You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3571 lines
139KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "hwaccel.h"
  43. #include "profiles.h"
  44. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  45. /**
  46. * NOTE: Each function hls_foo correspond to the function foo in the
  47. * specification (HLS stands for High Level Syntax).
  48. */
  49. /**
  50. * Section 5.7
  51. */
  52. /* free everything allocated by pic_arrays_init() */
  53. static void pic_arrays_free(HEVCContext *s)
  54. {
  55. av_freep(&s->sao);
  56. av_freep(&s->deblock);
  57. av_freep(&s->skip_flag);
  58. av_freep(&s->tab_ct_depth);
  59. av_freep(&s->tab_ipm);
  60. av_freep(&s->cbf_luma);
  61. av_freep(&s->is_pcm);
  62. av_freep(&s->qp_y_tab);
  63. av_freep(&s->tab_slice_address);
  64. av_freep(&s->filter_slice_edges);
  65. av_freep(&s->horizontal_bs);
  66. av_freep(&s->vertical_bs);
  67. av_freep(&s->sh.entry_point_offset);
  68. av_freep(&s->sh.size);
  69. av_freep(&s->sh.offset);
  70. av_buffer_pool_uninit(&s->tab_mvf_pool);
  71. av_buffer_pool_uninit(&s->rpl_tab_pool);
  72. }
  73. /* allocate arrays that depend on frame dimensions */
  74. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  75. {
  76. int log2_min_cb_size = sps->log2_min_cb_size;
  77. int width = sps->width;
  78. int height = sps->height;
  79. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  80. ((height >> log2_min_cb_size) + 1);
  81. int ctb_count = sps->ctb_width * sps->ctb_height;
  82. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  83. s->bs_width = (width >> 2) + 1;
  84. s->bs_height = (height >> 2) + 1;
  85. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  86. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  87. if (!s->sao || !s->deblock)
  88. goto fail;
  89. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  91. if (!s->skip_flag || !s->tab_ct_depth)
  92. goto fail;
  93. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  94. s->tab_ipm = av_mallocz(min_pu_size);
  95. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  96. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  97. goto fail;
  98. s->filter_slice_edges = av_mallocz(ctb_count);
  99. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  100. sizeof(*s->tab_slice_address));
  101. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  102. sizeof(*s->qp_y_tab));
  103. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  104. goto fail;
  105. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  107. if (!s->horizontal_bs || !s->vertical_bs)
  108. goto fail;
  109. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  110. av_buffer_allocz);
  111. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  112. av_buffer_allocz);
  113. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  114. goto fail;
  115. return 0;
  116. fail:
  117. pic_arrays_free(s);
  118. return AVERROR(ENOMEM);
  119. }
  120. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  121. {
  122. int i = 0;
  123. int j = 0;
  124. uint8_t luma_weight_l0_flag[16];
  125. uint8_t chroma_weight_l0_flag[16];
  126. uint8_t luma_weight_l1_flag[16];
  127. uint8_t chroma_weight_l1_flag[16];
  128. int luma_log2_weight_denom;
  129. luma_log2_weight_denom = get_ue_golomb_long(gb);
  130. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
  131. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  132. return AVERROR_INVALIDDATA;
  133. }
  134. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  135. if (s->ps.sps->chroma_format_idc != 0) {
  136. int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
  137. if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
  138. av_log(s->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
  139. return AVERROR_INVALIDDATA;
  140. }
  141. s->sh.chroma_log2_weight_denom = chroma_log2_weight_denom;
  142. }
  143. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  144. luma_weight_l0_flag[i] = get_bits1(gb);
  145. if (!luma_weight_l0_flag[i]) {
  146. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  147. s->sh.luma_offset_l0[i] = 0;
  148. }
  149. }
  150. if (s->ps.sps->chroma_format_idc != 0) {
  151. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  152. chroma_weight_l0_flag[i] = get_bits1(gb);
  153. } else {
  154. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  155. chroma_weight_l0_flag[i] = 0;
  156. }
  157. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  158. if (luma_weight_l0_flag[i]) {
  159. int delta_luma_weight_l0 = get_se_golomb(gb);
  160. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  161. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  162. }
  163. if (chroma_weight_l0_flag[i]) {
  164. for (j = 0; j < 2; j++) {
  165. int delta_chroma_weight_l0 = get_se_golomb(gb);
  166. int delta_chroma_offset_l0 = get_se_golomb(gb);
  167. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  168. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  169. return AVERROR_INVALIDDATA;
  170. }
  171. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  172. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  173. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  174. }
  175. } else {
  176. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  177. s->sh.chroma_offset_l0[i][0] = 0;
  178. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  179. s->sh.chroma_offset_l0[i][1] = 0;
  180. }
  181. }
  182. if (s->sh.slice_type == HEVC_SLICE_B) {
  183. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  184. luma_weight_l1_flag[i] = get_bits1(gb);
  185. if (!luma_weight_l1_flag[i]) {
  186. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  187. s->sh.luma_offset_l1[i] = 0;
  188. }
  189. }
  190. if (s->ps.sps->chroma_format_idc != 0) {
  191. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  192. chroma_weight_l1_flag[i] = get_bits1(gb);
  193. } else {
  194. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  195. chroma_weight_l1_flag[i] = 0;
  196. }
  197. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  198. if (luma_weight_l1_flag[i]) {
  199. int delta_luma_weight_l1 = get_se_golomb(gb);
  200. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  201. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  202. }
  203. if (chroma_weight_l1_flag[i]) {
  204. for (j = 0; j < 2; j++) {
  205. int delta_chroma_weight_l1 = get_se_golomb(gb);
  206. int delta_chroma_offset_l1 = get_se_golomb(gb);
  207. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  208. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  209. return AVERROR_INVALIDDATA;
  210. }
  211. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  212. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  213. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  214. }
  215. } else {
  216. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  217. s->sh.chroma_offset_l1[i][0] = 0;
  218. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  219. s->sh.chroma_offset_l1[i][1] = 0;
  220. }
  221. }
  222. }
  223. return 0;
  224. }
  225. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  226. {
  227. const HEVCSPS *sps = s->ps.sps;
  228. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  229. int prev_delta_msb = 0;
  230. unsigned int nb_sps = 0, nb_sh;
  231. int i;
  232. rps->nb_refs = 0;
  233. if (!sps->long_term_ref_pics_present_flag)
  234. return 0;
  235. if (sps->num_long_term_ref_pics_sps > 0)
  236. nb_sps = get_ue_golomb_long(gb);
  237. nb_sh = get_ue_golomb_long(gb);
  238. if (nb_sps > sps->num_long_term_ref_pics_sps)
  239. return AVERROR_INVALIDDATA;
  240. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  241. return AVERROR_INVALIDDATA;
  242. rps->nb_refs = nb_sh + nb_sps;
  243. for (i = 0; i < rps->nb_refs; i++) {
  244. uint8_t delta_poc_msb_present;
  245. if (i < nb_sps) {
  246. uint8_t lt_idx_sps = 0;
  247. if (sps->num_long_term_ref_pics_sps > 1)
  248. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  249. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  250. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  251. } else {
  252. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  253. rps->used[i] = get_bits1(gb);
  254. }
  255. delta_poc_msb_present = get_bits1(gb);
  256. if (delta_poc_msb_present) {
  257. int64_t delta = get_ue_golomb_long(gb);
  258. int64_t poc;
  259. if (i && i != nb_sps)
  260. delta += prev_delta_msb;
  261. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  262. if (poc != (int32_t)poc)
  263. return AVERROR_INVALIDDATA;
  264. rps->poc[i] = poc;
  265. prev_delta_msb = delta;
  266. }
  267. }
  268. return 0;
  269. }
  270. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  271. const HEVCSPS *sps)
  272. {
  273. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  274. const HEVCWindow *ow = &sps->output_window;
  275. unsigned int num = 0, den = 0;
  276. avctx->pix_fmt = sps->pix_fmt;
  277. avctx->coded_width = sps->width;
  278. avctx->coded_height = sps->height;
  279. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  280. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  281. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  282. avctx->profile = sps->ptl.general_ptl.profile_idc;
  283. avctx->level = sps->ptl.general_ptl.level_idc;
  284. ff_set_sar(avctx, sps->vui.sar);
  285. if (sps->vui.video_signal_type_present_flag)
  286. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  287. : AVCOL_RANGE_MPEG;
  288. else
  289. avctx->color_range = AVCOL_RANGE_MPEG;
  290. if (sps->vui.colour_description_present_flag) {
  291. avctx->color_primaries = sps->vui.colour_primaries;
  292. avctx->color_trc = sps->vui.transfer_characteristic;
  293. avctx->colorspace = sps->vui.matrix_coeffs;
  294. } else {
  295. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  296. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  297. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  298. }
  299. if (vps->vps_timing_info_present_flag) {
  300. num = vps->vps_num_units_in_tick;
  301. den = vps->vps_time_scale;
  302. } else if (sps->vui.vui_timing_info_present_flag) {
  303. num = sps->vui.vui_num_units_in_tick;
  304. den = sps->vui.vui_time_scale;
  305. }
  306. if (num != 0 && den != 0)
  307. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  308. num, den, 1 << 30);
  309. }
  310. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  311. {
  312. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
  313. CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
  314. CONFIG_HEVC_NVDEC_HWACCEL + \
  315. CONFIG_HEVC_VAAPI_HWACCEL + \
  316. CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
  317. CONFIG_HEVC_VDPAU_HWACCEL)
  318. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  319. switch (sps->pix_fmt) {
  320. case AV_PIX_FMT_YUV420P:
  321. case AV_PIX_FMT_YUVJ420P:
  322. #if CONFIG_HEVC_DXVA2_HWACCEL
  323. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  324. #endif
  325. #if CONFIG_HEVC_D3D11VA_HWACCEL
  326. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  327. *fmt++ = AV_PIX_FMT_D3D11;
  328. #endif
  329. #if CONFIG_HEVC_VAAPI_HWACCEL
  330. *fmt++ = AV_PIX_FMT_VAAPI;
  331. #endif
  332. #if CONFIG_HEVC_VDPAU_HWACCEL
  333. *fmt++ = AV_PIX_FMT_VDPAU;
  334. #endif
  335. #if CONFIG_HEVC_NVDEC_HWACCEL
  336. *fmt++ = AV_PIX_FMT_CUDA;
  337. #endif
  338. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  339. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  340. #endif
  341. break;
  342. case AV_PIX_FMT_YUV420P10:
  343. #if CONFIG_HEVC_DXVA2_HWACCEL
  344. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  345. #endif
  346. #if CONFIG_HEVC_D3D11VA_HWACCEL
  347. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  348. *fmt++ = AV_PIX_FMT_D3D11;
  349. #endif
  350. #if CONFIG_HEVC_VAAPI_HWACCEL
  351. *fmt++ = AV_PIX_FMT_VAAPI;
  352. #endif
  353. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  354. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  355. #endif
  356. #if CONFIG_HEVC_NVDEC_HWACCEL
  357. *fmt++ = AV_PIX_FMT_CUDA;
  358. #endif
  359. break;
  360. case AV_PIX_FMT_YUV420P12:
  361. #if CONFIG_HEVC_NVDEC_HWACCEL
  362. *fmt++ = AV_PIX_FMT_CUDA;
  363. #endif
  364. break;
  365. }
  366. *fmt++ = sps->pix_fmt;
  367. *fmt = AV_PIX_FMT_NONE;
  368. return ff_thread_get_format(s->avctx, pix_fmts);
  369. }
  370. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  371. enum AVPixelFormat pix_fmt)
  372. {
  373. int ret, i;
  374. pic_arrays_free(s);
  375. s->ps.sps = NULL;
  376. s->ps.vps = NULL;
  377. if (!sps)
  378. return 0;
  379. ret = pic_arrays_init(s, sps);
  380. if (ret < 0)
  381. goto fail;
  382. export_stream_params(s->avctx, &s->ps, sps);
  383. s->avctx->pix_fmt = pix_fmt;
  384. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  385. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  386. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  387. for (i = 0; i < 3; i++) {
  388. av_freep(&s->sao_pixel_buffer_h[i]);
  389. av_freep(&s->sao_pixel_buffer_v[i]);
  390. }
  391. if (sps->sao_enabled && !s->avctx->hwaccel) {
  392. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  393. int c_idx;
  394. for(c_idx = 0; c_idx < c_count; c_idx++) {
  395. int w = sps->width >> sps->hshift[c_idx];
  396. int h = sps->height >> sps->vshift[c_idx];
  397. s->sao_pixel_buffer_h[c_idx] =
  398. av_malloc((w * 2 * sps->ctb_height) <<
  399. sps->pixel_shift);
  400. s->sao_pixel_buffer_v[c_idx] =
  401. av_malloc((h * 2 * sps->ctb_width) <<
  402. sps->pixel_shift);
  403. }
  404. }
  405. s->ps.sps = sps;
  406. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  407. return 0;
  408. fail:
  409. pic_arrays_free(s);
  410. s->ps.sps = NULL;
  411. return ret;
  412. }
  413. static int hls_slice_header(HEVCContext *s)
  414. {
  415. GetBitContext *gb = &s->HEVClc->gb;
  416. SliceHeader *sh = &s->sh;
  417. int i, ret;
  418. // Coded parameters
  419. sh->first_slice_in_pic_flag = get_bits1(gb);
  420. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  421. s->seq_decode = (s->seq_decode + 1) & 0xff;
  422. s->max_ra = INT_MAX;
  423. if (IS_IDR(s))
  424. ff_hevc_clear_refs(s);
  425. }
  426. sh->no_output_of_prior_pics_flag = 0;
  427. if (IS_IRAP(s))
  428. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  429. sh->pps_id = get_ue_golomb_long(gb);
  430. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  431. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  432. return AVERROR_INVALIDDATA;
  433. }
  434. if (!sh->first_slice_in_pic_flag &&
  435. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  436. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  437. return AVERROR_INVALIDDATA;
  438. }
  439. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  440. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  441. sh->no_output_of_prior_pics_flag = 1;
  442. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  443. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  444. const HEVCSPS *last_sps = s->ps.sps;
  445. enum AVPixelFormat pix_fmt;
  446. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  447. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  448. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  449. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  450. sh->no_output_of_prior_pics_flag = 0;
