You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

367 lines
9.1KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file libavcodec/fft.c
  25. * FFT/IFFT transforms.
  26. */
  27. #include "libavutil/mathematics.h"
  28. #include "fft.h"
  29. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  30. #if !CONFIG_HARDCODED_TABLES
  31. COSTABLE(16);
  32. COSTABLE(32);
  33. COSTABLE(64);
  34. COSTABLE(128);
  35. COSTABLE(256);
  36. COSTABLE(512);
  37. COSTABLE(1024);
  38. COSTABLE(2048);
  39. COSTABLE(4096);
  40. COSTABLE(8192);
  41. COSTABLE(16384);
  42. COSTABLE(32768);
  43. COSTABLE(65536);
  44. #endif
  45. COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
  46. NULL, NULL, NULL, NULL,
  47. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  48. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  49. };
  50. static int split_radix_permutation(int i, int n, int inverse)
  51. {
  52. int m;
  53. if(n <= 2) return i&1;
  54. m = n >> 1;
  55. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  56. m >>= 1;
  57. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  58. else return split_radix_permutation(i, m, inverse)*4 - 1;
  59. }
  60. av_cold void ff_init_ff_cos_tabs(int index)
  61. {
  62. #if !CONFIG_HARDCODED_TABLES
  63. int i;
  64. int m = 1<<index;
  65. double freq = 2*M_PI/m;
  66. FFTSample *tab = ff_cos_tabs[index];
  67. for(i=0; i<=m/4; i++)
  68. tab[i] = cos(i*freq);
  69. for(i=1; i<m/4; i++)
  70. tab[m/2-i] = tab[i];
  71. #endif
  72. }
  73. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  74. {
  75. int i, j, m, n;
  76. float alpha, c1, s1, s2;
  77. int av_unused has_vectors;
  78. if (nbits < 2 || nbits > 16)
  79. goto fail;
  80. s->nbits = nbits;
  81. n = 1 << nbits;
  82. s->tmp_buf = NULL;
  83. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  84. if (!s->exptab)
  85. goto fail;
  86. s->revtab = av_malloc(n * sizeof(uint16_t));
  87. if (!s->revtab)
  88. goto fail;
  89. s->inverse = inverse;
  90. s2 = inverse ? 1.0 : -1.0;
  91. s->fft_permute = ff_fft_permute_c;
  92. s->fft_calc = ff_fft_calc_c;
  93. #if CONFIG_MDCT
  94. s->imdct_calc = ff_imdct_calc_c;
  95. s->imdct_half = ff_imdct_half_c;
  96. s->mdct_calc = ff_mdct_calc_c;
  97. #endif
  98. s->exptab1 = NULL;
  99. s->split_radix = 1;
  100. if (ARCH_ARM) ff_fft_init_arm(s);
  101. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  102. if (HAVE_MMX) ff_fft_init_mmx(s);
  103. if (s->split_radix) {
  104. for(j=4; j<=nbits; j++) {
  105. ff_init_ff_cos_tabs(j);
  106. }
  107. for(i=0; i<n; i++)
  108. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = i;
  109. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  110. } else {
  111. int np, nblocks, np2, l;
  112. FFTComplex *q;
  113. for(i=0; i<(n/2); i++) {
  114. alpha = 2 * M_PI * (float)i / (float)n;
  115. c1 = cos(alpha);
  116. s1 = sin(alpha) * s2;
  117. s->exptab[i].re = c1;
  118. s->exptab[i].im = s1;
  119. }
  120. np = 1 << nbits;
  121. nblocks = np >> 3;
  122. np2 = np >> 1;
  123. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  124. if (!s->exptab1)
  125. goto fail;
  126. q = s->exptab1;
  127. do {
  128. for(l = 0; l < np2; l += 2 * nblocks) {
  129. *q++ = s->exptab[l];
  130. *q++ = s->exptab[l + nblocks];
  131. q->re = -s->exptab[l].im;
  132. q->im = s->exptab[l].re;
  133. q++;
  134. q->re = -s->exptab[l + nblocks].im;
  135. q->im = s->exptab[l + nblocks].re;
  136. q++;
  137. }
  138. nblocks = nblocks >> 1;
  139. } while (nblocks != 0);
  140. av_freep(&s->exptab);
  141. /* compute bit reverse table */
  142. for(i=0;i<n;i++) {
  143. m=0;
  144. for(j=0;j<nbits;j++) {
  145. m |= ((i >> j) & 1) << (nbits-j-1);
  146. }
  147. s->revtab[i]=m;
  148. }
  149. }
  150. return 0;
  151. fail:
  152. av_freep(&s->revtab);
  153. av_freep(&s->exptab);
  154. av_freep(&s->exptab1);
  155. av_freep(&s->tmp_buf);
  156. return -1;
  157. }
  158. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  159. {
  160. int j, k, np;
  161. FFTComplex tmp;
  162. const uint16_t *revtab = s->revtab;
  163. np = 1 << s->nbits;
  164. if (s->tmp_buf) {
  165. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  166. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  167. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  168. return;
  169. }
  170. /* reverse */
  171. for(j=0;j<np;j++) {
  172. k = revtab[j];
  173. if (k < j) {
  174. tmp = z[k];
  175. z[k] = z[j];
  176. z[j] = tmp;
  177. }
  178. }
  179. }
  180. av_cold void ff_fft_end(FFTContext *s)
  181. {
  182. av_freep(&s->revtab);
  183. av_freep(&s->exptab);
  184. av_freep(&s->exptab1);
  185. av_freep(&s->tmp_buf);
  186. }
  187. #define sqrthalf (float)M_SQRT1_2
  188. #define BF(x,y,a,b) {\
  189. x = a - b;\
  190. y = a + b;\
  191. }
  192. #define BUTTERFLIES(a0,a1,a2,a3) {\
  193. BF(t3, t5, t5, t1);\
  194. BF(a2.re, a0.re, a0.re, t5);\
  195. BF(a3.im, a1.im, a1.im, t3);\
  196. BF(t4, t6, t2, t6);\
  197. BF(a3.re, a1.re, a1.re, t4);\
  198. BF(a2.im, a0.im, a0.im, t6);\
  199. }
  200. // force loading all the inputs before storing any.
