You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1372 lines
39KB

  1. /*
  2. * The simplest AC-3 encoder
  3. * Copyright (c) 2000 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/ac3enc.c
  23. * The simplest AC-3 encoder.
  24. */
  25. //#define DEBUG
  26. //#define DEBUG_BITALLOC
  27. #include "libavutil/crc.h"
  28. #include "avcodec.h"
  29. #include "get_bits.h" // for ff_reverse
  30. #include "put_bits.h"
  31. #include "ac3.h"
  32. typedef struct AC3EncodeContext {
  33. PutBitContext pb;
  34. int nb_channels;
  35. int nb_all_channels;
  36. int lfe_channel;
  37. const uint8_t *channel_map;
  38. int bit_rate;
  39. unsigned int sample_rate;
  40. unsigned int bitstream_id;
  41. unsigned int frame_size_min; /* minimum frame size in case rounding is necessary */
  42. unsigned int frame_size; /* current frame size in words */
  43. unsigned int bits_written;
  44. unsigned int samples_written;
  45. int sr_shift;
  46. unsigned int frame_size_code;
  47. unsigned int sr_code; /* frequency */
  48. unsigned int channel_mode;
  49. int lfe;
  50. unsigned int bitstream_mode;
  51. short last_samples[AC3_MAX_CHANNELS][256];
  52. unsigned int chbwcod[AC3_MAX_CHANNELS];
  53. int nb_coefs[AC3_MAX_CHANNELS];
  54. /* bitrate allocation control */
  55. int slow_gain_code, slow_decay_code, fast_decay_code, db_per_bit_code, floor_code;
  56. AC3BitAllocParameters bit_alloc;
  57. int coarse_snr_offset;
  58. int fast_gain_code[AC3_MAX_CHANNELS];
  59. int fine_snr_offset[AC3_MAX_CHANNELS];
  60. /* mantissa encoding */
  61. int mant1_cnt, mant2_cnt, mant4_cnt;
  62. } AC3EncodeContext;
  63. static int16_t costab[64];
  64. static int16_t sintab[64];
  65. static int16_t xcos1[128];
  66. static int16_t xsin1[128];
  67. #define MDCT_NBITS 9
  68. #define N (1 << MDCT_NBITS)
  69. /* new exponents are sent if their Norm 1 exceed this number */
  70. #define EXP_DIFF_THRESHOLD 1000
  71. static inline int16_t fix15(float a)
  72. {
  73. int v;
  74. v = (int)(a * (float)(1 << 15));
  75. if (v < -32767)
  76. v = -32767;
  77. else if (v > 32767)
  78. v = 32767;
  79. return v;
  80. }
  81. typedef struct IComplex {
  82. short re,im;
  83. } IComplex;
  84. static av_cold void fft_init(int ln)
  85. {
  86. int i, n;
  87. float alpha;
  88. n = 1 << ln;
  89. for(i=0;i<(n/2);i++) {
  90. alpha = 2 * M_PI * (float)i / (float)n;
  91. costab[i] = fix15(cos(alpha));
  92. sintab[i] = fix15(sin(alpha));
  93. }
  94. }
  95. /* butter fly op */
  96. #define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \
  97. {\
  98. int ax, ay, bx, by;\
  99. bx=pre1;\
  100. by=pim1;\
  101. ax=qre1;\
  102. ay=qim1;\
  103. pre = (bx + ax) >> 1;\
  104. pim = (by + ay) >> 1;\
  105. qre = (bx - ax) >> 1;\
  106. qim = (by - ay) >> 1;\
  107. }
  108. #define CMUL(pre, pim, are, aim, bre, bim) \
  109. {\
  110. pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15;\
  111. pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15;\
  112. }
  113. /* do a 2^n point complex fft on 2^ln points. */
  114. static void fft(IComplex *z, int ln)
  115. {
  116. int j, l, np, np2;
  117. int nblocks, nloops;
  118. register IComplex *p,*q;
  119. int tmp_re, tmp_im;
  120. np = 1 << ln;
  121. /* reverse */
  122. for(j=0;j<np;j++) {
  123. int k = ff_reverse[j] >> (8 - ln);
  124. if (k < j)
  125. FFSWAP(IComplex, z[k], z[j]);
  126. }
  127. /* pass 0 */
  128. p=&z[0];
  129. j=(np >> 1);
  130. do {
  131. BF(p[0].re, p[0].im, p[1].re, p[1].im,
  132. p[0].re, p[0].im, p[1].re, p[1].im);
  133. p+=2;
  134. } while (--j != 0);
  135. /* pass 1 */
  136. p=&z[0];
  137. j=np >> 2;
  138. do {
  139. BF(p[0].re, p[0].im, p[2].re, p[2].im,
  140. p[0].re, p[0].im, p[2].re, p[2].im);
  141. BF(p[1].re, p[1].im, p[3].re, p[3].im,
  142. p[1].re, p[1].im, p[3].im, -p[3].re);
  143. p+=4;
  144. } while (--j != 0);
  145. /* pass 2 .. ln-1 */
  146. nblocks = np >> 3;
  147. nloops = 1 << 2;
  148. np2 = np >> 1;
  149. do {
  150. p = z;
  151. q = z + nloops;
  152. for (j = 0; j < nblocks; ++j) {
  153. BF(p->re, p->im, q->re, q->im,
  154. p->re, p->im, q->re, q->im);
  155. p++;
  156. q++;
  157. for(l = nblocks; l < np2; l += nblocks) {
  158. CMUL(tmp_re, tmp_im, costab[l], -sintab[l], q->re, q->im);
  159. BF(p->re, p->im, q->re, q->im,
  160. p->re, p->im, tmp_re, tmp_im);
  161. p++;
  162. q++;
  163. }
  164. p += nloops;
  165. q += nloops;
  166. }
  167. nblocks = nblocks >> 1;
  168. nloops = nloops << 1;
  169. } while (nblocks != 0);
  170. }
  171. /* do a 512 point mdct */
  172. static void mdct512(int32_t *out, int16_t *in)
  173. {
  174. int i, re, im, re1, im1;
  175. int16_t rot[N];
  176. IComplex x[N/4];
  177. /* shift to simplify computations */
  178. for(i=0;i<N/4;i++)
  179. rot[i] = -in[i + 3*N/4];
