  888. }
  889. }
  890. if(USES_LIST(topright_type, list)){
  891. const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
  892. AV_COPY32(h->mv_cache[list][scan8[0] + 4 - 1*8], s->current_picture.motion_val[list][b_xy]);
  893. h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][4*topright_xy + 2];
  894. }else{
  895. AV_ZERO32(h->mv_cache [list][scan8[0] + 4 - 1*8]);
  896. h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  897. }
  898. if(h->ref_cache[list][scan8[0] + 4 - 1*8] < 0){
  899. if(USES_LIST(topleft_type, list)){
  900. const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
  901. const int b8_xy= 4*topleft_xy + 1 + (h->topleft_partition & 2);
  902. AV_COPY32(h->mv_cache[list][scan8[0] - 1 - 1*8], s->current_picture.motion_val[list][b_xy]);
  903. h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
  904. }else{
  905. AV_ZERO32(h->mv_cache[list][scan8[0] - 1 - 1*8]);
  906. h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
  907. }
  908. }
  909. if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
  910. continue;
  911. if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
  912. h->ref_cache[list][scan8[4 ]] =
  913. h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
  914. AV_ZERO32(h->mv_cache [list][scan8[4 ]]);
  915. AV_ZERO32(h->mv_cache [list][scan8[12]]);
  916. if( CABAC ) {
  917. /* XXX beurk, Load mvd */
  918. if(USES_LIST(top_type, list)){
  919. const int b_xy= h->mb2br_xy[top_xy];
  920. AV_COPY64(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
  921. }else{
  922. AV_ZERO64(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
  923. }
  924. if(USES_LIST(left_type[0], list)){
  925. const int b_xy= h->mb2br_xy[left_xy[0]] + 6;
  926. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 0*8], h->mvd_table[list][b_xy - left_block[0]]);
  927. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 1*8], h->mvd_table[list][b_xy - left_block[1]]);
  928. }else{
  929. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 0*8]);
  930. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 1*8]);
  931. }
  932. if(USES_LIST(left_type[1], list)){
  933. const int b_xy= h->mb2br_xy[left_xy[1]] + 6;
  934. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 2*8], h->mvd_table[list][b_xy - left_block[2]]);
  935. AV_COPY16(h->mvd_cache[list][scan8[0] - 1 + 3*8], h->mvd_table[list][b_xy - left_block[3]]);
  936. }else{
  937. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 2*8]);
  938. AV_ZERO16(h->mvd_cache [list][scan8[0] - 1 + 3*8]);
  939. }
  940. AV_ZERO16(h->mvd_cache [list][scan8[4 ]]);
  941. AV_ZERO16(h->mvd_cache [list][scan8[12]]);
  942. if(h->slice_type_nos == FF_B_TYPE){
  943. fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
  944. if(IS_DIRECT(top_type)){
  945. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_DIRECT2>>1));
  946. }else if(IS_8X8(top_type)){
  947. int b8_xy = 4*top_xy;
  948. h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy + 2];
  949. h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 3];
  950. }else{
  951. AV_WN32A(&h->direct_cache[scan8[0] - 1*8], 0x01010101*(MB_TYPE_16x16>>1));
  952. }
  953. if(IS_DIRECT(left_type[0]))
  954. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
  955. else if(IS_8X8(left_type[0]))
  956. h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[4*left_xy[0] + 1 + (left_block[0]&~1)];
  957. else
  958. h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
  959. if(IS_DIRECT(left_type[1]))
  960. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
  961. else if(IS_8X8(left_type[1]))
  962. h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[4*left_xy[1] + 1 + (left_block[2]&~1)];
  963. else
  964. h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
  965. }
  966. }
  967. }
  968. if(FRAME_MBAFF){
  969. #define MAP_MVS\
  970. MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
  971. MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
  972. MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
  973. MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
  974. MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
  975. MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
  976. MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
  977. MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
  978. MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
  979. MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
  980. if(MB_FIELD){
  981. #define MAP_F2F(idx, mb_type)\
  982. if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  983. h->ref_cache[list][idx] <<= 1;\
  984. h->mv_cache[list][idx][1] /= 2;\
  985. h->mvd_cache[list][idx][1] >>=1;\
  986. }
  987. MAP_MVS
  988. #undef MAP_F2F
  989. }else{
  990. #define MAP_F2F(idx, mb_type)\
  991. if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
  992. h->ref_cache[list][idx] >>= 1;\
  993. h->mv_cache[list][idx][1] <<= 1;\
  994. h->mvd_cache[list][idx][1] <<= 1;\
  995. }
  996. MAP_MVS
  997. #undef MAP_F2F
  998. }
  999. }
  1000. }
  1001. }
  1002. #endif
  1003. h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
  1004. }
  1005. /**
  1006. *
  1007. * @returns non zero if the loop filter can be skiped
  1008. */
  1009. static int fill_filter_caches(H264Context *h, int mb_type){
  1010. MpegEncContext * const s = &h->s;
  1011. const int mb_xy= h->mb_xy;
  1012. int top_xy, left_xy[2];
  1013. int top_type, left_type[2];
  1014. top_xy = mb_xy - (s->mb_stride << MB_FIELD);
  1015. //FIXME deblocking could skip the intra and nnz parts.
