You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

475 lines
16KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/attributes.h"
  22. #include "avcodec.h"
  23. #include "internal.h"
  24. #include "sinewin.h"
  25. #include "wma.h"
  26. #include "wma_common.h"
  27. #include "wma_freqs.h"
  28. #include "wmadata.h"
  29. /* XXX: use same run/length optimization as mpeg decoders */
  30. // FIXME maybe split decode / encode or pass flag
  31. static av_cold int init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  32. float **plevel_table, uint16_t **pint_table,
  33. const CoefVLCTable *vlc_table)
  34. {
  35. int n = vlc_table->n;
  36. const uint8_t *table_bits = vlc_table->huffbits;
  37. const uint32_t *table_codes = vlc_table->huffcodes;
  38. const uint16_t *levels_table = vlc_table->levels;
  39. uint16_t *run_table, *level_table, *int_table;
  40. float *flevel_table;
  41. int i, l, j, k, level;
  42. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  43. run_table = av_malloc(n * sizeof(uint16_t));
  44. level_table = av_malloc(n * sizeof(uint16_t));
  45. flevel_table = av_malloc(n * sizeof(*flevel_table));
  46. int_table = av_malloc(n * sizeof(uint16_t));
  47. if (!run_table || !level_table || !flevel_table || !int_table) {
  48. av_freep(&run_table);
  49. av_freep(&level_table);
  50. av_freep(&flevel_table);
  51. av_freep(&int_table);
  52. return AVERROR(ENOMEM);
  53. }
  54. i = 2;
  55. level = 1;
  56. k = 0;
  57. while (i < n) {
  58. int_table[k] = i;
  59. l = levels_table[k++];
  60. for (j = 0; j < l; j++) {
  61. run_table[i] = j;
  62. level_table[i] = level;
  63. flevel_table[i] = level;
  64. i++;
  65. }
  66. level++;
  67. }
  68. *prun_table = run_table;
  69. *plevel_table = flevel_table;
  70. *pint_table = int_table;
  71. av_free(level_table);
  72. return 0;
  73. }
  74. av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
  75. {
  76. WMACodecContext *s = avctx->priv_data;
  77. int i, ret;
  78. float bps1, high_freq;
  79. volatile float bps;
  80. int sample_rate1;
  81. int coef_vlc_table;
  82. if (avctx->sample_rate <= 0 || avctx->sample_rate > 50000 ||
  83. avctx->channels <= 0 || avctx->channels > 2 ||
  84. avctx->bit_rate <= 0)
  85. return -1;
  86. avpriv_float_dsp_init(&s->fdsp, avctx->flags & AV_CODEC_FLAG_BITEXACT);
  87. if (avctx->codec->id == AV_CODEC_ID_WMAV1)
  88. s->version = 1;
  89. else
  90. s->version = 2;
  91. /* compute MDCT block size */
  92. s->frame_len_bits = ff_wma_get_frame_len_bits(avctx->sample_rate,
  93. s->version, 0);
  94. s->next_block_len_bits = s->frame_len_bits;
  95. s->prev_block_len_bits = s->frame_len_bits;
  96. s->block_len_bits = s->frame_len_bits;
  97. s->frame_len = 1 << s->frame_len_bits;
  98. if (s->use_variable_block_len) {
  99. int nb_max, nb;
  100. nb = ((flags2 >> 3) & 3) + 1;
  101. if ((avctx->bit_rate / avctx->channels) >= 32000)
  102. nb += 2;
  103. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  104. if (nb > nb_max)
  105. nb = nb_max;
  106. s->nb_block_sizes = nb + 1;
  107. } else
  108. s->nb_block_sizes = 1;
  109. /* init rate dependent parameters */
  110. s->use_noise_coding = 1;
  111. high_freq = avctx->sample_rate * 0.5;
  112. /* if version 2, then the rates are normalized */
  113. sample_rate1 = avctx->sample_rate;
  114. if (s->version == 2) {
  115. if (sample_rate1 >= 44100)
  116. sample_rate1 = 44100;
  117. else if (sample_rate1 >= 22050)
  118. sample_rate1 = 22050;
  119. else if (sample_rate1 >= 16000)
  120. sample_rate1 = 16000;
  121. else if (sample_rate1 >= 11025)
