You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4359 lines
154KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "vc1.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "msmpeg4data.h"
  35. #include "unary.h"
  36. #include "simple_idct.h"
  37. #include "mathops.h"
  38. #include "vdpau_internal.h"
  39. #undef NDEBUG
  40. #include <assert.h>
  41. #define MB_INTRA_VLC_BITS 9
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /**
  46. * Init VC-1 specific tables and VC1Context members
  47. * @param v The VC1Context to initialize
  48. * @return Status
  49. */
  50. static int vc1_init_common(VC1Context *v)
  51. {
  52. static int done = 0;
  53. int i = 0;
  54. v->hrd_rate = v->hrd_buffer = NULL;
  55. /* VLC tables */
  56. if(!done)
  57. {
  58. done = 1;
  59. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  60. ff_vc1_bfraction_bits, 1, 1,
  61. ff_vc1_bfraction_codes, 1, 1, INIT_VLC_USE_STATIC);
  62. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  63. ff_vc1_norm2_bits, 1, 1,
  64. ff_vc1_norm2_codes, 1, 1, INIT_VLC_USE_STATIC);
  65. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  66. ff_vc1_norm6_bits, 1, 1,
  67. ff_vc1_norm6_codes, 2, 2, INIT_VLC_USE_STATIC);
  68. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  69. ff_vc1_imode_bits, 1, 1,
  70. ff_vc1_imode_codes, 1, 1, INIT_VLC_USE_STATIC);
  71. for (i=0; i<3; i++)
  72. {
  73. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  74. ff_vc1_ttmb_bits[i], 1, 1,
  75. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_STATIC);
  76. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  77. ff_vc1_ttblk_bits[i], 1, 1,
  78. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_STATIC);
  79. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  80. ff_vc1_subblkpat_bits[i], 1, 1,
  81. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_STATIC);
  82. }
  83. for(i=0; i<4; i++)
  84. {
  85. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  86. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  87. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_STATIC);
  88. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  89. ff_vc1_cbpcy_p_bits[i], 1, 1,
  90. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_STATIC);
  91. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  92. ff_vc1_mv_diff_bits[i], 1, 1,
  93. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_STATIC);
  94. }
  95. for(i=0; i<8; i++)
  96. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  97. &vc1_ac_tables[i][0][1], 8, 4,
  98. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_STATIC);
  99. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  100. &ff_msmp4_mb_i_table[0][1], 4, 2,
  101. &ff_msmp4_mb_i_table[0][0], 4, 2, INIT_VLC_USE_STATIC);
  102. }
  103. /* Other defaults */
  104. v->pq = -1;
  105. v->mvrange = 0; /* 7.1.1.18, p80 */
  106. return 0;
  107. }
  108. /***********************************************************************/
  109. /**
  110. * @defgroup vc1bitplane VC-1 Bitplane decoding
  111. * @see 8.7, p56
  112. * @{
  113. */
  114. /**
  115. * Imode types
  116. * @{
  117. */
  118. enum Imode {
  119. IMODE_RAW,
  120. IMODE_NORM2,
  121. IMODE_DIFF2,
  122. IMODE_NORM6,
  123. IMODE_DIFF6,
  124. IMODE_ROWSKIP,
  125. IMODE_COLSKIP
  126. };
  127. /** @} */ //imode defines
  128. /** Decode rows by checking if they are skipped
  129. * @param plane Buffer to store decoded bits
  130. * @param[in] width Width of this buffer
  131. * @param[in] height Height of this buffer
  132. * @param[in] stride of this buffer
  133. */
  134. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  135. int x, y;
  136. for (y=0; y<height; y++){
  137. if (!get_bits1(gb)) //rowskip
  138. memset(plane, 0, width);
  139. else
  140. for (x=0; x<width; x++)
  141. plane[x] = get_bits1(gb);
  142. plane += stride;
  143. }
  144. }
  145. /** Decode columns by checking if they are skipped
  146. * @param plane Buffer to store decoded bits
  147. * @param[in] width Width of this buffer
  148. * @param[in] height Height of this buffer
  149. * @param[in] stride of this buffer
  150. * @todo FIXME: Optimize
  151. */
  152. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  153. int x, y;
  154. for (x=0; x<width; x++){
  155. if (!get_bits1(gb)) //colskip
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = 0;
  158. else
  159. for (y=0; y<height; y++)
  160. plane[y*stride] = get_bits1(gb);
  161. plane ++;
  162. }
  163. }
  164. /** Decode a bitplane's bits
  165. * @param data bitplane where to store the decode bits
  166. * @param[out] raw_flag pointer to the flag indicating that this bitplane is not coded explicitly
  167. * @param v VC-1 context for bit reading and logging
  168. * @return Status
  169. * @todo FIXME: Optimize
  170. */
  171. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  172. {
  173. GetBitContext *gb = &v->s.gb;
  174. int imode, x, y, code, offset;
  175. uint8_t invert, *planep = data;
  176. int width, height, stride;
  177. width = v->s.mb_width;
  178. height = v->s.mb_height;
  179. stride = v->s.mb_stride;
  180. invert = get_bits1(gb);
  181. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  182. *raw_flag = 0;
  183. switch (imode)
  184. {
  185. case IMODE_RAW:
  186. //Data is actually read in the MB layer (same for all tests == "raw")
  187. *raw_flag = 1; //invert ignored
  188. return invert;
  189. case IMODE_DIFF2:
  190. case IMODE_NORM2:
  191. if ((height * width) & 1)
  192. {
  193. *planep++ = get_bits1(gb);
  194. offset = 1;
  195. }
  196. else offset = 0;
  197. // decode bitplane as one long line
  198. for (y = offset; y < height * width; y += 2) {
  199. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  200. *planep++ = code & 1;
  201. offset++;
  202. if(offset == width) {
  203. offset = 0;
  204. planep += stride - width;
  205. }
  206. *planep++ = code >> 1;
  207. offset++;
  208. if(offset == width) {
  209. offset = 0;
  210. planep += stride - width;
  211. }
  212. }
  213. break;
  214. case IMODE_DIFF6:
  215. case IMODE_NORM6:
  216. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  217. for(y = 0; y < height; y+= 3) {
  218. for(x = width & 1; x < width; x += 2) {
  219. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  220. if(code < 0){
  221. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  222. return -1;
  223. }
  224. planep[x + 0] = (code >> 0) & 1;
  225. planep[x + 1] = (code >> 1) & 1;
  226. planep[x + 0 + stride] = (code >> 2) & 1;
  227. planep[x + 1 + stride] = (code >> 3) & 1;
  228. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  229. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  230. }
  231. planep += stride * 3;
  232. }
  233. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  234. } else { // 3x2
  235. planep += (height & 1) * stride;
  236. for(y = height & 1; y < height; y += 2) {
  237. for(x = width % 3; x < width; x += 3) {
  238. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  239. if(code < 0){
  240. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  241. return -1;
  242. }
  243. planep[x + 0] = (code >> 0) & 1;
  244. planep[x + 1] = (code >> 1) & 1;
  245. planep[x + 2] = (code >> 2) & 1;
  246. planep[x + 0 + stride] = (code >> 3) & 1;
  247. planep[x + 1 + stride] = (code >> 4) & 1;
  248. planep[x + 2 + stride] = (code >> 5) & 1;
  249. }
  250. planep += stride * 2;
  251. }
  252. x = width % 3;
  253. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  254. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  255. }
  256. break;
  257. case IMODE_ROWSKIP:
  258. decode_rowskip(data, width, height, stride, &v->s.gb);
  259. break;
  260. case IMODE_COLSKIP:
  261. decode_colskip(data, width, height, stride, &v->s.gb);
  262. break;
  263. default: break;
  264. }
  265. /* Applying diff operator */
  266. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  267. {
  268. planep = data;
  269. planep[0] ^= invert;
  270. for (x=1; x<width; x++)
  271. planep[x] ^= planep[x-1];
  272. for (y=1; y<height; y++)
  273. {
  274. planep += stride;
  275. planep[0] ^= planep[-stride];
  276. for (x=1; x<width; x++)
  277. {
  278. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  279. else planep[x] ^= planep[x-1];
  280. }
  281. }
  282. }
  283. else if (invert)
  284. {
  285. planep = data;
  286. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  287. }
  288. return (imode<<1) + invert;
  289. }
  290. /** @} */ //Bitplane group
  291. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  292. {
  293. int i, j;
  294. if(!s->first_slice_line)
  295. s->dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  296. s->dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  297. for(i = !s->mb_x*8; i < 16; i += 8)
  298. s->dsp.vc1_h_loop_filter16(s->dest[0] + i, s->linesize, pq);
  299. for(j = 0; j < 2; j++){
  300. if(!s->first_slice_line)
  301. s->dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  302. if(s->mb_x)
  303. s->dsp.vc1_h_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  304. }
  305. }
  306. /***********************************************************************/
  307. /** VOP Dquant decoding
  308. * @param v VC-1 Context
  309. */
  310. static int vop_dquant_decoding(VC1Context *v)
  311. {
  312. GetBitContext *gb = &v->s.gb;
  313. int pqdiff;
  314. //variable size
  315. if (v->dquant == 2)
  316. {
  317. pqdiff = get_bits(gb, 3);
  318. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  319. else v->altpq = v->pq + pqdiff + 1;
  320. }
  321. else
  322. {
  323. v->dquantfrm = get_bits1(gb);
  324. if ( v->dquantfrm )
  325. {
  326. v->dqprofile = get_bits(gb, 2);
  327. switch (v->dqprofile)
  328. {
  329. case DQPROFILE_SINGLE_EDGE:
  330. case DQPROFILE_DOUBLE_EDGES:
  331. v->dqsbedge = get_bits(gb, 2);
  332. break;
  333. case DQPROFILE_ALL_MBS:
  334. v->dqbilevel = get_bits1(gb);
  335. if(!v->dqbilevel)
  336. v->halfpq = 0;
  337. default: break; //Forbidden ?
  338. }
  339. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  340. {
  341. pqdiff = get_bits(gb, 3);
  342. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  343. else v->altpq = v->pq + pqdiff + 1;
  344. }
  345. }
  346. }
  347. return 0;
  348. }
  349. /** Put block onto picture
  350. */
  351. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  352. {
  353. uint8_t *Y;
  354. int ys, us, vs;
  355. DSPContext *dsp = &v->s.dsp;
  356. if(v->rangeredfrm) {
  357. int i, j, k;
  358. for(k = 0; k < 6; k++)
  359. for(j = 0; j < 8; j++)
  360. for(i = 0; i < 8; i++)
  361. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  362. }
  363. ys = v->s.current_picture.linesize[0];
  364. us = v->s.current_picture.linesize[1];
  365. vs = v->s.current_picture.linesize[2];
  366. Y = v->s.dest[0];
  367. dsp->put_pixels_clamped(block[0], Y, ys);
  368. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  369. Y += ys * 8;
  370. dsp->put_pixels_clamped(block[2], Y, ys);
  371. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  372. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  373. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  374. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  375. }
  376. }
  377. /** Do motion compensation over 1 macroblock
  378. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  379. */
  380. static void vc1_mc_1mv(VC1Context *v, int dir)
  381. {
  382. MpegEncContext *s = &v->s;
  383. DSPContext *dsp = &v->s.dsp;
  384. uint8_t *srcY, *srcU, *srcV;
  385. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  386. if(!v->s.last_picture.data[0])return;
  387. mx = s->mv[dir][0][0];
  388. my = s->mv[dir][0][1];
  389. // store motion vectors for further use in B frames
  390. if(s->pict_type == FF_P_TYPE) {
  391. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  392. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  393. }
  394. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  395. uvmy = (my + ((my & 3) == 3)) >> 1;
  396. if(v->fastuvmc) {
  397. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  398. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  399. }
  400. if(!dir) {
  401. srcY = s->last_picture.data[0];
  402. srcU = s->last_picture.data[1];
  403. srcV = s->last_picture.data[2];
  404. } else {
  405. srcY = s->next_picture.data[0];
  406. srcU = s->next_picture.data[1];
  407. srcV = s->next_picture.data[2];
  408. }
  409. src_x = s->mb_x * 16 + (mx >> 2);
  410. src_y = s->mb_y * 16 + (my >> 2);
  411. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  412. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  413. if(v->profile != PROFILE_ADVANCED){
  414. src_x = av_clip( src_x, -16, s->mb_width * 16);
  415. src_y = av_clip( src_y, -16, s->mb_height * 16);
  416. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  417. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  418. }else{
  419. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  420. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  421. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  422. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  423. }
  424. srcY += src_y * s->linesize + src_x;
  425. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  426. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  427. /* for grayscale we should not try to read from unknown area */
  428. if(s->flags & CODEC_FLAG_GRAY) {
  429. srcU = s->edge_emu_buffer + 18 * s->linesize;
  430. srcV = s->edge_emu_buffer + 18 * s->linesize;
  431. }
  432. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  433. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  434. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  435. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  436. srcY -= s->mspel * (1 + s->linesize);
  437. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  438. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  439. srcY = s->edge_emu_buffer;
  440. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  441. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  442. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  443. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  444. srcU = uvbuf;
  445. srcV = uvbuf + 16;
  446. /* if we deal with range reduction we need to scale source blocks */
  447. if(v->rangeredfrm) {
  448. int i, j;
  449. uint8_t *src, *src2;
  450. src = srcY;
  451. for(j = 0; j < 17 + s->mspel*2; j++) {
  452. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  453. src += s->linesize;
  454. }
  455. src = srcU; src2 = srcV;
  456. for(j = 0; j < 9; j++) {
  457. for(i = 0; i < 9; i++) {
  458. src[i] = ((src[i] - 128) >> 1) + 128;
  459. src2[i] = ((src2[i] - 128) >> 1) + 128;
  460. }
  461. src += s->uvlinesize;
  462. src2 += s->uvlinesize;
  463. }
  464. }
  465. /* if we deal with intensity compensation we need to scale source blocks */
  466. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  467. int i, j;
  468. uint8_t *src, *src2;
  469. src = srcY;
  470. for(j = 0; j < 17 + s->mspel*2; j++) {
  471. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  472. src += s->linesize;
  473. }
  474. src = srcU; src2 = srcV;
  475. for(j = 0; j < 9; j++) {
  476. for(i = 0; i < 9; i++) {
  477. src[i] = v->lutuv[src[i]];
  478. src2[i] = v->lutuv[src2[i]];
  479. }
  480. src += s->uvlinesize;
  481. src2 += s->uvlinesize;
  482. }
  483. }
  484. srcY += s->mspel * (1 + s->linesize);
  485. }
  486. if(s->mspel) {
  487. dxy = ((my & 3) << 2) | (mx & 3);
  488. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  489. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  490. srcY += s->linesize * 8;
  491. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  492. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  493. } else { // hpel mc - always used for luma
  494. dxy = (my & 2) | ((mx & 2) >> 1);
  495. if(!v->rnd)
  496. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  497. else
  498. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  499. }
  500. if(s->flags & CODEC_FLAG_GRAY) return;
  501. /* Chroma MC always uses qpel bilinear */
  502. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  503. uvmx = (uvmx&3)<<1;
  504. uvmy = (uvmy&3)<<1;
  505. if(!v->rnd){
  506. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  507. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  508. }else{
  509. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  510. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  511. }
  512. }
  513. /** Do motion compensation for 4-MV macroblock - luminance block
  514. */
  515. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  516. {
  517. MpegEncContext *s = &v->s;
  518. DSPContext *dsp = &v->s.dsp;
  519. uint8_t *srcY;
  520. int dxy, mx, my, src_x, src_y;
  521. int off;
  522. if(!v->s.last_picture.data[0])return;
  523. mx = s->mv[0][n][0];
  524. my = s->mv[0][n][1];
  525. srcY = s->last_picture.data[0];
  526. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  527. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  528. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  529. if(v->profile != PROFILE_ADVANCED){
  530. src_x = av_clip( src_x, -16, s->mb_width * 16);
  531. src_y = av_clip( src_y, -16, s->mb_height * 16);
  532. }else{
  533. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  534. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  535. }
  536. srcY += src_y * s->linesize + src_x;
  537. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  538. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  539. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  540. srcY -= s->mspel * (1 + s->linesize);
  541. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  542. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  543. srcY = s->edge_emu_buffer;
  544. /* if we deal with range reduction we need to scale source blocks */
  545. if(v->rangeredfrm) {
  546. int i, j;
  547. uint8_t *src;
  548. src = srcY;
  549. for(j = 0; j < 9 + s->mspel*2; j++) {
  550. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  551. src += s->linesize;
  552. }
  553. }
  554. /* if we deal with intensity compensation we need to scale source blocks */
  555. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  556. int i, j;
  557. uint8_t *src;
  558. src = srcY;
  559. for(j = 0; j < 9 + s->mspel*2; j++) {
  560. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  561. src += s->linesize;
  562. }
  563. }
  564. srcY += s->mspel * (1 + s->linesize);
  565. }
  566. if(s->mspel) {
  567. dxy = ((my & 3) << 2) | (mx & 3);
  568. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  569. } else { // hpel mc - always used for luma
  570. dxy = (my & 2) | ((mx & 2) >> 1);
  571. if(!v->rnd)
  572. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  573. else
  574. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  575. }
  576. }
  577. static inline int median4(int a, int b, int c, int d)
  578. {
  579. if(a < b) {
  580. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  581. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  582. } else {