  180. for(i=N/4;i<N;i++)
  181. rot[i] = in[i - N/4];
  182. /* pre rotation */
  183. for(i=0;i<N/4;i++) {
  184. re = ((int)rot[2*i] - (int)rot[N-1-2*i]) >> 1;
  185. im = -((int)rot[N/2+2*i] - (int)rot[N/2-1-2*i]) >> 1;
  186. CMUL(x[i].re, x[i].im, re, im, -xcos1[i], xsin1[i]);
  187. }
  188. fft(x, MDCT_NBITS - 2);
  189. /* post rotation */
  190. for(i=0;i<N/4;i++) {
  191. re = x[i].re;
  192. im = x[i].im;
  193. CMUL(re1, im1, re, im, xsin1[i], xcos1[i]);
  194. out[2*i] = im1;
  195. out[N/2-1-2*i] = re1;
  196. }
  197. }
  198. /* XXX: use another norm ? */
  199. static int calc_exp_diff(uint8_t *exp1, uint8_t *exp2, int n)
  200. {
  201. int sum, i;
  202. sum = 0;
  203. for(i=0;i<n;i++) {
  204. sum += abs(exp1[i] - exp2[i]);
  205. }
  206. return sum;
  207. }
  208. static void compute_exp_strategy(uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  209. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  210. int ch, int is_lfe)
  211. {
  212. int i, j;
  213. int exp_diff;
  214. /* estimate if the exponent variation & decide if they should be
  215. reused in the next frame */
  216. exp_strategy[0][ch] = EXP_NEW;
  217. for(i=1;i<NB_BLOCKS;i++) {
  218. exp_diff = calc_exp_diff(exp[i][ch], exp[i-1][ch], N/2);
  219. #ifdef DEBUG
  220. av_log(NULL, AV_LOG_DEBUG, "exp_diff=%d\n", exp_diff);
  221. #endif
  222. if (exp_diff > EXP_DIFF_THRESHOLD)
  223. exp_strategy[i][ch] = EXP_NEW;
  224. else
  225. exp_strategy[i][ch] = EXP_REUSE;
  226. }
  227. if (is_lfe)
  228. return;
  229. /* now select the encoding strategy type : if exponents are often
  230. recoded, we use a coarse encoding */
  231. i = 0;
  232. while (i < NB_BLOCKS) {
  233. j = i + 1;
  234. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE)
  235. j++;
  236. switch(j - i) {
  237. case 1:
  238. exp_strategy[i][ch] = EXP_D45;
  239. break;
  240. case 2:
  241. case 3:
  242. exp_strategy[i][ch] = EXP_D25;
  243. break;
  244. default:
  245. exp_strategy[i][ch] = EXP_D15;
  246. break;
  247. }
  248. i = j;
  249. }
  250. }
  251. /* set exp[i] to min(exp[i], exp1[i]) */
  252. static void exponent_min(uint8_t exp[N/2], uint8_t exp1[N/2], int n)
  253. {
  254. int i;
  255. for(i=0;i<n;i++) {
  256. if (exp1[i] < exp[i])
  257. exp[i] = exp1[i];
  258. }
  259. }
  260. /* update the exponents so that they are the ones the decoder will
  261. decode. Return the number of bits used to code the exponents */
  262. static int encode_exp(uint8_t encoded_exp[N/2],
  263. uint8_t exp[N/2],
  264. int nb_exps,
  265. int exp_strategy)
  266. {
  267. int group_size, nb_groups, i, j, k, exp_min;
  268. uint8_t exp1[N/2];
  269. switch(exp_strategy) {
  270. case EXP_D15:
  271. group_size = 1;
  272. break;
  273. case EXP_D25:
  274. group_size = 2;
  275. break;
  276. default:
  277. case EXP_D45:
  278. group_size = 4;
  279. break;
  280. }
  281. nb_groups = ((nb_exps + (group_size * 3) - 4) / (3 * group_size)) * 3;
  282. /* for each group, compute the minimum exponent */
  283. exp1[0] = exp[0]; /* DC exponent is handled separately */
  284. k = 1;
  285. for(i=1;i<=nb_groups;i++) {
  286. exp_min = exp[k];
  287. assert(exp_min >= 0 && exp_min <= 24);
  288. for(j=1;j<group_size;j++) {
  289. if (exp[k+j] < exp_min)
  290. exp_min = exp[k+j];
  291. }
  292. exp1[i] = exp_min;
  293. k += group_size;
  294. }
  295. /* constraint for DC exponent */
  296. if (exp1[0] > 15)
  297. exp1[0] = 15;
  298. /* Decrease the delta between each groups to within 2
  299. * so that they can be differentially encoded */
  300. for (i=1;i<=nb_groups;i++)
  301. exp1[i] = FFMIN(exp1[i], exp1[i-1] + 2);
  302. for (i=nb_groups-1;i>=0;i--)
  303. exp1[i] = FFMIN(exp1[i], exp1[i+1] + 2);
  304. /* now we have the exponent values the decoder will see */
  305. encoded_exp[0] = exp1[0];
  306. k = 1;
  307. for(i=1;i<=nb_groups;i++) {
  308. for(j=0;j<group_size;j++) {
  309. encoded_exp[k+j] = exp1[i];
  310. }
  311. k += group_size;
  312. }
  313. #if defined(DEBUG)
  314. av_log(NULL, AV_LOG_DEBUG, "exponents: strategy=%d\n", exp_strategy);
  315. for(i=0;i<=nb_groups * group_size;i++) {
  316. av_log(NULL, AV_LOG_DEBUG, "%d ", encoded_exp[i]);
  317. }
  318. av_log(NULL, AV_LOG_DEBUG, "\n");
  319. #endif
  320. return 4 + (nb_groups / 3) * 7;
  321. }
  322. /* return the size in bits taken by the mantissa */
  323. static int compute_mantissa_size(AC3EncodeContext *s, uint8_t *m, int nb_coefs)
  324. {
  325. int bits, mant, i;
  326. bits = 0;
  327. for(i=0;i<nb_coefs;i++) {
  328. mant = m[i];
  329. switch(mant) {
  330. case 0:
  331. /* nothing */
  332. break;
  333. case 1:
  334. /* 3 mantissa in 5 bits */
  335. if (s->mant1_cnt == 0)
  336. bits += 5;
  337. if (++s->mant1_cnt == 3)
  338. s->mant1_cnt = 0;
  339. break;
  340. case 2:
  341. /* 3 mantissa in 7 bits */
  342. if (s->mant2_cnt == 0)
  343. bits += 7;
  344. if (++s->mant2_cnt == 3)
  345. s->mant2_cnt = 0;
  346. break;
  347. case 3:
  348. bits += 3;
  349. break;
  350. case 4:
  351. /* 2 mantissa in 7 bits */
  352. if (s->mant4_cnt == 0)
  353. bits += 7;
  354. if (++s->mant4_cnt == 2)
  355. s->mant4_cnt = 0;
  356. break;
  357. case 14:
  358. bits += 14;
  359. break;
  360. case 15:
  361. bits += 16;
  362. break;
  363. default:
  364. bits += mant - 1;
  365. break;
  366. }
  367. }
  368. return bits;
  369. }
  370. static void bit_alloc_masking(AC3EncodeContext *s,
  371. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  372. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  373. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  374. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50])
  375. {
  376. int blk, ch;
  377. int16_t band_psd[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  378. for(blk=0; blk<NB_BLOCKS; blk++) {
  379. for(ch=0;ch<s->nb_all_channels;ch++) {
  380. if(exp_strategy[blk][ch] == EXP_REUSE) {
  381. memcpy(psd[blk][ch], psd[blk-1][ch], (N/2)*sizeof(int16_t));
  382. memcpy(mask[blk][ch], mask[blk-1][ch], 50*sizeof(int16_t));
  383. } else {
  384. ff_ac3_bit_alloc_calc_psd(encoded_exp[blk][ch], 0,
  385. s->nb_coefs[ch],
  386. psd[blk][ch], band_psd[blk][ch]);
  387. ff_ac3_bit_alloc_calc_mask(&s->bit_alloc, band_psd[blk][ch],
  388. 0, s->nb_coefs[ch],
  389. ff_ac3_fast_gain_tab[s->fast_gain_code[ch]],
  390. ch == s->lfe_channel,
  391. DBA_NONE, 0, NULL, NULL, NULL,
  392. mask[blk][ch]);
  393. }
  394. }
  395. }
  396. }
  397. static int bit_alloc(AC3EncodeContext *s,
  398. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50],
  399. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  400. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  401. int frame_bits, int coarse_snr_offset, int fine_snr_offset)
  402. {
  403. int i, ch;
  404. int snr_offset;
  405. snr_offset = (((coarse_snr_offset - 15) << 4) + fine_snr_offset) << 2;
  406. /* compute size */
  407. for(i=0;i<NB_BLOCKS;i++) {
  408. s->mant1_cnt = 0;
  409. s->mant2_cnt = 0;
  410. s->mant4_cnt = 0;
  411. for(ch=0;ch<s->nb_all_channels;ch++) {
  412. ff_ac3_bit_alloc_calc_bap(mask[i][ch], psd[i][ch], 0,
  413. s->nb_coefs[ch], snr_offset,
  414. s->bit_alloc.floor, ff_ac3_bap_tab,
  415. bap[i][ch]);
  416. frame_bits += compute_mantissa_size(s, bap[i][ch],
  417. s->nb_coefs[ch]);
  418. }
  419. }
  420. #if 0
  421. printf("csnr=%d fsnr=%d frame_bits=%d diff=%d\n",
  422. coarse_snr_offset, fine_snr_offset, frame_bits,
  423. 16 * s->frame_size - ((frame_bits + 7) & ~7));
  424. #endif
  425. return 16 * s->frame_size - frame_bits;
  426. }
  427. #define SNR_INC1 4
  428. static int compute_bit_allocation(AC3EncodeContext *s,
  429. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  430. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2],
  431. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS],
  432. int frame_bits)
  433. {
  434. int i, ch;
  435. int coarse_snr_offset, fine_snr_offset;
  436. uint8_t bap1[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  437. int16_t psd[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  438. int16_t mask[NB_BLOCKS][AC3_MAX_CHANNELS][50];
  439. static const int frame_bits_inc[8] = { 0, 0, 2, 2, 2, 4, 2, 4 };
  440. /* init default parameters */
  441. s->slow_decay_code = 2;
  442. s->fast_decay_code = 1;
  443. s->slow_gain_code = 1;
  444. s->db_per_bit_code = 2;
  445. s->floor_code = 4;
  446. for(ch=0;ch<s->nb_all_channels;ch++)
  447. s->fast_gain_code[ch] = 4;
  448. /* compute real values */
  449. s->bit_alloc.sr_code = s->sr_code;
  450. s->bit_alloc.sr_shift = s->sr_shift;
  451. s->bit_alloc.slow_decay = ff_ac3_slow_decay_tab[s->slow_decay_code] >> s->sr_shift;
  452. s->bit_alloc.fast_decay = ff_ac3_fast_decay_tab[s->fast_decay_code] >> s->sr_shift;
  453. s->bit_alloc.slow_gain = ff_ac3_slow_gain_tab[s->slow_gain_code];
  454. s->bit_alloc.db_per_bit = ff_ac3_db_per_bit_tab[s->db_per_bit_code];
  455. s->bit_alloc.floor = ff_ac3_floor_tab[s->floor_code];
  456. /* header size */
  457. frame_bits += 65;
  458. // if (s->channel_mode == 2)
  459. // frame_bits += 2;
  460. frame_bits += frame_bits_inc[s->channel_mode];
  461. /* audio blocks */
  462. for(i=0;i<NB_BLOCKS;i++) {
  463. frame_bits += s->nb_channels * 2 + 2; /* blksw * c, dithflag * c, dynrnge, cplstre */
  464. if (s->channel_mode == AC3_CHMODE_STEREO) {
  465. frame_bits++; /* rematstr */
  466. if(i==0) frame_bits += 4;
  467. }
  468. frame_bits += 2 * s->nb_channels; /* chexpstr[2] * c */
  469. if (s->lfe)
  470. frame_bits++; /* lfeexpstr */
  471. for(ch=0;ch<s->nb_channels;ch++) {
  472. if (exp_strategy[i][ch] != EXP_REUSE)