  451. }
  452. ff_hevc_clear_refs(s);
  453. ret = set_sps(s, sps, sps->pix_fmt);
  454. if (ret < 0)
  455. return ret;
  456. pix_fmt = get_format(s, sps);
  457. if (pix_fmt < 0)
  458. return pix_fmt;
  459. s->avctx->pix_fmt = pix_fmt;
  460. s->seq_decode = (s->seq_decode + 1) & 0xff;
  461. s->max_ra = INT_MAX;
  462. }
  463. sh->dependent_slice_segment_flag = 0;
  464. if (!sh->first_slice_in_pic_flag) {
  465. int slice_address_length;
  466. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  467. sh->dependent_slice_segment_flag = get_bits1(gb);
  468. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  469. s->ps.sps->ctb_height);
  470. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  471. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  472. av_log(s->avctx, AV_LOG_ERROR,
  473. "Invalid slice segment address: %u.\n",
  474. sh->slice_segment_addr);
  475. return AVERROR_INVALIDDATA;
  476. }
  477. if (!sh->dependent_slice_segment_flag) {
  478. sh->slice_addr = sh->slice_segment_addr;
  479. s->slice_idx++;
  480. }
  481. } else {
  482. sh->slice_segment_addr = sh->slice_addr = 0;
  483. s->slice_idx = 0;
  484. s->slice_initialized = 0;
  485. }
  486. if (!sh->dependent_slice_segment_flag) {
  487. s->slice_initialized = 0;
  488. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  489. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  490. sh->slice_type = get_ue_golomb_long(gb);
  491. if (!(sh->slice_type == HEVC_SLICE_I ||
  492. sh->slice_type == HEVC_SLICE_P ||
  493. sh->slice_type == HEVC_SLICE_B)) {
  494. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  495. sh->slice_type);
  496. return AVERROR_INVALIDDATA;
  497. }
  498. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  499. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  500. return AVERROR_INVALIDDATA;
  501. }
  502. // when flag is not present, picture is inferred to be output
  503. sh->pic_output_flag = 1;
  504. if (s->ps.pps->output_flag_present_flag)
  505. sh->pic_output_flag = get_bits1(gb);
  506. if (s->ps.sps->separate_colour_plane_flag)
  507. sh->colour_plane_id = get_bits(gb, 2);
  508. if (!IS_IDR(s)) {
  509. int poc, pos;
  510. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  511. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  512. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  513. av_log(s->avctx, AV_LOG_WARNING,
  514. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  515. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  516. return AVERROR_INVALIDDATA;
  517. poc = s->poc;
  518. }
  519. s->poc = poc;
  520. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  521. pos = get_bits_left(gb);
  522. if (!sh->short_term_ref_pic_set_sps_flag) {
  523. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  524. if (ret < 0)
  525. return ret;
  526. sh->short_term_rps = &sh->slice_rps;
  527. } else {
  528. int numbits, rps_idx;
  529. if (!s->ps.sps->nb_st_rps) {
  530. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  531. return AVERROR_INVALIDDATA;
  532. }
  533. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  534. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  535. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  536. }
  537. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  538. pos = get_bits_left(gb);
  539. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  540. if (ret < 0) {
  541. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  542. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  543. return AVERROR_INVALIDDATA;
  544. }
  545. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  546. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  547. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  548. else
  549. sh->slice_temporal_mvp_enabled_flag = 0;
  550. } else {
  551. s->sh.short_term_rps = NULL;
  552. s->poc = 0;
  553. }
  554. /* 8.3.1 */
  555. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  556. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  557. s->nal_unit_type != HEVC_NAL_TSA_N &&
  558. s->nal_unit_type != HEVC_NAL_STSA_N &&
  559. s->nal_unit_type != HEVC_NAL_RADL_N &&
  560. s->nal_unit_type != HEVC_NAL_RADL_R &&
  561. s->nal_unit_type != HEVC_NAL_RASL_N &&
  562. s->nal_unit_type != HEVC_NAL_RASL_R)
  563. s->pocTid0 = s->poc;
  564. if (s->ps.sps->sao_enabled) {
  565. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  566. if (s->ps.sps->chroma_format_idc) {
  567. sh->slice_sample_adaptive_offset_flag[1] =
  568. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  569. }
  570. } else {
  571. sh->slice_sample_adaptive_offset_flag[0] = 0;
  572. sh->slice_sample_adaptive_offset_flag[1] = 0;
  573. sh->slice_sample_adaptive_offset_flag[2] = 0;
  574. }
  575. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  576. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  577. int nb_refs;
  578. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  579. if (sh->slice_type == HEVC_SLICE_B)
  580. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  581. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  582. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  583. if (sh->slice_type == HEVC_SLICE_B)
  584. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  585. }
  586. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  587. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  588. sh->nb_refs[L0], sh->nb_refs[L1]);
  589. return AVERROR_INVALIDDATA;
  590. }
  591. sh->rpl_modification_flag[0] = 0;
  592. sh->rpl_modification_flag[1] = 0;
  593. nb_refs = ff_hevc_frame_nb_refs(s);
  594. if (!nb_refs) {
  595. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  596. return AVERROR_INVALIDDATA;
  597. }
  598. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  599. sh->rpl_modification_flag[0] = get_bits1(gb);
  600. if (sh->rpl_modification_flag[0]) {
  601. for (i = 0; i < sh->nb_refs[L0]; i++)
  602. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  603. }
  604. if (sh->slice_type == HEVC_SLICE_B) {
  605. sh->rpl_modification_flag[1] = get_bits1(gb);
  606. if (sh->rpl_modification_flag[1] == 1)
  607. for (i = 0; i < sh->nb_refs[L1]; i++)
  608. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  609. }
  610. }
  611. if (sh->slice_type == HEVC_SLICE_B)
  612. sh->mvd_l1_zero_flag = get_bits1(gb);
  613. if (s->ps.pps->cabac_init_present_flag)
  614. sh->cabac_init_flag = get_bits1(gb);
  615. else
  616. sh->cabac_init_flag = 0;
  617. sh->collocated_ref_idx = 0;
  618. if (sh->slice_temporal_mvp_enabled_flag) {
  619. sh->collocated_list = L0;
  620. if (sh->slice_type == HEVC_SLICE_B)
  621. sh->collocated_list = !get_bits1(gb);
  622. if (sh->nb_refs[sh->collocated_list] > 1) {
  623. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  624. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  625. av_log(s->avctx, AV_LOG_ERROR,
  626. "Invalid collocated_ref_idx: %d.\n",
  627. sh->collocated_ref_idx);
  628. return AVERROR_INVALIDDATA;
  629. }
  630. }
  631. }
  632. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  633. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  634. int ret = pred_weight_table(s, gb);
  635. if (ret < 0)
  636. return ret;
  637. }
  638. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  639. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  640. av_log(s->avctx, AV_LOG_ERROR,
  641. "Invalid number of merging MVP candidates: %d.\n",
  642. sh->max_num_merge_cand);
  643. return AVERROR_INVALIDDATA;
  644. }
  645. }
  646. sh->slice_qp_delta = get_se_golomb(gb);
  647. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  648. sh->slice_cb_qp_offset = get_se_golomb(gb);
  649. sh->slice_cr_qp_offset = get_se_golomb(gb);
  650. } else {
  651. sh->slice_cb_qp_offset = 0;
  652. sh->slice_cr_qp_offset = 0;
  653. }
  654. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  655. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  656. else
  657. sh->cu_chroma_qp_offset_enabled_flag = 0;
  658. if (s->ps.pps->deblocking_filter_control_present_flag) {
  659. int deblocking_filter_override_flag = 0;
  660. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  661. deblocking_filter_override_flag = get_bits1(gb);
  662. if (deblocking_filter_override_flag) {
  663. sh->disable_deblocking_filter_flag = get_bits1(gb);
  664. if (!sh->disable_deblocking_filter_flag) {
  665. int beta_offset_div2 = get_se_golomb(gb);
  666. int tc_offset_div2 = get_se_golomb(gb) ;
  667. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  668. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  669. av_log(s->avctx, AV_LOG_ERROR,
  670. "Invalid deblock filter offsets: %d, %d\n",
  671. beta_offset_div2, tc_offset_div2);
  672. return AVERROR_INVALIDDATA;
  673. }
  674. sh->beta_offset = beta_offset_div2 * 2;
  675. sh->tc_offset = tc_offset_div2 * 2;
  676. }
  677. } else {
  678. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  679. sh->beta_offset = s->ps.pps->beta_offset;
  680. sh->tc_offset = s->ps.pps->tc_offset;
  681. }
  682. } else {
  683. sh->disable_deblocking_filter_flag = 0;
  684. sh->beta_offset = 0;
  685. sh->tc_offset = 0;
  686. }
  687. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  688. (sh->slice_sample_adaptive_offset_flag[0] ||
  689. sh->slice_sample_adaptive_offset_flag[1] ||
  690. !sh->disable_deblocking_filter_flag)) {
  691. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  692. } else {
  693. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  694. }
  695. } else if (!s->slice_initialized) {
  696. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  697. return AVERROR_INVALIDDATA;
  698. }
  699. sh->num_entry_point_offsets = 0;
  700. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  701. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  702. // It would be possible to bound this tighter but this here is simpler
  703. if (num_entry_point_offsets > get_bits_left(gb)) {
  704. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  705. return AVERROR_INVALIDDATA;
  706. }
  707. sh->num_entry_point_offsets = num_entry_point_offsets;
  708. if (sh->num_entry_point_offsets > 0) {
  709. int offset_len = get_ue_golomb_long(gb) + 1;
  710. if (offset_len < 1 || offset_len > 32) {
  711. sh->num_entry_point_offsets = 0;
  712. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  713. return AVERROR_INVALIDDATA;
  714. }
  715. av_freep(&sh->entry_point_offset);
  716. av_freep(&sh->offset);
  717. av_freep(&sh->size);
  718. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  719. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  720. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  721. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  722. sh->num_entry_point_offsets = 0;
  723. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  724. return AVERROR(ENOMEM);
  725. }
  726. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  727. unsigned val = get_bits_long(gb, offset_len);
  728. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  729. }
  730. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  731. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  732. s->threads_number = 1;
  733. } else
  734. s->enable_parallel_tiles = 0;
  735. } else
  736. s->enable_parallel_tiles = 0;
  737. }
  738. if (s->ps.pps->slice_header_extension_present_flag) {
  739. unsigned int length = get_ue_golomb_long(gb);
  740. if (length*8LL > get_bits_left(gb)) {
  741. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  742. return AVERROR_INVALIDDATA;
  743. }
  744. for (i = 0; i < length; i++)
  745. skip_bits(gb, 8); // slice_header_extension_data_byte
  746. }
  747. // Inferred parameters
  748. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  749. if (sh->slice_qp > 51 ||
  750. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  751. av_log(s->avctx, AV_LOG_ERROR,
  752. "The slice_qp %d is outside the valid range "
  753. "[%d, 51].\n",
  754. sh->slice_qp,
  755. -s->ps.sps->qp_bd_offset);
  756. return AVERROR_INVALIDDATA;
  757. }
  758. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  759. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  760. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  761. return AVERROR_INVALIDDATA;
  762. }
  763. if (get_bits_left(gb) < 0) {
  764. av_log(s->avctx, AV_LOG_ERROR,
  765. "Overread slice header by %d bits\n", -get_bits_left(gb));
  766. return AVERROR_INVALIDDATA;
  767. }
  768. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  769. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  770. s->HEVClc->qp_y = s->sh.slice_qp;
  771. s->slice_initialized = 1;
  772. s->HEVClc->tu.cu_qp_offset_cb = 0;
  773. s->HEVClc->tu.cu_qp_offset_cr = 0;
  774. return 0;
  775. }
  776. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  777. #define SET_SAO(elem, value) \
  778. do { \
  779. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  780. sao->elem = value; \
  781. else if (sao_merge_left_flag) \
  782. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  783. else if (sao_merge_up_flag) \
  784. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  785. else \
  786. sao->elem = 0; \
  787. } while (0)
  788. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  789. {
  790. HEVCLocalContext *lc = s->HEVClc;
  791. int sao_merge_left_flag = 0;
  792. int sao_merge_up_flag = 0;
  793. SAOParams *sao = &CTB(s->sao, rx, ry);
  794. int c_idx, i;
  795. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  796. s->sh.slice_sample_adaptive_offset_flag[1]) {
  797. if (rx > 0) {
  798. if (lc->ctb_left_flag)
  799. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  800. }
  801. if (ry > 0 && !sao_merge_left_flag) {
  802. if (lc->ctb_up_flag)
  803. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  804. }
  805. }
  806. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  807. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  808. s->ps.pps->log2_sao_offset_scale_chroma;
  809. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  810. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  811. continue;
  812. }
  813. if (c_idx == 2) {
  814. sao->type_idx[2] = sao->type_idx[1];
  815. sao->eo_class[2] = sao->eo_class[1];
  816. } else {
  817. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  818. }
  819. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  820. continue;
  821. for (i = 0; i < 4; i++)
  822. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  823. if (sao->type_idx[c_idx] == SAO_BAND) {
  824. for (i = 0; i < 4; i++) {
  825. if (sao->offset_abs[c_idx][i]) {
  826. SET_SAO(offset_sign[c_idx][i],
  827. ff_hevc_sao_offset_sign_decode(s));
  828. } else {
  829. sao->offset_sign[c_idx][i] = 0;
  830. }
  831. }
  832. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  833. } else if (c_idx != 2) {
  834. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  835. }
  836. // Inferred parameters
  837. sao->offset_val[c_idx][0] = 0;
  838. for (i = 0; i < 4; i++) {
  839. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  840. if (sao->type_idx[c_idx] == SAO_EDGE) {
  841. if (i > 1)
  842. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  843. } else if (sao->offset_sign[c_idx][i]) {