  122. sample_rate1 = 11025;
  123. else if (sample_rate1 >= 8000)
  124. sample_rate1 = 8000;
  125. }
  126. bps = (float) avctx->bit_rate /
  127. (float) (avctx->channels * avctx->sample_rate);
  128. s->byte_offset_bits = av_log2((int) (bps * s->frame_len / 8.0 + 0.5)) + 2;
  129. /* compute high frequency value and choose if noise coding should
  130. * be activated */
  131. bps1 = bps;
  132. if (avctx->channels == 2)
  133. bps1 = bps * 1.6;
  134. if (sample_rate1 == 44100) {
  135. if (bps1 >= 0.61)
  136. s->use_noise_coding = 0;
  137. else
  138. high_freq = high_freq * 0.4;
  139. } else if (sample_rate1 == 22050) {
  140. if (bps1 >= 1.16)
  141. s->use_noise_coding = 0;
  142. else if (bps1 >= 0.72)
  143. high_freq = high_freq * 0.7;
  144. else
  145. high_freq = high_freq * 0.6;
  146. } else if (sample_rate1 == 16000) {
  147. if (bps > 0.5)
  148. high_freq = high_freq * 0.5;
  149. else
  150. high_freq = high_freq * 0.3;
  151. } else if (sample_rate1 == 11025)
  152. high_freq = high_freq * 0.7;
  153. else if (sample_rate1 == 8000) {
  154. if (bps <= 0.625)
  155. high_freq = high_freq * 0.5;
  156. else if (bps > 0.75)
  157. s->use_noise_coding = 0;
  158. else
  159. high_freq = high_freq * 0.65;
  160. } else {
  161. if (bps >= 0.8)
  162. high_freq = high_freq * 0.75;
  163. else if (bps >= 0.6)
  164. high_freq = high_freq * 0.6;
  165. else
  166. high_freq = high_freq * 0.5;
  167. }
  168. ff_dlog(s->avctx, "flags2=0x%x\n", flags2);
  169. ff_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  170. s->version, avctx->channels, avctx->sample_rate, avctx->bit_rate,
  171. avctx->block_align);
  172. ff_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  173. bps, bps1, high_freq, s->byte_offset_bits);
  174. ff_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  175. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  176. /* compute the scale factor band sizes for each MDCT block size */
  177. {
  178. int a, b, pos, lpos, k, block_len, i, j, n;
  179. const uint8_t *table;
  180. if (s->version == 1)
  181. s->coefs_start = 3;
  182. else
  183. s->coefs_start = 0;
  184. for (k = 0; k < s->nb_block_sizes; k++) {
  185. block_len = s->frame_len >> k;
  186. if (s->version == 1) {
  187. lpos = 0;
  188. for (i = 0; i < 25; i++) {
  189. a = ff_wma_critical_freqs[i];
  190. b = avctx->sample_rate;
  191. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  192. if (pos > block_len)
  193. pos = block_len;
  194. s->exponent_bands[0][i] = pos - lpos;
  195. if (pos >= block_len) {
  196. i++;
  197. break;
  198. }
  199. lpos = pos;
  200. }
  201. s->exponent_sizes[0] = i;
  202. } else {
  203. /* hardcoded tables */
  204. table = NULL;
  205. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  206. if (a < 3) {
  207. if (avctx->sample_rate >= 44100)
  208. table = exponent_band_44100[a];
  209. else if (avctx->sample_rate >= 32000)
  210. table = exponent_band_32000[a];
  211. else if (avctx->sample_rate >= 22050)
  212. table = exponent_band_22050[a];
  213. }
  214. if (table) {
  215. n = *table++;
  216. for (i = 0; i < n; i++)
  217. s->exponent_bands[k][i] = table[i];
  218. s->exponent_sizes[k] = n;
  219. } else {
  220. j = 0;
  221. lpos = 0;
  222. for (i = 0; i < 25; i++) {
  223. a = ff_wma_critical_freqs[i];
  224. b = avctx->sample_rate;
  225. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  226. pos <<= 2;
  227. if (pos > block_len)
  228. pos = block_len;
  229. if (pos > lpos)
  230. s->exponent_bands[k][j++] = pos - lpos;
  231. if (pos >= block_len)