  583. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  584. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  585. }
  586. }
  587. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  588. */
  589. static void vc1_mc_4mv_chroma(VC1Context *v)
  590. {
  591. MpegEncContext *s = &v->s;
  592. DSPContext *dsp = &v->s.dsp;
  593. uint8_t *srcU, *srcV;
  594. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  595. int i, idx, tx = 0, ty = 0;
  596. int mvx[4], mvy[4], intra[4];
  597. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  598. if(!v->s.last_picture.data[0])return;
  599. if(s->flags & CODEC_FLAG_GRAY) return;
  600. for(i = 0; i < 4; i++) {
  601. mvx[i] = s->mv[0][i][0];
  602. mvy[i] = s->mv[0][i][1];
  603. intra[i] = v->mb_type[0][s->block_index[i]];
  604. }
  605. /* calculate chroma MV vector from four luma MVs */
  606. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  607. if(!idx) { // all blocks are inter
  608. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  609. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  610. } else if(count[idx] == 1) { // 3 inter blocks
  611. switch(idx) {
  612. case 0x1:
  613. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  614. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  615. break;
  616. case 0x2:
  617. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  618. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  619. break;
  620. case 0x4:
  621. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  622. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  623. break;
  624. case 0x8:
  625. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  626. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  627. break;
  628. }
  629. } else if(count[idx] == 2) {
  630. int t1 = 0, t2 = 0;
  631. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  632. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  633. tx = (mvx[t1] + mvx[t2]) / 2;
  634. ty = (mvy[t1] + mvy[t2]) / 2;
  635. } else {
  636. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  637. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  638. return; //no need to do MC for inter blocks
  639. }
  640. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  641. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  642. uvmx = (tx + ((tx&3) == 3)) >> 1;
  643. uvmy = (ty + ((ty&3) == 3)) >> 1;
  644. if(v->fastuvmc) {
  645. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  646. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  647. }
  648. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  649. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  650. if(v->profile != PROFILE_ADVANCED){
  651. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  652. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  653. }else{
  654. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  655. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  656. }
  657. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  658. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  659. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  660. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  661. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  662. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  663. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  664. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  665. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  666. srcU = s->edge_emu_buffer;
  667. srcV = s->edge_emu_buffer + 16;
  668. /* if we deal with range reduction we need to scale source blocks */
  669. if(v->rangeredfrm) {
  670. int i, j;
  671. uint8_t *src, *src2;
  672. src = srcU; src2 = srcV;
  673. for(j = 0; j < 9; j++) {
  674. for(i = 0; i < 9; i++) {
  675. src[i] = ((src[i] - 128) >> 1) + 128;
  676. src2[i] = ((src2[i] - 128) >> 1) + 128;
  677. }
  678. src += s->uvlinesize;
  679. src2 += s->uvlinesize;
  680. }
  681. }
  682. /* if we deal with intensity compensation we need to scale source blocks */
  683. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  684. int i, j;
  685. uint8_t *src, *src2;
  686. src = srcU; src2 = srcV;
  687. for(j = 0; j < 9; j++) {
  688. for(i = 0; i < 9; i++) {
  689. src[i] = v->lutuv[src[i]];
  690. src2[i] = v->lutuv[src2[i]];
  691. }
  692. src += s->uvlinesize;
  693. src2 += s->uvlinesize;
  694. }
  695. }
  696. }
  697. /* Chroma MC always uses qpel bilinear */
  698. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  699. uvmx = (uvmx&3)<<1;
  700. uvmy = (uvmy&3)<<1;
  701. if(!v->rnd){
  702. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  703. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  704. }else{
  705. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  706. dsp->put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  707. }
  708. }
  709. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  710. /**
  711. * Decode Simple/Main Profiles sequence header
  712. * @see Figure 7-8, p16-17
  713. * @param avctx Codec context
  714. * @param gb GetBit context initialized from Codec context extra_data
  715. * @return Status
  716. */
  717. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  718. {
  719. VC1Context *v = avctx->priv_data;
  720. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  721. v->profile = get_bits(gb, 2);
  722. if (v->profile == PROFILE_COMPLEX)
  723. {
  724. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  725. }
  726. if (v->profile == PROFILE_ADVANCED)
  727. {
  728. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  729. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  730. return decode_sequence_header_adv(v, gb);
  731. }
  732. else
  733. {
  734. v->zz_8x4 = wmv2_scantableA;
  735. v->zz_4x8 = wmv2_scantableB;
  736. v->res_sm = get_bits(gb, 2); //reserved
  737. if (v->res_sm)
  738. {
  739. av_log(avctx, AV_LOG_ERROR,
  740. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  741. return -1;
  742. }
  743. }
  744. // (fps-2)/4 (->30)
  745. v->frmrtq_postproc = get_bits(gb, 3); //common
  746. // (bitrate-32kbps)/64kbps
  747. v->bitrtq_postproc = get_bits(gb, 5); //common
  748. v->s.loop_filter = get_bits1(gb); //common
  749. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  750. {
  751. av_log(avctx, AV_LOG_ERROR,
  752. "LOOPFILTER shell not be enabled in simple profile\n");
  753. }
  754. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  755. v->s.loop_filter = 0;
  756. v->res_x8 = get_bits1(gb); //reserved
  757. v->multires = get_bits1(gb);
  758. v->res_fasttx = get_bits1(gb);
  759. if (!v->res_fasttx)
  760. {
  761. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  762. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  763. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  764. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  765. }
  766. v->fastuvmc = get_bits1(gb); //common
  767. if (!v->profile && !v->fastuvmc)
  768. {
  769. av_log(avctx, AV_LOG_ERROR,
  770. "FASTUVMC unavailable in Simple Profile\n");
  771. return -1;
  772. }
  773. v->extended_mv = get_bits1(gb); //common
  774. if (!v->profile && v->extended_mv)
  775. {
  776. av_log(avctx, AV_LOG_ERROR,
  777. "Extended MVs unavailable in Simple Profile\n");
  778. return -1;
  779. }
  780. v->dquant = get_bits(gb, 2); //common
  781. v->vstransform = get_bits1(gb); //common
  782. v->res_transtab = get_bits1(gb);
  783. if (v->res_transtab)
  784. {
  785. av_log(avctx, AV_LOG_ERROR,
  786. "1 for reserved RES_TRANSTAB is forbidden\n");
  787. return -1;
  788. }
  789. v->overlap = get_bits1(gb); //common
  790. v->s.resync_marker = get_bits1(gb);
  791. v->rangered = get_bits1(gb);
  792. if (v->rangered && v->profile == PROFILE_SIMPLE)
  793. {
  794. av_log(avctx, AV_LOG_INFO,
  795. "RANGERED should be set to 0 in simple profile\n");
  796. }
  797. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  798. v->quantizer_mode = get_bits(gb, 2); //common
  799. v->finterpflag = get_bits1(gb); //common
  800. v->res_rtm_flag = get_bits1(gb); //reserved
  801. if (!v->res_rtm_flag)
  802. {
  803. // av_log(avctx, AV_LOG_ERROR,
  804. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  805. av_log(avctx, AV_LOG_ERROR,
  806. "Old WMV3 version detected, only I-frames will be decoded\n");
  807. //return -1;
  808. }
  809. //TODO: figure out what they mean (always 0x402F)
  810. if(!v->res_fasttx) skip_bits(gb, 16);
  811. av_log(avctx, AV_LOG_DEBUG,
  812. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  813. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  814. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  815. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  816. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  817. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  818. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  819. v->dquant, v->quantizer_mode, avctx->max_b_frames
  820. );
  821. return 0;
  822. }
  823. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  824. {
  825. v->res_rtm_flag = 1;
  826. v->level = get_bits(gb, 3);
  827. if(v->level >= 5)
  828. {
  829. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  830. }
  831. v->chromaformat = get_bits(gb, 2);
  832. if (v->chromaformat != 1)
  833. {
  834. av_log(v->s.avctx, AV_LOG_ERROR,
  835. "Only 4:2:0 chroma format supported\n");
  836. return -1;
  837. }
  838. // (fps-2)/4 (->30)
  839. v->frmrtq_postproc = get_bits(gb, 3); //common
  840. // (bitrate-32kbps)/64kbps
  841. v->bitrtq_postproc = get_bits(gb, 5); //common
  842. v->postprocflag = get_bits1(gb); //common
  843. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  844. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  845. v->s.avctx->width = v->s.avctx->coded_width;
  846. v->s.avctx->height = v->s.avctx->coded_height;
  847. v->broadcast = get_bits1(gb);
  848. v->interlace = get_bits1(gb);
  849. v->tfcntrflag = get_bits1(gb);
  850. v->finterpflag = get_bits1(gb);
  851. skip_bits1(gb); // reserved
  852. v->s.h_edge_pos = v->s.avctx->coded_width;
  853. v->s.v_edge_pos = v->s.avctx->coded_height;
  854. av_log(v->s.avctx, AV_LOG_DEBUG,
  855. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  856. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  857. "TFCTRflag=%i, FINTERPflag=%i\n",
  858. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  859. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  860. v->tfcntrflag, v->finterpflag
  861. );
  862. v->psf = get_bits1(gb);
  863. if(v->psf) { //PsF, 6.1.13
  864. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  865. return -1;
  866. }
  867. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  868. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  869. int w, h, ar = 0;
  870. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  871. v->s.avctx->coded_width = w = get_bits(gb, 14) + 1;
  872. v->s.avctx->coded_height = h = get_bits(gb, 14) + 1;
  873. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  874. if(get_bits1(gb))
  875. ar = get_bits(gb, 4);
  876. if(ar && ar < 14){
  877. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  878. }else if(ar == 15){
  879. w = get_bits(gb, 8);
  880. h = get_bits(gb, 8);
  881. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  882. }
  883. av_log(v->s.avctx, AV_LOG_DEBUG, "Aspect: %i:%i\n", v->s.avctx->sample_aspect_ratio.num, v->s.avctx->sample_aspect_ratio.den);
  884. if(get_bits1(gb)){ //framerate stuff
  885. if(get_bits1(gb)) {
  886. v->s.avctx->time_base.num = 32;
  887. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  888. } else {
  889. int nr, dr;
  890. nr = get_bits(gb, 8);
  891. dr = get_bits(gb, 4);
  892. if(nr && nr < 8 && dr && dr < 3){
  893. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  894. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  895. }
  896. }
  897. }
  898. if(get_bits1(gb)){
  899. v->color_prim = get_bits(gb, 8);
  900. v->transfer_char = get_bits(gb, 8);
  901. v->matrix_coef = get_bits(gb, 8);
  902. }
  903. }
  904. v->hrd_param_flag = get_bits1(gb);
  905. if(v->hrd_param_flag) {
  906. int i;
  907. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  908. skip_bits(gb, 4); //bitrate exponent
  909. skip_bits(gb, 4); //buffer size exponent
  910. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  911. skip_bits(gb, 16); //hrd_rate[n]
  912. skip_bits(gb, 16); //hrd_buffer[n]
  913. }
  914. }
  915. return 0;
  916. }
  917. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  918. {
  919. VC1Context *v = avctx->priv_data;
  920. int i;
  921. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  922. v->broken_link = get_bits1(gb);
  923. v->closed_entry = get_bits1(gb);
  924. v->panscanflag = get_bits1(gb);
  925. v->refdist_flag = get_bits1(gb);
  926. v->s.loop_filter = get_bits1(gb);
  927. v->fastuvmc = get_bits1(gb);
  928. v->extended_mv = get_bits1(gb);
  929. v->dquant = get_bits(gb, 2);
  930. v->vstransform = get_bits1(gb);
  931. v->overlap = get_bits1(gb);
  932. v->quantizer_mode = get_bits(gb, 2);
  933. if(v->hrd_param_flag){
  934. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  935. skip_bits(gb, 8); //hrd_full[n]
  936. }
  937. }
  938. if(get_bits1(gb)){
  939. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  940. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  941. }
  942. if(v->extended_mv)
  943. v->extended_dmv = get_bits1(gb);
  944. if((v->range_mapy_flag = get_bits1(gb))) {
  945. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  946. v->range_mapy = get_bits(gb, 3);
  947. }
  948. if((v->range_mapuv_flag = get_bits1(gb))) {
  949. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  950. v->range_mapuv = get_bits(gb, 3);
  951. }
  952. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  953. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  954. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  955. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  956. v->broken_link, v->closed_entry, v->panscanflag, v->refdist_flag, v->s.loop_filter,
  957. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  958. return 0;
  959. }
  960. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  961. {
  962. int pqindex, lowquant, status;
  963. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  964. skip_bits(gb, 2); //framecnt unused
  965. v->rangeredfrm = 0;
  966. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  967. v->s.pict_type = get_bits1(gb);
  968. if (v->s.avctx->max_b_frames) {
  969. if (!v->s.pict_type) {
  970. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  971. else v->s.pict_type = FF_B_TYPE;
  972. } else v->s.pict_type = FF_P_TYPE;
  973. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  974. v->bi_type = 0;
  975. if(v->s.pict_type == FF_B_TYPE) {
  976. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  977. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  978. if(v->bfraction == 0) {
  979. v->s.pict_type = FF_BI_TYPE;
  980. }
  981. }
  982. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  983. skip_bits(gb, 7); // skip buffer fullness
  984. /* calculate RND */
  985. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  986. v->rnd = 1;
  987. if(v->s.pict_type == FF_P_TYPE)
  988. v->rnd ^= 1;
  989. /* Quantizer stuff */
  990. pqindex = get_bits(gb, 5);
  991. if(!pqindex) return -1;
  992. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  993. v->pq = ff_vc1_pquant_table[0][pqindex];
  994. else
  995. v->pq = ff_vc1_pquant_table[1][pqindex];
  996. v->pquantizer = 1;
  997. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  998. v->pquantizer = pqindex < 9;
  999. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1000. v->pquantizer = 0;
  1001. v->pqindex = pqindex;
  1002. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1003. else v->halfpq = 0;
  1004. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1005. v->pquantizer = get_bits1(gb);
  1006. v->dquantfrm = 0;
  1007. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1008. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1009. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1010. v->range_x = 1 << (v->k_x - 1);
  1011. v->range_y = 1 << (v->k_y - 1);
  1012. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1013. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1014. v->x8_type = get_bits1(gb);
  1015. }else v->x8_type = 0;
  1016. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1017. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1018. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1019. switch(v->s.pict_type) {
  1020. case FF_P_TYPE:
  1021. if (v->pq < 5) v->tt_index = 0;
  1022. else if(v->pq < 13) v->tt_index = 1;
  1023. else v->tt_index = 2;
  1024. lowquant = (v->pq > 12) ? 0 : 1;
  1025. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1026. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1027. {
  1028. int scale, shift, i;
  1029. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1030. v->lumscale = get_bits(gb, 6);
  1031. v->lumshift = get_bits(gb, 6);
  1032. v->use_ic = 1;
  1033. /* fill lookup tables for intensity compensation */
  1034. if(!v->lumscale) {
  1035. scale = -64;
  1036. shift = (255 - v->lumshift * 2) << 6;
  1037. if(v->lumshift > 31)
  1038. shift += 128 << 6;
  1039. } else {
  1040. scale = v->lumscale + 32;
  1041. if(v->lumshift > 31)
  1042. shift = (v->lumshift - 64) << 6;
  1043. else
  1044. shift = v->lumshift << 6;
  1045. }
  1046. for(i = 0; i < 256; i++) {
  1047. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1048. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1049. }
  1050. }
  1051. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1052. v->s.quarter_sample = 0;
  1053. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1054. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1055. v->s.quarter_sample = 0;
  1056. else
  1057. v->s.quarter_sample = 1;
  1058. } else
  1059. v->s.quarter_sample = 1;
  1060. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1061. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1062. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1063. || v->mv_mode == MV_PMODE_MIXED_MV)
  1064. {
  1065. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1066. if (status < 0) return -1;
  1067. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1068. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1069. } else {
  1070. v->mv_type_is_raw = 0;
  1071. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1072. }
  1073. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1074. if (status < 0) return -1;
  1075. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1076. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1077. /* Hopefully this is correct for P frames */
  1078. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1079. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1080. if (v->dquant)
  1081. {
  1082. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1083. vop_dquant_decoding(v);
  1084. }
  1085. v->ttfrm = 0; //FIXME Is that so ?