  844. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  845. }
  846. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  847. }
  848. }
  849. }
  850. #undef SET_SAO
  851. #undef CTB
  852. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  853. HEVCLocalContext *lc = s->HEVClc;
  854. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  855. if (log2_res_scale_abs_plus1 != 0) {
  856. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  857. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  858. (1 - 2 * res_scale_sign_flag);
  859. } else {
  860. lc->tu.res_scale_val = 0;
  861. }
  862. return 0;
  863. }
  864. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  865. int xBase, int yBase, int cb_xBase, int cb_yBase,
  866. int log2_cb_size, int log2_trafo_size,
  867. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  868. {
  869. HEVCLocalContext *lc = s->HEVClc;
  870. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  871. int i;
  872. if (lc->cu.pred_mode == MODE_INTRA) {
  873. int trafo_size = 1 << log2_trafo_size;
  874. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  875. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  876. }
  877. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  878. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  879. int scan_idx = SCAN_DIAG;
  880. int scan_idx_c = SCAN_DIAG;
  881. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  882. (s->ps.sps->chroma_format_idc == 2 &&
  883. (cbf_cb[1] || cbf_cr[1]));
  884. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  885. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  886. if (lc->tu.cu_qp_delta != 0)
  887. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  888. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  889. lc->tu.is_cu_qp_delta_coded = 1;
  890. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  891. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  892. av_log(s->avctx, AV_LOG_ERROR,
  893. "The cu_qp_delta %d is outside the valid range "
  894. "[%d, %d].\n",
  895. lc->tu.cu_qp_delta,
  896. -(26 + s->ps.sps->qp_bd_offset / 2),
  897. (25 + s->ps.sps->qp_bd_offset / 2));
  898. return AVERROR_INVALIDDATA;
  899. }
  900. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  901. }
  902. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  903. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  904. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  905. if (cu_chroma_qp_offset_flag) {
  906. int cu_chroma_qp_offset_idx = 0;
  907. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  908. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  909. av_log(s->avctx, AV_LOG_ERROR,
  910. "cu_chroma_qp_offset_idx not yet tested.\n");
  911. }
  912. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  913. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  914. } else {
  915. lc->tu.cu_qp_offset_cb = 0;
  916. lc->tu.cu_qp_offset_cr = 0;
  917. }
  918. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  919. }
  920. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  921. if (lc->tu.intra_pred_mode >= 6 &&
  922. lc->tu.intra_pred_mode <= 14) {
  923. scan_idx = SCAN_VERT;
  924. } else if (lc->tu.intra_pred_mode >= 22 &&
  925. lc->tu.intra_pred_mode <= 30) {
  926. scan_idx = SCAN_HORIZ;
  927. }
  928. if (lc->tu.intra_pred_mode_c >= 6 &&
  929. lc->tu.intra_pred_mode_c <= 14) {
  930. scan_idx_c = SCAN_VERT;
  931. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  932. lc->tu.intra_pred_mode_c <= 30) {
  933. scan_idx_c = SCAN_HORIZ;
  934. }
  935. }
  936. lc->tu.cross_pf = 0;
  937. if (cbf_luma)
  938. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  939. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  940. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  941. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  942. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  943. (lc->cu.pred_mode == MODE_INTER ||
  944. (lc->tu.chroma_mode_c == 4)));
  945. if (lc->tu.cross_pf) {
  946. hls_cross_component_pred(s, 0);
  947. }
  948. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  949. if (lc->cu.pred_mode == MODE_INTRA) {
  950. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  951. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  952. }
  953. if (cbf_cb[i])
  954. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  955. log2_trafo_size_c, scan_idx_c, 1);
  956. else
  957. if (lc->tu.cross_pf) {
  958. ptrdiff_t stride = s->frame->linesize[1];
  959. int hshift = s->ps.sps->hshift[1];
  960. int vshift = s->ps.sps->vshift[1];
  961. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  962. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  963. int size = 1 << log2_trafo_size_c;
  964. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  965. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  966. for (i = 0; i < (size * size); i++) {
  967. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  968. }
  969. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  970. }
  971. }
  972. if (lc->tu.cross_pf) {
  973. hls_cross_component_pred(s, 1);
  974. }
  975. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  976. if (lc->cu.pred_mode == MODE_INTRA) {
  977. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  978. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  979. }
  980. if (cbf_cr[i])
  981. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  982. log2_trafo_size_c, scan_idx_c, 2);
  983. else
  984. if (lc->tu.cross_pf) {
  985. ptrdiff_t stride = s->frame->linesize[2];
  986. int hshift = s->ps.sps->hshift[2];
  987. int vshift = s->ps.sps->vshift[2];
  988. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  989. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  990. int size = 1 << log2_trafo_size_c;
  991. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  992. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  993. for (i = 0; i < (size * size); i++) {
  994. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  995. }
  996. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  997. }
  998. }
  999. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  1000. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1001. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1002. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1003. if (lc->cu.pred_mode == MODE_INTRA) {
  1004. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1005. trafo_size_h, trafo_size_v);
  1006. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  1007. }
  1008. if (cbf_cb[i])
  1009. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1010. log2_trafo_size, scan_idx_c, 1);
  1011. }
  1012. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1013. if (lc->cu.pred_mode == MODE_INTRA) {
  1014. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1015. trafo_size_h, trafo_size_v);
  1016. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  1017. }
  1018. if (cbf_cr[i])
  1019. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1020. log2_trafo_size, scan_idx_c, 2);
  1021. }
  1022. }
  1023. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  1024. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  1025. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  1026. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  1027. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  1028. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  1029. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  1030. if (s->ps.sps->chroma_format_idc == 2) {
  1031. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  1032. trafo_size_h, trafo_size_v);
  1033. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  1034. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  1035. }
  1036. } else if (blk_idx == 3) {
  1037. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1038. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1039. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1040. trafo_size_h, trafo_size_v);
  1041. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1042. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1043. if (s->ps.sps->chroma_format_idc == 2) {
  1044. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1045. trafo_size_h, trafo_size_v);
  1046. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1047. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1048. }
  1049. }
  1050. }
  1051. return 0;
  1052. }
  1053. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1054. {
  1055. int cb_size = 1 << log2_cb_size;
  1056. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1057. int min_pu_width = s->ps.sps->min_pu_width;
  1058. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1059. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1060. int i, j;
  1061. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1062. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1063. s->is_pcm[i + j * min_pu_width] = 2;
  1064. }
  1065. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1066. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1067. int log2_cb_size, int log2_trafo_size,
  1068. int trafo_depth, int blk_idx,
  1069. const int *base_cbf_cb, const int *base_cbf_cr)
  1070. {
  1071. HEVCLocalContext *lc = s->HEVClc;
  1072. uint8_t split_transform_flag;
  1073. int cbf_cb[2];
  1074. int cbf_cr[2];
  1075. int ret;
  1076. cbf_cb[0] = base_cbf_cb[0];
  1077. cbf_cb[1] = base_cbf_cb[1];
  1078. cbf_cr[0] = base_cbf_cr[0];
  1079. cbf_cr[1] = base_cbf_cr[1];
  1080. if (lc->cu.intra_split_flag) {
  1081. if (trafo_depth == 1) {
  1082. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1083. if (s->ps.sps->chroma_format_idc == 3) {
  1084. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1085. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1086. } else {
  1087. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1088. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1089. }
  1090. }
  1091. } else {
  1092. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1093. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1094. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1095. }
  1096. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1097. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1098. trafo_depth < lc->cu.max_trafo_depth &&
  1099. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1100. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1101. } else {
  1102. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1103. lc->cu.pred_mode == MODE_INTER &&
  1104. lc->cu.part_mode != PART_2Nx2N &&
  1105. trafo_depth == 0;
  1106. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1107. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1108. inter_split;
  1109. }
  1110. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1111. if (trafo_depth == 0 || cbf_cb[0]) {
  1112. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1113. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1114. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1115. }
  1116. }
  1117. if (trafo_depth == 0 || cbf_cr[0]) {
  1118. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1119. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1120. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1121. }
  1122. }
  1123. }
  1124. if (split_transform_flag) {
  1125. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1126. const int x1 = x0 + trafo_size_split;
  1127. const int y1 = y0 + trafo_size_split;
  1128. #define SUBDIVIDE(x, y, idx) \
  1129. do { \
  1130. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1131. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1132. cbf_cb, cbf_cr); \
  1133. if (ret < 0) \
  1134. return ret; \
  1135. } while (0)
  1136. SUBDIVIDE(x0, y0, 0);
  1137. SUBDIVIDE(x1, y0, 1);
  1138. SUBDIVIDE(x0, y1, 2);
  1139. SUBDIVIDE(x1, y1, 3);
  1140. #undef SUBDIVIDE
  1141. } else {
  1142. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1143. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1144. int min_tu_width = s->ps.sps->min_tb_width;
  1145. int cbf_luma = 1;
  1146. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1147. cbf_cb[0] || cbf_cr[0] ||
  1148. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1149. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1150. }
  1151. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1152. log2_cb_size, log2_trafo_size,
  1153. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1154. if (ret < 0)
  1155. return ret;
  1156. // TODO: store cbf_luma somewhere else
  1157. if (cbf_luma) {
  1158. int i, j;
  1159. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1160. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1161. int x_tu = (x0 + j) >> log2_min_tu_size;
  1162. int y_tu = (y0 + i) >> log2_min_tu_size;
  1163. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1164. }
  1165. }
  1166. if (!s->sh.disable_deblocking_filter_flag) {
  1167. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1168. if (s->ps.pps->transquant_bypass_enable_flag &&
  1169. lc->cu.cu_transquant_bypass_flag)
  1170. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1171. }
  1172. }
  1173. return 0;
  1174. }
  1175. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1176. {
  1177. HEVCLocalContext *lc = s->HEVClc;
  1178. GetBitContext gb;
  1179. int cb_size = 1 << log2_cb_size;
  1180. ptrdiff_t stride0 = s->frame->linesize[0];
  1181. ptrdiff_t stride1 = s->frame->linesize[1];
  1182. ptrdiff_t stride2 = s->frame->linesize[2];
  1183. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1184. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1185. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1186. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1187. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1188. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1189. s->ps.sps->pcm.bit_depth_chroma;
  1190. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1191. int ret;
  1192. if (!s->sh.disable_deblocking_filter_flag)
  1193. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1194. ret = init_get_bits(&gb, pcm, length);
  1195. if (ret < 0)
  1196. return ret;
  1197. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1198. if (s->ps.sps->chroma_format_idc) {
  1199. s->hevcdsp.put_pcm(dst1, stride1,
  1200. cb_size >> s->ps.sps->hshift[1],
  1201. cb_size >> s->ps.sps->vshift[1],
  1202. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1203. s->hevcdsp.put_pcm(dst2, stride2,
  1204. cb_size >> s->ps.sps->hshift[2],
  1205. cb_size >> s->ps.sps->vshift[2],
  1206. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1207. }
  1208. return 0;
  1209. }
  1210. /**
  1211. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1212. *
  1213. * @param s HEVC decoding context
  1214. * @param dst target buffer for block data at block position
  1215. * @param dststride stride of the dst buffer
  1216. * @param ref reference picture buffer at origin (0, 0)
  1217. * @param mv motion vector (relative to block position) to get pixel data from
  1218. * @param x_off horizontal position of block from origin (0, 0)
  1219. * @param y_off vertical position of block from origin (0, 0)
  1220. * @param block_w width of block
  1221. * @param block_h height of block