  1016. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  1017. * stuff, I can't imagine that these complex rules are worth it. */
  1018. left_xy[1] = left_xy[0] = mb_xy-1;
  1019. if(FRAME_MBAFF){
  1020. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
  1021. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1022. if(s->mb_y&1){
  1023. if (left_mb_field_flag != curr_mb_field_flag) {
  1024. left_xy[0] -= s->mb_stride;
  1025. }
  1026. }else{
  1027. if(curr_mb_field_flag){
  1028. top_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy ]>>7)&1)-1);
  1029. }
  1030. if (left_mb_field_flag != curr_mb_field_flag) {
  1031. left_xy[1] += s->mb_stride;
  1032. }
  1033. }
  1034. }
  1035. h->top_mb_xy = top_xy;
  1036. h->left_mb_xy[0] = left_xy[0];
  1037. h->left_mb_xy[1] = left_xy[1];
  1038. {
  1039. //for sufficiently low qp, filtering wouldn't do anything
  1040. //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
  1041. int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
  1042. int qp = s->current_picture.qscale_table[mb_xy];
  1043. if(qp <= qp_thresh
  1044. && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
  1045. && (top_xy < 0 || ((qp + s->current_picture.qscale_table[top_xy ] + 1)>>1) <= qp_thresh)){
  1046. if(!FRAME_MBAFF)
  1047. return 1;
  1048. if( (left_xy[0]< 0 || ((qp + s->current_picture.qscale_table[left_xy[1] ] + 1)>>1) <= qp_thresh)
  1049. && (top_xy < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy -s->mb_stride] + 1)>>1) <= qp_thresh))
  1050. return 1;
  1051. }
  1052. }
  1053. top_type = s->current_picture.mb_type[top_xy] ;
  1054. left_type[0] = s->current_picture.mb_type[left_xy[0]];
  1055. left_type[1] = s->current_picture.mb_type[left_xy[1]];
  1056. if(h->deblocking_filter == 2){
  1057. if(h->slice_table[top_xy ] != h->slice_num) top_type= 0;
  1058. if(h->slice_table[left_xy[0] ] != h->slice_num) left_type[0]= left_type[1]= 0;
  1059. }else{
  1060. if(h->slice_table[top_xy ] == 0xFFFF) top_type= 0;
  1061. if(h->slice_table[left_xy[0] ] == 0xFFFF) left_type[0]= left_type[1] =0;
  1062. }
  1063. h->top_type = top_type ;
  1064. h->left_type[0]= left_type[0];
  1065. h->left_type[1]= left_type[1];
  1066. if(IS_INTRA(mb_type))
  1067. return 0;
  1068. AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
  1069. AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
  1070. AV_COPY32(&h->non_zero_count_cache[0+8*5], &h->non_zero_count[mb_xy][16]);
  1071. AV_COPY32(&h->non_zero_count_cache[4+8*3], &h->non_zero_count[mb_xy][20]);
  1072. AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
  1073. h->cbp= h->cbp_table[mb_xy];
  1074. {
  1075. int list;
  1076. for(list=0; list<h->list_count; list++){
  1077. int8_t *ref;
  1078. int y, b_stride;
  1079. int16_t (*mv_dst)[2];
  1080. int16_t (*mv_src)[2];
  1081. if(!USES_LIST(mb_type, list)){
  1082. fill_rectangle( h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
  1083. AV_WN32A(&h->ref_cache[list][scan8[ 0]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1084. AV_WN32A(&h->ref_cache[list][scan8[ 2]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1085. AV_WN32A(&h->ref_cache[list][scan8[ 8]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1086. AV_WN32A(&h->ref_cache[list][scan8[10]], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1087. continue;
  1088. }
  1089. ref = &s->current_picture.ref_index[list][4*mb_xy];
  1090. {
  1091. int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1092. AV_WN32A(&h->ref_cache[list][scan8[ 0]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1093. AV_WN32A(&h->ref_cache[list][scan8[ 2]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1094. ref += 2;
  1095. AV_WN32A(&h->ref_cache[list][scan8[ 8]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1096. AV_WN32A(&h->ref_cache[list][scan8[10]], (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101);
  1097. }
  1098. b_stride = h->b_stride;
  1099. mv_dst = &h->mv_cache[list][scan8[0]];
  1100. mv_src = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
  1101. for(y=0; y<4; y++){
  1102. AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
  1103. }
  1104. }
  1105. }
  1106. /*
  1107. 0 . T T. T T T T
  1108. 1 L . .L . . . .