  201. // this is slightly slower for small data, but avoids store->load aliasing
  202. // for addresses separated by large powers of 2.
  203. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  204. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  205. BF(t3, t5, t5, t1);\
  206. BF(a2.re, a0.re, r0, t5);\
  207. BF(a3.im, a1.im, i1, t3);\
  208. BF(t4, t6, t2, t6);\
  209. BF(a3.re, a1.re, r1, t4);\
  210. BF(a2.im, a0.im, i0, t6);\
  211. }
  212. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  213. t1 = a2.re * wre + a2.im * wim;\
  214. t2 = a2.im * wre - a2.re * wim;\
  215. t5 = a3.re * wre - a3.im * wim;\
  216. t6 = a3.im * wre + a3.re * wim;\
  217. BUTTERFLIES(a0,a1,a2,a3)\
  218. }
  219. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  220. t1 = a2.re;\
  221. t2 = a2.im;\
  222. t5 = a3.re;\
  223. t6 = a3.im;\
  224. BUTTERFLIES(a0,a1,a2,a3)\
  225. }
  226. /* z[0...8n-1], w[1...2n-1] */
  227. #define PASS(name)\
  228. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  229. {\
  230. FFTSample t1, t2, t3, t4, t5, t6;\
  231. int o1 = 2*n;\
  232. int o2 = 4*n;\
  233. int o3 = 6*n;\
  234. const FFTSample *wim = wre+o1;\
  235. n--;\
  236. \
  237. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  238. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  239. do {\
  240. z += 2;\
  241. wre += 2;\
  242. wim -= 2;\
  243. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  244. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  245. } while(--n);\
  246. }
  247. PASS(pass)
  248. #undef BUTTERFLIES
  249. #define BUTTERFLIES BUTTERFLIES_BIG
  250. PASS(pass_big)
  251. #define DECL_FFT(n,n2,n4)\
  252. static void fft##n(FFTComplex *z)\
  253. {\
  254. fft##n2(z);\
  255. fft##n4(z+n4*2);\
  256. fft##n4(z+n4*3);\
  257. pass(z,ff_cos_##n,n4/2);\
  258. }
  259. static void fft4(FFTComplex *z)
  260. {
  261. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  262. BF(t3, t1, z[0].re, z[1].re);
  263. BF(t8, t6, z[3].re, z[2].re);
  264. BF(z[2].re, z[0].re, t1, t6);
  265. BF(t4, t2, z[0].im, z[1].im);
  266. BF(t7, t5, z[2].im, z[3].im);
  267. BF(z[3].im, z[1].im, t4, t8);
  268. BF(z[3].re, z[1].re, t3, t7);
  269. BF(z[2].im, z[0].im, t2, t5);
  270. }
  271. static void fft8(FFTComplex *z)
  272. {
  273. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  274. fft4(z);
  275. BF(t1, z[5].re, z[4].re, -z[5].re);
  276. BF(t2, z[5].im, z[4].im, -z[5].im);
  277. BF(t3, z[7].re, z[6].re, -z[7].re);
  278. BF(t4, z[7].im, z[6].im, -z[7].im);
  279. BF(t8, t1, t3, t1);
  280. BF(t7, t2, t2, t4);
  281. BF(z[4].re, z[0].re, z[0].re, t1);
  282. BF(z[4].im, z[0].im, z[0].im, t2);
  283. BF(z[6].re, z[2].re, z[2].re, t7);
  284. BF(z[6].im, z[2].im, z[2].im, t8);
  285. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  286. }
  287. #if !CONFIG_SMALL
  288. static void fft16(FFTComplex *z)
  289. {
  290. FFTSample t1, t2, t3, t4, t5, t6;
  291. fft8(z);
  292. fft4(z+8);
  293. fft4(z+12);
  294. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  295. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  296. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  297. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  298. }
  299. #else
  300. DECL_FFT(16,8,4)
  301. #endif
  302. DECL_FFT(32,16,8)
  303. DECL_FFT(64,32,16)
  304. DECL_FFT(128,64,32)
  305. DECL_FFT(256,128,64)
  306. DECL_FFT(512,256,128)
  307. #if !CONFIG_SMALL
  308. #define pass pass_big
  309. #endif
  310. DECL_FFT(1024,512,256)
  311. DECL_FFT(2048,1024,512)
  312. DECL_FFT(4096,2048,1024)
  313. DECL_FFT(8192,4096,2048)
  314. DECL_FFT(16384,8192,4096)
  315. DECL_FFT(32768,16384,8192)
  316. DECL_FFT(65536,32768,16384)
  317. static void (* const fft_dispatch[])(FFTComplex*) = {
  318. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  319. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  320. };
  321. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  322. {
  323. fft_dispatch[s->nbits-2](z);
  324. }