  473. frame_bits += 6 + 2; /* chbwcod[6], gainrng[2] */
  474. }
  475. frame_bits++; /* baie */
  476. frame_bits++; /* snr */
  477. frame_bits += 2; /* delta / skip */
  478. }
  479. frame_bits++; /* cplinu for block 0 */
  480. /* bit alloc info */
  481. /* sdcycod[2], fdcycod[2], sgaincod[2], dbpbcod[2], floorcod[3] */
  482. /* csnroffset[6] */
  483. /* (fsnoffset[4] + fgaincod[4]) * c */
  484. frame_bits += 2*4 + 3 + 6 + s->nb_all_channels * (4 + 3);
  485. /* auxdatae, crcrsv */
  486. frame_bits += 2;
  487. /* CRC */
  488. frame_bits += 16;
  489. /* calculate psd and masking curve before doing bit allocation */
  490. bit_alloc_masking(s, encoded_exp, exp_strategy, psd, mask);
  491. /* now the big work begins : do the bit allocation. Modify the snr
  492. offset until we can pack everything in the requested frame size */
  493. coarse_snr_offset = s->coarse_snr_offset;
  494. while (coarse_snr_offset >= 0 &&
  495. bit_alloc(s, mask, psd, bap, frame_bits, coarse_snr_offset, 0) < 0)
  496. coarse_snr_offset -= SNR_INC1;
  497. if (coarse_snr_offset < 0) {
  498. av_log(NULL, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
  499. return -1;
  500. }
  501. while ((coarse_snr_offset + SNR_INC1) <= 63 &&
  502. bit_alloc(s, mask, psd, bap1, frame_bits,
  503. coarse_snr_offset + SNR_INC1, 0) >= 0) {
  504. coarse_snr_offset += SNR_INC1;
  505. memcpy(bap, bap1, sizeof(bap1));
  506. }
  507. while ((coarse_snr_offset + 1) <= 63 &&
  508. bit_alloc(s, mask, psd, bap1, frame_bits, coarse_snr_offset + 1, 0) >= 0) {
  509. coarse_snr_offset++;
  510. memcpy(bap, bap1, sizeof(bap1));
  511. }
  512. fine_snr_offset = 0;
  513. while ((fine_snr_offset + SNR_INC1) <= 15 &&
  514. bit_alloc(s, mask, psd, bap1, frame_bits,
  515. coarse_snr_offset, fine_snr_offset + SNR_INC1) >= 0) {
  516. fine_snr_offset += SNR_INC1;
  517. memcpy(bap, bap1, sizeof(bap1));
  518. }
  519. while ((fine_snr_offset + 1) <= 15 &&
  520. bit_alloc(s, mask, psd, bap1, frame_bits,
  521. coarse_snr_offset, fine_snr_offset + 1) >= 0) {
  522. fine_snr_offset++;
  523. memcpy(bap, bap1, sizeof(bap1));
  524. }
  525. s->coarse_snr_offset = coarse_snr_offset;
  526. for(ch=0;ch<s->nb_all_channels;ch++)
  527. s->fine_snr_offset[ch] = fine_snr_offset;
  528. #if defined(DEBUG_BITALLOC)
  529. {
  530. int j;
  531. for(i=0;i<6;i++) {
  532. for(ch=0;ch<s->nb_all_channels;ch++) {
  533. printf("Block #%d Ch%d:\n", i, ch);
  534. printf("bap=");
  535. for(j=0;j<s->nb_coefs[ch];j++) {
  536. printf("%d ",bap[i][ch][j]);
  537. }
  538. printf("\n");
  539. }
  540. }
  541. }
  542. #endif
  543. return 0;
  544. }
  545. static av_cold int AC3_encode_init(AVCodecContext *avctx)
  546. {
  547. int freq = avctx->sample_rate;
  548. int bitrate = avctx->bit_rate;
  549. int channels = avctx->channels;
  550. AC3EncodeContext *s = avctx->priv_data;
  551. int i, j, ch;
  552. float alpha;
  553. int bw_code;
  554. static const uint8_t channel_mode_defs[6] = {
  555. 0x01, /* C */
  556. 0x02, /* L R */
  557. 0x03, /* L C R */
  558. 0x06, /* L R SL SR */
  559. 0x07, /* L C R SL SR */
  560. 0x07, /* L C R SL SR (+LFE) */
  561. };
  562. avctx->frame_size = AC3_FRAME_SIZE;
  563. ac3_common_init();
  564. /* number of channels */
  565. if (channels < 1 || channels > 6)
  566. return -1;
  567. s->channel_mode = channel_mode_defs[channels - 1];
  568. s->lfe = (channels == 6) ? 1 : 0;
  569. s->nb_all_channels = channels;
  570. s->nb_channels = channels > 5 ? 5 : channels;
  571. s->lfe_channel = s->lfe ? 5 : -1;
  572. s->channel_map = ff_ac3_enc_channel_map[s->channel_mode][s->lfe];
  573. /* frequency */
  574. for(i=0;i<3;i++) {
  575. for(j=0;j<3;j++)
  576. if ((ff_ac3_sample_rate_tab[j] >> i) == freq)
  577. goto found;
  578. }
  579. return -1;
  580. found:
  581. s->sample_rate = freq;
  582. s->sr_shift = i;
  583. s->sr_code = j;
  584. s->bitstream_id = 8 + s->sr_shift;
  585. s->bitstream_mode = 0; /* complete main audio service */
  586. /* bitrate & frame size */
  587. for(i=0;i<19;i++) {
  588. if ((ff_ac3_bitrate_tab[i] >> s->sr_shift)*1000 == bitrate)
  589. break;
  590. }
  591. if (i == 19)
  592. return -1;
  593. s->bit_rate = bitrate;
  594. s->frame_size_code = i << 1;
  595. s->frame_size_min = ff_ac3_frame_size_tab[s->frame_size_code][s->sr_code];
  596. s->bits_written = 0;
  597. s->samples_written = 0;
  598. s->frame_size = s->frame_size_min;
  599. /* bit allocation init */
  600. if(avctx->cutoff) {
  601. /* calculate bandwidth based on user-specified cutoff frequency */
  602. int cutoff = av_clip(avctx->cutoff, 1, s->sample_rate >> 1);
  603. int fbw_coeffs = cutoff * 512 / s->sample_rate;
  604. bw_code = av_clip((fbw_coeffs - 73) / 3, 0, 60);
  605. } else {
  606. /* use default bandwidth setting */