  1109. 2 L . .L . . . .
  1110. 3 . T TL . . . .
  1111. 4 L . .L . . . .
  1112. 5 L . .. . . . .
  1113. */
  1114. //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
  1115. if(top_type){
  1116. AV_COPY32(&h->non_zero_count_cache[4+8*0], &h->non_zero_count[top_xy][4+3*8]);
  1117. }
  1118. if(left_type[0]){
  1119. h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
  1120. h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
  1121. h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
  1122. h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
  1123. }
  1124. // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
  1125. if(!CABAC && h->pps.transform_8x8_mode){
  1126. if(IS_8x8DCT(top_type)){
  1127. h->non_zero_count_cache[4+8*0]=
  1128. h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
  1129. h->non_zero_count_cache[6+8*0]=
  1130. h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
  1131. }
  1132. if(IS_8x8DCT(left_type[0])){
  1133. h->non_zero_count_cache[3+8*1]=
  1134. h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
  1135. }
  1136. if(IS_8x8DCT(left_type[1])){
  1137. h->non_zero_count_cache[3+8*3]=
  1138. h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
  1139. }
  1140. if(IS_8x8DCT(mb_type)){
  1141. h->non_zero_count_cache[scan8[0 ]]= h->non_zero_count_cache[scan8[1 ]]=
  1142. h->non_zero_count_cache[scan8[2 ]]= h->non_zero_count_cache[scan8[3 ]]= h->cbp & 1;
  1143. h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
  1144. h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
  1145. h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
  1146. h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
  1147. h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
  1148. h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
  1149. }
  1150. }
  1151. if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
  1152. int list;
  1153. for(list=0; list<h->list_count; list++){
  1154. if(USES_LIST(top_type, list)){
  1155. const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
  1156. const int b8_xy= 4*top_xy + 2;
  1157. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1158. AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
  1159. h->ref_cache[list][scan8[0] + 0 - 1*8]=
  1160. h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
  1161. h->ref_cache[list][scan8[0] + 2 - 1*8]=
  1162. h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
  1163. }else{
  1164. AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
  1165. AV_WN32A(&h->ref_cache[list][scan8[0] + 0 - 1*8], ((LIST_NOT_USED)&0xFF)*0x01010101u);
  1166. }
  1167. if(!IS_INTERLACED(mb_type^left_type[0])){
  1168. if(USES_LIST(left_type[0], list)){
  1169. const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
  1170. const int b8_xy= 4*left_xy[0] + 1;
  1171. int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
  1172. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 0 ], s->current_picture.motion_val[list][b_xy + h->b_stride*0]);
  1173. AV_COPY32(h->mv_cache[list][scan8[0] - 1 + 8 ], s->current_picture.motion_val[list][b_xy + h->b_stride*1]);
  1174. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +16 ], s->current_picture.motion_val[list][b_xy + h->b_stride*2]);
  1175. AV_COPY32(h->mv_cache[list][scan8[0] - 1 +24 ], s->current_picture.motion_val[list][b_xy + h->b_stride*3]);
  1176. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1177. h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*0]];
  1178. h->ref_cache[list][scan8[0] - 1 +16 ]=
  1179. h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 2*1]];
  1180. }else{
  1181. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 0 ]);
  1182. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 + 8 ]);
  1183. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +16 ]);
  1184. AV_ZERO32(h->mv_cache [list][scan8[0] - 1 +24 ]);
  1185. h->ref_cache[list][scan8[0] - 1 + 0 ]=
  1186. h->ref_cache[list][scan8[0] - 1 + 8 ]=
  1187. h->ref_cache[list][scan8[0] - 1 + 16 ]=
  1188. h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
  1189. }
  1190. }
  1191. }
  1192. }
  1193. return 0;
  1194. }
  1195. /**
  1196. * gets the predicted intra4x4 prediction mode.
