You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

718 lines
24KB

  1. /*
  2. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  5. * the algorithm used
  6. *
  7. * This file is part of Libav.
  8. *
  9. * Libav is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * Libav is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with Libav; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * huffyuv encoder
  26. */
  27. #include "avcodec.h"
  28. #include "huffyuv.h"
  29. #include "huffman.h"
  30. #include "put_bits.h"
  31. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  32. uint8_t *src, int w, int left)
  33. {
  34. int i;
  35. if (w < 32) {
  36. for (i = 0; i < w; i++) {
  37. const int temp = src[i];
  38. dst[i] = temp - left;
  39. left = temp;
  40. }
  41. return left;
  42. } else {
  43. for (i = 0; i < 16; i++) {
  44. const int temp = src[i];
  45. dst[i] = temp - left;
  46. left = temp;
  47. }
  48. s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  49. return src[w-1];
  50. }
  51. }
  52. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  53. uint8_t *src, int w,
  54. int *red, int *green, int *blue,
  55. int *alpha)
  56. {
  57. int i;
  58. int r, g, b, a;
  59. r = *red;
  60. g = *green;
  61. b = *blue;
  62. a = *alpha;
  63. for (i = 0; i < FFMIN(w, 4); i++) {
  64. const int rt = src[i * 4 + R];
  65. const int gt = src[i * 4 + G];
  66. const int bt = src[i * 4 + B];
  67. const int at = src[i * 4 + A];
  68. dst[i * 4 + R] = rt - r;
  69. dst[i * 4 + G] = gt - g;
  70. dst[i * 4 + B] = bt - b;
  71. dst[i * 4 + A] = at - a;
  72. r = rt;
  73. g = gt;
  74. b = bt;
  75. a = at;
  76. }
  77. s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  78. *red = src[(w - 1) * 4 + R];
  79. *green = src[(w - 1) * 4 + G];
  80. *blue = src[(w - 1) * 4 + B];
  81. *alpha = src[(w - 1) * 4 + A];
  82. }
  83. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst,
  84. uint8_t *src, int w,
  85. int *red, int *green, int *blue)
  86. {
  87. int i;
  88. int r, g, b;
  89. r = *red;
  90. g = *green;
  91. b = *blue;
  92. for (i = 0; i < FFMIN(w, 16); i++) {
  93. const int rt = src[i * 3 + 0];
  94. const int gt = src[i * 3 + 1];
  95. const int bt = src[i * 3 + 2];
  96. dst[i * 3 + 0] = rt - r;
  97. dst[i * 3 + 1] = gt - g;
  98. dst[i * 3 + 2] = bt - b;
  99. r = rt;
  100. g = gt;
  101. b = bt;
  102. }
  103. s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w * 3 - 48);
  104. *red = src[(w - 1) * 3 + 0];
  105. *green = src[(w - 1) * 3 + 1];
  106. *blue = src[(w - 1) * 3 + 2];
  107. }
  108. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  109. {
  110. int i;
  111. int index = 0;
  112. for (i = 0; i < 256;) {
  113. int val = len[i];
  114. int repeat = 0;
  115. for (; i < 256 && len[i] == val && repeat < 255; i++)
  116. repeat++;
  117. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  118. if ( repeat > 7) {
  119. buf[index++] = val;
  120. buf[index++] = repeat;
  121. } else {
  122. buf[index++] = val | (repeat << 5);
  123. }
  124. }
  125. return index;
  126. }
  127. static av_cold int encode_init(AVCodecContext *avctx)
  128. {
  129. HYuvContext *s = avctx->priv_data;
  130. int i, j;
  131. ff_huffyuv_common_init(avctx);
  132. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  133. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  134. s->version = 2;
  135. avctx->coded_frame = av_frame_alloc();
  136. if (!avctx->coded_frame)
  137. return AVERROR(ENOMEM);
  138. avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
  139. avctx->coded_frame->key_frame = 1;
  140. switch (avctx->pix_fmt) {
  141. case AV_PIX_FMT_YUV420P:
  142. case AV_PIX_FMT_YUV422P:
  143. if (s->width & 1) {
  144. av_log(avctx, AV_LOG_ERROR, "Width must be even for this colorspace.\n");
  145. return -1;
  146. }
  147. s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
  148. break;
  149. case AV_PIX_FMT_RGB32:
  150. s->bitstream_bpp = 32;
  151. break;
  152. case AV_PIX_FMT_RGB24:
  153. s->bitstream_bpp = 24;
  154. break;
  155. default:
  156. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  157. return -1;
  158. }
  159. avctx->bits_per_coded_sample = s->bitstream_bpp;
  160. s->decorrelate = s->bitstream_bpp >= 24;
  161. s->predictor = avctx->prediction_method;
  162. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  163. if (avctx->context_model == 1) {
  164. s->context = avctx->context_model;
  165. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  166. av_log(avctx, AV_LOG_ERROR,
  167. "context=1 is not compatible with "
  168. "2 pass huffyuv encoding\n");
  169. return -1;
  170. }
  171. }else s->context= 0;
  172. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  173. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  174. av_log(avctx, AV_LOG_ERROR,
  175. "Error: YV12 is not supported by huffyuv; use "
  176. "vcodec=ffvhuff or format=422p\n");
  177. return -1;
  178. }
  179. if (avctx->context_model) {
  180. av_log(avctx, AV_LOG_ERROR,
  181. "Error: per-frame huffman tables are not supported "
  182. "by huffyuv; use vcodec=ffvhuff\n");
  183. return -1;
  184. }
  185. if (s->interlaced != ( s->height > 288 ))
  186. av_log(avctx, AV_LOG_INFO,
  187. "using huffyuv 2.2.0 or newer interlacing flag\n");
  188. }
  189. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  190. av_log(avctx, AV_LOG_ERROR,
  191. "Error: RGB is incompatible with median predictor\n");
  192. return -1;
  193. }
  194. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  195. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  196. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  197. if (s->context)
  198. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  199. ((uint8_t*)avctx->extradata)[3] = 0;
  200. s->avctx->extradata_size = 4;
  201. if (avctx->stats_in) {
  202. char *p = avctx->stats_in;
  203. for (i = 0; i < 3; i++)
  204. for (j = 0; j < 256; j++)
  205. s->stats[i][j] = 1;
  206. for (;;) {
  207. for (i = 0; i < 3; i++) {
  208. char *next;
  209. for (j = 0; j < 256; j++) {
  210. s->stats[i][j] += strtol(p, &next, 0);
  211. if (next == p) return -1;
  212. p = next;
  213. }
  214. }
  215. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  216. }
  217. } else {
  218. for (i = 0; i < 3; i++)
  219. for (j = 0; j < 256; j++) {
  220. int d = FFMIN(j, 256 - j);
  221. s->stats[i][j] = 100000000 / (d + 1);
  222. }
  223. }
  224. for (i = 0; i < 3; i++) {
  225. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  226. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0) {
  227. return -1;
  228. }
  229. s->avctx->extradata_size +=
  230. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  231. }
  232. if (s->context) {
  233. for (i = 0; i < 3; i++) {
  234. int pels = s->width * s->height / (i ? 40 : 10);
  235. for (j = 0; j < 256; j++) {
  236. int d = FFMIN(j, 256 - j);
  237. s->stats[i][j] = pels/(d + 1);
  238. }
  239. }
  240. } else {
  241. for (i = 0; i < 3; i++)
  242. for (j = 0; j < 256; j++)
  243. s->stats[i][j]= 0;
  244. }
  245. ff_huffyuv_alloc_temp(s);
  246. s->picture_number=0;
  247. return 0;
  248. }
  249. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  250. {
  251. int i;
  252. const uint8_t *y = s->temp[0] + offset;
  253. const uint8_t *u = s->temp[1] + offset / 2;
  254. const uint8_t *v = s->temp[2] + offset / 2;
  255. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  256. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  257. return -1;
  258. }
  259. #define LOAD4\
  260. int y0 = y[2 * i];\
  261. int y1 = y[2 * i + 1];\
  262. int u0 = u[i];\
  263. int v0 = v[i];
  264. count /= 2;
  265. if (s->flags & CODEC_FLAG_PASS1) {
  266. for(i = 0; i < count; i++) {
  267. LOAD4;
  268. s->stats[0][y0]++;
  269. s->stats[1][u0]++;
  270. s->stats[0][y1]++;
  271. s->stats[2][v0]++;
  272. }
  273. }
  274. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  275. return 0;
  276. if (s->context) {
  277. for (i = 0; i < count; i++) {
  278. LOAD4;
  279. s->stats[0][y0]++;
  280. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  281. s->stats[1][u0]++;