  607. /* XXX: should compute the bandwidth according to the frame
  608. size, so that we avoid annoying high frequency artifacts */
  609. bw_code = 50;
  610. }
  611. for(ch=0;ch<s->nb_channels;ch++) {
  612. /* bandwidth for each channel */
  613. s->chbwcod[ch] = bw_code;
  614. s->nb_coefs[ch] = bw_code * 3 + 73;
  615. }
  616. if (s->lfe) {
  617. s->nb_coefs[s->lfe_channel] = 7; /* fixed */
  618. }
  619. /* initial snr offset */
  620. s->coarse_snr_offset = 40;
  621. /* mdct init */
  622. fft_init(MDCT_NBITS - 2);
  623. for(i=0;i<N/4;i++) {
  624. alpha = 2 * M_PI * (i + 1.0 / 8.0) / (float)N;
  625. xcos1[i] = fix15(-cos(alpha));
  626. xsin1[i] = fix15(-sin(alpha));
  627. }
  628. avctx->coded_frame= avcodec_alloc_frame();
  629. avctx->coded_frame->key_frame= 1;
  630. return 0;
  631. }
  632. /* output the AC-3 frame header */
  633. static void output_frame_header(AC3EncodeContext *s, unsigned char *frame)
  634. {
  635. init_put_bits(&s->pb, frame, AC3_MAX_CODED_FRAME_SIZE);
  636. put_bits(&s->pb, 16, 0x0b77); /* frame header */
  637. put_bits(&s->pb, 16, 0); /* crc1: will be filled later */
  638. put_bits(&s->pb, 2, s->sr_code);
  639. put_bits(&s->pb, 6, s->frame_size_code + (s->frame_size - s->frame_size_min));
  640. put_bits(&s->pb, 5, s->bitstream_id);
  641. put_bits(&s->pb, 3, s->bitstream_mode);
  642. put_bits(&s->pb, 3, s->channel_mode);
  643. if ((s->channel_mode & 0x01) && s->channel_mode != AC3_CHMODE_MONO)
  644. put_bits(&s->pb, 2, 1); /* XXX -4.5 dB */
  645. if (s->channel_mode & 0x04)
  646. put_bits(&s->pb, 2, 1); /* XXX -6 dB */
  647. if (s->channel_mode == AC3_CHMODE_STEREO)
  648. put_bits(&s->pb, 2, 0); /* surround not indicated */
  649. put_bits(&s->pb, 1, s->lfe); /* LFE */
  650. put_bits(&s->pb, 5, 31); /* dialog norm: -31 db */
  651. put_bits(&s->pb, 1, 0); /* no compression control word */
  652. put_bits(&s->pb, 1, 0); /* no lang code */
  653. put_bits(&s->pb, 1, 0); /* no audio production info */
  654. put_bits(&s->pb, 1, 0); /* no copyright */
  655. put_bits(&s->pb, 1, 1); /* original bitstream */
  656. put_bits(&s->pb, 1, 0); /* no time code 1 */
  657. put_bits(&s->pb, 1, 0); /* no time code 2 */
  658. put_bits(&s->pb, 1, 0); /* no additional bit stream info */
  659. }
  660. /* symetric quantization on 'levels' levels */
  661. static inline int sym_quant(int c, int e, int levels)
  662. {
  663. int v;
  664. if (c >= 0) {
  665. v = (levels * (c << e)) >> 24;
  666. v = (v + 1) >> 1;
  667. v = (levels >> 1) + v;
  668. } else {
  669. v = (levels * ((-c) << e)) >> 24;
  670. v = (v + 1) >> 1;
  671. v = (levels >> 1) - v;
  672. }
  673. assert (v >= 0 && v < levels);
  674. return v;
  675. }
  676. /* asymetric quantization on 2^qbits levels */
  677. static inline int asym_quant(int c, int e, int qbits)
  678. {
  679. int lshift, m, v;
  680. lshift = e + qbits - 24;
  681. if (lshift >= 0)
  682. v = c << lshift;
  683. else
  684. v = c >> (-lshift);
  685. /* rounding */
  686. v = (v + 1) >> 1;
  687. m = (1 << (qbits-1));
  688. if (v >= m)
  689. v = m - 1;
  690. assert(v >= -m);
  691. return v & ((1 << qbits)-1);
  692. }
  693. /* Output one audio block. There are NB_BLOCKS audio blocks in one AC-3
  694. frame */
  695. static void output_audio_block(AC3EncodeContext *s,
  696. uint8_t exp_strategy[AC3_MAX_CHANNELS],
  697. uint8_t encoded_exp[AC3_MAX_CHANNELS][N/2],
  698. uint8_t bap[AC3_MAX_CHANNELS][N/2],
  699. int32_t mdct_coefs[AC3_MAX_CHANNELS][N/2],
  700. int8_t global_exp[AC3_MAX_CHANNELS],
  701. int block_num)
  702. {
  703. int ch, nb_groups, group_size, i, baie, rbnd;
  704. uint8_t *p;
  705. uint16_t qmant[AC3_MAX_CHANNELS][N/2];
  706. int exp0, exp1;
  707. int mant1_cnt, mant2_cnt, mant4_cnt;
  708. uint16_t *qmant1_ptr, *qmant2_ptr, *qmant4_ptr;
  709. int delta0, delta1, delta2;
  710. for(ch=0;ch<s->nb_channels;ch++)
  711. put_bits(&s->pb, 1, 0); /* 512 point MDCT */
  712. for(ch=0;ch<s->nb_channels;ch++)
  713. put_bits(&s->pb, 1, 1); /* no dither */
  714. put_bits(&s->pb, 1, 0); /* no dynamic range */
  715. if (block_num == 0) {
  716. /* for block 0, even if no coupling, we must say it. This is a
  717. waste of bit :-) */
  718. put_bits(&s->pb, 1, 1); /* coupling strategy present */
  719. put_bits(&s->pb, 1, 0); /* no coupling strategy */
  720. } else {
  721. put_bits(&s->pb, 1, 0); /* no new coupling strategy */
  722. }
  723. if (s->channel_mode == AC3_CHMODE_STEREO)
  724. {
  725. if(block_num==0)
  726. {
  727. /* first block must define rematrixing (rematstr) */
  728. put_bits(&s->pb, 1, 1);
  729. /* dummy rematrixing rematflg(1:4)=0 */
  730. for (rbnd=0;rbnd<4;rbnd++)
  731. put_bits(&s->pb, 1, 0);
  732. }
  733. else
  734. {
  735. /* no matrixing (but should be used in the future) */
  736. put_bits(&s->pb, 1, 0);
  737. }
  738. }