  1197. */
  1198. static inline int pred_intra_mode(H264Context *h, int n){
  1199. const int index8= scan8[n];
  1200. const int left= h->intra4x4_pred_mode_cache[index8 - 1];
  1201. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  1202. const int min= FFMIN(left, top);
  1203. tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
  1204. if(min<0) return DC_PRED;
  1205. else return min;
  1206. }
  1207. static inline void write_back_non_zero_count(H264Context *h){
  1208. const int mb_xy= h->mb_xy;
  1209. AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
  1210. AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
  1211. AV_COPY32(&h->non_zero_count[mb_xy][16], &h->non_zero_count_cache[0+8*5]);
  1212. AV_COPY32(&h->non_zero_count[mb_xy][20], &h->non_zero_count_cache[4+8*3]);
  1213. AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
  1214. }
  1215. static inline void write_back_motion(H264Context *h, int mb_type){
  1216. MpegEncContext * const s = &h->s;
  1217. const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride; //try mb2b(8)_xy
  1218. const int b8_xy= 4*h->mb_xy;
  1219. int list;
  1220. if(!USES_LIST(mb_type, 0))
  1221. fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  1222. for(list=0; list<h->list_count; list++){
  1223. int y, b_stride;
  1224. int16_t (*mv_dst)[2];
  1225. int16_t (*mv_src)[2];
  1226. if(!USES_LIST(mb_type, list))
  1227. continue;
  1228. b_stride = h->b_stride;
  1229. mv_dst = &s->current_picture.motion_val[list][b_xy];
  1230. mv_src = &h->mv_cache[list][scan8[0]];
  1231. for(y=0; y<4; y++){
  1232. AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
  1233. }
  1234. if( CABAC ) {
  1235. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8*h->mb_xy : h->mb2br_xy[h->mb_xy]];
  1236. uint8_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  1237. if(IS_SKIP(mb_type))
  1238. AV_ZERO128(mvd_dst);
  1239. else{
  1240. AV_COPY64(mvd_dst, mvd_src + 8*3);
  1241. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8*0);
  1242. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8*1);
  1243. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8*2);
  1244. }
  1245. }
  1246. {
  1247. int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
  1248. ref_index[0+0*2]= h->ref_cache[list][scan8[0]];
  1249. ref_index[1+0*2]= h->ref_cache[list][scan8[4]];
  1250. ref_index[0+1*2]= h->ref_cache[list][scan8[8]];
  1251. ref_index[1+1*2]= h->ref_cache[list][scan8[12]];
  1252. }
  1253. }
  1254. if(h->slice_type_nos == FF_B_TYPE && CABAC){
  1255. if(IS_8X8(mb_type)){
  1256. uint8_t *direct_table = &h->direct_table[4*h->mb_xy];
  1257. direct_table[1] = h->sub_mb_type[1]>>1;
  1258. direct_table[2] = h->sub_mb_type[2]>>1;
  1259. direct_table[3] = h->sub_mb_type[3]>>1;
  1260. }
  1261. }
  1262. }
  1263. static inline int get_dct8x8_allowed(H264Context *h){
  1264. if(h->sps.direct_8x8_inference_flag)
  1265. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8 )*0x0001000100010001ULL));
  1266. else
  1267. return !(AV_RN64A(h->sub_mb_type) & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
  1268. }
  1269. /**
  1270. * decodes a P_SKIP or B_SKIP macroblock
  1271. */
  1272. static void decode_mb_skip(H264Context *h){
  1273. MpegEncContext * const s = &h->s;
  1274. const int mb_xy= h->mb_xy;
  1275. int mb_type=0;
  1276. memset(h->non_zero_count[mb_xy], 0, 32);
  1277. memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
  1278. if(MB_FIELD)
  1279. mb_type|= MB_TYPE_INTERLACED;
  1280. if( h->slice_type_nos == FF_B_TYPE )
  1281. {
  1282. // just for fill_caches. pred_direct_motion will set the real mb_type
  1283. mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
  1284. if(h->direct_spatial_mv_pred){
  1285. fill_decode_neighbors(h, mb_type);
  1286. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1287. }
  1288. ff_h264_pred_direct_motion(h, &mb_type);
  1289. mb_type|= MB_TYPE_SKIP;
  1290. }
  1291. else
  1292. {
  1293. int mx, my;
  1294. mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
  1295. fill_decode_neighbors(h, mb_type);
  1296. fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
  1297. pred_pskip_motion(h, &mx, &my);
  1298. fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
  1299. fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
  1300. }
  1301. write_back_motion(h, mb_type);
  1302. s->current_picture.mb_type[mb_xy]= mb_type;
  1303. s->current_picture.qscale_table[mb_xy]= s->qscale;
  1304. h->slice_table[ mb_xy ]= h->slice_num;
  1305. h->prev_mb_skipped= 1;
  1306. }
  1307. #include "h264_mvpred.h" //For pred_pskip_motion()
  1308. #endif /* AVCODEC_H264_H */