  282. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  283. s->stats[0][y1]++;
  284. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  285. s->stats[2][v0]++;
  286. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  287. }
  288. } else {
  289. for(i = 0; i < count; i++) {
  290. LOAD4;
  291. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  292. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  293. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  294. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  295. }
  296. }
  297. return 0;
  298. }
  299. static int encode_gray_bitstream(HYuvContext *s, int count)
  300. {
  301. int i;
  302. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  303. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  304. return -1;
  305. }
  306. #define LOAD2\
  307. int y0 = s->temp[0][2 * i];\
  308. int y1 = s->temp[0][2 * i + 1];
  309. #define STAT2\
  310. s->stats[0][y0]++;\
  311. s->stats[0][y1]++;
  312. #define WRITE2\
  313. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  314. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  315. count /= 2;
  316. if (s->flags & CODEC_FLAG_PASS1) {
  317. for (i = 0; i < count; i++) {
  318. LOAD2;
  319. STAT2;
  320. }
  321. }
  322. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  323. return 0;
  324. if (s->context) {
  325. for (i = 0; i < count; i++) {
  326. LOAD2;
  327. STAT2;
  328. WRITE2;
  329. }
  330. } else {
  331. for (i = 0; i < count; i++) {
  332. LOAD2;
  333. WRITE2;
  334. }
  335. }
  336. return 0;
  337. }
  338. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
  339. {
  340. int i;
  341. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) <
  342. 4 * planes * count) {
  343. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  344. return -1;
  345. }
  346. #define LOAD_GBRA \
  347. int g = s->temp[0][planes == 3 ? 3 * i + 1 : 4 * i + G]; \
  348. int b = s->temp[0][planes == 3 ? 3 * i + 2 : 4 * i + B] - g & 0xFF; \
  349. int r = s->temp[0][planes == 3 ? 3 * i + 0 : 4 * i + R] - g & 0xFF; \
  350. int a = s->temp[0][planes * i + A];
  351. #define STAT_BGRA \
  352. s->stats[0][b]++; \
  353. s->stats[1][g]++; \
  354. s->stats[2][r]++; \
  355. if (planes == 4) \
  356. s->stats[2][a]++;
  357. #define WRITE_GBRA \
  358. put_bits(&s->pb, s->len[1][g], s->bits[1][g]); \
  359. put_bits(&s->pb, s->len[0][b], s->bits[0][b]); \
  360. put_bits(&s->pb, s->len[2][r], s->bits[2][r]); \
  361. if (planes == 4) \
  362. put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  363. if ((s->flags & CODEC_FLAG_PASS1) &&
  364. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  365. for (i = 0; i < count; i++) {
  366. LOAD_GBRA;
  367. STAT_BGRA;
  368. }
  369. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  370. for (i = 0; i < count; i++) {
  371. LOAD_GBRA;
  372. STAT_BGRA;
  373. WRITE_GBRA;
  374. }
  375. } else {
  376. for (i = 0; i < count; i++) {
  377. LOAD_GBRA;
  378. WRITE_GBRA;
  379. }
  380. }
  381. return 0;
  382. }
  383. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  384. const AVFrame *pict, int *got_packet)
  385. {
  386. HYuvContext *s = avctx->priv_data;
  387. const int width = s->width;
  388. const int width2 = s->width>>1;
  389. const int height = s->height;
  390. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  391. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  392. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  393. const AVFrame * const p = pict;
  394. int i, j, size = 0, ret;
  395. if (!pkt->data &&
  396. (ret = av_new_packet(pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0) {
  397. av_log(avctx, AV_LOG_ERROR, "Error allocating output packet.\n");
  398. return ret;
  399. }
  400. if (s->context) {
  401. for (i = 0; i < 3; i++) {
  402. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  403. if (ff_huffyuv_generate_bits_table(s->bits[i], s->len[i]) < 0)
  404. return -1;
  405. size += store_table(s, s->len[i], &pkt->data[size]);
  406. }
  407. for (i = 0; i < 3; i++)
  408. for (j = 0; j < 256; j++)
