You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3259 lines
109KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** The VC1 Context
  192. * @fixme Change size wherever another size is more efficient
  193. * Many members are only used for Advanced Profile
  194. */
  195. typedef struct VC1Context{
  196. MpegEncContext s;
  197. int bits;
  198. /** Simple/Main Profile sequence header */
  199. //@{
  200. int res_sm; ///< reserved, 2b
  201. int res_x8; ///< reserved
  202. int multires; ///< frame-level RESPIC syntax element present
  203. int res_fasttx; ///< reserved, always 1
  204. int res_transtab; ///< reserved, always 0
  205. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  206. ///< at frame level
  207. int res_rtm_flag; ///< reserved, set to 1
  208. int reserved; ///< reserved
  209. //@}
  210. /** Advanced Profile */
  211. //@{
  212. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  213. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  214. int postprocflag; ///< Per-frame processing suggestion flag present
  215. int broadcast; ///< TFF/RFF present
  216. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  217. int tfcntrflag; ///< TFCNTR present
  218. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  219. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  220. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  221. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  222. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  223. int hrd_param_flag; ///< Presence of Hypothetical Reference
  224. ///< Decoder parameters
  225. //@}
  226. /** Sequence header data for all Profiles
  227. * TODO: choose between ints, uint8_ts and monobit flags
  228. */
  229. //@{
  230. int profile; ///< 2bits, Profile
  231. int frmrtq_postproc; ///< 3bits,
  232. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  233. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  234. int extended_mv; ///< Ext MV in P/B (not in Simple)
  235. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  236. int vstransform; ///< variable-size [48]x[48] transform type + info
  237. int overlap; ///< overlapped transforms in use
  238. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  239. int finterpflag; ///< INTERPFRM present
  240. //@}
  241. /** Frame decoding info for all profiles */
  242. //@{
  243. uint8_t mv_mode; ///< MV coding monde
  244. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  245. int k_x; ///< Number of bits for MVs (depends on MV range)
  246. int k_y; ///< Number of bits for MVs (depends on MV range)
  247. int range_x, range_y; ///< MV range
  248. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  249. /** pquant parameters */
  250. //@{
  251. uint8_t dquantfrm;
  252. uint8_t dqprofile;
  253. uint8_t dqsbedge;
  254. uint8_t dqbilevel;
  255. //@}
  256. /** AC coding set indexes
  257. * @see 8.1.1.10, p(1)10
  258. */
  259. //@{
  260. int c_ac_table_index; ///< Chroma index from ACFRM element
  261. int y_ac_table_index; ///< Luma index from AC2FRM element
  262. //@}
  263. int ttfrm; ///< Transform type info present at frame level
  264. uint8_t ttmbf; ///< Transform type flag
  265. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  266. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  267. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  268. int pqindex; ///< raw pqindex used in coding set selection
  269. int a_avail, c_avail;
  270. uint8_t *mb_type_base, *mb_type[3];
  271. /** Luma compensation parameters */
  272. //@{
  273. uint8_t lumscale;
  274. uint8_t lumshift;
  275. //@}
  276. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  277. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  278. uint8_t respic; ///< Frame-level flag for resized images
  279. int buffer_fullness; ///< HRD info
  280. /** Ranges:
  281. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  282. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  283. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  284. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  285. */
  286. uint8_t mvrange;
  287. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  288. VLC *cbpcy_vlc; ///< CBPCY VLC table
  289. int tt_index; ///< Index for Transform Type tables
  290. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  291. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  292. int mv_type_is_raw; ///< mv type mb plane is not coded
  293. int dmb_is_raw; ///< direct mb plane is raw
  294. int skip_is_raw; ///< skip mb plane is not coded
  295. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  296. int rnd; ///< rounding control
  297. /** Frame decoding info for S/M profiles only */
  298. //@{
  299. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  300. uint8_t interpfrm;
  301. //@}
  302. /** Frame decoding info for Advanced profile */
  303. //@{
  304. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  305. uint8_t numpanscanwin;
  306. uint8_t tfcntr;
  307. uint8_t rptfrm, tff, rff;
  308. uint16_t topleftx;
  309. uint16_t toplefty;
  310. uint16_t bottomrightx;
  311. uint16_t bottomrighty;
  312. uint8_t uvsamp;
  313. uint8_t postproc;
  314. int hrd_num_leaky_buckets;
  315. uint8_t bit_rate_exponent;
  316. uint8_t buffer_size_exponent;
  317. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  318. // BitPlane over_flags_plane; ///< Overflags bitplane
  319. uint8_t condover;
  320. uint16_t *hrd_rate, *hrd_buffer;
  321. uint8_t *hrd_fullness;
  322. uint8_t range_mapy_flag;
  323. uint8_t range_mapuv_flag;
  324. uint8_t range_mapy;
  325. uint8_t range_mapuv;
  326. //@}
  327. } VC1Context;
  328. /**
  329. * Get unary code of limited length
  330. * @fixme FIXME Slow and ugly
  331. * @param gb GetBitContext
  332. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  333. * @param[in] len Maximum length
  334. * @return Unary length/index
  335. */
  336. static int get_prefix(GetBitContext *gb, int stop, int len)
  337. {
  338. #if 1
  339. int i;
  340. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  341. return i;
  342. /* int i = 0, tmp = !stop;
  343. while (i != len && tmp != stop)
  344. {
  345. tmp = get_bits(gb, 1);
  346. i++;
  347. }
  348. if (i == len && tmp != stop) return len+1;
  349. return i;*/
  350. #else
  351. unsigned int buf;
  352. int log;
  353. OPEN_READER(re, gb);
  354. UPDATE_CACHE(re, gb);
  355. buf=GET_CACHE(re, gb); //Still not sure
  356. if (stop) buf = ~buf;
  357. log= av_log2(-buf); //FIXME: -?
  358. if (log < limit){
  359. LAST_SKIP_BITS(re, gb, log+1);
  360. CLOSE_READER(re, gb);
  361. return log;
  362. }
  363. LAST_SKIP_BITS(re, gb, limit);
  364. CLOSE_READER(re, gb);
  365. return limit;
  366. #endif
  367. }
  368. static inline int decode210(GetBitContext *gb){
  369. int n;
  370. n = get_bits1(gb);
  371. if (n == 1)
  372. return 0;
  373. else
  374. return 2 - get_bits1(gb);
  375. }
  376. /**
  377. * Init VC-1 specific tables and VC1Context members
  378. * @param v The VC1Context to initialize
  379. * @return Status
  380. */
  381. static int vc1_init_common(VC1Context *v)
  382. {
  383. static int done = 0;
  384. int i = 0;
  385. v->hrd_rate = v->hrd_buffer = NULL;
  386. /* VLC tables */
  387. if(!done)
  388. {
  389. done = 1;
  390. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  391. vc1_bfraction_bits, 1, 1,
  392. vc1_bfraction_codes, 1, 1, 1);
  393. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  394. vc1_norm2_bits, 1, 1,
  395. vc1_norm2_codes, 1, 1, 1);
  396. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  397. vc1_norm6_bits, 1, 1,
  398. vc1_norm6_codes, 2, 2, 1);
  399. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  400. vc1_imode_bits, 1, 1,
  401. vc1_imode_codes, 1, 1, 1);