  1222. * @param luma_weight weighting factor applied to the luma prediction
  1223. * @param luma_offset additive offset applied to the luma prediction value
  1224. */
  1225. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1226. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1227. int block_w, int block_h, int luma_weight, int luma_offset)
  1228. {
  1229. HEVCLocalContext *lc = s->HEVClc;
  1230. uint8_t *src = ref->data[0];
  1231. ptrdiff_t srcstride = ref->linesize[0];
  1232. int pic_width = s->ps.sps->width;
  1233. int pic_height = s->ps.sps->height;
  1234. int mx = mv->x & 3;
  1235. int my = mv->y & 3;
  1236. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1237. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1238. int idx = ff_hevc_pel_weight[block_w];
  1239. x_off += mv->x >> 2;
  1240. y_off += mv->y >> 2;
  1241. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1242. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1243. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1244. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1245. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1246. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1247. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1248. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1249. edge_emu_stride, srcstride,
  1250. block_w + QPEL_EXTRA,
  1251. block_h + QPEL_EXTRA,
  1252. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1253. pic_width, pic_height);
  1254. src = lc->edge_emu_buffer + buf_offset;
  1255. srcstride = edge_emu_stride;
  1256. }
  1257. if (!weight_flag)
  1258. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1259. block_h, mx, my, block_w);
  1260. else
  1261. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1262. block_h, s->sh.luma_log2_weight_denom,
  1263. luma_weight, luma_offset, mx, my, block_w);
  1264. }
  1265. /**
  1266. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1267. *
  1268. * @param s HEVC decoding context
  1269. * @param dst target buffer for block data at block position
  1270. * @param dststride stride of the dst buffer
  1271. * @param ref0 reference picture0 buffer at origin (0, 0)
  1272. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1273. * @param x_off horizontal position of block from origin (0, 0)
  1274. * @param y_off vertical position of block from origin (0, 0)
  1275. * @param block_w width of block
  1276. * @param block_h height of block
  1277. * @param ref1 reference picture1 buffer at origin (0, 0)
  1278. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1279. * @param current_mv current motion vector structure
  1280. */
  1281. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1282. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1283. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1284. {
  1285. HEVCLocalContext *lc = s->HEVClc;
  1286. ptrdiff_t src0stride = ref0->linesize[0];
  1287. ptrdiff_t src1stride = ref1->linesize[0];
  1288. int pic_width = s->ps.sps->width;
  1289. int pic_height = s->ps.sps->height;
  1290. int mx0 = mv0->x & 3;
  1291. int my0 = mv0->y & 3;
  1292. int mx1 = mv1->x & 3;
  1293. int my1 = mv1->y & 3;
  1294. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1295. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1296. int x_off0 = x_off + (mv0->x >> 2);
  1297. int y_off0 = y_off + (mv0->y >> 2);
  1298. int x_off1 = x_off + (mv1->x >> 2);
  1299. int y_off1 = y_off + (mv1->y >> 2);
  1300. int idx = ff_hevc_pel_weight[block_w];
  1301. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1302. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1303. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1304. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1305. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1306. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1307. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1308. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1309. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1310. edge_emu_stride, src0stride,
  1311. block_w + QPEL_EXTRA,
  1312. block_h + QPEL_EXTRA,
  1313. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1314. pic_width, pic_height);
  1315. src0 = lc->edge_emu_buffer + buf_offset;
  1316. src0stride = edge_emu_stride;
  1317. }
  1318. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1319. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1320. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1321. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1322. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1323. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1324. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1325. edge_emu_stride, src1stride,
  1326. block_w + QPEL_EXTRA,
  1327. block_h + QPEL_EXTRA,
  1328. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1329. pic_width, pic_height);
  1330. src1 = lc->edge_emu_buffer2 + buf_offset;
  1331. src1stride = edge_emu_stride;
  1332. }
  1333. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1334. block_h, mx0, my0, block_w);
  1335. if (!weight_flag)
  1336. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1337. block_h, mx1, my1, block_w);
  1338. else
  1339. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1340. block_h, s->sh.luma_log2_weight_denom,
  1341. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1342. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1343. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1344. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1345. mx1, my1, block_w);
  1346. }
  1347. /**
  1348. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1349. *
  1350. * @param s HEVC decoding context
  1351. * @param dst1 target buffer for block data at block position (U plane)
  1352. * @param dst2 target buffer for block data at block position (V plane)
  1353. * @param dststride stride of the dst1 and dst2 buffers
  1354. * @param ref reference picture buffer at origin (0, 0)
  1355. * @param mv motion vector (relative to block position) to get pixel data from
  1356. * @param x_off horizontal position of block from origin (0, 0)
  1357. * @param y_off vertical position of block from origin (0, 0)
  1358. * @param block_w width of block
  1359. * @param block_h height of block
  1360. * @param chroma_weight weighting factor applied to the chroma prediction
  1361. * @param chroma_offset additive offset applied to the chroma prediction value
  1362. */
  1363. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1364. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1365. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1366. {
  1367. HEVCLocalContext *lc = s->HEVClc;
  1368. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1369. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1370. const Mv *mv = &current_mv->mv[reflist];
  1371. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1372. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1373. int idx = ff_hevc_pel_weight[block_w];
  1374. int hshift = s->ps.sps->hshift[1];
  1375. int vshift = s->ps.sps->vshift[1];
  1376. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1377. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1378. intptr_t _mx = mx << (1 - hshift);
  1379. intptr_t _my = my << (1 - vshift);
  1380. x_off += mv->x >> (2 + hshift);
  1381. y_off += mv->y >> (2 + vshift);
  1382. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1383. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1384. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1385. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1386. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1387. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1388. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1389. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1390. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1391. edge_emu_stride, srcstride,
  1392. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1393. x_off - EPEL_EXTRA_BEFORE,
  1394. y_off - EPEL_EXTRA_BEFORE,
  1395. pic_width, pic_height);
  1396. src0 = lc->edge_emu_buffer + buf_offset0;
  1397. srcstride = edge_emu_stride;
  1398. }
  1399. if (!weight_flag)
  1400. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1401. block_h, _mx, _my, block_w);
  1402. else
  1403. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1404. block_h, s->sh.chroma_log2_weight_denom,
  1405. chroma_weight, chroma_offset, _mx, _my, block_w);
  1406. }
  1407. /**
  1408. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1409. *
  1410. * @param s HEVC decoding context
  1411. * @param dst target buffer for block data at block position
  1412. * @param dststride stride of the dst buffer
  1413. * @param ref0 reference picture0 buffer at origin (0, 0)
  1414. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1415. * @param x_off horizontal position of block from origin (0, 0)
  1416. * @param y_off vertical position of block from origin (0, 0)
  1417. * @param block_w width of block
  1418. * @param block_h height of block
  1419. * @param ref1 reference picture1 buffer at origin (0, 0)
  1420. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1421. * @param current_mv current motion vector structure
  1422. * @param cidx chroma component(cb, cr)
  1423. */
  1424. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1425. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1426. {
  1427. HEVCLocalContext *lc = s->HEVClc;
  1428. uint8_t *src1 = ref0->data[cidx+1];
  1429. uint8_t *src2 = ref1->data[cidx+1];
  1430. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1431. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1432. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1433. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1434. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1435. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1436. Mv *mv0 = &current_mv->mv[0];
  1437. Mv *mv1 = &current_mv->mv[1];
  1438. int hshift = s->ps.sps->hshift[1];
  1439. int vshift = s->ps.sps->vshift[1];
  1440. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1441. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1442. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1443. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1444. intptr_t _mx0 = mx0 << (1 - hshift);
  1445. intptr_t _my0 = my0 << (1 - vshift);
  1446. intptr_t _mx1 = mx1 << (1 - hshift);
  1447. intptr_t _my1 = my1 << (1 - vshift);
  1448. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1449. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1450. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1451. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1452. int idx = ff_hevc_pel_weight[block_w];
  1453. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1454. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1455. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1456. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1457. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1458. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1459. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1460. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1461. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1462. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1463. edge_emu_stride, src1stride,
  1464. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1465. x_off0 - EPEL_EXTRA_BEFORE,
  1466. y_off0 - EPEL_EXTRA_BEFORE,
  1467. pic_width, pic_height);
  1468. src1 = lc->edge_emu_buffer + buf_offset1;
  1469. src1stride = edge_emu_stride;
  1470. }
  1471. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1472. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1473. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1474. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1475. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1476. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1477. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1478. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1479. edge_emu_stride, src2stride,
  1480. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1481. x_off1 - EPEL_EXTRA_BEFORE,
  1482. y_off1 - EPEL_EXTRA_BEFORE,
  1483. pic_width, pic_height);
  1484. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1485. src2stride = edge_emu_stride;
  1486. }
  1487. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1488. block_h, _mx0, _my0, block_w);
  1489. if (!weight_flag)
  1490. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1491. src2, src2stride, lc->tmp,
  1492. block_h, _mx1, _my1, block_w);
  1493. else
  1494. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1495. src2, src2stride, lc->tmp,
  1496. block_h,
  1497. s->sh.chroma_log2_weight_denom,
  1498. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1499. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1500. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1501. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1502. _mx1, _my1, block_w);
  1503. }
  1504. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1505. const Mv *mv, int y0, int height)
  1506. {
  1507. if (s->threads_type == FF_THREAD_FRAME ) {
  1508. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1509. ff_thread_await_progress(&ref->tf, y, 0);
  1510. }
  1511. }
  1512. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1513. int nPbH, int log2_cb_size, int part_idx,
  1514. int merge_idx, MvField *mv)
  1515. {
  1516. HEVCLocalContext *lc = s->HEVClc;
  1517. enum InterPredIdc inter_pred_idc = PRED_L0;
  1518. int mvp_flag;
  1519. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1520. mv->pred_flag = 0;
  1521. if (s->sh.slice_type == HEVC_SLICE_B)
  1522. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1523. if (inter_pred_idc != PRED_L1) {
  1524. if (s->sh.nb_refs[L0])
  1525. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1526. mv->pred_flag = PF_L0;
  1527. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1528. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1529. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1530. part_idx, merge_idx, mv, mvp_flag, 0);
  1531. mv->mv[0].x += lc->pu.mvd.x;
  1532. mv->mv[0].y += lc->pu.mvd.y;
  1533. }
  1534. if (inter_pred_idc != PRED_L0) {
  1535. if (s->sh.nb_refs[L1])
  1536. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1537. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1538. AV_ZERO32(&lc->pu.mvd);
  1539. } else {
  1540. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1541. }
  1542. mv->pred_flag += PF_L1;
  1543. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1544. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1545. part_idx, merge_idx, mv, mvp_flag, 1);
  1546. mv->mv[1].x += lc->pu.mvd.x;
  1547. mv->mv[1].y += lc->pu.mvd.y;
  1548. }
  1549. }
  1550. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1551. int nPbW, int nPbH,
  1552. int log2_cb_size, int partIdx, int idx)
  1553. {
  1554. #define POS(c_idx, x, y) \
  1555. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1556. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1557. HEVCLocalContext *lc = s->HEVClc;
  1558. int merge_idx = 0;
  1559. struct MvField current_mv = {{{ 0 }}};
  1560. int min_pu_width = s->ps.sps->min_pu_width;