  739. #if defined(DEBUG)
  740. {
  741. static int count = 0;
  742. av_log(NULL, AV_LOG_DEBUG, "Block #%d (%d)\n", block_num, count++);
  743. }
  744. #endif
  745. /* exponent strategy */
  746. for(ch=0;ch<s->nb_channels;ch++) {
  747. put_bits(&s->pb, 2, exp_strategy[ch]);
  748. }
  749. if (s->lfe) {
  750. put_bits(&s->pb, 1, exp_strategy[s->lfe_channel]);
  751. }
  752. for(ch=0;ch<s->nb_channels;ch++) {
  753. if (exp_strategy[ch] != EXP_REUSE)
  754. put_bits(&s->pb, 6, s->chbwcod[ch]);
  755. }
  756. /* exponents */
  757. for (ch = 0; ch < s->nb_all_channels; ch++) {
  758. switch(exp_strategy[ch]) {
  759. case EXP_REUSE:
  760. continue;
  761. case EXP_D15:
  762. group_size = 1;
  763. break;
  764. case EXP_D25:
  765. group_size = 2;
  766. break;
  767. default:
  768. case EXP_D45:
  769. group_size = 4;
  770. break;
  771. }
  772. nb_groups = (s->nb_coefs[ch] + (group_size * 3) - 4) / (3 * group_size);
  773. p = encoded_exp[ch];
  774. /* first exponent */
  775. exp1 = *p++;
  776. put_bits(&s->pb, 4, exp1);
  777. /* next ones are delta encoded */
  778. for(i=0;i<nb_groups;i++) {
  779. /* merge three delta in one code */
  780. exp0 = exp1;
  781. exp1 = p[0];
  782. p += group_size;
  783. delta0 = exp1 - exp0 + 2;
  784. exp0 = exp1;
  785. exp1 = p[0];
  786. p += group_size;
  787. delta1 = exp1 - exp0 + 2;
  788. exp0 = exp1;
  789. exp1 = p[0];
  790. p += group_size;
  791. delta2 = exp1 - exp0 + 2;
  792. put_bits(&s->pb, 7, ((delta0 * 5 + delta1) * 5) + delta2);
  793. }
  794. if (ch != s->lfe_channel)
  795. put_bits(&s->pb, 2, 0); /* no gain range info */
  796. }
  797. /* bit allocation info */
  798. baie = (block_num == 0);
  799. put_bits(&s->pb, 1, baie);
  800. if (baie) {
  801. put_bits(&s->pb, 2, s->slow_decay_code);
  802. put_bits(&s->pb, 2, s->fast_decay_code);
  803. put_bits(&s->pb, 2, s->slow_gain_code);
  804. put_bits(&s->pb, 2, s->db_per_bit_code);
  805. put_bits(&s->pb, 3, s->floor_code);
  806. }
  807. /* snr offset */
  808. put_bits(&s->pb, 1, baie); /* always present with bai */
  809. if (baie) {
  810. put_bits(&s->pb, 6, s->coarse_snr_offset);
  811. for(ch=0;ch<s->nb_all_channels;ch++) {
  812. put_bits(&s->pb, 4, s->fine_snr_offset[ch]);
  813. put_bits(&s->pb, 3, s->fast_gain_code[ch]);
  814. }
  815. }
  816. put_bits(&s->pb, 1, 0); /* no delta bit allocation */
  817. put_bits(&s->pb, 1, 0); /* no data to skip */
  818. /* mantissa encoding : we use two passes to handle the grouping. A
  819. one pass method may be faster, but it would necessitate to
  820. modify the output stream. */
  821. /* first pass: quantize */
  822. mant1_cnt = mant2_cnt = mant4_cnt = 0;
  823. qmant1_ptr = qmant2_ptr = qmant4_ptr = NULL;
  824. for (ch = 0; ch < s->nb_all_channels; ch++) {
  825. int b, c, e, v;
  826. for(i=0;i<s->nb_coefs[ch];i++) {
  827. c = mdct_coefs[ch][i];
  828. e = encoded_exp[ch][i] - global_exp[ch];
  829. b = bap[ch][i];
  830. switch(b) {
  831. case 0:
  832. v = 0;
  833. break;
  834. case 1:
  835. v = sym_quant(c, e, 3);
  836. switch(mant1_cnt) {
  837. case 0:
  838. qmant1_ptr = &qmant[ch][i];
  839. v = 9 * v;
  840. mant1_cnt = 1;
  841. break;
  842. case 1:
  843. *qmant1_ptr += 3 * v;
  844. mant1_cnt = 2;
  845. v = 128;
  846. break;
  847. default:
  848. *qmant1_ptr += v;
  849. mant1_cnt = 0;
  850. v = 128;
  851. break;
  852. }
  853. break;
  854. case 2:
  855. v = sym_quant(c, e, 5);
  856. switch(mant2_cnt) {
  857. case 0:
  858. qmant2_ptr = &qmant[ch][i];
  859. v = 25 * v;
  860. mant2_cnt = 1;
  861. break;
  862. case 1:
  863. *qmant2_ptr += 5 * v;
  864. mant2_cnt = 2;
  865. v = 128;
  866. break;
  867. default:
  868. *qmant2_ptr += v;
  869. mant2_cnt = 0;
  870. v = 128;
  871. break;
  872. }
  873. break;
  874. case 3:
  875. v = sym_quant(c, e, 7);
  876. break;
  877. case 4:
  878. v = sym_quant(c, e, 11);
  879. switch(mant4_cnt) {
  880. case 0:
  881. qmant4_ptr = &qmant[ch][i];
  882. v = 11 * v;
  883. mant4_cnt = 1;
  884. break;
  885. default:
  886. *qmant4_ptr += v;
  887. mant4_cnt = 0;
  888. v = 128;
  889. break;
  890. }
  891. break;
  892. case 5:
  893. v = sym_quant(c, e, 15);
  894. break;
  895. case 14:
  896. v = asym_quant(c, e, 14);
  897. break;
  898. case 15:
  899. v = asym_quant(c, e, 16);
  900. break;
  901. default:
  902. v = asym_quant(c, e, b - 1);
  903. break;
  904. }
  905. qmant[ch][i] = v;
  906. }
  907. }
  908. /* second pass : output the values */
  909. for (ch = 0; ch < s->nb_all_channels; ch++) {
  910. int b, q;
  911. for(i=0;i<s->nb_coefs[ch];i++) {
  912. q = qmant[ch][i];
  913. b = bap[ch][i];
  914. switch(b) {
  915. case 0:
  916. break;
  917. case 1:
  918. if (q != 128)
  919. put_bits(&s->pb, 5, q);
  920. break;
  921. case 2:
  922. if (q != 128)