  402. for (i=0; i<3; i++)
  403. {
  404. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  405. vc1_ttmb_bits[i], 1, 1,
  406. vc1_ttmb_codes[i], 2, 2, 1);
  407. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  408. vc1_ttblk_bits[i], 1, 1,
  409. vc1_ttblk_codes[i], 1, 1, 1);
  410. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  411. vc1_subblkpat_bits[i], 1, 1,
  412. vc1_subblkpat_codes[i], 1, 1, 1);
  413. }
  414. for(i=0; i<4; i++)
  415. {
  416. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  417. vc1_4mv_block_pattern_bits[i], 1, 1,
  418. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  419. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  420. vc1_cbpcy_p_bits[i], 1, 1,
  421. vc1_cbpcy_p_codes[i], 2, 2, 1);
  422. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  423. vc1_mv_diff_bits[i], 1, 1,
  424. vc1_mv_diff_codes[i], 2, 2, 1);
  425. }
  426. for(i=0; i<8; i++)
  427. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  428. &vc1_ac_tables[i][0][1], 8, 4,
  429. &vc1_ac_tables[i][0][0], 8, 4, 1);
  430. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  431. &ff_msmp4_mb_i_table[0][1], 4, 2,
  432. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  433. }
  434. /* Other defaults */
  435. v->pq = -1;
  436. v->mvrange = 0; /* 7.1.1.18, p80 */
  437. return 0;
  438. }
  439. /***********************************************************************/
  440. /**
  441. * @defgroup bitplane VC9 Bitplane decoding
  442. * @see 8.7, p56
  443. * @{
  444. */
  445. /** @addtogroup bitplane
  446. * Imode types
  447. * @{
  448. */
  449. enum Imode {
  450. IMODE_RAW,
  451. IMODE_NORM2,
  452. IMODE_DIFF2,
  453. IMODE_NORM6,
  454. IMODE_DIFF6,
  455. IMODE_ROWSKIP,
  456. IMODE_COLSKIP
  457. };
  458. /** @} */ //imode defines
  459. /** Decode rows by checking if they are skipped
  460. * @param plane Buffer to store decoded bits
  461. * @param[in] width Width of this buffer
  462. * @param[in] height Height of this buffer
  463. * @param[in] stride of this buffer
  464. */
  465. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  466. int x, y;
  467. for (y=0; y<height; y++){
  468. if (!get_bits(gb, 1)) //rowskip
  469. memset(plane, 0, width);
  470. else
  471. for (x=0; x<width; x++)
  472. plane[x] = get_bits(gb, 1);
  473. plane += stride;
  474. }
  475. }
  476. /** Decode columns by checking if they are skipped
  477. * @param plane Buffer to store decoded bits
  478. * @param[in] width Width of this buffer
  479. * @param[in] height Height of this buffer
  480. * @param[in] stride of this buffer
  481. * @fixme FIXME: Optimize
  482. */
  483. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  484. int x, y;
  485. for (x=0; x<width; x++){
  486. if (!get_bits(gb, 1)) //colskip
  487. for (y=0; y<height; y++)
  488. plane[y*stride] = 0;
  489. else
  490. for (y=0; y<height; y++)
  491. plane[y*stride] = get_bits(gb, 1);
  492. plane ++;
  493. }
  494. }
  495. /** Decode a bitplane's bits
  496. * @param bp Bitplane where to store the decode bits
  497. * @param v VC-1 context for bit reading and logging
  498. * @return Status
  499. * @fixme FIXME: Optimize
  500. * @todo TODO: Decide if a struct is needed
  501. */
  502. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  503. {
  504. GetBitContext *gb = &v->s.gb;
  505. int imode, x, y, code, offset;
  506. uint8_t invert, *planep = data;
  507. int width, height, stride;
  508. width = v->s.mb_width;
  509. height = v->s.mb_height;
  510. stride = v->s.mb_stride;
  511. invert = get_bits(gb, 1);
  512. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  513. *raw_flag = 0;
  514. switch (imode)
  515. {
  516. case IMODE_RAW:
  517. //Data is actually read in the MB layer (same for all tests == "raw")
  518. *raw_flag = 1; //invert ignored
  519. return invert;
  520. case IMODE_DIFF2:
  521. case IMODE_NORM2:
  522. if ((height * width) & 1)
  523. {
  524. *planep++ = get_bits(gb, 1);
  525. offset = 1;
  526. }
  527. else offset = 0;
  528. // decode bitplane as one long line
  529. for (y = offset; y < height * width; y += 2) {
  530. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  531. *planep++ = code & 1;
  532. offset++;
  533. if(offset == width) {
  534. offset = 0;
  535. planep += stride - width;
  536. }
  537. *planep++ = code >> 1;
  538. offset++;
  539. if(offset == width) {
  540. offset = 0;
  541. planep += stride - width;
  542. }
  543. }
  544. break;
  545. case IMODE_DIFF6:
  546. case IMODE_NORM6:
  547. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  548. for(y = 0; y < height; y+= 3) {
  549. for(x = width & 1; x < width; x += 2) {
  550. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  551. if(code < 0){
  552. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  553. return -1;
  554. }
  555. planep[x + 0] = (code >> 0) & 1;
  556. planep[x + 1] = (code >> 1) & 1;
  557. planep[x + 0 + stride] = (code >> 2) & 1;
  558. planep[x + 1 + stride] = (code >> 3) & 1;
  559. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  560. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  561. }
  562. planep += stride * 3;
  563. }
  564. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  565. } else { // 3x2
  566. planep += (height & 1) * stride;
  567. for(y = height & 1; y < height; y += 2) {
  568. for(x = width % 3; x < width; x += 3) {
  569. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  570. if(code < 0){
  571. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  572. return -1;
  573. }
  574. planep[x + 0] = (code >> 0) & 1;
  575. planep[x + 1] = (code >> 1) & 1;
  576. planep[x + 2] = (code >> 2) & 1;
  577. planep[x + 0 + stride] = (code >> 3) & 1;
  578. planep[x + 1 + stride] = (code >> 4) & 1;
  579. planep[x + 2 + stride] = (code >> 5) & 1;
  580. }
  581. planep += stride * 2;
  582. }
  583. x = width % 3;
  584. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  585. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  586. }
  587. break;
  588. case IMODE_ROWSKIP:
  589. decode_rowskip(data, width, height, stride, &v->s.gb);
  590. break;
  591. case IMODE_COLSKIP:
  592. decode_colskip(data, width, height, stride, &v->s.gb);
  593. break;
  594. default: break;
  595. }
  596. /* Applying diff operator */
  597. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  598. {
  599. planep = data;
  600. planep[0] ^= invert;
  601. for (x=1; x<width; x++)
  602. planep[x] ^= planep[x-1];
  603. for (y=1; y<height; y++)
  604. {
  605. planep += stride;
  606. planep[0] ^= planep[-stride];
  607. for (x=1; x<width; x++)
  608. {
  609. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  610. else planep[x] ^= planep[x-1];
  611. }
  612. }
  613. }
  614. else if (invert)
  615. {
  616. planep = data;
  617. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  618. }
  619. return (imode<<1) + invert;
  620. }
  621. /** @} */ //Bitplane group
  622. /***********************************************************************/
  623. /** VOP Dquant decoding
  624. * @param v VC-1 Context
  625. */
  626. static int vop_dquant_decoding(VC1Context *v)
  627. {
  628. GetBitContext *gb = &v->s.gb;
  629. int pqdiff;
  630. //variable size
  631. if (v->dquant == 2)
  632. {
  633. pqdiff = get_bits(gb, 3);
  634. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  635. else v->altpq = v->pq + pqdiff + 1;
  636. }
  637. else
  638. {
  639. v->dquantfrm = get_bits(gb, 1);
  640. if ( v->dquantfrm )
  641. {
  642. v->dqprofile = get_bits(gb, 2);
  643. switch (v->dqprofile)
  644. {
  645. case DQPROFILE_SINGLE_EDGE:
  646. case DQPROFILE_DOUBLE_EDGES:
  647. v->dqsbedge = get_bits(gb, 2);
  648. break;
  649. case DQPROFILE_ALL_MBS:
  650. v->dqbilevel = get_bits(gb, 1);
  651. default: break; //Forbidden ?