  1561. MvField *tab_mvf = s->ref->tab_mvf;
  1562. RefPicList *refPicList = s->ref->refPicList;
  1563. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1564. uint8_t *dst0 = POS(0, x0, y0);
  1565. uint8_t *dst1 = POS(1, x0, y0);
  1566. uint8_t *dst2 = POS(2, x0, y0);
  1567. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1568. int min_cb_width = s->ps.sps->min_cb_width;
  1569. int x_cb = x0 >> log2_min_cb_size;
  1570. int y_cb = y0 >> log2_min_cb_size;
  1571. int x_pu, y_pu;
  1572. int i, j;
  1573. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1574. if (!skip_flag)
  1575. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1576. if (skip_flag || lc->pu.merge_flag) {
  1577. if (s->sh.max_num_merge_cand > 1)
  1578. merge_idx = ff_hevc_merge_idx_decode(s);
  1579. else
  1580. merge_idx = 0;
  1581. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1582. partIdx, merge_idx, &current_mv);
  1583. } else {
  1584. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1585. partIdx, merge_idx, &current_mv);
  1586. }
  1587. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1588. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1589. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1590. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1591. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1592. if (current_mv.pred_flag & PF_L0) {
  1593. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1594. if (!ref0)
  1595. return;
  1596. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1597. }
  1598. if (current_mv.pred_flag & PF_L1) {
  1599. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1600. if (!ref1)
  1601. return;
  1602. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1603. }
  1604. if (current_mv.pred_flag == PF_L0) {
  1605. int x0_c = x0 >> s->ps.sps->hshift[1];
  1606. int y0_c = y0 >> s->ps.sps->vshift[1];
  1607. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1608. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1609. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1610. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1611. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1612. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1613. if (s->ps.sps->chroma_format_idc) {
  1614. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1615. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1616. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1617. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1618. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1619. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1620. }
  1621. } else if (current_mv.pred_flag == PF_L1) {
  1622. int x0_c = x0 >> s->ps.sps->hshift[1];
  1623. int y0_c = y0 >> s->ps.sps->vshift[1];
  1624. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1625. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1626. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1627. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1628. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1629. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1630. if (s->ps.sps->chroma_format_idc) {
  1631. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1632. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1633. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1634. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1635. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1636. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1637. }
  1638. } else if (current_mv.pred_flag == PF_BI) {
  1639. int x0_c = x0 >> s->ps.sps->hshift[1];
  1640. int y0_c = y0 >> s->ps.sps->vshift[1];
  1641. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1642. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1643. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1644. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1645. ref1->frame, &current_mv.mv[1], &current_mv);
  1646. if (s->ps.sps->chroma_format_idc) {
  1647. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1648. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1649. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1650. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1651. }
  1652. }
  1653. }
  1654. /**
  1655. * 8.4.1
  1656. */
  1657. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1658. int prev_intra_luma_pred_flag)
  1659. {
  1660. HEVCLocalContext *lc = s->HEVClc;
  1661. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1662. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1663. int min_pu_width = s->ps.sps->min_pu_width;
  1664. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1665. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1666. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1667. int cand_up = (lc->ctb_up_flag || y0b) ?
  1668. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1669. int cand_left = (lc->ctb_left_flag || x0b) ?
  1670. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1671. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1672. MvField *tab_mvf = s->ref->tab_mvf;
  1673. int intra_pred_mode;
  1674. int candidate[3];
  1675. int i, j;
  1676. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1677. if ((y0 - 1) < y_ctb)
  1678. cand_up = INTRA_DC;
  1679. if (cand_left == cand_up) {
  1680. if (cand_left < 2) {
  1681. candidate[0] = INTRA_PLANAR;
  1682. candidate[1] = INTRA_DC;
  1683. candidate[2] = INTRA_ANGULAR_26;
  1684. } else {
  1685. candidate[0] = cand_left;
  1686. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1687. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1688. }
  1689. } else {
  1690. candidate[0] = cand_left;
  1691. candidate[1] = cand_up;
  1692. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1693. candidate[2] = INTRA_PLANAR;
  1694. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1695. candidate[2] = INTRA_DC;
  1696. } else {
  1697. candidate[2] = INTRA_ANGULAR_26;
  1698. }
  1699. }
  1700. if (prev_intra_luma_pred_flag) {
  1701. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1702. } else {
  1703. if (candidate[0] > candidate[1])
  1704. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1705. if (candidate[0] > candidate[2])
  1706. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1707. if (candidate[1] > candidate[2])
  1708. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1709. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1710. for (i = 0; i < 3; i++)
  1711. if (intra_pred_mode >= candidate[i])
  1712. intra_pred_mode++;
  1713. }
  1714. /* write the intra prediction units into the mv array */
  1715. if (!size_in_pus)
  1716. size_in_pus = 1;
  1717. for (i = 0; i < size_in_pus; i++) {
  1718. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1719. intra_pred_mode, size_in_pus);
  1720. for (j = 0; j < size_in_pus; j++) {
  1721. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1722. }
  1723. }
  1724. return intra_pred_mode;
  1725. }
  1726. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1727. int log2_cb_size, int ct_depth)
  1728. {
  1729. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1730. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1731. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1732. int y;
  1733. for (y = 0; y < length; y++)
  1734. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1735. ct_depth, length);
  1736. }
  1737. static const uint8_t tab_mode_idx[] = {
  1738. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1739. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1740. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1741. int log2_cb_size)
  1742. {
  1743. HEVCLocalContext *lc = s->HEVClc;
  1744. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1745. uint8_t prev_intra_luma_pred_flag[4];
  1746. int split = lc->cu.part_mode == PART_NxN;
  1747. int pb_size = (1 << log2_cb_size) >> split;
  1748. int side = split + 1;
  1749. int chroma_mode;
  1750. int i, j;
  1751. for (i = 0; i < side; i++)
  1752. for (j = 0; j < side; j++)
  1753. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1754. for (i = 0; i < side; i++) {
  1755. for (j = 0; j < side; j++) {
  1756. if (prev_intra_luma_pred_flag[2 * i + j])
  1757. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1758. else
  1759. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1760. lc->pu.intra_pred_mode[2 * i + j] =
  1761. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1762. prev_intra_luma_pred_flag[2 * i + j]);
  1763. }
  1764. }
  1765. if (s->ps.sps->chroma_format_idc == 3) {
  1766. for (i = 0; i < side; i++) {
  1767. for (j = 0; j < side; j++) {
  1768. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1769. if (chroma_mode != 4) {
  1770. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1771. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1772. else
  1773. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1774. } else {
  1775. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1776. }
  1777. }
  1778. }
  1779. } else if (s->ps.sps->chroma_format_idc == 2) {
  1780. int mode_idx;
  1781. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1782. if (chroma_mode != 4) {
  1783. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1784. mode_idx = 34;
  1785. else
  1786. mode_idx = intra_chroma_table[chroma_mode];
  1787. } else {
  1788. mode_idx = lc->pu.intra_pred_mode[0];
  1789. }
  1790. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1791. } else if (s->ps.sps->chroma_format_idc != 0) {
  1792. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1793. if (chroma_mode != 4) {
  1794. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1795. lc->pu.intra_pred_mode_c[0] = 34;
  1796. else
  1797. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1798. } else {
  1799. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1800. }
  1801. }
  1802. }
  1803. static void intra_prediction_unit_default_value(HEVCContext *s,
  1804. int x0, int y0,
  1805. int log2_cb_size)
  1806. {
  1807. HEVCLocalContext *lc = s->HEVClc;
  1808. int pb_size = 1 << log2_cb_size;
  1809. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1810. int min_pu_width = s->ps.sps->min_pu_width;
  1811. MvField *tab_mvf = s->ref->tab_mvf;
  1812. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1813. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1814. int j, k;
  1815. if (size_in_pus == 0)
  1816. size_in_pus = 1;
  1817. for (j = 0; j < size_in_pus; j++)
  1818. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1819. if (lc->cu.pred_mode == MODE_INTRA)
  1820. for (j = 0; j < size_in_pus; j++)
  1821. for (k = 0; k < size_in_pus; k++)
  1822. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1823. }
  1824. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1825. {
  1826. int cb_size = 1 << log2_cb_size;
  1827. HEVCLocalContext *lc = s->HEVClc;
  1828. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1829. int length = cb_size >> log2_min_cb_size;
  1830. int min_cb_width = s->ps.sps->min_cb_width;
  1831. int x_cb = x0 >> log2_min_cb_size;
  1832. int y_cb = y0 >> log2_min_cb_size;
  1833. int idx = log2_cb_size - 2;
  1834. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1835. int x, y, ret;
  1836. lc->cu.x = x0;
  1837. lc->cu.y = y0;
  1838. lc->cu.pred_mode = MODE_INTRA;
  1839. lc->cu.part_mode = PART_2Nx2N;
  1840. lc->cu.intra_split_flag = 0;
  1841. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1842. for (x = 0; x < 4; x++)
  1843. lc->pu.intra_pred_mode[x] = 1;
  1844. if (s->ps.pps->transquant_bypass_enable_flag) {
  1845. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1846. if (lc->cu.cu_transquant_bypass_flag)
  1847. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1848. } else
  1849. lc->cu.cu_transquant_bypass_flag = 0;
  1850. if (s->sh.slice_type != HEVC_SLICE_I) {
  1851. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1852. x = y_cb * min_cb_width + x_cb;
  1853. for (y = 0; y < length; y++) {
  1854. memset(&s->skip_flag[x], skip_flag, length);
  1855. x += min_cb_width;
  1856. }
  1857. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1858. } else {
  1859. x = y_cb * min_cb_width + x_cb;
  1860. for (y = 0; y < length; y++) {
  1861. memset(&s->skip_flag[x], 0, length);
  1862. x += min_cb_width;
  1863. }
  1864. }
  1865. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1866. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1867. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1868. if (!s->sh.disable_deblocking_filter_flag)
  1869. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1870. } else {
  1871. int pcm_flag = 0;
  1872. if (s->sh.slice_type != HEVC_SLICE_I)
  1873. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1874. if (lc->cu.pred_mode != MODE_INTRA ||
  1875. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1876. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1877. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1878. lc->cu.pred_mode == MODE_INTRA;
  1879. }
  1880. if (lc->cu.pred_mode == MODE_INTRA) {
  1881. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1882. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1883. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1884. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1885. }
  1886. if (pcm_flag) {
  1887. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1888. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1889. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1890. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1891. if (ret < 0)
  1892. return ret;
  1893. } else {
  1894. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1895. }
  1896. } else {
  1897. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1898. switch (lc->cu.part_mode) {
  1899. case PART_2Nx2N:
  1900. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1901. break;
  1902. case PART_2NxN:
  1903. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1904. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1905. break;
  1906. case PART_Nx2N:
  1907. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1908. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1909. break;
  1910. case PART_2NxnU:
  1911. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1912. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1913. break;
  1914. case PART_2NxnD:
  1915. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1916. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1917. break;
  1918. case PART_nLx2N:
  1919. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1920. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1921. break;
  1922. case PART_nRx2N:
  1923. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1924. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1925. break;
  1926. case PART_NxN:
  1927. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1928. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1929. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1930. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1931. break;
  1932. }
  1933. }
  1934. if (!pcm_flag) {
  1935. int rqt_root_cbf = 1;
  1936. if (lc->cu.pred_mode != MODE_INTRA &&
  1937. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1938. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1939. }
  1940. if (rqt_root_cbf) {