  1086. if (v->vstransform)
  1087. {
  1088. v->ttmbf = get_bits1(gb);
  1089. if (v->ttmbf)
  1090. {
  1091. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1092. }
  1093. } else {
  1094. v->ttmbf = 1;
  1095. v->ttfrm = TT_8X8;
  1096. }
  1097. break;
  1098. case FF_B_TYPE:
  1099. if (v->pq < 5) v->tt_index = 0;
  1100. else if(v->pq < 13) v->tt_index = 1;
  1101. else v->tt_index = 2;
  1102. lowquant = (v->pq > 12) ? 0 : 1;
  1103. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1104. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1105. v->s.mspel = v->s.quarter_sample;
  1106. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1107. if (status < 0) return -1;
  1108. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1109. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1110. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1111. if (status < 0) return -1;
  1112. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1113. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1114. v->s.mv_table_index = get_bits(gb, 2);
  1115. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1116. if (v->dquant)
  1117. {
  1118. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1119. vop_dquant_decoding(v);
  1120. }
  1121. v->ttfrm = 0;
  1122. if (v->vstransform)
  1123. {
  1124. v->ttmbf = get_bits1(gb);
  1125. if (v->ttmbf)
  1126. {
  1127. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1128. }
  1129. } else {
  1130. v->ttmbf = 1;
  1131. v->ttfrm = TT_8X8;
  1132. }
  1133. break;
  1134. }
  1135. if(!v->x8_type)
  1136. {
  1137. /* AC Syntax */
  1138. v->c_ac_table_index = decode012(gb);
  1139. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1140. {
  1141. v->y_ac_table_index = decode012(gb);
  1142. }
  1143. /* DC Syntax */
  1144. v->s.dc_table_index = get_bits1(gb);
  1145. }
  1146. if(v->s.pict_type == FF_BI_TYPE) {
  1147. v->s.pict_type = FF_B_TYPE;
  1148. v->bi_type = 1;
  1149. }
  1150. return 0;
  1151. }
  1152. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1153. {
  1154. int pqindex, lowquant;
  1155. int status;
  1156. v->p_frame_skipped = 0;
  1157. if(v->interlace){
  1158. v->fcm = decode012(gb);
  1159. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1160. }
  1161. switch(get_unary(gb, 0, 4)) {
  1162. case 0:
  1163. v->s.pict_type = FF_P_TYPE;
  1164. break;
  1165. case 1:
  1166. v->s.pict_type = FF_B_TYPE;
  1167. break;
  1168. case 2:
  1169. v->s.pict_type = FF_I_TYPE;
  1170. break;
  1171. case 3:
  1172. v->s.pict_type = FF_BI_TYPE;
  1173. break;
  1174. case 4:
  1175. v->s.pict_type = FF_P_TYPE; // skipped pic
  1176. v->p_frame_skipped = 1;
  1177. return 0;
  1178. }
  1179. if(v->tfcntrflag)
  1180. skip_bits(gb, 8);
  1181. if(v->broadcast) {
  1182. if(!v->interlace || v->psf) {
  1183. v->rptfrm = get_bits(gb, 2);
  1184. } else {
  1185. v->tff = get_bits1(gb);
  1186. v->rptfrm = get_bits1(gb);
  1187. }
  1188. }
  1189. if(v->panscanflag) {
  1190. //...
  1191. }
  1192. v->rnd = get_bits1(gb);
  1193. if(v->interlace)
  1194. v->uvsamp = get_bits1(gb);
  1195. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1196. if(v->s.pict_type == FF_B_TYPE) {
  1197. v->bfraction_lut_index = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1198. v->bfraction = ff_vc1_bfraction_lut[v->bfraction_lut_index];
  1199. if(v->bfraction == 0) {
  1200. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1201. }
  1202. }
  1203. pqindex = get_bits(gb, 5);
  1204. if(!pqindex) return -1;
  1205. v->pqindex = pqindex;
  1206. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1207. v->pq = ff_vc1_pquant_table[0][pqindex];
  1208. else
  1209. v->pq = ff_vc1_pquant_table[1][pqindex];
  1210. v->pquantizer = 1;
  1211. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1212. v->pquantizer = pqindex < 9;
  1213. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1214. v->pquantizer = 0;
  1215. v->pqindex = pqindex;
  1216. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1217. else v->halfpq = 0;
  1218. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1219. v->pquantizer = get_bits1(gb);
  1220. if(v->postprocflag)
  1221. v->postproc = get_bits(gb, 2);
  1222. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1223. switch(v->s.pict_type) {
  1224. case FF_I_TYPE:
  1225. case FF_BI_TYPE:
  1226. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1227. if (status < 0) return -1;
  1228. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1229. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1230. v->condover = CONDOVER_NONE;
  1231. if(v->overlap && v->pq <= 8) {
  1232. v->condover = decode012(gb);
  1233. if(v->condover == CONDOVER_SELECT) {
  1234. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1235. if (status < 0) return -1;
  1236. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1237. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1238. }
  1239. }
  1240. break;
  1241. case FF_P_TYPE:
  1242. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1243. else v->mvrange = 0;
  1244. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1245. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1246. v->range_x = 1 << (v->k_x - 1);
  1247. v->range_y = 1 << (v->k_y - 1);
  1248. if (v->pq < 5) v->tt_index = 0;
  1249. else if(v->pq < 13) v->tt_index = 1;
  1250. else v->tt_index = 2;
  1251. lowquant = (v->pq > 12) ? 0 : 1;
  1252. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1253. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1254. {
  1255. int scale, shift, i;
  1256. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1257. v->lumscale = get_bits(gb, 6);
  1258. v->lumshift = get_bits(gb, 6);
  1259. /* fill lookup tables for intensity compensation */
  1260. if(!v->lumscale) {
  1261. scale = -64;
  1262. shift = (255 - v->lumshift * 2) << 6;
  1263. if(v->lumshift > 31)
  1264. shift += 128 << 6;
  1265. } else {
  1266. scale = v->lumscale + 32;
  1267. if(v->lumshift > 31)
  1268. shift = (v->lumshift - 64) << 6;
  1269. else
  1270. shift = v->lumshift << 6;
  1271. }
  1272. for(i = 0; i < 256; i++) {
  1273. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1274. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1275. }
  1276. v->use_ic = 1;
  1277. }
  1278. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1279. v->s.quarter_sample = 0;
  1280. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1281. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1282. v->s.quarter_sample = 0;
  1283. else
  1284. v->s.quarter_sample = 1;
  1285. } else
  1286. v->s.quarter_sample = 1;
  1287. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1288. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1289. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1290. || v->mv_mode == MV_PMODE_MIXED_MV)
  1291. {
  1292. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1293. if (status < 0) return -1;
  1294. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1295. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1296. } else {
  1297. v->mv_type_is_raw = 0;
  1298. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1299. }
  1300. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1301. if (status < 0) return -1;
  1302. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1303. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1304. /* Hopefully this is correct for P frames */
  1305. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1306. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1307. if (v->dquant)
  1308. {
  1309. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1310. vop_dquant_decoding(v);
  1311. }
  1312. v->ttfrm = 0; //FIXME Is that so ?
  1313. if (v->vstransform)
  1314. {
  1315. v->ttmbf = get_bits1(gb);
  1316. if (v->ttmbf)
  1317. {
  1318. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1319. }
  1320. } else {
  1321. v->ttmbf = 1;
  1322. v->ttfrm = TT_8X8;
  1323. }
  1324. break;
  1325. case FF_B_TYPE:
  1326. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1327. else v->mvrange = 0;
  1328. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1329. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1330. v->range_x = 1 << (v->k_x - 1);
  1331. v->range_y = 1 << (v->k_y - 1);
  1332. if (v->pq < 5) v->tt_index = 0;
  1333. else if(v->pq < 13) v->tt_index = 1;
  1334. else v->tt_index = 2;
  1335. lowquant = (v->pq > 12) ? 0 : 1;
  1336. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1337. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1338. v->s.mspel = v->s.quarter_sample;
  1339. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1340. if (status < 0) return -1;
  1341. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1342. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1343. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1344. if (status < 0) return -1;
  1345. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1346. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1347. v->s.mv_table_index = get_bits(gb, 2);
  1348. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1349. if (v->dquant)
  1350. {
  1351. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1352. vop_dquant_decoding(v);
  1353. }
  1354. v->ttfrm = 0;
  1355. if (v->vstransform)
  1356. {
  1357. v->ttmbf = get_bits1(gb);
  1358. if (v->ttmbf)
  1359. {
  1360. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1361. }
  1362. } else {
  1363. v->ttmbf = 1;
  1364. v->ttfrm = TT_8X8;
  1365. }
  1366. break;
  1367. }
  1368. /* AC Syntax */
  1369. v->c_ac_table_index = decode012(gb);
  1370. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1371. {
  1372. v->y_ac_table_index = decode012(gb);
  1373. }
  1374. /* DC Syntax */
  1375. v->s.dc_table_index = get_bits1(gb);
  1376. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1377. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1378. vop_dquant_decoding(v);
  1379. }
  1380. v->bi_type = 0;
  1381. if(v->s.pict_type == FF_BI_TYPE) {
  1382. v->s.pict_type = FF_B_TYPE;
  1383. v->bi_type = 1;
  1384. }
  1385. return 0;
  1386. }
  1387. /***********************************************************************/
  1388. /**
  1389. * @defgroup vc1block VC-1 Block-level functions
  1390. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1391. * @{
  1392. */
  1393. /**
  1394. * @def GET_MQUANT
  1395. * @brief Get macroblock-level quantizer scale
  1396. */
  1397. #define GET_MQUANT() \
  1398. if (v->dquantfrm) \
  1399. { \
  1400. int edges = 0; \
  1401. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1402. { \
  1403. if (v->dqbilevel) \
  1404. { \
  1405. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1406. } \
  1407. else \
  1408. { \
  1409. mqdiff = get_bits(gb, 3); \
  1410. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1411. else mquant = get_bits(gb, 5); \
  1412. } \
  1413. } \
  1414. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1415. edges = 1 << v->dqsbedge; \
  1416. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1417. edges = (3 << v->dqsbedge) % 15; \
  1418. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1419. edges = 15; \
  1420. if((edges&1) && !s->mb_x) \
  1421. mquant = v->altpq; \
  1422. if((edges&2) && s->first_slice_line) \
  1423. mquant = v->altpq; \
  1424. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1425. mquant = v->altpq; \
  1426. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1427. mquant = v->altpq; \
  1428. }
  1429. /**
  1430. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1431. * @brief Get MV differentials
  1432. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1433. * @param _dmv_x Horizontal differential for decoded MV
  1434. * @param _dmv_y Vertical differential for decoded MV
  1435. */
  1436. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1437. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1438. VC1_MV_DIFF_VLC_BITS, 2); \
  1439. if (index > 36) \
  1440. { \
  1441. mb_has_coeffs = 1; \
  1442. index -= 37; \
  1443. } \
  1444. else mb_has_coeffs = 0; \
  1445. s->mb_intra = 0; \
  1446. if (!index) { _dmv_x = _dmv_y = 0; } \
  1447. else if (index == 35) \
  1448. { \
  1449. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1450. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1451. } \
  1452. else if (index == 36) \
  1453. { \
  1454. _dmv_x = 0; \
  1455. _dmv_y = 0; \
  1456. s->mb_intra = 1; \
  1457. } \
  1458. else \
  1459. { \
  1460. index1 = index%6; \
  1461. if (!s->quarter_sample && index1 == 5) val = 1; \
  1462. else val = 0; \
  1463. if(size_table[index1] - val > 0) \
  1464. val = get_bits(gb, size_table[index1] - val); \
  1465. else val = 0; \
  1466. sign = 0 - (val&1); \
  1467. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1468. \
  1469. index1 = index/6; \
  1470. if (!s->quarter_sample && index1 == 5) val = 1; \
  1471. else val = 0; \
  1472. if(size_table[index1] - val > 0) \
  1473. val = get_bits(gb, size_table[index1] - val); \
  1474. else val = 0; \
  1475. sign = 0 - (val&1); \
  1476. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1477. }
  1478. /** Predict and set motion vector
  1479. */
  1480. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1481. {
  1482. int xy, wrap, off = 0;
  1483. int16_t *A, *B, *C;
  1484. int px, py;
  1485. int sum;
  1486. /* scale MV difference to be quad-pel */
  1487. dmv_x <<= 1 - s->quarter_sample;
  1488. dmv_y <<= 1 - s->quarter_sample;
  1489. wrap = s->b8_stride;
  1490. xy = s->block_index[n];
  1491. if(s->mb_intra){
  1492. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1493. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1494. s->current_picture.motion_val[1][xy][0] = 0;
  1495. s->current_picture.motion_val[1][xy][1] = 0;
  1496. if(mv1) { /* duplicate motion data for 1-MV block */
  1497. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1498. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1499. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1500. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1501. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1502. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1503. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1504. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1505. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1506. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1507. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1508. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1509. }
  1510. return;
  1511. }
  1512. C = s->current_picture.motion_val[0][xy - 1];
  1513. A = s->current_picture.motion_val[0][xy - wrap];
  1514. if(mv1)
  1515. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1516. else {
  1517. //in 4-MV mode different blocks have different B predictor position
  1518. switch(n){
  1519. case 0:
  1520. off = (s->mb_x > 0) ? -1 : 1;
  1521. break;
  1522. case 1:
  1523. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1524. break;
  1525. case 2:
  1526. off = 1;
  1527. break;
  1528. case 3:
  1529. off = -1;
  1530. }
  1531. }
  1532. B = s->current_picture.motion_val[0][xy - wrap + off];
  1533. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1534. if(s->mb_width == 1) {
  1535. px = A[0];
  1536. py = A[1];
  1537. } else {
  1538. px = mid_pred(A[0], B[0], C[0]);
  1539. py = mid_pred(A[1], B[1], C[1]);
  1540. }
  1541. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1542. px = C[0];
  1543. py = C[1];
  1544. } else {
  1545. px = py = 0;
  1546. }
  1547. /* Pullback MV as specified in 8.3.5.3.4 */
  1548. {
  1549. int qx, qy, X, Y;
  1550. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1551. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1552. X = (s->mb_width << 6) - 4;
  1553. Y = (s->mb_height << 6) - 4;
  1554. if(mv1) {
  1555. if(qx + px < -60) px = -60 - qx;
  1556. if(qy + py < -60) py = -60 - qy;
  1557. } else {
  1558. if(qx + px < -28) px = -28 - qx;
  1559. if(qy + py < -28) py = -28 - qy;
  1560. }
  1561. if(qx + px > X) px = X - qx;
  1562. if(qy + py > Y) py = Y - qy;
  1563. }
  1564. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1565. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1566. if(is_intra[xy - wrap])
  1567. sum = FFABS(px) + FFABS(py);
  1568. else
  1569. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1570. if(sum > 32) {
  1571. if(get_bits1(&s->gb)) {
  1572. px = A[0];
  1573. py = A[1];