  409. s->stats[i][j] >>= 1;
  410. }
  411. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  412. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  413. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  414. int lefty, leftu, leftv, y, cy;
  415. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  416. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  417. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  418. put_bits(&s->pb, 8, p->data[0][0]);
  419. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  420. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  421. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  422. encode_422_bitstream(s, 2, width-2);
  423. if (s->predictor==MEDIAN) {
  424. int lefttopy, lefttopu, lefttopv;
  425. cy = y = 1;
  426. if (s->interlaced) {
  427. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  428. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  429. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  430. encode_422_bitstream(s, 0, width);
  431. y++; cy++;
  432. }
  433. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  434. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  435. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  436. encode_422_bitstream(s, 0, 4);
  437. lefttopy = p->data[0][3];
  438. lefttopu = p->data[1][1];
  439. lefttopv = p->data[2][1];
  440. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
  441. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  442. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  443. encode_422_bitstream(s, 0, width - 4);
  444. y++; cy++;
  445. for (; y < height; y++,cy++) {
  446. uint8_t *ydst, *udst, *vdst;
  447. if (s->bitstream_bpp == 12) {
  448. while (2 * cy > y) {
  449. ydst = p->data[0] + p->linesize[0] * y;
  450. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  451. encode_gray_bitstream(s, width);
  452. y++;
  453. }
  454. if (y >= height) break;
  455. }
  456. ydst = p->data[0] + p->linesize[0] * y;
  457. udst = p->data[1] + p->linesize[1] * cy;
  458. vdst = p->data[2] + p->linesize[2] * cy;
  459. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  460. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  461. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  462. encode_422_bitstream(s, 0, width);
  463. }
  464. } else {
  465. for (cy = y = 1; y < height; y++, cy++) {
  466. uint8_t *ydst, *udst, *vdst;
  467. /* encode a luma only line & y++ */
  468. if (s->bitstream_bpp == 12) {
  469. ydst = p->data[0] + p->linesize[0] * y;
  470. if (s->predictor == PLANE && s->interlaced < y) {
  471. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  472. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  473. } else {
  474. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  475. }
  476. encode_gray_bitstream(s, width);
  477. y++;
  478. if (y >= height) break;
  479. }
  480. ydst = p->data[0] + p->linesize[0] * y;
  481. udst = p->data[1] + p->linesize[1] * cy;
  482. vdst = p->data[2] + p->linesize[2] * cy;
  483. if (s->predictor == PLANE && s->interlaced < cy) {
  484. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  485. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  486. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  487. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  488. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  489. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  490. } else {
  491. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  492. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  493. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  494. }
  495. encode_422_bitstream(s, 0, width);
  496. }
  497. }
  498. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  499. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  500. const int stride = -p->linesize[0];
  501. const int fake_stride = -fake_ystride;
  502. int y;
  503. int leftr, leftg, leftb, lefta;
  504. put_bits(&s->pb, 8, lefta = data[A]);
  505. put_bits(&s->pb, 8, leftr = data[R]);
  506. put_bits(&s->pb, 8, leftg = data[G]);