  923. put_bits(&s->pb, 7, q);
  924. break;
  925. case 3:
  926. put_bits(&s->pb, 3, q);
  927. break;
  928. case 4:
  929. if (q != 128)
  930. put_bits(&s->pb, 7, q);
  931. break;
  932. case 14:
  933. put_bits(&s->pb, 14, q);
  934. break;
  935. case 15:
  936. put_bits(&s->pb, 16, q);
  937. break;
  938. default:
  939. put_bits(&s->pb, b - 1, q);
  940. break;
  941. }
  942. }
  943. }
  944. }
  945. #define CRC16_POLY ((1 << 0) | (1 << 2) | (1 << 15) | (1 << 16))
  946. static unsigned int mul_poly(unsigned int a, unsigned int b, unsigned int poly)
  947. {
  948. unsigned int c;
  949. c = 0;
  950. while (a) {
  951. if (a & 1)
  952. c ^= b;
  953. a = a >> 1;
  954. b = b << 1;
  955. if (b & (1 << 16))
  956. b ^= poly;
  957. }
  958. return c;
  959. }
  960. static unsigned int pow_poly(unsigned int a, unsigned int n, unsigned int poly)
  961. {
  962. unsigned int r;
  963. r = 1;
  964. while (n) {
  965. if (n & 1)
  966. r = mul_poly(r, a, poly);
  967. a = mul_poly(a, a, poly);
  968. n >>= 1;
  969. }
  970. return r;
  971. }
  972. /* compute log2(max(abs(tab[]))) */
  973. static int log2_tab(int16_t *tab, int n)
  974. {
  975. int i, v;
  976. v = 0;
  977. for(i=0;i<n;i++) {
  978. v |= abs(tab[i]);
  979. }
  980. return av_log2(v);
  981. }
  982. static void lshift_tab(int16_t *tab, int n, int lshift)
  983. {
  984. int i;
  985. if (lshift > 0) {
  986. for(i=0;i<n;i++) {
  987. tab[i] <<= lshift;
  988. }
  989. } else if (lshift < 0) {
  990. lshift = -lshift;
  991. for(i=0;i<n;i++) {
  992. tab[i] >>= lshift;
  993. }
  994. }
  995. }
  996. /* fill the end of the frame and compute the two crcs */
  997. static int output_frame_end(AC3EncodeContext *s)
  998. {
  999. int frame_size, frame_size_58, n, crc1, crc2, crc_inv;
  1000. uint8_t *frame;
  1001. frame_size = s->frame_size; /* frame size in words */
  1002. /* align to 8 bits */
  1003. flush_put_bits(&s->pb);
  1004. /* add zero bytes to reach the frame size */
  1005. frame = s->pb.buf;
  1006. n = 2 * s->frame_size - (put_bits_ptr(&s->pb) - frame) - 2;
  1007. assert(n >= 0);
  1008. if(n>0)
  1009. memset(put_bits_ptr(&s->pb), 0, n);
  1010. /* Now we must compute both crcs : this is not so easy for crc1
  1011. because it is at the beginning of the data... */
  1012. frame_size_58 = (frame_size >> 1) + (frame_size >> 3);
  1013. crc1 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1014. frame + 4, 2 * frame_size_58 - 4));
  1015. /* XXX: could precompute crc_inv */
  1016. crc_inv = pow_poly((CRC16_POLY >> 1), (16 * frame_size_58) - 16, CRC16_POLY);
  1017. crc1 = mul_poly(crc_inv, crc1, CRC16_POLY);
  1018. AV_WB16(frame+2,crc1);
  1019. crc2 = bswap_16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0,
  1020. frame + 2 * frame_size_58,
  1021. (frame_size - frame_size_58) * 2 - 2));
  1022. AV_WB16(frame+2*frame_size-2,crc2);
  1023. // printf("n=%d frame_size=%d\n", n, frame_size);
  1024. return frame_size * 2;
  1025. }
  1026. static int AC3_encode_frame(AVCodecContext *avctx,
  1027. unsigned char *frame, int buf_size, void *data)
  1028. {
  1029. AC3EncodeContext *s = avctx->priv_data;
  1030. int16_t *samples = data;
  1031. int i, j, k, v, ch;
  1032. int16_t input_samples[N];
  1033. int32_t mdct_coef[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1034. uint8_t exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1035. uint8_t exp_strategy[NB_BLOCKS][AC3_MAX_CHANNELS];
  1036. uint8_t encoded_exp[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1037. uint8_t bap[NB_BLOCKS][AC3_MAX_CHANNELS][N/2];
  1038. int8_t exp_samples[NB_BLOCKS][AC3_MAX_CHANNELS];
  1039. int frame_bits;
  1040. frame_bits = 0;
  1041. for(ch=0;ch<s->nb_all_channels;ch++) {
  1042. int ich = s->channel_map[ch];
  1043. /* fixed mdct to the six sub blocks & exponent computation */
  1044. for(i=0;i<NB_BLOCKS;i++) {
  1045. int16_t *sptr;
  1046. int sinc;
  1047. /* compute input samples */
  1048. memcpy(input_samples, s->last_samples[ich], N/2 * sizeof(int16_t));
  1049. sinc = s->nb_all_channels;
  1050. sptr = samples + (sinc * (N/2) * i) + ich;
  1051. for(j=0;j<N/2;j++) {
  1052. v = *sptr;
  1053. input_samples[j + N/2] = v;
  1054. s->last_samples[ich][j] = v;
  1055. sptr += sinc;
  1056. }
  1057. /* apply the MDCT window */
  1058. for(j=0;j<N/2;j++) {
  1059. input_samples[j] = MUL16(input_samples[j],
  1060. ff_ac3_window[j]) >> 15;
  1061. input_samples[N-j-1] = MUL16(input_samples[N-j-1],
  1062. ff_ac3_window[j]) >> 15;
  1063. }
  1064. /* Normalize the samples to use the maximum available
  1065. precision */
  1066. v = 14 - log2_tab(input_samples, N);
  1067. if (v < 0)
  1068. v = 0;
  1069. exp_samples[i][ch] = v - 9;
  1070. lshift_tab(input_samples, N, v);
  1071. /* do the MDCT */
  1072. mdct512(mdct_coef[i][ch], input_samples);