  1574. } else {
  1575. px = C[0];
  1576. py = C[1];
  1577. }
  1578. } else {
  1579. if(is_intra[xy - 1])
  1580. sum = FFABS(px) + FFABS(py);
  1581. else
  1582. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1583. if(sum > 32) {
  1584. if(get_bits1(&s->gb)) {
  1585. px = A[0];
  1586. py = A[1];
  1587. } else {
  1588. px = C[0];
  1589. py = C[1];
  1590. }
  1591. }
  1592. }
  1593. }
  1594. /* store MV using signed modulus of MV range defined in 4.11 */
  1595. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1596. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1597. if(mv1) { /* duplicate motion data for 1-MV block */
  1598. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1599. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1600. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1601. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1602. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1603. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1604. }
  1605. }
  1606. /** Motion compensation for direct or interpolated blocks in B-frames
  1607. */
  1608. static void vc1_interp_mc(VC1Context *v)
  1609. {
  1610. MpegEncContext *s = &v->s;
  1611. DSPContext *dsp = &v->s.dsp;
  1612. uint8_t *srcY, *srcU, *srcV;
  1613. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1614. if(!v->s.next_picture.data[0])return;
  1615. mx = s->mv[1][0][0];
  1616. my = s->mv[1][0][1];
  1617. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1618. uvmy = (my + ((my & 3) == 3)) >> 1;
  1619. if(v->fastuvmc) {
  1620. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1621. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1622. }
  1623. srcY = s->next_picture.data[0];
  1624. srcU = s->next_picture.data[1];
  1625. srcV = s->next_picture.data[2];
  1626. src_x = s->mb_x * 16 + (mx >> 2);
  1627. src_y = s->mb_y * 16 + (my >> 2);
  1628. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1629. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1630. if(v->profile != PROFILE_ADVANCED){
  1631. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1632. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1633. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1634. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1635. }else{
  1636. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1637. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1638. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1639. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1640. }
  1641. srcY += src_y * s->linesize + src_x;
  1642. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1643. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1644. /* for grayscale we should not try to read from unknown area */
  1645. if(s->flags & CODEC_FLAG_GRAY) {
  1646. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1647. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1648. }
  1649. if(v->rangeredfrm
  1650. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1651. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1652. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1653. srcY -= s->mspel * (1 + s->linesize);
  1654. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1655. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1656. srcY = s->edge_emu_buffer;
  1657. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1658. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1659. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1660. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1661. srcU = uvbuf;
  1662. srcV = uvbuf + 16;
  1663. /* if we deal with range reduction we need to scale source blocks */
  1664. if(v->rangeredfrm) {
  1665. int i, j;
  1666. uint8_t *src, *src2;
  1667. src = srcY;
  1668. for(j = 0; j < 17 + s->mspel*2; j++) {
  1669. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1670. src += s->linesize;
  1671. }
  1672. src = srcU; src2 = srcV;
  1673. for(j = 0; j < 9; j++) {
  1674. for(i = 0; i < 9; i++) {
  1675. src[i] = ((src[i] - 128) >> 1) + 128;
  1676. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1677. }
  1678. src += s->uvlinesize;
  1679. src2 += s->uvlinesize;
  1680. }
  1681. }
  1682. srcY += s->mspel * (1 + s->linesize);
  1683. }
  1684. if(s->mspel) {
  1685. dxy = ((my & 3) << 2) | (mx & 3);
  1686. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  1687. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  1688. srcY += s->linesize * 8;
  1689. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  1690. dsp->avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  1691. } else { // hpel mc
  1692. dxy = (my & 2) | ((mx & 2) >> 1);
  1693. if(!v->rnd)
  1694. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1695. else
  1696. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1697. }
  1698. if(s->flags & CODEC_FLAG_GRAY) return;
  1699. /* Chroma MC always uses qpel blilinear */
  1700. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1701. uvmx = (uvmx&3)<<1;
  1702. uvmy = (uvmy&3)<<1;
  1703. if(!v->rnd){
  1704. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1705. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1706. }else{
  1707. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1708. dsp->avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1709. }
  1710. }
  1711. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1712. {
  1713. int n = bfrac;
  1714. #if B_FRACTION_DEN==256
  1715. if(inv)
  1716. n -= 256;
  1717. if(!qs)
  1718. return 2 * ((value * n + 255) >> 9);
  1719. return (value * n + 128) >> 8;
  1720. #else
  1721. if(inv)
  1722. n -= B_FRACTION_DEN;
  1723. if(!qs)
  1724. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1725. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1726. #endif
  1727. }
  1728. /** Reconstruct motion vector for B-frame and do motion compensation
  1729. */
  1730. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1731. {
  1732. if(v->use_ic) {
  1733. v->mv_mode2 = v->mv_mode;
  1734. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1735. }
  1736. if(direct) {
  1737. vc1_mc_1mv(v, 0);
  1738. vc1_interp_mc(v);
  1739. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1740. return;
  1741. }
  1742. if(mode == BMV_TYPE_INTERPOLATED) {
  1743. vc1_mc_1mv(v, 0);
  1744. vc1_interp_mc(v);
  1745. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1746. return;
  1747. }
  1748. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1749. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1750. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1751. }
  1752. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1753. {
  1754. MpegEncContext *s = &v->s;
  1755. int xy, wrap, off = 0;
  1756. int16_t *A, *B, *C;
  1757. int px, py;
  1758. int sum;
  1759. int r_x, r_y;
  1760. const uint8_t *is_intra = v->mb_type[0];
  1761. r_x = v->range_x;
  1762. r_y = v->range_y;
  1763. /* scale MV difference to be quad-pel */
  1764. dmv_x[0] <<= 1 - s->quarter_sample;
  1765. dmv_y[0] <<= 1 - s->quarter_sample;
  1766. dmv_x[1] <<= 1 - s->quarter_sample;
  1767. dmv_y[1] <<= 1 - s->quarter_sample;
  1768. wrap = s->b8_stride;
  1769. xy = s->block_index[0];
  1770. if(s->mb_intra) {
  1771. s->current_picture.motion_val[0][xy][0] =
  1772. s->current_picture.motion_val[0][xy][1] =
  1773. s->current_picture.motion_val[1][xy][0] =
  1774. s->current_picture.motion_val[1][xy][1] = 0;
  1775. return;
  1776. }
  1777. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1778. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1779. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1780. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1781. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1782. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1783. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1784. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1785. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1786. if(direct) {
  1787. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1788. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1789. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1790. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1791. return;
  1792. }
  1793. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1794. C = s->current_picture.motion_val[0][xy - 2];
  1795. A = s->current_picture.motion_val[0][xy - wrap*2];
  1796. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1797. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1798. if(!s->mb_x) C[0] = C[1] = 0;
  1799. if(!s->first_slice_line) { // predictor A is not out of bounds
  1800. if(s->mb_width == 1) {
  1801. px = A[0];
  1802. py = A[1];
  1803. } else {
  1804. px = mid_pred(A[0], B[0], C[0]);
  1805. py = mid_pred(A[1], B[1], C[1]);
  1806. }
  1807. } else if(s->mb_x) { // predictor C is not out of bounds
  1808. px = C[0];
  1809. py = C[1];
  1810. } else {
  1811. px = py = 0;
  1812. }
  1813. /* Pullback MV as specified in 8.3.5.3.4 */
  1814. {
  1815. int qx, qy, X, Y;
  1816. if(v->profile < PROFILE_ADVANCED) {
  1817. qx = (s->mb_x << 5);
  1818. qy = (s->mb_y << 5);
  1819. X = (s->mb_width << 5) - 4;
  1820. Y = (s->mb_height << 5) - 4;
  1821. if(qx + px < -28) px = -28 - qx;
  1822. if(qy + py < -28) py = -28 - qy;
  1823. if(qx + px > X) px = X - qx;
  1824. if(qy + py > Y) py = Y - qy;
  1825. } else {
  1826. qx = (s->mb_x << 6);
  1827. qy = (s->mb_y << 6);
  1828. X = (s->mb_width << 6) - 4;
  1829. Y = (s->mb_height << 6) - 4;
  1830. if(qx + px < -60) px = -60 - qx;
  1831. if(qy + py < -60) py = -60 - qy;
  1832. if(qx + px > X) px = X - qx;
  1833. if(qy + py > Y) py = Y - qy;
  1834. }
  1835. }
  1836. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1837. if(0 && !s->first_slice_line && s->mb_x) {
  1838. if(is_intra[xy - wrap])
  1839. sum = FFABS(px) + FFABS(py);
  1840. else
  1841. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1842. if(sum > 32) {
  1843. if(get_bits1(&s->gb)) {
  1844. px = A[0];
  1845. py = A[1];
  1846. } else {
  1847. px = C[0];
  1848. py = C[1];
  1849. }
  1850. } else {
  1851. if(is_intra[xy - 2])
  1852. sum = FFABS(px) + FFABS(py);
  1853. else
  1854. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1855. if(sum > 32) {
  1856. if(get_bits1(&s->gb)) {
  1857. px = A[0];
  1858. py = A[1];
  1859. } else {
  1860. px = C[0];
  1861. py = C[1];
  1862. }
  1863. }
  1864. }
  1865. }
  1866. /* store MV using signed modulus of MV range defined in 4.11 */
  1867. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1868. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1869. }
  1870. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1871. C = s->current_picture.motion_val[1][xy - 2];
  1872. A = s->current_picture.motion_val[1][xy - wrap*2];
  1873. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1874. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1875. if(!s->mb_x) C[0] = C[1] = 0;
  1876. if(!s->first_slice_line) { // predictor A is not out of bounds
  1877. if(s->mb_width == 1) {
  1878. px = A[0];
  1879. py = A[1];
  1880. } else {
  1881. px = mid_pred(A[0], B[0], C[0]);
  1882. py = mid_pred(A[1], B[1], C[1]);
  1883. }
  1884. } else if(s->mb_x) { // predictor C is not out of bounds
  1885. px = C[0];
  1886. py = C[1];
  1887. } else {
  1888. px = py = 0;
  1889. }
  1890. /* Pullback MV as specified in 8.3.5.3.4 */
  1891. {
  1892. int qx, qy, X, Y;
  1893. if(v->profile < PROFILE_ADVANCED) {
  1894. qx = (s->mb_x << 5);
  1895. qy = (s->mb_y << 5);
  1896. X = (s->mb_width << 5) - 4;
  1897. Y = (s->mb_height << 5) - 4;
  1898. if(qx + px < -28) px = -28 - qx;
  1899. if(qy + py < -28) py = -28 - qy;
  1900. if(qx + px > X) px = X - qx;
  1901. if(qy + py > Y) py = Y - qy;
  1902. } else {
  1903. qx = (s->mb_x << 6);
  1904. qy = (s->mb_y << 6);
  1905. X = (s->mb_width << 6) - 4;
  1906. Y = (s->mb_height << 6) - 4;
  1907. if(qx + px < -60) px = -60 - qx;
  1908. if(qy + py < -60) py = -60 - qy;
  1909. if(qx + px > X) px = X - qx;
  1910. if(qy + py > Y) py = Y - qy;
  1911. }
  1912. }
  1913. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1914. if(0 && !s->first_slice_line && s->mb_x) {
  1915. if(is_intra[xy - wrap])
  1916. sum = FFABS(px) + FFABS(py);
  1917. else
  1918. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1919. if(sum > 32) {
  1920. if(get_bits1(&s->gb)) {
  1921. px = A[0];
  1922. py = A[1];
  1923. } else {
  1924. px = C[0];
  1925. py = C[1];
  1926. }
  1927. } else {
  1928. if(is_intra[xy - 2])
  1929. sum = FFABS(px) + FFABS(py);
  1930. else
  1931. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1932. if(sum > 32) {
  1933. if(get_bits1(&s->gb)) {
  1934. px = A[0];
  1935. py = A[1];
  1936. } else {
  1937. px = C[0];
  1938. py = C[1];
  1939. }
  1940. }
  1941. }
  1942. }
  1943. /* store MV using signed modulus of MV range defined in 4.11 */
  1944. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1945. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1946. }
  1947. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1948. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1949. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1950. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1951. }
  1952. /** Get predicted DC value for I-frames only
  1953. * prediction dir: left=0, top=1
  1954. * @param s MpegEncContext
  1955. * @param overlap flag indicating that overlap filtering is used
  1956. * @param pq integer part of picture quantizer
  1957. * @param[in] n block index in the current MB
  1958. * @param dc_val_ptr Pointer to DC predictor
  1959. * @param dir_ptr Prediction direction for use in AC prediction
  1960. */
  1961. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1962. int16_t **dc_val_ptr, int *dir_ptr)
  1963. {
  1964. int a, b, c, wrap, pred, scale;
  1965. int16_t *dc_val;
  1966. static const uint16_t dcpred[32] = {
  1967. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1968. 114, 102, 93, 85, 79, 73, 68, 64,
  1969. 60, 57, 54, 51, 49, 47, 45, 43,
  1970. 41, 39, 38, 37, 35, 34, 33
  1971. };
  1972. /* find prediction - wmv3_dc_scale always used here in fact */
  1973. if (n < 4) scale = s->y_dc_scale;
  1974. else scale = s->c_dc_scale;
  1975. wrap = s->block_wrap[n];
  1976. dc_val= s->dc_val[0] + s->block_index[n];
  1977. /* B A
  1978. * C X
  1979. */
  1980. c = dc_val[ - 1];
  1981. b = dc_val[ - 1 - wrap];
  1982. a = dc_val[ - wrap];
  1983. if (pq < 9 || !overlap)
  1984. {
  1985. /* Set outer values */
  1986. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1987. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1988. }
  1989. else
  1990. {
  1991. /* Set outer values */
  1992. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1993. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1994. }
  1995. if (abs(a - b) <= abs(b - c)) {
  1996. pred = c;
  1997. *dir_ptr = 1;//left
  1998. } else {
  1999. pred = a;
  2000. *dir_ptr = 0;//top
  2001. }
  2002. /* update predictor */
  2003. *dc_val_ptr = &dc_val[0];
  2004. return pred;
  2005. }
  2006. /** Get predicted DC value
  2007. * prediction dir: left=0, top=1
  2008. * @param s MpegEncContext
  2009. * @param overlap flag indicating that overlap filtering is used
  2010. * @param pq integer part of picture quantizer
  2011. * @param[in] n block index in the current MB
  2012. * @param a_avail flag indicating top block availability
  2013. * @param c_avail flag indicating left block availability
  2014. * @param dc_val_ptr Pointer to DC predictor
  2015. * @param dir_ptr Prediction direction for use in AC prediction
  2016. */
  2017. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2018. int a_avail, int c_avail,
  2019. int16_t **dc_val_ptr, int *dir_ptr)
  2020. {
  2021. int a, b, c, wrap, pred, scale;
  2022. int16_t *dc_val;
  2023. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2024. int q1, q2 = 0;
  2025. /* find prediction - wmv3_dc_scale always used here in fact */
  2026. if (n < 4) scale = s->y_dc_scale;
  2027. else scale = s->c_dc_scale;
  2028. wrap = s->block_wrap[n];
  2029. dc_val= s->dc_val[0] + s->block_index[n];
  2030. /* B A
  2031. * C X
  2032. */
  2033. c = dc_val[ - 1];
  2034. b = dc_val[ - 1 - wrap];
  2035. a = dc_val[ - wrap];
  2036. /* scale predictors if needed */
  2037. q1 = s->current_picture.qscale_table[mb_pos];
  2038. if(c_avail && (n!= 1 && n!=3)) {