  1941. const static int cbf[2] = { 0 };
  1942. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1943. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1944. s->ps.sps->max_transform_hierarchy_depth_inter;
  1945. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1946. log2_cb_size,
  1947. log2_cb_size, 0, 0, cbf, cbf);
  1948. if (ret < 0)
  1949. return ret;
  1950. } else {
  1951. if (!s->sh.disable_deblocking_filter_flag)
  1952. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1953. }
  1954. }
  1955. }
  1956. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1957. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1958. x = y_cb * min_cb_width + x_cb;
  1959. for (y = 0; y < length; y++) {
  1960. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1961. x += min_cb_width;
  1962. }
  1963. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1964. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1965. lc->qPy_pred = lc->qp_y;
  1966. }
  1967. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1968. return 0;
  1969. }
  1970. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1971. int log2_cb_size, int cb_depth)
  1972. {
  1973. HEVCLocalContext *lc = s->HEVClc;
  1974. const int cb_size = 1 << log2_cb_size;
  1975. int ret;
  1976. int split_cu;
  1977. lc->ct_depth = cb_depth;
  1978. if (x0 + cb_size <= s->ps.sps->width &&
  1979. y0 + cb_size <= s->ps.sps->height &&
  1980. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1981. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1982. } else {
  1983. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1984. }
  1985. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1986. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1987. lc->tu.is_cu_qp_delta_coded = 0;
  1988. lc->tu.cu_qp_delta = 0;
  1989. }
  1990. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1991. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1992. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1993. }
  1994. if (split_cu) {
  1995. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1996. const int cb_size_split = cb_size >> 1;
  1997. const int x1 = x0 + cb_size_split;
  1998. const int y1 = y0 + cb_size_split;
  1999. int more_data = 0;
  2000. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  2001. if (more_data < 0)
  2002. return more_data;
  2003. if (more_data && x1 < s->ps.sps->width) {
  2004. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  2005. if (more_data < 0)
  2006. return more_data;
  2007. }
  2008. if (more_data && y1 < s->ps.sps->height) {
  2009. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  2010. if (more_data < 0)
  2011. return more_data;
  2012. }
  2013. if (more_data && x1 < s->ps.sps->width &&
  2014. y1 < s->ps.sps->height) {
  2015. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  2016. if (more_data < 0)
  2017. return more_data;
  2018. }
  2019. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2020. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  2021. lc->qPy_pred = lc->qp_y;
  2022. if (more_data)
  2023. return ((x1 + cb_size_split) < s->ps.sps->width ||
  2024. (y1 + cb_size_split) < s->ps.sps->height);
  2025. else
  2026. return 0;
  2027. } else {
  2028. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  2029. if (ret < 0)
  2030. return ret;
  2031. if ((!((x0 + cb_size) %
  2032. (1 << (s->ps.sps->log2_ctb_size))) ||
  2033. (x0 + cb_size >= s->ps.sps->width)) &&
  2034. (!((y0 + cb_size) %
  2035. (1 << (s->ps.sps->log2_ctb_size))) ||
  2036. (y0 + cb_size >= s->ps.sps->height))) {
  2037. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  2038. return !end_of_slice_flag;
  2039. } else {
  2040. return 1;
  2041. }
  2042. }
  2043. return 0;
  2044. }
  2045. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2046. int ctb_addr_ts)
  2047. {
  2048. HEVCLocalContext *lc = s->HEVClc;
  2049. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2050. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2051. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2052. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2053. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2054. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2055. lc->first_qp_group = 1;
  2056. lc->end_of_tiles_x = s->ps.sps->width;
  2057. } else if (s->ps.pps->tiles_enabled_flag) {
  2058. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2059. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2060. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2061. lc->first_qp_group = 1;
  2062. }
  2063. } else {
  2064. lc->end_of_tiles_x = s->ps.sps->width;
  2065. }
  2066. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2067. lc->boundary_flags = 0;
  2068. if (s->ps.pps->tiles_enabled_flag) {
  2069. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2070. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2071. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2072. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2073. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2074. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2075. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2076. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2077. } else {
  2078. if (ctb_addr_in_slice <= 0)
  2079. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2080. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2081. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2082. }
  2083. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2084. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2085. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2086. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2087. }
  2088. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2089. {
  2090. HEVCContext *s = avctxt->priv_data;
  2091. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2092. int more_data = 1;
  2093. int x_ctb = 0;
  2094. int y_ctb = 0;
  2095. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2096. int ret;
  2097. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2098. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2099. return AVERROR_INVALIDDATA;
  2100. }
  2101. if (s->sh.dependent_slice_segment_flag) {
  2102. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2103. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2104. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2105. return AVERROR_INVALIDDATA;
  2106. }
  2107. }
  2108. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2109. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2110. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2111. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2112. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2113. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2114. if (ret < 0) {
  2115. s->tab_slice_address[ctb_addr_rs] = -1;
  2116. return ret;
  2117. }
  2118. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2119. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2120. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2121. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2122. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2123. if (more_data < 0) {
  2124. s->tab_slice_address[ctb_addr_rs] = -1;
  2125. return more_data;
  2126. }
  2127. ctb_addr_ts++;
  2128. ff_hevc_save_states(s, ctb_addr_ts);
  2129. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2130. }
  2131. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2132. y_ctb + ctb_size >= s->ps.sps->height)
  2133. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2134. return ctb_addr_ts;
  2135. }
  2136. static int hls_slice_data(HEVCContext *s)
  2137. {
  2138. int arg[2];
  2139. int ret[2];
  2140. arg[0] = 0;
  2141. arg[1] = 1;
  2142. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2143. return ret[0];
  2144. }
  2145. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2146. {
  2147. HEVCContext *s1 = avctxt->priv_data, *s;
  2148. HEVCLocalContext *lc;
  2149. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2150. int more_data = 1;
  2151. int *ctb_row_p = input_ctb_row;
  2152. int ctb_row = ctb_row_p[job];
  2153. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2154. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2155. int thread = ctb_row % s1->threads_number;
  2156. int ret;
  2157. s = s1->sList[self_id];
  2158. lc = s->HEVClc;
  2159. if(ctb_row) {
  2160. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2161. if (ret < 0)
  2162. goto error;
  2163. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2164. }
  2165. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2166. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2167. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2168. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2169. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2170. if (atomic_load(&s1->wpp_err)) {
  2171. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2172. return 0;
  2173. }
  2174. ret = ff_hevc_cabac_init(s, ctb_addr_ts);
  2175. if (ret < 0)
  2176. goto error;
  2177. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2178. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2179. if (more_data < 0) {
  2180. ret = more_data;
  2181. goto error;
  2182. }
  2183. ctb_addr_ts++;
  2184. ff_hevc_save_states(s, ctb_addr_ts);
  2185. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2186. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2187. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2188. atomic_store(&s1->wpp_err, 1);
  2189. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2190. return 0;
  2191. }
  2192. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2193. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2194. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2195. return ctb_addr_ts;
  2196. }
  2197. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2198. x_ctb+=ctb_size;
  2199. if(x_ctb >= s->ps.sps->width) {
  2200. break;
  2201. }
  2202. }
  2203. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2204. return 0;
  2205. error:
  2206. s->tab_slice_address[ctb_addr_rs] = -1;
  2207. atomic_store(&s1->wpp_err, 1);
  2208. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2209. return ret;
  2210. }
  2211. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2212. {
  2213. const uint8_t *data = nal->data;
  2214. int length = nal->size;
  2215. HEVCLocalContext *lc = s->HEVClc;
  2216. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2217. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2218. int64_t offset;
  2219. int64_t startheader, cmpt = 0;
  2220. int i, j, res = 0;
  2221. if (!ret || !arg) {
  2222. av_free(ret);
  2223. av_free(arg);
  2224. return AVERROR(ENOMEM);
  2225. }
  2226. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2227. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2228. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2229. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2230. );
  2231. res = AVERROR_INVALIDDATA;
  2232. goto error;
  2233. }
  2234. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2235. if (!s->sList[1]) {
  2236. for (i = 1; i < s->threads_number; i++) {
  2237. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2238. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2239. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2240. s->sList[i]->HEVClc = s->HEVClcList[i];
  2241. }
  2242. }
  2243. offset = (lc->gb.index >> 3);
  2244. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2245. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2246. startheader--;
  2247. cmpt++;
  2248. }
  2249. }
  2250. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2251. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2252. for (j = 0, cmpt = 0, startheader = offset
  2253. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2254. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2255. startheader--;
  2256. cmpt++;
  2257. }
  2258. }
  2259. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2260. s->sh.offset[i - 1] = offset;
  2261. }
  2262. if (s->sh.num_entry_point_offsets != 0) {
  2263. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2264. if (length < offset) {
  2265. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2266. res = AVERROR_INVALIDDATA;
  2267. goto error;
  2268. }
  2269. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2270. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2271. }
  2272. s->data = data;
  2273. for (i = 1; i < s->threads_number; i++) {
  2274. s->sList[i]->HEVClc->first_qp_group = 1;
  2275. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2276. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2277. s->sList[i]->HEVClc = s->HEVClcList[i];
  2278. }
  2279. atomic_store(&s->wpp_err, 0);
  2280. ff_reset_entries(s->avctx);
  2281. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2282. arg[i] = i;
  2283. ret[i] = 0;
  2284. }
  2285. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2286. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2287. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2288. res += ret[i];
  2289. error:
  2290. av_free(ret);
  2291. av_free(arg);
  2292. return res;
  2293. }
  2294. static int set_side_data(HEVCContext *s)
  2295. {
  2296. AVFrame *out = s->ref->frame;
  2297. if (s->sei.frame_packing.present &&
  2298. s->sei.frame_packing.arrangement_type >= 3 &&
  2299. s->sei.frame_packing.arrangement_type <= 5 &&
  2300. s->sei.frame_packing.content_interpretation_type > 0 &&
  2301. s->sei.frame_packing.content_interpretation_type < 3) {
  2302. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2303. if (!stereo)
  2304. return AVERROR(ENOMEM);
  2305. switch (s->sei.frame_packing.arrangement_type) {
  2306. case 3:
  2307. if (s->sei.frame_packing.quincunx_subsampling)
  2308. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2309. else
  2310. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2311. break;
  2312. case 4:
  2313. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2314. break;
  2315. case 5:
  2316. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2317. break;
  2318. }
  2319. if (s->sei.frame_packing.content_interpretation_type == 2)
  2320. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2321. if (s->sei.frame_packing.arrangement_type == 5) {
  2322. if (s->sei.frame_packing.current_frame_is_frame0_flag)
  2323. stereo->view = AV_STEREO3D_VIEW_LEFT;
  2324. else
  2325. stereo->view = AV_STEREO3D_VIEW_RIGHT;
  2326. }
  2327. }
  2328. if (s->sei.display_orientation.present &&
  2329. (s->sei.display_orientation.anticlockwise_rotation ||
  2330. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2331. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2332. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2333. AV_FRAME_DATA_DISPLAYMATRIX,
  2334. sizeof(int32_t) * 9);
  2335. if (!rotation)
  2336. return AVERROR(ENOMEM);
  2337. av_display_rotation_set((int32_t *)rotation->data, angle);
  2338. av_display_matrix_flip((int32_t *)rotation->data,
  2339. s->sei.display_orientation.hflip,
  2340. s->sei.display_orientation.vflip);
  2341. }
  2342. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2343. // so the side data persists for the entire coded video sequence.