  232. break;
  233. lpos = pos;
  234. }
  235. s->exponent_sizes[k] = j;
  236. }
  237. }
  238. /* max number of coefs */
  239. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  240. /* high freq computation */
  241. s->high_band_start[k] = (int) ((block_len * 2 * high_freq) /
  242. avctx->sample_rate + 0.5);
  243. n = s->exponent_sizes[k];
  244. j = 0;
  245. pos = 0;
  246. for (i = 0; i < n; i++) {
  247. int start, end;
  248. start = pos;
  249. pos += s->exponent_bands[k][i];
  250. end = pos;
  251. if (start < s->high_band_start[k])
  252. start = s->high_band_start[k];
  253. if (end > s->coefs_end[k])
  254. end = s->coefs_end[k];
  255. if (end > start)
  256. s->exponent_high_bands[k][j++] = end - start;
  257. }
  258. s->exponent_high_sizes[k] = j;
  259. }
  260. }
  261. #ifdef TRACE
  262. {
  263. int i, j;
  264. for (i = 0; i < s->nb_block_sizes; i++) {
  265. ff_tlog(s->avctx, "%5d: n=%2d:",
  266. s->frame_len >> i,
  267. s->exponent_sizes[i]);
  268. for (j = 0; j < s->exponent_sizes[i]; j++)
  269. ff_tlog(s->avctx, " %d", s->exponent_bands[i][j]);
  270. ff_tlog(s->avctx, "\n");
  271. }
  272. }
  273. #endif /* TRACE */
  274. /* init MDCT windows : simple sine window */
  275. for (i = 0; i < s->nb_block_sizes; i++) {
  276. ff_init_ff_sine_windows(s->frame_len_bits - i);
  277. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  278. }
  279. s->reset_block_lengths = 1;
  280. if (s->use_noise_coding) {
  281. /* init the noise generator */
  282. if (s->use_exp_vlc)
  283. s->noise_mult = 0.02;
  284. else
  285. s->noise_mult = 0.04;
  286. #ifdef TRACE
  287. for (i = 0; i < NOISE_TAB_SIZE; i++)
  288. s->noise_table[i] = 1.0 * s->noise_mult;
  289. #else
  290. {
  291. unsigned int seed;
  292. float norm;
  293. seed = 1;
  294. norm = (1.0 / (float) (1LL << 31)) * sqrt(3) * s->noise_mult;
  295. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  296. seed = seed * 314159 + 1;
  297. s->noise_table[i] = (float) ((int) seed) * norm;
  298. }
  299. }
  300. #endif /* TRACE */
  301. }
  302. /* choose the VLC tables for the coefficients */
  303. coef_vlc_table = 2;
  304. if (avctx->sample_rate >= 32000) {
  305. if (bps1 < 0.72)
  306. coef_vlc_table = 0;
  307. else if (bps1 < 1.16)
  308. coef_vlc_table = 1;
  309. }
  310. s->coef_vlcs[0] = &coef_vlcs[coef_vlc_table * 2];
  311. s->coef_vlcs[1] = &coef_vlcs[coef_vlc_table * 2 + 1];
  312. ret = init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0],
  313. &s->int_table[0], s->coef_vlcs[0]);
  314. if (ret < 0)
  315. return ret;
  316. return init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1],
  317. &s->int_table[1], s->coef_vlcs[1]);
  318. }
  319. int ff_wma_total_gain_to_bits(int total_gain)
  320. {
  321. if (total_gain < 15)
  322. return 13;
  323. else if (total_gain < 32)
  324. return 12;
  325. else if (total_gain < 40)
  326. return 11;
  327. else if (total_gain < 45)
  328. return 10;
  329. else
  330. return 9;
  331. }
  332. int ff_wma_end(AVCodecContext *avctx)
  333. {
  334. WMACodecContext *s = avctx->priv_data;
  335. int i;
  336. for (i = 0; i < s->nb_block_sizes; i++)
  337. ff_mdct_end(&s->mdct_ctx[i]);
  338. if (s->use_exp_vlc)
  339. ff_free_vlc(&s->exp_vlc);
  340. if (s->use_noise_coding)
  341. ff_free_vlc(&s->hgain_vlc);
  342. for (i = 0; i < 2; i++) {
  343. ff_free_vlc(&s->coef_vlc[i]);
  344. av_free(s->run_table[i]);
  345. av_free(s->level_table[i]);
  346. av_free(s->int_table[i]);
  347. }
  348. return 0;
  349. }
  350. /**
  351. * Decode an uncompressed coefficient.