  2039. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2040. if(q2 && q2 != q1)
  2041. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2042. }
  2043. if(a_avail && (n!= 2 && n!=3)) {
  2044. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2045. if(q2 && q2 != q1)
  2046. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2047. }
  2048. if(a_avail && c_avail && (n!=3)) {
  2049. int off = mb_pos;
  2050. if(n != 1) off--;
  2051. if(n != 2) off -= s->mb_stride;
  2052. q2 = s->current_picture.qscale_table[off];
  2053. if(q2 && q2 != q1)
  2054. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2055. }
  2056. if(a_avail && c_avail) {
  2057. if(abs(a - b) <= abs(b - c)) {
  2058. pred = c;
  2059. *dir_ptr = 1;//left
  2060. } else {
  2061. pred = a;
  2062. *dir_ptr = 0;//top
  2063. }
  2064. } else if(a_avail) {
  2065. pred = a;
  2066. *dir_ptr = 0;//top
  2067. } else if(c_avail) {
  2068. pred = c;
  2069. *dir_ptr = 1;//left
  2070. } else {
  2071. pred = 0;
  2072. *dir_ptr = 1;//left
  2073. }
  2074. /* update predictor */
  2075. *dc_val_ptr = &dc_val[0];
  2076. return pred;
  2077. }
  2078. /** @} */ // Block group
  2079. /**
  2080. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2081. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2082. * @{
  2083. */
  2084. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2085. {
  2086. int xy, wrap, pred, a, b, c;
  2087. xy = s->block_index[n];
  2088. wrap = s->b8_stride;
  2089. /* B C
  2090. * A X
  2091. */
  2092. a = s->coded_block[xy - 1 ];
  2093. b = s->coded_block[xy - 1 - wrap];
  2094. c = s->coded_block[xy - wrap];
  2095. if (b == c) {
  2096. pred = a;
  2097. } else {
  2098. pred = c;
  2099. }
  2100. /* store value */
  2101. *coded_block_ptr = &s->coded_block[xy];
  2102. return pred;
  2103. }
  2104. /**
  2105. * Decode one AC coefficient
  2106. * @param v The VC1 context
  2107. * @param last Last coefficient
  2108. * @param skip How much zero coefficients to skip
  2109. * @param value Decoded AC coefficient value
  2110. * @param codingset set of VLC to decode data
  2111. * @see 8.1.3.4
  2112. */
  2113. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2114. {
  2115. GetBitContext *gb = &v->s.gb;
  2116. int index, escape, run = 0, level = 0, lst = 0;
  2117. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2118. if (index != vc1_ac_sizes[codingset] - 1) {
  2119. run = vc1_index_decode_table[codingset][index][0];
  2120. level = vc1_index_decode_table[codingset][index][1];
  2121. lst = index >= vc1_last_decode_table[codingset];
  2122. if(get_bits1(gb))
  2123. level = -level;
  2124. } else {
  2125. escape = decode210(gb);
  2126. if (escape != 2) {
  2127. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2128. run = vc1_index_decode_table[codingset][index][0];
  2129. level = vc1_index_decode_table[codingset][index][1];
  2130. lst = index >= vc1_last_decode_table[codingset];
  2131. if(escape == 0) {
  2132. if(lst)
  2133. level += vc1_last_delta_level_table[codingset][run];
  2134. else
  2135. level += vc1_delta_level_table[codingset][run];
  2136. } else {
  2137. if(lst)
  2138. run += vc1_last_delta_run_table[codingset][level] + 1;
  2139. else
  2140. run += vc1_delta_run_table[codingset][level] + 1;
  2141. }
  2142. if(get_bits1(gb))
  2143. level = -level;
  2144. } else {
  2145. int sign;
  2146. lst = get_bits1(gb);
  2147. if(v->s.esc3_level_length == 0) {
  2148. if(v->pq < 8 || v->dquantfrm) { // table 59
  2149. v->s.esc3_level_length = get_bits(gb, 3);
  2150. if(!v->s.esc3_level_length)
  2151. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2152. } else { //table 60
  2153. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2154. }
  2155. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2156. }
  2157. run = get_bits(gb, v->s.esc3_run_length);
  2158. sign = get_bits1(gb);
  2159. level = get_bits(gb, v->s.esc3_level_length);
  2160. if(sign)
  2161. level = -level;
  2162. }
  2163. }
  2164. *last = lst;
  2165. *skip = run;
  2166. *value = level;
  2167. }
  2168. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2169. * @param v VC1Context
  2170. * @param block block to decode
  2171. * @param[in] n subblock index
  2172. * @param coded are AC coeffs present or not
  2173. * @param codingset set of VLC to decode data
  2174. */
  2175. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2176. {
  2177. GetBitContext *gb = &v->s.gb;
  2178. MpegEncContext *s = &v->s;
  2179. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2180. int run_diff, i;
  2181. int16_t *dc_val;
  2182. int16_t *ac_val, *ac_val2;
  2183. int dcdiff;
  2184. /* Get DC differential */
  2185. if (n < 4) {
  2186. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2187. } else {
  2188. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2189. }
  2190. if (dcdiff < 0){
  2191. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2192. return -1;
  2193. }
  2194. if (dcdiff)
  2195. {
  2196. if (dcdiff == 119 /* ESC index value */)
  2197. {
  2198. /* TODO: Optimize */
  2199. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2200. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2201. else dcdiff = get_bits(gb, 8);
  2202. }
  2203. else
  2204. {
  2205. if (v->pq == 1)
  2206. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2207. else if (v->pq == 2)
  2208. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2209. }
  2210. if (get_bits1(gb))
  2211. dcdiff = -dcdiff;
  2212. }
  2213. /* Prediction */
  2214. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2215. *dc_val = dcdiff;
  2216. /* Store the quantized DC coeff, used for prediction */
  2217. if (n < 4) {
  2218. block[0] = dcdiff * s->y_dc_scale;
  2219. } else {
  2220. block[0] = dcdiff * s->c_dc_scale;
  2221. }
  2222. /* Skip ? */
  2223. run_diff = 0;
  2224. i = 0;
  2225. if (!coded) {
  2226. goto not_coded;
  2227. }
  2228. //AC Decoding
  2229. i = 1;
  2230. {
  2231. int last = 0, skip, value;
  2232. const int8_t *zz_table;
  2233. int scale;
  2234. int k;
  2235. scale = v->pq * 2 + v->halfpq;
  2236. if(v->s.ac_pred) {
  2237. if(!dc_pred_dir)
  2238. zz_table = wmv1_scantable[2];
  2239. else
  2240. zz_table = wmv1_scantable[3];
  2241. } else
  2242. zz_table = wmv1_scantable[1];
  2243. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2244. ac_val2 = ac_val;
  2245. if(dc_pred_dir) //left
  2246. ac_val -= 16;
  2247. else //top
  2248. ac_val -= 16 * s->block_wrap[n];
  2249. while (!last) {
  2250. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2251. i += skip;
  2252. if(i > 63)
  2253. break;
  2254. block[zz_table[i++]] = value;
  2255. }
  2256. /* apply AC prediction if needed */
  2257. if(s->ac_pred) {
  2258. if(dc_pred_dir) { //left
  2259. for(k = 1; k < 8; k++)
  2260. block[k << 3] += ac_val[k];
  2261. } else { //top
  2262. for(k = 1; k < 8; k++)
  2263. block[k] += ac_val[k + 8];
  2264. }
  2265. }
  2266. /* save AC coeffs for further prediction */
  2267. for(k = 1; k < 8; k++) {
  2268. ac_val2[k] = block[k << 3];
  2269. ac_val2[k + 8] = block[k];
  2270. }
  2271. /* scale AC coeffs */
  2272. for(k = 1; k < 64; k++)
  2273. if(block[k]) {
  2274. block[k] *= scale;
  2275. if(!v->pquantizer)
  2276. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2277. }
  2278. if(s->ac_pred) i = 63;
  2279. }
  2280. not_coded:
  2281. if(!coded) {
  2282. int k, scale;
  2283. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2284. ac_val2 = ac_val;
  2285. scale = v->pq * 2 + v->halfpq;
  2286. memset(ac_val2, 0, 16 * 2);
  2287. if(dc_pred_dir) {//left
  2288. ac_val -= 16;
  2289. if(s->ac_pred)
  2290. memcpy(ac_val2, ac_val, 8 * 2);
  2291. } else {//top
  2292. ac_val -= 16 * s->block_wrap[n];
  2293. if(s->ac_pred)
  2294. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2295. }
  2296. /* apply AC prediction if needed */
  2297. if(s->ac_pred) {
  2298. if(dc_pred_dir) { //left
  2299. for(k = 1; k < 8; k++) {
  2300. block[k << 3] = ac_val[k] * scale;
  2301. if(!v->pquantizer && block[k << 3])
  2302. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2303. }
  2304. } else { //top
  2305. for(k = 1; k < 8; k++) {
  2306. block[k] = ac_val[k + 8] * scale;
  2307. if(!v->pquantizer && block[k])
  2308. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2309. }
  2310. }
  2311. i = 63;
  2312. }
  2313. }
  2314. s->block_last_index[n] = i;
  2315. return 0;
  2316. }
  2317. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2318. * @param v VC1Context
  2319. * @param block block to decode
  2320. * @param[in] n subblock number
  2321. * @param coded are AC coeffs present or not
  2322. * @param codingset set of VLC to decode data
  2323. * @param mquant quantizer value for this macroblock
  2324. */
  2325. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2326. {
  2327. GetBitContext *gb = &v->s.gb;
  2328. MpegEncContext *s = &v->s;
  2329. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2330. int run_diff, i;
  2331. int16_t *dc_val;
  2332. int16_t *ac_val, *ac_val2;
  2333. int dcdiff;
  2334. int a_avail = v->a_avail, c_avail = v->c_avail;
  2335. int use_pred = s->ac_pred;
  2336. int scale;
  2337. int q1, q2 = 0;
  2338. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2339. /* Get DC differential */
  2340. if (n < 4) {
  2341. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2342. } else {
  2343. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2344. }
  2345. if (dcdiff < 0){
  2346. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2347. return -1;
  2348. }
  2349. if (dcdiff)
  2350. {
  2351. if (dcdiff == 119 /* ESC index value */)
  2352. {
  2353. /* TODO: Optimize */
  2354. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2355. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2356. else dcdiff = get_bits(gb, 8);
  2357. }
  2358. else
  2359. {
  2360. if (mquant == 1)
  2361. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2362. else if (mquant == 2)
  2363. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2364. }
  2365. if (get_bits1(gb))
  2366. dcdiff = -dcdiff;
  2367. }
  2368. /* Prediction */
  2369. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2370. *dc_val = dcdiff;
  2371. /* Store the quantized DC coeff, used for prediction */
  2372. if (n < 4) {
  2373. block[0] = dcdiff * s->y_dc_scale;
  2374. } else {
  2375. block[0] = dcdiff * s->c_dc_scale;
  2376. }
  2377. /* Skip ? */
  2378. run_diff = 0;
  2379. i = 0;
  2380. //AC Decoding
  2381. i = 1;
  2382. /* check if AC is needed at all */
  2383. if(!a_avail && !c_avail) use_pred = 0;
  2384. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2385. ac_val2 = ac_val;
  2386. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2387. if(dc_pred_dir) //left
  2388. ac_val -= 16;
  2389. else //top
  2390. ac_val -= 16 * s->block_wrap[n];
  2391. q1 = s->current_picture.qscale_table[mb_pos];
  2392. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2393. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2394. if(dc_pred_dir && n==1) q2 = q1;
  2395. if(!dc_pred_dir && n==2) q2 = q1;
  2396. if(n==3) q2 = q1;
  2397. if(coded) {
  2398. int last = 0, skip, value;
  2399. const int8_t *zz_table;
  2400. int k;
  2401. if(v->s.ac_pred) {
  2402. if(!dc_pred_dir)
  2403. zz_table = wmv1_scantable[2];
  2404. else
  2405. zz_table = wmv1_scantable[3];
  2406. } else
  2407. zz_table = wmv1_scantable[1];
  2408. while (!last) {
  2409. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2410. i += skip;
  2411. if(i > 63)
  2412. break;
  2413. block[zz_table[i++]] = value;
  2414. }
  2415. /* apply AC prediction if needed */
  2416. if(use_pred) {
  2417. /* scale predictors if needed*/
  2418. if(q2 && q1!=q2) {
  2419. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2420. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2421. if(dc_pred_dir) { //left
  2422. for(k = 1; k < 8; k++)
  2423. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2424. } else { //top
  2425. for(k = 1; k < 8; k++)
  2426. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2427. }
  2428. } else {
  2429. if(dc_pred_dir) { //left
  2430. for(k = 1; k < 8; k++)
  2431. block[k << 3] += ac_val[k];
  2432. } else { //top
  2433. for(k = 1; k < 8; k++)
  2434. block[k] += ac_val[k + 8];
  2435. }
  2436. }
  2437. }
  2438. /* save AC coeffs for further prediction */
  2439. for(k = 1; k < 8; k++) {
  2440. ac_val2[k] = block[k << 3];
  2441. ac_val2[k + 8] = block[k];
  2442. }
  2443. /* scale AC coeffs */
  2444. for(k = 1; k < 64; k++)
  2445. if(block[k]) {
  2446. block[k] *= scale;
  2447. if(!v->pquantizer)
  2448. block[k] += (block[k] < 0) ? -mquant : mquant;
  2449. }
  2450. if(use_pred) i = 63;
  2451. } else { // no AC coeffs
  2452. int k;
  2453. memset(ac_val2, 0, 16 * 2);
  2454. if(dc_pred_dir) {//left
  2455. if(use_pred) {
  2456. memcpy(ac_val2, ac_val, 8 * 2);
  2457. if(q2 && q1!=q2) {
  2458. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2459. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2460. for(k = 1; k < 8; k++)
  2461. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2462. }
  2463. }
  2464. } else {//top
  2465. if(use_pred) {
  2466. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2467. if(q2 && q1!=q2) {
  2468. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2469. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2470. for(k = 1; k < 8; k++)
  2471. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2472. }
  2473. }
  2474. }
  2475. /* apply AC prediction if needed */
  2476. if(use_pred) {
  2477. if(dc_pred_dir) { //left
  2478. for(k = 1; k < 8; k++) {
  2479. block[k << 3] = ac_val2[k] * scale;
  2480. if(!v->pquantizer && block[k << 3])
  2481. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2482. }
  2483. } else { //top
  2484. for(k = 1; k < 8; k++) {
  2485. block[k] = ac_val2[k + 8] * scale;
  2486. if(!v->pquantizer && block[k])
  2487. block[k] += (block[k] < 0) ? -mquant : mquant;
  2488. }
  2489. }
  2490. i = 63;
  2491. }
  2492. }
  2493. s->block_last_index[n] = i;
  2494. return 0;
  2495. }
  2496. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2497. * @param v VC1Context
  2498. * @param block block to decode
  2499. * @param[in] n subblock index
  2500. * @param coded are AC coeffs present or not
  2501. * @param mquant block quantizer
  2502. * @param codingset set of VLC to decode data
  2503. */
  2504. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2505. {
  2506. GetBitContext *gb = &v->s.gb;
  2507. MpegEncContext *s = &v->s;
  2508. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2509. int run_diff, i;
  2510. int16_t *dc_val;
  2511. int16_t *ac_val, *ac_val2;
  2512. int dcdiff;
  2513. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2514. int a_avail = v->a_avail, c_avail = v->c_avail;
  2515. int use_pred = s->ac_pred;
  2516. int scale;
  2517. int q1, q2 = 0;
  2518. /* XXX: Guard against dumb values of mquant */
  2519. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2520. /* Set DC scale - y and c use the same */
  2521. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2522. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2523. /* Get DC differential */
  2524. if (n < 4) {
  2525. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2526. } else {
  2527. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2528. }
  2529. if (dcdiff < 0){
  2530. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2531. return -1;
  2532. }
  2533. if (dcdiff)
  2534. {
  2535. if (dcdiff == 119 /* ESC index value */)
  2536. {
  2537. /* TODO: Optimize */
  2538. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2539. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2540. else dcdiff = get_bits(gb, 8);
  2541. }
  2542. else
  2543. {
  2544. if (mquant == 1)
  2545. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2546. else if (mquant == 2)
  2547. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2548. }
  2549. if (get_bits1(gb))
  2550. dcdiff = -dcdiff;
  2551. }
  2552. /* Prediction */
  2553. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2554. *dc_val = dcdiff;
  2555. /* Store the quantized DC coeff, used for prediction */
  2556. if (n < 4) {
  2557. block[0] = dcdiff * s->y_dc_scale;
  2558. } else {
  2559. block[0] = dcdiff * s->c_dc_scale;
  2560. }
  2561. /* Skip ? */
  2562. run_diff = 0;
  2563. i = 0;
  2564. //AC Decoding