  2344. if (s->sei.mastering_display.present > 0 &&
  2345. IS_IRAP(s) && s->no_rasl_output_flag) {
  2346. s->sei.mastering_display.present--;
  2347. }
  2348. if (s->sei.mastering_display.present) {
  2349. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2350. const int mapping[3] = {2, 0, 1};
  2351. const int chroma_den = 50000;
  2352. const int luma_den = 10000;
  2353. int i;
  2354. AVMasteringDisplayMetadata *metadata =
  2355. av_mastering_display_metadata_create_side_data(out);
  2356. if (!metadata)
  2357. return AVERROR(ENOMEM);
  2358. for (i = 0; i < 3; i++) {
  2359. const int j = mapping[i];
  2360. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2361. metadata->display_primaries[i][0].den = chroma_den;
  2362. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2363. metadata->display_primaries[i][1].den = chroma_den;
  2364. }
  2365. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2366. metadata->white_point[0].den = chroma_den;
  2367. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2368. metadata->white_point[1].den = chroma_den;
  2369. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2370. metadata->max_luminance.den = luma_den;
  2371. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2372. metadata->min_luminance.den = luma_den;
  2373. metadata->has_luminance = 1;
  2374. metadata->has_primaries = 1;
  2375. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2376. av_log(s->avctx, AV_LOG_DEBUG,
  2377. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2378. av_q2d(metadata->display_primaries[0][0]),
  2379. av_q2d(metadata->display_primaries[0][1]),
  2380. av_q2d(metadata->display_primaries[1][0]),
  2381. av_q2d(metadata->display_primaries[1][1]),
  2382. av_q2d(metadata->display_primaries[2][0]),
  2383. av_q2d(metadata->display_primaries[2][1]),
  2384. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2385. av_log(s->avctx, AV_LOG_DEBUG,
  2386. "min_luminance=%f, max_luminance=%f\n",
  2387. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2388. }
  2389. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2390. // so the side data persists for the entire coded video sequence.
  2391. if (s->sei.content_light.present > 0 &&
  2392. IS_IRAP(s) && s->no_rasl_output_flag) {
  2393. s->sei.content_light.present--;
  2394. }
  2395. if (s->sei.content_light.present) {
  2396. AVContentLightMetadata *metadata =
  2397. av_content_light_metadata_create_side_data(out);
  2398. if (!metadata)
  2399. return AVERROR(ENOMEM);
  2400. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2401. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2402. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2403. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2404. metadata->MaxCLL, metadata->MaxFALL);
  2405. }
  2406. if (s->sei.a53_caption.a53_caption) {
  2407. AVFrameSideData* sd = av_frame_new_side_data(out,
  2408. AV_FRAME_DATA_A53_CC,
  2409. s->sei.a53_caption.a53_caption_size);
  2410. if (sd)
  2411. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2412. av_freep(&s->sei.a53_caption.a53_caption);
  2413. s->sei.a53_caption.a53_caption_size = 0;
  2414. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2415. }
  2416. if (s->sei.alternative_transfer.present &&
  2417. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  2418. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  2419. s->avctx->color_trc = out->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  2420. }
  2421. return 0;
  2422. }
  2423. static int hevc_frame_start(HEVCContext *s)
  2424. {
  2425. HEVCLocalContext *lc = s->HEVClc;
  2426. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2427. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2428. int ret;
  2429. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2430. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2431. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2432. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2433. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2434. s->is_decoded = 0;
  2435. s->first_nal_type = s->nal_unit_type;
  2436. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2437. if (s->ps.pps->tiles_enabled_flag)
  2438. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2439. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2440. if (ret < 0)
  2441. goto fail;
  2442. ret = ff_hevc_frame_rps(s);
  2443. if (ret < 0) {
  2444. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2445. goto fail;
  2446. }
  2447. s->ref->frame->key_frame = IS_IRAP(s);
  2448. ret = set_side_data(s);
  2449. if (ret < 0)
  2450. goto fail;
  2451. s->frame->pict_type = 3 - s->sh.slice_type;
  2452. if (!IS_IRAP(s))
  2453. ff_hevc_bump_frame(s);
  2454. av_frame_unref(s->output_frame);
  2455. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2456. if (ret < 0)
  2457. goto fail;
  2458. if (!s->avctx->hwaccel)
  2459. ff_thread_finish_setup(s->avctx);
  2460. return 0;
  2461. fail:
  2462. if (s->ref)
  2463. ff_hevc_unref_frame(s, s->ref, ~0);
  2464. s->ref = NULL;
  2465. return ret;
  2466. }
  2467. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2468. {
  2469. HEVCLocalContext *lc = s->HEVClc;
  2470. GetBitContext *gb = &lc->gb;
  2471. int ctb_addr_ts, ret;
  2472. *gb = nal->gb;
  2473. s->nal_unit_type = nal->type;
  2474. s->temporal_id = nal->temporal_id;
  2475. switch (s->nal_unit_type) {
  2476. case HEVC_NAL_VPS:
  2477. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2478. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2479. nal->type,
  2480. nal->raw_data,
  2481. nal->raw_size);
  2482. if (ret < 0)
  2483. goto fail;
  2484. }
  2485. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2486. if (ret < 0)
  2487. goto fail;
  2488. break;
  2489. case HEVC_NAL_SPS:
  2490. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2491. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2492. nal->type,
  2493. nal->raw_data,
  2494. nal->raw_size);
  2495. if (ret < 0)
  2496. goto fail;
  2497. }
  2498. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2499. s->apply_defdispwin);
  2500. if (ret < 0)
  2501. goto fail;
  2502. break;
  2503. case HEVC_NAL_PPS:
  2504. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2505. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2506. nal->type,
  2507. nal->raw_data,
  2508. nal->raw_size);
  2509. if (ret < 0)
  2510. goto fail;
  2511. }
  2512. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2513. if (ret < 0)
  2514. goto fail;
  2515. break;
  2516. case HEVC_NAL_SEI_PREFIX:
  2517. case HEVC_NAL_SEI_SUFFIX:
  2518. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2519. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2520. nal->type,
  2521. nal->raw_data,
  2522. nal->raw_size);
  2523. if (ret < 0)
  2524. goto fail;
  2525. }
  2526. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2527. if (ret < 0)
  2528. goto fail;
  2529. break;
  2530. case HEVC_NAL_TRAIL_R:
  2531. case HEVC_NAL_TRAIL_N:
  2532. case HEVC_NAL_TSA_N:
  2533. case HEVC_NAL_TSA_R:
  2534. case HEVC_NAL_STSA_N:
  2535. case HEVC_NAL_STSA_R:
  2536. case HEVC_NAL_BLA_W_LP:
  2537. case HEVC_NAL_BLA_W_RADL:
  2538. case HEVC_NAL_BLA_N_LP:
  2539. case HEVC_NAL_IDR_W_RADL:
  2540. case HEVC_NAL_IDR_N_LP:
  2541. case HEVC_NAL_CRA_NUT:
  2542. case HEVC_NAL_RADL_N:
  2543. case HEVC_NAL_RADL_R:
  2544. case HEVC_NAL_RASL_N:
  2545. case HEVC_NAL_RASL_R:
  2546. ret = hls_slice_header(s);
  2547. if (ret < 0)
  2548. return ret;
  2549. if (
  2550. (s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) ||
  2551. (s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) ||
  2552. (s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s))) {
  2553. break;
  2554. }
  2555. if (s->sh.first_slice_in_pic_flag) {
  2556. if (s->ref) {
  2557. av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
  2558. goto fail;
  2559. }
  2560. if (s->max_ra == INT_MAX) {
  2561. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2562. s->max_ra = s->poc;
  2563. } else {
  2564. if (IS_IDR(s))
  2565. s->max_ra = INT_MIN;
  2566. }
  2567. }
  2568. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2569. s->poc <= s->max_ra) {
  2570. s->is_decoded = 0;
  2571. break;
  2572. } else {
  2573. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2574. s->max_ra = INT_MIN;
  2575. }
  2576. ret = hevc_frame_start(s);
  2577. if (ret < 0)
  2578. return ret;
  2579. } else if (!s->ref) {
  2580. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2581. goto fail;
  2582. }
  2583. if (s->nal_unit_type != s->first_nal_type) {
  2584. av_log(s->avctx, AV_LOG_ERROR,
  2585. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2586. s->first_nal_type, s->nal_unit_type);
  2587. return AVERROR_INVALIDDATA;
  2588. }
  2589. if (!s->sh.dependent_slice_segment_flag &&
  2590. s->sh.slice_type != HEVC_SLICE_I) {
  2591. ret = ff_hevc_slice_rpl(s);
  2592. if (ret < 0) {
  2593. av_log(s->avctx, AV_LOG_WARNING,
  2594. "Error constructing the reference lists for the current slice.\n");
  2595. goto fail;
  2596. }
  2597. }
  2598. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2599. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2600. if (ret < 0)
  2601. goto fail;
  2602. }
  2603. if (s->avctx->hwaccel) {
  2604. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2605. if (ret < 0)
  2606. goto fail;
  2607. } else {
  2608. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2609. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2610. else
  2611. ctb_addr_ts = hls_slice_data(s);
  2612. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2613. s->is_decoded = 1;
  2614. }
  2615. if (ctb_addr_ts < 0) {
  2616. ret = ctb_addr_ts;
  2617. goto fail;
  2618. }
  2619. }
  2620. break;
  2621. case HEVC_NAL_EOS_NUT:
  2622. case HEVC_NAL_EOB_NUT:
  2623. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2624. s->max_ra = INT_MAX;
  2625. break;
  2626. case HEVC_NAL_AUD:
  2627. case HEVC_NAL_FD_NUT:
  2628. break;
  2629. default:
  2630. av_log(s->avctx, AV_LOG_INFO,
  2631. "Skipping NAL unit %d\n", s->nal_unit_type);
  2632. }
  2633. return 0;
  2634. fail:
  2635. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2636. return ret;
  2637. return 0;
  2638. }
  2639. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2640. {
  2641. int i, ret = 0;
  2642. int eos_at_start = 1;
  2643. s->ref = NULL;
  2644. s->last_eos = s->eos;
  2645. s->eos = 0;
  2646. /* split the input packet into NAL units, so we know the upper bound on the
  2647. * number of slices in the frame */
  2648. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2649. s->nal_length_size, s->avctx->codec_id, 1);
  2650. if (ret < 0) {
  2651. av_log(s->avctx, AV_LOG_ERROR,
  2652. "Error splitting the input into NAL units.\n");
  2653. return ret;
  2654. }
  2655. for (i = 0; i < s->pkt.nb_nals; i++) {
  2656. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2657. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2658. if (eos_at_start) {
  2659. s->last_eos = 1;
  2660. } else {
  2661. s->eos = 1;
  2662. }
  2663. } else {
  2664. eos_at_start = 0;
  2665. }
  2666. }
  2667. /* decode the NAL units */
  2668. for (i = 0; i < s->pkt.nb_nals; i++) {
  2669. H2645NAL *nal = &s->pkt.nals[i];
  2670. if (s->avctx->skip_frame >= AVDISCARD_ALL ||
  2671. (s->avctx->skip_frame >= AVDISCARD_NONREF
  2672. && ff_hevc_nal_is_nonref(nal->type)))
  2673. continue;
  2674. ret = decode_nal_unit(s, nal);
  2675. if (ret < 0) {
  2676. av_log(s->avctx, AV_LOG_WARNING,
  2677. "Error parsing NAL unit #%d.\n", i);
  2678. goto fail;
  2679. }
  2680. }
  2681. fail:
  2682. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2683. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2684. return ret;
  2685. }
  2686. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2687. {
  2688. int i;
  2689. for (i = 0; i < 16; i++)
  2690. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2691. }
  2692. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2693. {
  2694. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2695. int pixel_shift;
  2696. int i, j;
  2697. if (!desc)
  2698. return AVERROR(EINVAL);
  2699. pixel_shift = desc->comp[0].depth > 8;
  2700. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2701. s->poc);
  2702. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2703. * on BE arches */
  2704. #if HAVE_BIGENDIAN
  2705. if (pixel_shift && !s->checksum_buf) {
  2706. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2707. FFMAX3(frame->linesize[0], frame->linesize[1],
  2708. frame->linesize[2]));
  2709. if (!s->checksum_buf)
  2710. return AVERROR(ENOMEM);
  2711. }
  2712. #endif
  2713. for (i = 0; frame->data[i]; i++) {
  2714. int width = s->avctx->coded_width;
  2715. int height = s->avctx->coded_height;