  1073. /* compute "exponents". We take into account the
  1074. normalization there */
  1075. for(j=0;j<N/2;j++) {
  1076. int e;
  1077. v = abs(mdct_coef[i][ch][j]);
  1078. if (v == 0)
  1079. e = 24;
  1080. else {
  1081. e = 23 - av_log2(v) + exp_samples[i][ch];
  1082. if (e >= 24) {
  1083. e = 24;
  1084. mdct_coef[i][ch][j] = 0;
  1085. }
  1086. }
  1087. exp[i][ch][j] = e;
  1088. }
  1089. }
  1090. compute_exp_strategy(exp_strategy, exp, ch, ch == s->lfe_channel);
  1091. /* compute the exponents as the decoder will see them. The
  1092. EXP_REUSE case must be handled carefully : we select the
  1093. min of the exponents */
  1094. i = 0;
  1095. while (i < NB_BLOCKS) {
  1096. j = i + 1;
  1097. while (j < NB_BLOCKS && exp_strategy[j][ch] == EXP_REUSE) {
  1098. exponent_min(exp[i][ch], exp[j][ch], s->nb_coefs[ch]);
  1099. j++;
  1100. }
  1101. frame_bits += encode_exp(encoded_exp[i][ch],
  1102. exp[i][ch], s->nb_coefs[ch],
  1103. exp_strategy[i][ch]);
  1104. /* copy encoded exponents for reuse case */
  1105. for(k=i+1;k<j;k++) {
  1106. memcpy(encoded_exp[k][ch], encoded_exp[i][ch],
  1107. s->nb_coefs[ch] * sizeof(uint8_t));
  1108. }
  1109. i = j;
  1110. }
  1111. }
  1112. /* adjust for fractional frame sizes */
  1113. while(s->bits_written >= s->bit_rate && s->samples_written >= s->sample_rate) {
  1114. s->bits_written -= s->bit_rate;
  1115. s->samples_written -= s->sample_rate;
  1116. }
  1117. s->frame_size = s->frame_size_min + (s->bits_written * s->sample_rate < s->samples_written * s->bit_rate);
  1118. s->bits_written += s->frame_size * 16;
  1119. s->samples_written += AC3_FRAME_SIZE;
  1120. compute_bit_allocation(s, bap, encoded_exp, exp_strategy, frame_bits);
  1121. /* everything is known... let's output the frame */
  1122. output_frame_header(s, frame);
  1123. for(i=0;i<NB_BLOCKS;i++) {
  1124. output_audio_block(s, exp_strategy[i], encoded_exp[i],
  1125. bap[i], mdct_coef[i], exp_samples[i], i);
  1126. }
  1127. return output_frame_end(s);
  1128. }
  1129. static av_cold int AC3_encode_close(AVCodecContext *avctx)
  1130. {
  1131. av_freep(&avctx->coded_frame);
  1132. return 0;
  1133. }
  1134. #if 0
  1135. /*************************************************************************/
  1136. /* TEST */
  1137. #undef random
  1138. #define FN (N/4)
  1139. void fft_test(void)
  1140. {
  1141. IComplex in[FN], in1[FN];
  1142. int k, n, i;
  1143. float sum_re, sum_im, a;
  1144. /* FFT test */
  1145. for(i=0;i<FN;i++) {
  1146. in[i].re = random() % 65535 - 32767;
  1147. in[i].im = random() % 65535 - 32767;
  1148. in1[i] = in[i];
  1149. }
  1150. fft(in, 7);
  1151. /* do it by hand */
  1152. for(k=0;k<FN;k++) {
  1153. sum_re = 0;
  1154. sum_im = 0;
  1155. for(n=0;n<FN;n++) {
  1156. a = -2 * M_PI * (n * k) / FN;
  1157. sum_re += in1[n].re * cos(a) - in1[n].im * sin(a);
  1158. sum_im += in1[n].re * sin(a) + in1[n].im * cos(a);
  1159. }
  1160. printf("%3d: %6d,%6d %6.0f,%6.0f\n",
  1161. k, in[k].re, in[k].im, sum_re / FN, sum_im / FN);
  1162. }
  1163. }
  1164. void mdct_test(void)
  1165. {
  1166. int16_t input[N];
  1167. int32_t output[N/2];
  1168. float input1[N];
  1169. float output1[N/2];
  1170. float s, a, err, e, emax;
  1171. int i, k, n;
  1172. for(i=0;i<N;i++) {
  1173. input[i] = (random() % 65535 - 32767) * 9 / 10;
  1174. input1[i] = input[i];
  1175. }
  1176. mdct512(output, input);
  1177. /* do it by hand */
  1178. for(k=0;k<N/2;k++) {
  1179. s = 0;
  1180. for(n=0;n<N;n++) {
  1181. a = (2*M_PI*(2*n+1+N/2)*(2*k+1) / (4 * N));
  1182. s += input1[n] * cos(a);
  1183. }
  1184. output1[k] = -2 * s / N;
  1185. }
  1186. err = 0;
  1187. emax = 0;
  1188. for(i=0;i<N/2;i++) {
  1189. printf("%3d: %7d %7.0f\n", i, output[i], output1[i]);
  1190. e = output[i] - output1[i];
  1191. if (e > emax)
  1192. emax = e;
  1193. err += e * e;
  1194. }
  1195. printf("err2=%f emax=%f\n", err / (N/2), emax);
  1196. }
  1197. void test_ac3(void)
  1198. {
  1199. AC3EncodeContext ctx;
  1200. unsigned char frame[AC3_MAX_CODED_FRAME_SIZE];
  1201. short samples[AC3_FRAME_SIZE];
  1202. int ret, i;
  1203. AC3_encode_init(&ctx, 44100, 64000, 1);
  1204. fft_test();
  1205. mdct_test();
  1206. for(i=0;i<AC3_FRAME_SIZE;i++)
  1207. samples[i] = (int)(sin(2*M_PI*i*1000.0/44100) * 10000);
  1208. ret = AC3_encode_frame(&ctx, frame, samples);
  1209. printf("ret=%d\n", ret);
  1210. }
  1211. #endif
  1212. AVCodec ac3_encoder = {
  1213. "ac3",
  1214. CODEC_TYPE_AUDIO,
  1215. CODEC_ID_AC3,
  1216. sizeof(AC3EncodeContext),
  1217. AC3_encode_init,
  1218. AC3_encode_frame,
  1219. AC3_encode_close,
  1220. NULL,
  1221. .sample_fmts = (enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  1222. .long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"),
  1223. };