  2565. i = 1;
  2566. /* check if AC is needed at all and adjust direction if needed */
  2567. if(!a_avail) dc_pred_dir = 1;
  2568. if(!c_avail) dc_pred_dir = 0;
  2569. if(!a_avail && !c_avail) use_pred = 0;
  2570. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2571. ac_val2 = ac_val;
  2572. scale = mquant * 2 + v->halfpq;
  2573. if(dc_pred_dir) //left
  2574. ac_val -= 16;
  2575. else //top
  2576. ac_val -= 16 * s->block_wrap[n];
  2577. q1 = s->current_picture.qscale_table[mb_pos];
  2578. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2579. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2580. if(dc_pred_dir && n==1) q2 = q1;
  2581. if(!dc_pred_dir && n==2) q2 = q1;
  2582. if(n==3) q2 = q1;
  2583. if(coded) {
  2584. int last = 0, skip, value;
  2585. const int8_t *zz_table;
  2586. int k;
  2587. zz_table = wmv1_scantable[0];
  2588. while (!last) {
  2589. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2590. i += skip;
  2591. if(i > 63)
  2592. break;
  2593. block[zz_table[i++]] = value;
  2594. }
  2595. /* apply AC prediction if needed */
  2596. if(use_pred) {
  2597. /* scale predictors if needed*/
  2598. if(q2 && q1!=q2) {
  2599. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2600. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2601. if(dc_pred_dir) { //left
  2602. for(k = 1; k < 8; k++)
  2603. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2604. } else { //top
  2605. for(k = 1; k < 8; k++)
  2606. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2607. }
  2608. } else {
  2609. if(dc_pred_dir) { //left
  2610. for(k = 1; k < 8; k++)
  2611. block[k << 3] += ac_val[k];
  2612. } else { //top
  2613. for(k = 1; k < 8; k++)
  2614. block[k] += ac_val[k + 8];
  2615. }
  2616. }
  2617. }
  2618. /* save AC coeffs for further prediction */
  2619. for(k = 1; k < 8; k++) {
  2620. ac_val2[k] = block[k << 3];
  2621. ac_val2[k + 8] = block[k];
  2622. }
  2623. /* scale AC coeffs */
  2624. for(k = 1; k < 64; k++)
  2625. if(block[k]) {
  2626. block[k] *= scale;
  2627. if(!v->pquantizer)
  2628. block[k] += (block[k] < 0) ? -mquant : mquant;
  2629. }
  2630. if(use_pred) i = 63;
  2631. } else { // no AC coeffs
  2632. int k;
  2633. memset(ac_val2, 0, 16 * 2);
  2634. if(dc_pred_dir) {//left
  2635. if(use_pred) {
  2636. memcpy(ac_val2, ac_val, 8 * 2);
  2637. if(q2 && q1!=q2) {
  2638. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2639. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2640. for(k = 1; k < 8; k++)
  2641. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2642. }
  2643. }
  2644. } else {//top
  2645. if(use_pred) {
  2646. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2647. if(q2 && q1!=q2) {
  2648. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2649. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2650. for(k = 1; k < 8; k++)
  2651. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2652. }
  2653. }
  2654. }
  2655. /* apply AC prediction if needed */
  2656. if(use_pred) {
  2657. if(dc_pred_dir) { //left
  2658. for(k = 1; k < 8; k++) {
  2659. block[k << 3] = ac_val2[k] * scale;
  2660. if(!v->pquantizer && block[k << 3])
  2661. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2662. }
  2663. } else { //top
  2664. for(k = 1; k < 8; k++) {
  2665. block[k] = ac_val2[k + 8] * scale;
  2666. if(!v->pquantizer && block[k])
  2667. block[k] += (block[k] < 0) ? -mquant : mquant;
  2668. }
  2669. }
  2670. i = 63;
  2671. }
  2672. }
  2673. s->block_last_index[n] = i;
  2674. return 0;
  2675. }
  2676. /** Decode P block
  2677. */
  2678. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2679. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2680. {
  2681. MpegEncContext *s = &v->s;
  2682. GetBitContext *gb = &s->gb;
  2683. int i, j;
  2684. int subblkpat = 0;
  2685. int scale, off, idx, last, skip, value;
  2686. int ttblk = ttmb & 7;
  2687. int pat = 0;
  2688. if(ttmb == -1) {
  2689. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2690. }
  2691. if(ttblk == TT_4X4) {
  2692. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2693. }
  2694. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2695. subblkpat = decode012(gb);
  2696. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2697. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2698. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2699. }
  2700. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2701. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2702. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2703. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2704. ttblk = TT_8X4;
  2705. }
  2706. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2707. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2708. ttblk = TT_4X8;
  2709. }
  2710. switch(ttblk) {
  2711. case TT_8X8:
  2712. pat = 0xF;
  2713. i = 0;
  2714. last = 0;
  2715. while (!last) {
  2716. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2717. i += skip;
  2718. if(i > 63)
  2719. break;
  2720. idx = wmv1_scantable[0][i++];
  2721. block[idx] = value * scale;
  2722. if(!v->pquantizer)
  2723. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2724. }
  2725. if(!skip_block){
  2726. s->dsp.vc1_inv_trans_8x8(block);
  2727. s->dsp.add_pixels_clamped(block, dst, linesize);
  2728. if(apply_filter && cbp_top & 0xC)
  2729. s->dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  2730. if(apply_filter && cbp_left & 0xA)
  2731. s->dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  2732. }
  2733. break;
  2734. case TT_4X4:
  2735. pat = ~subblkpat & 0xF;
  2736. for(j = 0; j < 4; j++) {
  2737. last = subblkpat & (1 << (3 - j));
  2738. i = 0;
  2739. off = (j & 1) * 4 + (j & 2) * 16;
  2740. while (!last) {
  2741. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2742. i += skip;
  2743. if(i > 15)
  2744. break;
  2745. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2746. block[idx + off] = value * scale;
  2747. if(!v->pquantizer)
  2748. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2749. }
  2750. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2751. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2752. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2753. s->dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2754. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2755. s->dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  2756. }
  2757. }
  2758. break;
  2759. case TT_8X4:
  2760. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2761. for(j = 0; j < 2; j++) {
  2762. last = subblkpat & (1 << (1 - j));
  2763. i = 0;
  2764. off = j * 32;
  2765. while (!last) {
  2766. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2767. i += skip;
  2768. if(i > 31)
  2769. break;
  2770. idx = v->zz_8x4[i++]+off;
  2771. block[idx] = value * scale;
  2772. if(!v->pquantizer)
  2773. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2774. }
  2775. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2776. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2777. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2778. s->dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  2779. if(apply_filter && cbp_left & (2 << j))
  2780. s->dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  2781. }
  2782. }
  2783. break;
  2784. case TT_4X8:
  2785. pat = ~(subblkpat*5) & 0xF;
  2786. for(j = 0; j < 2; j++) {
  2787. last = subblkpat & (1 << (1 - j));
  2788. i = 0;
  2789. off = j * 4;
  2790. while (!last) {
  2791. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2792. i += skip;
  2793. if(i > 31)
  2794. break;
  2795. idx = v->zz_4x8[i++]+off;
  2796. block[idx] = value * scale;
  2797. if(!v->pquantizer)
  2798. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2799. }
  2800. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2801. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2802. if(apply_filter && cbp_top & (2 << j))
  2803. s->dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  2804. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2805. s->dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  2806. }
  2807. }
  2808. break;
  2809. }
  2810. return pat;
  2811. }
  2812. /** @} */ // Macroblock group
  2813. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  2814. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2815. /** Decode one P-frame MB (in Simple/Main profile)
  2816. */
  2817. static int vc1_decode_p_mb(VC1Context *v)
  2818. {
  2819. MpegEncContext *s = &v->s;
  2820. GetBitContext *gb = &s->gb;
  2821. int i, j;
  2822. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2823. int cbp; /* cbp decoding stuff */
  2824. int mqdiff, mquant; /* MB quantization */
  2825. int ttmb = v->ttfrm; /* MB Transform type */
  2826. int mb_has_coeffs = 1; /* last_flag */
  2827. int dmv_x, dmv_y; /* Differential MV components */
  2828. int index, index1; /* LUT indexes */
  2829. int val, sign; /* temp values */
  2830. int first_block = 1;
  2831. int dst_idx, off;
  2832. int skipped, fourmv;
  2833. int block_cbp = 0, pat;
  2834. int apply_loop_filter;
  2835. mquant = v->pq; /* Loosy initialization */
  2836. if (v->mv_type_is_raw)
  2837. fourmv = get_bits1(gb);
  2838. else
  2839. fourmv = v->mv_type_mb_plane[mb_pos];
  2840. if (v->skip_is_raw)
  2841. skipped = get_bits1(gb);
  2842. else
  2843. skipped = v->s.mbskip_table[mb_pos];
  2844. s->dsp.clear_blocks(s->block[0]);
  2845. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2846. if (!fourmv) /* 1MV mode */
  2847. {
  2848. if (!skipped)
  2849. {
  2850. GET_MVDATA(dmv_x, dmv_y);
  2851. if (s->mb_intra) {
  2852. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2853. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2854. }
  2855. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2856. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2857. /* FIXME Set DC val for inter block ? */
  2858. if (s->mb_intra && !mb_has_coeffs)
  2859. {
  2860. GET_MQUANT();
  2861. s->ac_pred = get_bits1(gb);
  2862. cbp = 0;
  2863. }
  2864. else if (mb_has_coeffs)
  2865. {
  2866. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2867. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2868. GET_MQUANT();
  2869. }
  2870. else
  2871. {
  2872. mquant = v->pq;
  2873. cbp = 0;
  2874. }
  2875. s->current_picture.qscale_table[mb_pos] = mquant;
  2876. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2877. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2878. VC1_TTMB_VLC_BITS, 2);
  2879. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2880. dst_idx = 0;
  2881. for (i=0; i<6; i++)
  2882. {
  2883. s->dc_val[0][s->block_index[i]] = 0;
  2884. dst_idx += i >> 2;
  2885. val = ((cbp >> (5 - i)) & 1);
  2886. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2887. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2888. if(s->mb_intra) {
  2889. /* check if prediction blocks A and C are available */
  2890. v->a_avail = v->c_avail = 0;
  2891. if(i == 2 || i == 3 || !s->first_slice_line)
  2892. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2893. if(i == 1 || i == 3 || s->mb_x)
  2894. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2895. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2896. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2897. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2898. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2899. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2900. if(v->pq >= 9 && v->overlap) {
  2901. if(v->c_avail)
  2902. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2903. if(v->a_avail)
  2904. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2905. }
  2906. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2907. int left_cbp, top_cbp;
  2908. if(i & 4){
  2909. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2910. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2911. }else{
  2912. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2913. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2914. }
  2915. if(left_cbp & 0xC)
  2916. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2917. if(top_cbp & 0xA)
  2918. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2919. }
  2920. block_cbp |= 0xF << (i << 2);
  2921. } else if(val) {
  2922. int left_cbp = 0, top_cbp = 0, filter = 0;
  2923. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2924. filter = 1;
  2925. if(i & 4){
  2926. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2927. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2928. }else{
  2929. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2930. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2931. }
  2932. if(left_cbp & 0xC)
  2933. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2934. if(top_cbp & 0xA)
  2935. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2936. }
  2937. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2938. block_cbp |= pat << (i << 2);
  2939. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2940. first_block = 0;
  2941. }
  2942. }
  2943. }
  2944. else //Skipped
  2945. {
  2946. s->mb_intra = 0;
  2947. for(i = 0; i < 6; i++) {
  2948. v->mb_type[0][s->block_index[i]] = 0;
  2949. s->dc_val[0][s->block_index[i]] = 0;
  2950. }
  2951. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2952. s->current_picture.qscale_table[mb_pos] = 0;
  2953. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2954. vc1_mc_1mv(v, 0);
  2955. return 0;
  2956. }
  2957. } //1MV mode
  2958. else //4MV mode
  2959. {
  2960. if (!skipped /* unskipped MB */)
  2961. {
  2962. int intra_count = 0, coded_inter = 0;
  2963. int is_intra[6], is_coded[6];
  2964. /* Get CBPCY */
  2965. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2966. for (i=0; i<6; i++)
  2967. {
  2968. val = ((cbp >> (5 - i)) & 1);
  2969. s->dc_val[0][s->block_index[i]] = 0;
  2970. s->mb_intra = 0;
  2971. if(i < 4) {
  2972. dmv_x = dmv_y = 0;
  2973. s->mb_intra = 0;
  2974. mb_has_coeffs = 0;
  2975. if(val) {
  2976. GET_MVDATA(dmv_x, dmv_y);
  2977. }
  2978. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2979. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2980. intra_count += s->mb_intra;
  2981. is_intra[i] = s->mb_intra;
  2982. is_coded[i] = mb_has_coeffs;
  2983. }
  2984. if(i&4){
  2985. is_intra[i] = (intra_count >= 3);
  2986. is_coded[i] = val;
  2987. }
  2988. if(i == 4) vc1_mc_4mv_chroma(v);
  2989. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2990. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2991. }
  2992. // if there are no coded blocks then don't do anything more
  2993. if(!intra_count && !coded_inter) return 0;
  2994. dst_idx = 0;
  2995. GET_MQUANT();
  2996. s->current_picture.qscale_table[mb_pos] = mquant;
  2997. /* test if block is intra and has pred */
  2998. {
  2999. int intrapred = 0;
  3000. for(i=0; i<6; i++)
  3001. if(is_intra[i]) {
  3002. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3003. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3004. intrapred = 1;
  3005. break;
  3006. }
  3007. }
  3008. if(intrapred)s->ac_pred = get_bits1(gb);
  3009. else s->ac_pred = 0;
  3010. }
  3011. if (!v->ttmbf && coded_inter)
  3012. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3013. for (i=0; i<6; i++)
  3014. {
  3015. dst_idx += i >> 2;
  3016. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3017. s->mb_intra = is_intra[i];
  3018. if (is_intra[i]) {
  3019. /* check if prediction blocks A and C are available */
  3020. v->a_avail = v->c_avail = 0;
  3021. if(i == 2 || i == 3 || !s->first_slice_line)
  3022. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3023. if(i == 1 || i == 3 || s->mb_x)
  3024. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3025. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3026. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3027. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3028. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3029. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3030. if(v->pq >= 9 && v->overlap) {
  3031. if(v->c_avail)
  3032. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3033. if(v->a_avail)
  3034. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3035. }
  3036. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3037. int left_cbp, top_cbp;
  3038. if(i & 4){