  2716. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2717. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2718. uint8_t md5[16];
  2719. av_md5_init(s->md5_ctx);
  2720. for (j = 0; j < h; j++) {
  2721. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2722. #if HAVE_BIGENDIAN
  2723. if (pixel_shift) {
  2724. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2725. (const uint16_t *) src, w);
  2726. src = s->checksum_buf;
  2727. }
  2728. #endif
  2729. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2730. }
  2731. av_md5_final(s->md5_ctx, md5);
  2732. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2733. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2734. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2735. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2736. } else {
  2737. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2738. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2739. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2740. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2741. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2742. return AVERROR_INVALIDDATA;
  2743. }
  2744. }
  2745. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2746. return 0;
  2747. }
  2748. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2749. {
  2750. int ret, i;
  2751. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2752. &s->nal_length_size, s->avctx->err_recognition,
  2753. s->apply_defdispwin, s->avctx);
  2754. if (ret < 0)
  2755. return ret;
  2756. /* export stream parameters from the first SPS */
  2757. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2758. if (first && s->ps.sps_list[i]) {
  2759. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2760. export_stream_params(s->avctx, &s->ps, sps);
  2761. break;
  2762. }
  2763. }
  2764. return 0;
  2765. }
  2766. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2767. AVPacket *avpkt)
  2768. {
  2769. int ret;
  2770. int new_extradata_size;
  2771. uint8_t *new_extradata;
  2772. HEVCContext *s = avctx->priv_data;
  2773. if (!avpkt->size) {
  2774. ret = ff_hevc_output_frame(s, data, 1);
  2775. if (ret < 0)
  2776. return ret;
  2777. *got_output = ret;
  2778. return 0;
  2779. }
  2780. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2781. &new_extradata_size);
  2782. if (new_extradata && new_extradata_size > 0) {
  2783. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2784. if (ret < 0)
  2785. return ret;
  2786. }
  2787. s->ref = NULL;
  2788. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2789. if (ret < 0)
  2790. return ret;
  2791. if (avctx->hwaccel) {
  2792. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2793. av_log(avctx, AV_LOG_ERROR,
  2794. "hardware accelerator failed to decode picture\n");
  2795. ff_hevc_unref_frame(s, s->ref, ~0);
  2796. return ret;
  2797. }
  2798. } else {
  2799. /* verify the SEI checksum */
  2800. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2801. s->sei.picture_hash.is_md5) {
  2802. ret = verify_md5(s, s->ref->frame);
  2803. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2804. ff_hevc_unref_frame(s, s->ref, ~0);
  2805. return ret;
  2806. }
  2807. }
  2808. }
  2809. s->sei.picture_hash.is_md5 = 0;
  2810. if (s->is_decoded) {
  2811. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2812. s->is_decoded = 0;
  2813. }
  2814. if (s->output_frame->buf[0]) {
  2815. av_frame_move_ref(data, s->output_frame);
  2816. *got_output = 1;
  2817. }
  2818. return avpkt->size;
  2819. }
  2820. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2821. {
  2822. int ret;
  2823. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2824. if (ret < 0)
  2825. return ret;
  2826. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2827. if (!dst->tab_mvf_buf)
  2828. goto fail;
  2829. dst->tab_mvf = src->tab_mvf;
  2830. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2831. if (!dst->rpl_tab_buf)
  2832. goto fail;
  2833. dst->rpl_tab = src->rpl_tab;
  2834. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2835. if (!dst->rpl_buf)
  2836. goto fail;
  2837. dst->poc = src->poc;
  2838. dst->ctb_count = src->ctb_count;
  2839. dst->flags = src->flags;
  2840. dst->sequence = src->sequence;
  2841. if (src->hwaccel_picture_private) {
  2842. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2843. if (!dst->hwaccel_priv_buf)
  2844. goto fail;
  2845. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2846. }
  2847. return 0;
  2848. fail:
  2849. ff_hevc_unref_frame(s, dst, ~0);
  2850. return AVERROR(ENOMEM);
  2851. }
  2852. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2853. {
  2854. HEVCContext *s = avctx->priv_data;
  2855. int i;
  2856. pic_arrays_free(s);
  2857. av_freep(&s->md5_ctx);
  2858. av_freep(&s->cabac_state);
  2859. for (i = 0; i < 3; i++) {
  2860. av_freep(&s->sao_pixel_buffer_h[i]);
  2861. av_freep(&s->sao_pixel_buffer_v[i]);
  2862. }
  2863. av_frame_free(&s->output_frame);
  2864. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2865. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2866. av_frame_free(&s->DPB[i].frame);
  2867. }
  2868. ff_hevc_ps_uninit(&s->ps);
  2869. av_freep(&s->sh.entry_point_offset);
  2870. av_freep(&s->sh.offset);
  2871. av_freep(&s->sh.size);
  2872. for (i = 1; i < s->threads_number; i++) {
  2873. HEVCLocalContext *lc = s->HEVClcList[i];
  2874. if (lc) {
  2875. av_freep(&s->HEVClcList[i]);
  2876. av_freep(&s->sList[i]);
  2877. }
  2878. }
  2879. if (s->HEVClc == s->HEVClcList[0])
  2880. s->HEVClc = NULL;
  2881. av_freep(&s->HEVClcList[0]);
  2882. ff_h2645_packet_uninit(&s->pkt);
  2883. return 0;
  2884. }
  2885. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2886. {
  2887. HEVCContext *s = avctx->priv_data;
  2888. int i;
  2889. s->avctx = avctx;
  2890. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2891. if (!s->HEVClc)
  2892. goto fail;
  2893. s->HEVClcList[0] = s->HEVClc;
  2894. s->sList[0] = s;
  2895. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2896. if (!s->cabac_state)
  2897. goto fail;
  2898. s->output_frame = av_frame_alloc();
  2899. if (!s->output_frame)
  2900. goto fail;
  2901. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2902. s->DPB[i].frame = av_frame_alloc();
  2903. if (!s->DPB[i].frame)
  2904. goto fail;
  2905. s->DPB[i].tf.f = s->DPB[i].frame;
  2906. }
  2907. s->max_ra = INT_MAX;
  2908. s->md5_ctx = av_md5_alloc();
  2909. if (!s->md5_ctx)
  2910. goto fail;
  2911. ff_bswapdsp_init(&s->bdsp);
  2912. s->context_initialized = 1;
  2913. s->eos = 0;
  2914. ff_hevc_reset_sei(&s->sei);
  2915. return 0;
  2916. fail:
  2917. hevc_decode_free(avctx);
  2918. return AVERROR(ENOMEM);
  2919. }
  2920. #if HAVE_THREADS
  2921. static int hevc_update_thread_context(AVCodecContext *dst,
  2922. const AVCodecContext *src)
  2923. {
  2924. HEVCContext *s = dst->priv_data;
  2925. HEVCContext *s0 = src->priv_data;
  2926. int i, ret;
  2927. if (!s->context_initialized) {
  2928. ret = hevc_init_context(dst);
  2929. if (ret < 0)
  2930. return ret;
  2931. }
  2932. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2933. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2934. if (s0->DPB[i].frame->buf[0]) {
  2935. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2936. if (ret < 0)
  2937. return ret;
  2938. }
  2939. }
  2940. if (s->ps.sps != s0->ps.sps)
  2941. s->ps.sps = NULL;
  2942. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2943. av_buffer_unref(&s->ps.vps_list[i]);
  2944. if (s0->ps.vps_list[i]) {
  2945. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2946. if (!s->ps.vps_list[i])
  2947. return AVERROR(ENOMEM);
  2948. }
  2949. }
  2950. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2951. av_buffer_unref(&s->ps.sps_list[i]);
  2952. if (s0->ps.sps_list[i]) {
  2953. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2954. if (!s->ps.sps_list[i])
  2955. return AVERROR(ENOMEM);
  2956. }
  2957. }
  2958. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2959. av_buffer_unref(&s->ps.pps_list[i]);
  2960. if (s0->ps.pps_list[i]) {
  2961. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2962. if (!s->ps.pps_list[i])
  2963. return AVERROR(ENOMEM);
  2964. }
  2965. }
  2966. if (s->ps.sps != s0->ps.sps)
  2967. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2968. return ret;
  2969. s->seq_decode = s0->seq_decode;
  2970. s->seq_output = s0->seq_output;
  2971. s->pocTid0 = s0->pocTid0;
  2972. s->max_ra = s0->max_ra;
  2973. s->eos = s0->eos;
  2974. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2975. s->is_nalff = s0->is_nalff;
  2976. s->nal_length_size = s0->nal_length_size;
  2977. s->threads_number = s0->threads_number;
  2978. s->threads_type = s0->threads_type;
  2979. if (s0->eos) {
  2980. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2981. s->max_ra = INT_MAX;
  2982. }
  2983. s->sei.frame_packing = s0->sei.frame_packing;
  2984. s->sei.display_orientation = s0->sei.display_orientation;
  2985. s->sei.mastering_display = s0->sei.mastering_display;
  2986. s->sei.content_light = s0->sei.content_light;
  2987. s->sei.alternative_transfer = s0->sei.alternative_transfer;
  2988. return 0;
  2989. }
  2990. #endif
  2991. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2992. {
  2993. HEVCContext *s = avctx->priv_data;
  2994. int ret;
  2995. avctx->internal->allocate_progress = 1;
  2996. ret = hevc_init_context(avctx);
  2997. if (ret < 0)
  2998. return ret;
  2999. s->enable_parallel_tiles = 0;
  3000. s->sei.picture_timing.picture_struct = 0;
  3001. s->eos = 1;
  3002. atomic_init(&s->wpp_err, 0);
  3003. if(avctx->active_thread_type & FF_THREAD_SLICE)
  3004. s->threads_number = avctx->thread_count;
  3005. else
  3006. s->threads_number = 1;
  3007. if (avctx->extradata_size > 0 && avctx->extradata) {
  3008. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  3009. if (ret < 0) {
  3010. hevc_decode_free(avctx);
  3011. return ret;
  3012. }
  3013. }
  3014. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  3015. s->threads_type = FF_THREAD_FRAME;
  3016. else
  3017. s->threads_type = FF_THREAD_SLICE;
  3018. return 0;
  3019. }
  3020. #if HAVE_THREADS
  3021. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  3022. {
  3023. HEVCContext *s = avctx->priv_data;
  3024. int ret;
  3025. memset(s, 0, sizeof(*s));
  3026. ret = hevc_init_context(avctx);
  3027. if (ret < 0)
  3028. return ret;
  3029. return 0;
  3030. }
  3031. #endif
  3032. static void hevc_decode_flush(AVCodecContext *avctx)
  3033. {
  3034. HEVCContext *s = avctx->priv_data;
  3035. ff_hevc_flush_dpb(s);
  3036. s->max_ra = INT_MAX;
  3037. s->eos = 1;
  3038. }
  3039. #define OFFSET(x) offsetof(HEVCContext, x)
  3040. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  3041. static const AVOption options[] = {
  3042. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  3043. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3044. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  3045. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3046. { NULL },
  3047. };
  3048. static const AVClass hevc_decoder_class = {
  3049. .class_name = "HEVC decoder",
  3050. .item_name = av_default_item_name,
  3051. .option = options,
  3052. .version = LIBAVUTIL_VERSION_INT,
  3053. };
  3054. AVCodec ff_hevc_decoder = {
  3055. .name = "hevc",
  3056. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  3057. .type = AVMEDIA_TYPE_VIDEO,
  3058. .id = AV_CODEC_ID_HEVC,
  3059. .priv_data_size = sizeof(HEVCContext),
  3060. .priv_class = &hevc_decoder_class,
  3061. .init = hevc_decode_init,
  3062. .close = hevc_decode_free,
  3063. .decode = hevc_decode_frame,
  3064. .flush = hevc_decode_flush,
  3065. .update_thread_context = ONLY_IF_THREADS_ENABLED(hevc_update_thread_context),
  3066. .init_thread_copy = ONLY_IF_THREADS_ENABLED(hevc_init_thread_copy),
  3067. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  3068. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  3069. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  3070. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  3071. .hw_configs = (const AVCodecHWConfigInternal*[]) {
  3072. #if CONFIG_HEVC_DXVA2_HWACCEL
  3073. HWACCEL_DXVA2(hevc),
  3074. #endif
  3075. #if CONFIG_HEVC_D3D11VA_HWACCEL
  3076. HWACCEL_D3D11VA(hevc),
  3077. #endif
  3078. #if CONFIG_HEVC_D3D11VA2_HWACCEL
  3079. HWACCEL_D3D11VA2(hevc),
  3080. #endif
  3081. #if CONFIG_HEVC_NVDEC_HWACCEL
  3082. HWACCEL_NVDEC(hevc),
  3083. #endif
  3084. #if CONFIG_HEVC_VAAPI_HWACCEL
  3085. HWACCEL_VAAPI(hevc),
  3086. #endif
  3087. #if CONFIG_HEVC_VDPAU_HWACCEL
  3088. HWACCEL_VDPAU(hevc),
  3089. #endif
  3090. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  3091. HWACCEL_VIDEOTOOLBOX(hevc),
  3092. #endif
  3093. NULL
  3094. },
  3095. };