  352. * @param gb GetBitContext
  353. * @return the decoded coefficient
  354. */
  355. unsigned int ff_wma_get_large_val(GetBitContext *gb)
  356. {
  357. /** consumes up to 34 bits */
  358. int n_bits = 8;
  359. /** decode length */
  360. if (get_bits1(gb)) {
  361. n_bits += 8;
  362. if (get_bits1(gb)) {
  363. n_bits += 8;
  364. if (get_bits1(gb))
  365. n_bits += 7;
  366. }
  367. }
  368. return get_bits_long(gb, n_bits);
  369. }
  370. /**
  371. * Decode run level compressed coefficients.
  372. * @param avctx codec context
  373. * @param gb bitstream reader context
  374. * @param vlc vlc table for get_vlc2
  375. * @param level_table level codes
  376. * @param run_table run codes
  377. * @param version 0 for wma1,2 1 for wmapro
  378. * @param ptr output buffer
  379. * @param offset offset in the output buffer
  380. * @param num_coefs number of input coefficients
  381. * @param block_len input buffer length (2^n)
  382. * @param frame_len_bits number of bits for escaped run codes
  383. * @param coef_nb_bits number of bits for escaped level codes
  384. * @return 0 on success, -1 otherwise
  385. */
  386. int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb,
  387. VLC *vlc, const float *level_table,
  388. const uint16_t *run_table, int version,
  389. WMACoef *ptr, int offset, int num_coefs,
  390. int block_len, int frame_len_bits,
  391. int coef_nb_bits)
  392. {
  393. int code, level, sign;
  394. const uint32_t *ilvl = (const uint32_t *) level_table;
  395. uint32_t *iptr = (uint32_t *) ptr;
  396. const unsigned int coef_mask = block_len - 1;
  397. for (; offset < num_coefs; offset++) {
  398. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  399. if (code > 1) {
  400. /** normal code */
  401. offset += run_table[code];
  402. sign = get_bits1(gb) - 1;
  403. iptr[offset & coef_mask] = ilvl[code] ^ sign << 31;
  404. } else if (code == 1) {
  405. /** EOB */
  406. break;
  407. } else {
  408. /** escape */
  409. if (!version) {
  410. level = get_bits(gb, coef_nb_bits);
  411. /** NOTE: this is rather suboptimal. reading
  412. * block_len_bits would be better */
  413. offset += get_bits(gb, frame_len_bits);
  414. } else {
  415. level = ff_wma_get_large_val(gb);
  416. /** escape decode */
  417. if (get_bits1(gb)) {
  418. if (get_bits1(gb)) {
  419. if (get_bits1(gb)) {
  420. av_log(avctx, AV_LOG_ERROR,
  421. "broken escape sequence\n");
  422. return -1;
  423. } else
  424. offset += get_bits(gb, frame_len_bits) + 4;
  425. } else
  426. offset += get_bits(gb, 2) + 1;
  427. }
  428. }
  429. sign = get_bits1(gb) - 1;
  430. ptr[offset & coef_mask] = (level ^ sign) - sign;
  431. }
  432. }
  433. /** NOTE: EOB can be omitted */
  434. if (offset > num_coefs) {
  435. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  436. return -1;
  437. }
  438. return 0;
  439. }