  3039. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3040. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3041. }else{
  3042. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3043. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3044. }
  3045. if(left_cbp & 0xC)
  3046. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3047. if(top_cbp & 0xA)
  3048. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3049. }
  3050. block_cbp |= 0xF << (i << 2);
  3051. } else if(is_coded[i]) {
  3052. int left_cbp = 0, top_cbp = 0, filter = 0;
  3053. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3054. filter = 1;
  3055. if(i & 4){
  3056. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3057. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3058. }else{
  3059. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3060. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3061. }
  3062. if(left_cbp & 0xC)
  3063. s->dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3064. if(top_cbp & 0xA)
  3065. s->dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  3066. }
  3067. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3068. block_cbp |= pat << (i << 2);
  3069. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3070. first_block = 0;
  3071. }
  3072. }
  3073. return 0;
  3074. }
  3075. else //Skipped MB
  3076. {
  3077. s->mb_intra = 0;
  3078. s->current_picture.qscale_table[mb_pos] = 0;
  3079. for (i=0; i<6; i++) {
  3080. v->mb_type[0][s->block_index[i]] = 0;
  3081. s->dc_val[0][s->block_index[i]] = 0;
  3082. }
  3083. for (i=0; i<4; i++)
  3084. {
  3085. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3086. vc1_mc_4mv_luma(v, i);
  3087. }
  3088. vc1_mc_4mv_chroma(v);
  3089. s->current_picture.qscale_table[mb_pos] = 0;
  3090. return 0;
  3091. }
  3092. }
  3093. v->cbp[s->mb_x] = block_cbp;
  3094. /* Should never happen */
  3095. return -1;
  3096. }
  3097. /** Decode one B-frame MB (in Main profile)
  3098. */
  3099. static void vc1_decode_b_mb(VC1Context *v)
  3100. {
  3101. MpegEncContext *s = &v->s;
  3102. GetBitContext *gb = &s->gb;
  3103. int i, j;
  3104. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3105. int cbp = 0; /* cbp decoding stuff */
  3106. int mqdiff, mquant; /* MB quantization */
  3107. int ttmb = v->ttfrm; /* MB Transform type */
  3108. int mb_has_coeffs = 0; /* last_flag */
  3109. int index, index1; /* LUT indexes */
  3110. int val, sign; /* temp values */
  3111. int first_block = 1;
  3112. int dst_idx, off;
  3113. int skipped, direct;
  3114. int dmv_x[2], dmv_y[2];
  3115. int bmvtype = BMV_TYPE_BACKWARD;
  3116. mquant = v->pq; /* Loosy initialization */
  3117. s->mb_intra = 0;
  3118. if (v->dmb_is_raw)
  3119. direct = get_bits1(gb);
  3120. else
  3121. direct = v->direct_mb_plane[mb_pos];
  3122. if (v->skip_is_raw)
  3123. skipped = get_bits1(gb);
  3124. else
  3125. skipped = v->s.mbskip_table[mb_pos];
  3126. s->dsp.clear_blocks(s->block[0]);
  3127. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3128. for(i = 0; i < 6; i++) {
  3129. v->mb_type[0][s->block_index[i]] = 0;
  3130. s->dc_val[0][s->block_index[i]] = 0;
  3131. }
  3132. s->current_picture.qscale_table[mb_pos] = 0;
  3133. if (!direct) {
  3134. if (!skipped) {
  3135. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3136. dmv_x[1] = dmv_x[0];
  3137. dmv_y[1] = dmv_y[0];
  3138. }
  3139. if(skipped || !s->mb_intra) {
  3140. bmvtype = decode012(gb);
  3141. switch(bmvtype) {
  3142. case 0:
  3143. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3144. break;
  3145. case 1:
  3146. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3147. break;
  3148. case 2:
  3149. bmvtype = BMV_TYPE_INTERPOLATED;
  3150. dmv_x[0] = dmv_y[0] = 0;
  3151. }
  3152. }
  3153. }
  3154. for(i = 0; i < 6; i++)
  3155. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3156. if (skipped) {
  3157. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3158. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3159. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3160. return;
  3161. }
  3162. if (direct) {
  3163. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3164. GET_MQUANT();
  3165. s->mb_intra = 0;
  3166. mb_has_coeffs = 0;
  3167. s->current_picture.qscale_table[mb_pos] = mquant;
  3168. if(!v->ttmbf)
  3169. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3170. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3171. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3172. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3173. } else {
  3174. if(!mb_has_coeffs && !s->mb_intra) {
  3175. /* no coded blocks - effectively skipped */
  3176. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3177. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3178. return;
  3179. }
  3180. if(s->mb_intra && !mb_has_coeffs) {
  3181. GET_MQUANT();
  3182. s->current_picture.qscale_table[mb_pos] = mquant;
  3183. s->ac_pred = get_bits1(gb);
  3184. cbp = 0;
  3185. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3186. } else {
  3187. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3188. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3189. if(!mb_has_coeffs) {
  3190. /* interpolated skipped block */
  3191. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3192. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3193. return;
  3194. }
  3195. }
  3196. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3197. if(!s->mb_intra) {
  3198. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3199. }
  3200. if(s->mb_intra)
  3201. s->ac_pred = get_bits1(gb);
  3202. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3203. GET_MQUANT();
  3204. s->current_picture.qscale_table[mb_pos] = mquant;
  3205. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3206. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3207. }
  3208. }
  3209. dst_idx = 0;
  3210. for (i=0; i<6; i++)
  3211. {
  3212. s->dc_val[0][s->block_index[i]] = 0;
  3213. dst_idx += i >> 2;
  3214. val = ((cbp >> (5 - i)) & 1);
  3215. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3216. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3217. if(s->mb_intra) {
  3218. /* check if prediction blocks A and C are available */
  3219. v->a_avail = v->c_avail = 0;
  3220. if(i == 2 || i == 3 || !s->first_slice_line)
  3221. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3222. if(i == 1 || i == 3 || s->mb_x)
  3223. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3224. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3225. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3226. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3227. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3228. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3229. } else if(val) {
  3230. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3231. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3232. first_block = 0;
  3233. }
  3234. }
  3235. }
  3236. /** Decode blocks of I-frame
  3237. */
  3238. static void vc1_decode_i_blocks(VC1Context *v)
  3239. {
  3240. int k, j;
  3241. MpegEncContext *s = &v->s;
  3242. int cbp, val;
  3243. uint8_t *coded_val;
  3244. int mb_pos;
  3245. /* select codingmode used for VLC tables selection */
  3246. switch(v->y_ac_table_index){
  3247. case 0:
  3248. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3249. break;
  3250. case 1:
  3251. v->codingset = CS_HIGH_MOT_INTRA;
  3252. break;
  3253. case 2:
  3254. v->codingset = CS_MID_RATE_INTRA;
  3255. break;
  3256. }
  3257. switch(v->c_ac_table_index){
  3258. case 0:
  3259. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3260. break;
  3261. case 1:
  3262. v->codingset2 = CS_HIGH_MOT_INTER;
  3263. break;
  3264. case 2:
  3265. v->codingset2 = CS_MID_RATE_INTER;
  3266. break;
  3267. }
  3268. /* Set DC scale - y and c use the same */
  3269. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3270. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3271. //do frame decode
  3272. s->mb_x = s->mb_y = 0;
  3273. s->mb_intra = 1;
  3274. s->first_slice_line = 1;
  3275. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3276. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3277. ff_init_block_index(s);
  3278. ff_update_block_index(s);
  3279. s->dsp.clear_blocks(s->block[0]);
  3280. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3281. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3282. s->current_picture.qscale_table[mb_pos] = v->pq;
  3283. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3284. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3285. // do actual MB decoding and displaying
  3286. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3287. v->s.ac_pred = get_bits1(&v->s.gb);
  3288. for(k = 0; k < 6; k++) {
  3289. val = ((cbp >> (5 - k)) & 1);
  3290. if (k < 4) {
  3291. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3292. val = val ^ pred;
  3293. *coded_val = val;
  3294. }
  3295. cbp |= val << (5 - k);
  3296. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3297. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3298. if(v->pq >= 9 && v->overlap) {
  3299. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3300. }
  3301. }
  3302. vc1_put_block(v, s->block);
  3303. if(v->pq >= 9 && v->overlap) {
  3304. if(s->mb_x) {
  3305. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3306. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3307. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3308. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3309. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3310. }
  3311. }
  3312. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3313. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3314. if(!s->first_slice_line) {
  3315. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3316. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3317. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3318. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3319. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3320. }
  3321. }
  3322. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3323. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3324. }
  3325. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3326. if(get_bits_count(&s->gb) > v->bits) {
  3327. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3328. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3329. return;
  3330. }
  3331. }
  3332. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3333. s->first_slice_line = 0;
  3334. }
  3335. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3336. }
  3337. /** Decode blocks of I-frame for advanced profile
  3338. */
  3339. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3340. {
  3341. int k, j;
  3342. MpegEncContext *s = &v->s;
  3343. int cbp, val;
  3344. uint8_t *coded_val;
  3345. int mb_pos;
  3346. int mquant = v->pq;
  3347. int mqdiff;
  3348. int overlap;
  3349. GetBitContext *gb = &s->gb;
  3350. /* select codingmode used for VLC tables selection */
  3351. switch(v->y_ac_table_index){
  3352. case 0:
  3353. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3354. break;
  3355. case 1:
  3356. v->codingset = CS_HIGH_MOT_INTRA;
  3357. break;
  3358. case 2:
  3359. v->codingset = CS_MID_RATE_INTRA;
  3360. break;
  3361. }
  3362. switch(v->c_ac_table_index){
  3363. case 0:
  3364. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3365. break;
  3366. case 1:
  3367. v->codingset2 = CS_HIGH_MOT_INTER;
  3368. break;
  3369. case 2:
  3370. v->codingset2 = CS_MID_RATE_INTER;
  3371. break;
  3372. }
  3373. //do frame decode
  3374. s->mb_x = s->mb_y = 0;
  3375. s->mb_intra = 1;
  3376. s->first_slice_line = 1;
  3377. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3378. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3379. ff_init_block_index(s);
  3380. ff_update_block_index(s);
  3381. s->dsp.clear_blocks(s->block[0]);
  3382. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3383. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3384. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3385. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3386. // do actual MB decoding and displaying
  3387. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3388. if(v->acpred_is_raw)
  3389. v->s.ac_pred = get_bits1(&v->s.gb);
  3390. else
  3391. v->s.ac_pred = v->acpred_plane[mb_pos];
  3392. if(v->condover == CONDOVER_SELECT) {
  3393. if(v->overflg_is_raw)
  3394. overlap = get_bits1(&v->s.gb);
  3395. else
  3396. overlap = v->over_flags_plane[mb_pos];
  3397. } else
  3398. overlap = (v->condover == CONDOVER_ALL);
  3399. GET_MQUANT();
  3400. s->current_picture.qscale_table[mb_pos] = mquant;
  3401. /* Set DC scale - y and c use the same */
  3402. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3403. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3404. for(k = 0; k < 6; k++) {
  3405. val = ((cbp >> (5 - k)) & 1);
  3406. if (k < 4) {
  3407. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3408. val = val ^ pred;
  3409. *coded_val = val;
  3410. }
  3411. cbp |= val << (5 - k);
  3412. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3413. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3414. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3415. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3416. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3417. }
  3418. vc1_put_block(v, s->block);
  3419. if(overlap) {
  3420. if(s->mb_x) {
  3421. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3422. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3423. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3424. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3425. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3426. }
  3427. }
  3428. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3429. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3430. if(!s->first_slice_line) {
  3431. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3432. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3433. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3434. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3435. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3436. }
  3437. }
  3438. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3439. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3440. }
  3441. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3442. if(get_bits_count(&s->gb) > v->bits) {
  3443. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3444. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3445. return;
  3446. }
  3447. }
  3448. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3449. s->first_slice_line = 0;
  3450. }
  3451. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3452. }
  3453. static void vc1_decode_p_blocks(VC1Context *v)
  3454. {
  3455. MpegEncContext *s = &v->s;
  3456. /* select codingmode used for VLC tables selection */
  3457. switch(v->c_ac_table_index){
  3458. case 0:
  3459. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3460. break;
  3461. case 1:
  3462. v->codingset = CS_HIGH_MOT_INTRA;
  3463. break;
  3464. case 2:
  3465. v->codingset = CS_MID_RATE_INTRA;
  3466. break;
  3467. }
  3468. switch(v->c_ac_table_index){
  3469. case 0:
  3470. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3471. break;
  3472. case 1:
  3473. v->codingset2 = CS_HIGH_MOT_INTER;
  3474. break;
  3475. case 2:
  3476. v->codingset2 = CS_MID_RATE_INTER;
  3477. break;
  3478. }
  3479. s->first_slice_line = 1;
  3480. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3481. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3482. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3483. ff_init_block_index(s);
  3484. ff_update_block_index(s);
  3485. s->dsp.clear_blocks(s->block[0]);
  3486. vc1_decode_p_mb(v);
  3487. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3488. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3489. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3490. return;
  3491. }
  3492. }
  3493. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3494. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3495. s->first_slice_line = 0;
  3496. }
  3497. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3498. }
  3499. static void vc1_decode_b_blocks(VC1Context *v)
  3500. {
  3501. MpegEncContext *s = &v->s;
  3502. /* select codingmode used for VLC tables selection */