  507. put_bits(&s->pb, 8, leftb = data[B]);
  508. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1,
  509. &leftr, &leftg, &leftb, &lefta);
  510. encode_bgra_bitstream(s, width - 1, 4);
  511. for (y = 1; y < s->height; y++) {
  512. uint8_t *dst = data + y*stride;
  513. if (s->predictor == PLANE && s->interlaced < y) {
  514. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  515. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width,
  516. &leftr, &leftg, &leftb, &lefta);
  517. } else {
  518. sub_left_prediction_bgr32(s, s->temp[0], dst, width,
  519. &leftr, &leftg, &leftb, &lefta);
  520. }
  521. encode_bgra_bitstream(s, width, 4);
  522. }
  523. } else if (avctx->pix_fmt == AV_PIX_FMT_RGB24) {
  524. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  525. const int stride = -p->linesize[0];
  526. const int fake_stride = -fake_ystride;
  527. int y;
  528. int leftr, leftg, leftb;
  529. put_bits(&s->pb, 8, leftr = data[0]);
  530. put_bits(&s->pb, 8, leftg = data[1]);
  531. put_bits(&s->pb, 8, leftb = data[2]);
  532. put_bits(&s->pb, 8, 0);
  533. sub_left_prediction_rgb24(s, s->temp[0], data + 3, width - 1,
  534. &leftr, &leftg, &leftb);
  535. encode_bgra_bitstream(s, width-1, 3);
  536. for (y = 1; y < s->height; y++) {
  537. uint8_t *dst = data + y * stride;
  538. if (s->predictor == PLANE && s->interlaced < y) {
  539. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride,
  540. width * 3);
  541. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width,
  542. &leftr, &leftg, &leftb);
  543. } else {
  544. sub_left_prediction_rgb24(s, s->temp[0], dst, width,
  545. &leftr, &leftg, &leftb);
  546. }
  547. encode_bgra_bitstream(s, width, 3);
  548. }
  549. } else {
  550. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  551. }
  552. emms_c();
  553. size += (put_bits_count(&s->pb) + 31) / 8;
  554. put_bits(&s->pb, 16, 0);
  555. put_bits(&s->pb, 15, 0);
  556. size /= 4;
  557. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  558. int j;
  559. char *p = avctx->stats_out;
  560. char *end = p + 1024*30;
  561. for (i = 0; i < 3; i++) {
  562. for (j = 0; j < 256; j++) {
  563. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  564. p += strlen(p);
  565. s->stats[i][j]= 0;
  566. }
  567. snprintf(p, end-p, "\n");
  568. p++;
  569. }
  570. } else
  571. avctx->stats_out[0] = '\0';
  572. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  573. flush_put_bits(&s->pb);
  574. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  575. }
  576. s->picture_number++;
  577. pkt->size = size * 4;
  578. pkt->flags |= AV_PKT_FLAG_KEY;
  579. *got_packet = 1;
  580. return 0;
  581. }
  582. static av_cold int encode_end(AVCodecContext *avctx)
  583. {
  584. HYuvContext *s = avctx->priv_data;
  585. ff_huffyuv_common_end(s);
  586. av_freep(&avctx->extradata);
  587. av_freep(&avctx->stats_out);
  588. av_frame_free(&avctx->coded_frame);
  589. return 0;
  590. }
  591. #if CONFIG_HUFFYUV_ENCODER
  592. AVCodec ff_huffyuv_encoder = {
  593. .name = "huffyuv",
  594. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  595. .type = AVMEDIA_TYPE_VIDEO,
  596. .id = AV_CODEC_ID_HUFFYUV,
  597. .priv_data_size = sizeof(HYuvContext),
  598. .init = encode_init,
  599. .encode2 = encode_frame,
  600. .close = encode_end,
  601. .pix_fmts = (const enum AVPixelFormat[]){
  602. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  603. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  604. },
  605. };
  606. #endif
  607. #if CONFIG_FFVHUFF_ENCODER
  608. AVCodec ff_ffvhuff_encoder = {
  609. .name = "ffvhuff",
  610. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  611. .type = AVMEDIA_TYPE_VIDEO,
  612. .id = AV_CODEC_ID_FFVHUFF,
  613. .priv_data_size = sizeof(HYuvContext),
  614. .init = encode_init,
  615. .encode2 = encode_frame,
  616. .close = encode_end,
  617. .pix_fmts = (const enum AVPixelFormat[]){
  618. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24,
  619. AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  620. },
  621. };
  622. #endif