  3503. switch(v->c_ac_table_index){
  3504. case 0:
  3505. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3506. break;
  3507. case 1:
  3508. v->codingset = CS_HIGH_MOT_INTRA;
  3509. break;
  3510. case 2:
  3511. v->codingset = CS_MID_RATE_INTRA;
  3512. break;
  3513. }
  3514. switch(v->c_ac_table_index){
  3515. case 0:
  3516. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3517. break;
  3518. case 1:
  3519. v->codingset2 = CS_HIGH_MOT_INTER;
  3520. break;
  3521. case 2:
  3522. v->codingset2 = CS_MID_RATE_INTER;
  3523. break;
  3524. }
  3525. s->first_slice_line = 1;
  3526. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3527. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3528. ff_init_block_index(s);
  3529. ff_update_block_index(s);
  3530. s->dsp.clear_blocks(s->block[0]);
  3531. vc1_decode_b_mb(v);
  3532. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3533. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3534. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3535. return;
  3536. }
  3537. if(v->s.loop_filter) vc1_loop_filter_iblk(s, v->pq);
  3538. }
  3539. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3540. s->first_slice_line = 0;
  3541. }
  3542. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3543. }
  3544. static void vc1_decode_skip_blocks(VC1Context *v)
  3545. {
  3546. MpegEncContext *s = &v->s;
  3547. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3548. s->first_slice_line = 1;
  3549. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3550. s->mb_x = 0;
  3551. ff_init_block_index(s);
  3552. ff_update_block_index(s);
  3553. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3554. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3555. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3556. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3557. s->first_slice_line = 0;
  3558. }
  3559. s->pict_type = FF_P_TYPE;
  3560. }
  3561. static void vc1_decode_blocks(VC1Context *v)
  3562. {
  3563. v->s.esc3_level_length = 0;
  3564. if(v->x8_type){
  3565. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3566. }else{
  3567. switch(v->s.pict_type) {
  3568. case FF_I_TYPE:
  3569. if(v->profile == PROFILE_ADVANCED)
  3570. vc1_decode_i_blocks_adv(v);
  3571. else
  3572. vc1_decode_i_blocks(v);
  3573. break;
  3574. case FF_P_TYPE:
  3575. if(v->p_frame_skipped)
  3576. vc1_decode_skip_blocks(v);
  3577. else
  3578. vc1_decode_p_blocks(v);
  3579. break;
  3580. case FF_B_TYPE:
  3581. if(v->bi_type){
  3582. if(v->profile == PROFILE_ADVANCED)
  3583. vc1_decode_i_blocks_adv(v);
  3584. else
  3585. vc1_decode_i_blocks(v);
  3586. }else
  3587. vc1_decode_b_blocks(v);
  3588. break;
  3589. }
  3590. }
  3591. }
  3592. /** Find VC-1 marker in buffer
  3593. * @return position where next marker starts or end of buffer if no marker found
  3594. */
  3595. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3596. {
  3597. uint32_t mrk = 0xFFFFFFFF;
  3598. if(end-src < 4) return end;
  3599. while(src < end){
  3600. mrk = (mrk << 8) | *src++;
  3601. if(IS_MARKER(mrk))
  3602. return src-4;
  3603. }
  3604. return end;
  3605. }
  3606. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3607. {
  3608. int dsize = 0, i;
  3609. if(size < 4){
  3610. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3611. return size;
  3612. }
  3613. for(i = 0; i < size; i++, src++) {
  3614. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3615. dst[dsize++] = src[1];
  3616. src++;
  3617. i++;
  3618. } else
  3619. dst[dsize++] = *src;
  3620. }
  3621. return dsize;
  3622. }
  3623. /** Initialize a VC1/WMV3 decoder
  3624. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3625. * @todo TODO: Decypher remaining bits in extra_data
  3626. */
  3627. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3628. {
  3629. VC1Context *v = avctx->priv_data;
  3630. MpegEncContext *s = &v->s;
  3631. GetBitContext gb;
  3632. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3633. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3634. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  3635. else
  3636. avctx->pix_fmt = PIX_FMT_GRAY8;
  3637. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  3638. v->s.avctx = avctx;
  3639. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3640. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3641. if(avctx->idct_algo==FF_IDCT_AUTO){
  3642. avctx->idct_algo=FF_IDCT_WMV2;
  3643. }
  3644. if(ff_h263_decode_init(avctx) < 0)
  3645. return -1;
  3646. if (vc1_init_common(v) < 0) return -1;
  3647. avctx->coded_width = avctx->width;
  3648. avctx->coded_height = avctx->height;
  3649. if (avctx->codec_id == CODEC_ID_WMV3)
  3650. {
  3651. int count = 0;
  3652. // looks like WMV3 has a sequence header stored in the extradata
  3653. // advanced sequence header may be before the first frame
  3654. // the last byte of the extradata is a version number, 1 for the
  3655. // samples we can decode
  3656. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3657. if (decode_sequence_header(avctx, &gb) < 0)
  3658. return -1;
  3659. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3660. if (count>0)
  3661. {
  3662. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3663. count, get_bits(&gb, count));
  3664. }
  3665. else if (count < 0)
  3666. {
  3667. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3668. }
  3669. } else { // VC1/WVC1
  3670. const uint8_t *start = avctx->extradata;
  3671. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3672. const uint8_t *next;
  3673. int size, buf2_size;
  3674. uint8_t *buf2 = NULL;
  3675. int seq_initialized = 0, ep_initialized = 0;
  3676. if(avctx->extradata_size < 16) {
  3677. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3678. return -1;
  3679. }
  3680. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3681. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3682. next = start;
  3683. for(; next < end; start = next){
  3684. next = find_next_marker(start + 4, end);
  3685. size = next - start - 4;
  3686. if(size <= 0) continue;
  3687. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3688. init_get_bits(&gb, buf2, buf2_size * 8);
  3689. switch(AV_RB32(start)){
  3690. case VC1_CODE_SEQHDR:
  3691. if(decode_sequence_header(avctx, &gb) < 0){
  3692. av_free(buf2);
  3693. return -1;
  3694. }
  3695. seq_initialized = 1;
  3696. break;
  3697. case VC1_CODE_ENTRYPOINT:
  3698. if(decode_entry_point(avctx, &gb) < 0){
  3699. av_free(buf2);
  3700. return -1;
  3701. }
  3702. ep_initialized = 1;
  3703. break;
  3704. }
  3705. }
  3706. av_free(buf2);
  3707. if(!seq_initialized || !ep_initialized){
  3708. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3709. return -1;
  3710. }
  3711. }
  3712. avctx->has_b_frames= !!(avctx->max_b_frames);
  3713. s->low_delay = !avctx->has_b_frames;
  3714. s->mb_width = (avctx->coded_width+15)>>4;
  3715. s->mb_height = (avctx->coded_height+15)>>4;
  3716. /* Allocate mb bitplanes */
  3717. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3718. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3719. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3720. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3721. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3722. v->cbp = v->cbp_base + s->mb_stride;
  3723. /* allocate block type info in that way so it could be used with s->block_index[] */
  3724. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3725. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3726. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3727. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3728. /* Init coded blocks info */
  3729. if (v->profile == PROFILE_ADVANCED)
  3730. {
  3731. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3732. // return -1;
  3733. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3734. // return -1;
  3735. }
  3736. ff_intrax8_common_init(&v->x8,s);
  3737. return 0;
  3738. }
  3739. /** Decode a VC1/WMV3 frame
  3740. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3741. */
  3742. static int vc1_decode_frame(AVCodecContext *avctx,
  3743. void *data, int *data_size,
  3744. AVPacket *avpkt)
  3745. {
  3746. const uint8_t *buf = avpkt->data;
  3747. int buf_size = avpkt->size;
  3748. VC1Context *v = avctx->priv_data;
  3749. MpegEncContext *s = &v->s;
  3750. AVFrame *pict = data;
  3751. uint8_t *buf2 = NULL;
  3752. const uint8_t *buf_start = buf;
  3753. /* no supplementary picture */
  3754. if (buf_size == 0) {
  3755. /* special case for last picture */
  3756. if (s->low_delay==0 && s->next_picture_ptr) {
  3757. *pict= *(AVFrame*)s->next_picture_ptr;
  3758. s->next_picture_ptr= NULL;
  3759. *data_size = sizeof(AVFrame);
  3760. }
  3761. return 0;
  3762. }
  3763. /* We need to set current_picture_ptr before reading the header,
  3764. * otherwise we cannot store anything in there. */
  3765. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3766. int i= ff_find_unused_picture(s, 0);
  3767. s->current_picture_ptr= &s->picture[i];
  3768. }
  3769. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3770. if (v->profile < PROFILE_ADVANCED)
  3771. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  3772. else
  3773. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  3774. }
  3775. //for advanced profile we may need to parse and unescape data
  3776. if (avctx->codec_id == CODEC_ID_VC1) {
  3777. int buf_size2 = 0;
  3778. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3779. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3780. const uint8_t *start, *end, *next;
  3781. int size;
  3782. next = buf;
  3783. for(start = buf, end = buf + buf_size; next < end; start = next){
  3784. next = find_next_marker(start + 4, end);
  3785. size = next - start - 4;
  3786. if(size <= 0) continue;
  3787. switch(AV_RB32(start)){
  3788. case VC1_CODE_FRAME:
  3789. if (avctx->hwaccel ||
  3790. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3791. buf_start = start;
  3792. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3793. break;
  3794. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3795. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3796. init_get_bits(&s->gb, buf2, buf_size2*8);
  3797. decode_entry_point(avctx, &s->gb);
  3798. break;
  3799. case VC1_CODE_SLICE:
  3800. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3801. av_free(buf2);
  3802. return -1;
  3803. }
  3804. }
  3805. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3806. const uint8_t *divider;
  3807. divider = find_next_marker(buf, buf + buf_size);
  3808. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3809. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3810. av_free(buf2);
  3811. return -1;
  3812. }
  3813. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3814. // TODO
  3815. av_free(buf2);return -1;
  3816. }else{
  3817. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3818. }
  3819. init_get_bits(&s->gb, buf2, buf_size2*8);
  3820. } else
  3821. init_get_bits(&s->gb, buf, buf_size*8);
  3822. // do parse frame header
  3823. if(v->profile < PROFILE_ADVANCED) {
  3824. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3825. av_free(buf2);
  3826. return -1;
  3827. }
  3828. } else {
  3829. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3830. av_free(buf2);
  3831. return -1;
  3832. }
  3833. }
  3834. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3835. av_free(buf2);
  3836. return -1;
  3837. }
  3838. // for hurry_up==5
  3839. s->current_picture.pict_type= s->pict_type;
  3840. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3841. /* skip B-frames if we don't have reference frames */
  3842. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3843. av_free(buf2);
  3844. return -1;//buf_size;
  3845. }
  3846. /* skip b frames if we are in a hurry */
  3847. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3848. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3849. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3850. || avctx->skip_frame >= AVDISCARD_ALL) {
  3851. av_free(buf2);
  3852. return buf_size;
  3853. }
  3854. /* skip everything if we are in a hurry>=5 */
  3855. if(avctx->hurry_up>=5) {
  3856. av_free(buf2);
  3857. return -1;//buf_size;
  3858. }
  3859. if(s->next_p_frame_damaged){
  3860. if(s->pict_type==FF_B_TYPE)
  3861. return buf_size;
  3862. else
  3863. s->next_p_frame_damaged=0;
  3864. }
  3865. if(MPV_frame_start(s, avctx) < 0) {
  3866. av_free(buf2);
  3867. return -1;
  3868. }
  3869. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3870. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3871. if ((CONFIG_VC1_VDPAU_DECODER || CONFIG_WMV3_VDPAU_DECODER)
  3872. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3873. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3874. else if (avctx->hwaccel) {
  3875. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3876. return -1;
  3877. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3878. return -1;
  3879. if (avctx->hwaccel->end_frame(avctx) < 0)
  3880. return -1;
  3881. } else {
  3882. ff_er_frame_start(s);
  3883. v->bits = buf_size * 8;
  3884. vc1_decode_blocks(v);
  3885. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3886. // if(get_bits_count(&s->gb) > buf_size * 8)
  3887. // return -1;
  3888. ff_er_frame_end(s);
  3889. }
  3890. MPV_frame_end(s);
  3891. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3892. assert(s->current_picture.pict_type == s->pict_type);
  3893. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3894. *pict= *(AVFrame*)s->current_picture_ptr;
  3895. } else if (s->last_picture_ptr != NULL) {
  3896. *pict= *(AVFrame*)s->last_picture_ptr;
  3897. }
  3898. if(s->last_picture_ptr || s->low_delay){
  3899. *data_size = sizeof(AVFrame);
  3900. ff_print_debug_info(s, pict);
  3901. }
  3902. /* Return the Picture timestamp as the frame number */
  3903. /* we subtract 1 because it is added on utils.c */
  3904. avctx->frame_number = s->picture_number - 1;
  3905. av_free(buf2);
  3906. return buf_size;
  3907. }
  3908. /** Close a VC1/WMV3 decoder
  3909. * @warning Initial try at using MpegEncContext stuff
  3910. */
  3911. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3912. {
  3913. VC1Context *v = avctx->priv_data;
  3914. av_freep(&v->hrd_rate);
  3915. av_freep(&v->hrd_buffer);
  3916. MPV_common_end(&v->s);
  3917. av_freep(&v->mv_type_mb_plane);
  3918. av_freep(&v->direct_mb_plane);
  3919. av_freep(&v->acpred_plane);
  3920. av_freep(&v->over_flags_plane);
  3921. av_freep(&v->mb_type_base);
  3922. av_freep(&v->cbp_base);
  3923. ff_intrax8_common_end(&v->x8);
  3924. return 0;
  3925. }
  3926. AVCodec vc1_decoder = {
  3927. "vc1",
  3928. CODEC_TYPE_VIDEO,
  3929. CODEC_ID_VC1,
  3930. sizeof(VC1Context),
  3931. vc1_decode_init,
  3932. NULL,
  3933. vc1_decode_end,
  3934. vc1_decode_frame,
  3935. CODEC_CAP_DELAY,
  3936. NULL,
  3937. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3938. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3939. };
  3940. AVCodec wmv3_decoder = {
  3941. "wmv3",
  3942. CODEC_TYPE_VIDEO,
  3943. CODEC_ID_WMV3,
  3944. sizeof(VC1Context),
  3945. vc1_decode_init,
  3946. NULL,
  3947. vc1_decode_end,
  3948. vc1_decode_frame,
  3949. CODEC_CAP_DELAY,
  3950. NULL,
  3951. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3952. .pix_fmts = ff_hwaccel_pixfmt_list_420
  3953. };
  3954. #if CONFIG_WMV3_VDPAU_DECODER
  3955. AVCodec wmv3_vdpau_decoder = {
  3956. "wmv3_vdpau",
  3957. CODEC_TYPE_VIDEO,
  3958. CODEC_ID_WMV3,
  3959. sizeof(VC1Context),
  3960. vc1_decode_init,
  3961. NULL,
  3962. vc1_decode_end,
  3963. vc1_decode_frame,
  3964. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3965. NULL,
  3966. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3967. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE}
  3968. };
  3969. #endif
  3970. #if CONFIG_VC1_VDPAU_DECODER
  3971. AVCodec vc1_vdpau_decoder = {
  3972. "vc1_vdpau",
  3973. CODEC_TYPE_VIDEO,
  3974. CODEC_ID_VC1,
  3975. sizeof(VC1Context),
  3976. vc1_decode_init,
  3977. NULL,
  3978. vc1_decode_end,
  3979. vc1_decode_frame,
  3980. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3981. NULL,
  3982. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3983. .pix_fmts = (enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE}
  3984. };
  3985. #endif