  652. }
  653. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  654. {
  655. pqdiff = get_bits(gb, 3);
  656. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  657. else v->altpq = v->pq + pqdiff + 1;
  658. }
  659. }
  660. }
  661. return 0;
  662. }
  663. /** Put block onto picture
  664. * @todo move to DSPContext
  665. */
  666. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  667. {
  668. uint8_t *Y;
  669. int ys, us, vs;
  670. DSPContext *dsp = &v->s.dsp;
  671. if(v->rangeredfrm) {
  672. int i, j, k;
  673. for(k = 0; k < 6; k++)
  674. for(j = 0; j < 8; j++)
  675. for(i = 0; i < 8; i++)
  676. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  677. }
  678. ys = v->s.current_picture.linesize[0];
  679. us = v->s.current_picture.linesize[1];
  680. vs = v->s.current_picture.linesize[2];
  681. Y = v->s.dest[0];
  682. dsp->put_pixels_clamped(block[0], Y, ys);
  683. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  684. Y += ys * 8;
  685. dsp->put_pixels_clamped(block[2], Y, ys);
  686. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  687. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  688. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  689. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  690. }
  691. }
  692. /** Do motion compensation over 1 macroblock
  693. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  694. */
  695. static void vc1_mc_1mv(VC1Context *v, int dir)
  696. {
  697. MpegEncContext *s = &v->s;
  698. DSPContext *dsp = &v->s.dsp;
  699. uint8_t *srcY, *srcU, *srcV;
  700. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  701. if(!v->s.last_picture.data[0])return;
  702. mx = s->mv[0][0][0];
  703. my = s->mv[0][0][1];
  704. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  705. uvmy = (my + ((my & 3) == 3)) >> 1;
  706. if(!dir) {
  707. srcY = s->last_picture.data[0];
  708. srcU = s->last_picture.data[1];
  709. srcV = s->last_picture.data[2];
  710. } else {
  711. srcY = s->next_picture.data[0];
  712. srcU = s->next_picture.data[1];
  713. srcV = s->next_picture.data[2];
  714. }
  715. src_x = s->mb_x * 16 + (mx >> 2);
  716. src_y = s->mb_y * 16 + (my >> 2);
  717. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  718. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  719. src_x = clip( src_x, -16, s->mb_width * 16);
  720. src_y = clip( src_y, -16, s->mb_height * 16);
  721. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  722. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  723. srcY += src_y * s->linesize + src_x;
  724. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  725. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  726. /* for grayscale we should not try to read from unknown area */
  727. if(s->flags & CODEC_FLAG_GRAY) {
  728. srcU = s->edge_emu_buffer + 18 * s->linesize;
  729. srcV = s->edge_emu_buffer + 18 * s->linesize;
  730. }
  731. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  732. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  733. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  734. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  735. srcY -= s->mspel * (1 + s->linesize);
  736. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  737. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  738. srcY = s->edge_emu_buffer;
  739. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  740. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  741. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  742. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  743. srcU = uvbuf;
  744. srcV = uvbuf + 16;
  745. /* if we deal with range reduction we need to scale source blocks */
  746. if(v->rangeredfrm) {
  747. int i, j;
  748. uint8_t *src, *src2;
  749. src = srcY;
  750. for(j = 0; j < 17 + s->mspel*2; j++) {
  751. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  752. src += s->linesize;
  753. }
  754. src = srcU; src2 = srcV;
  755. for(j = 0; j < 9; j++) {
  756. for(i = 0; i < 9; i++) {
  757. src[i] = ((src[i] - 128) >> 1) + 128;
  758. src2[i] = ((src2[i] - 128) >> 1) + 128;
  759. }
  760. src += s->uvlinesize;
  761. src2 += s->uvlinesize;
  762. }
  763. }
  764. /* if we deal with intensity compensation we need to scale source blocks */
  765. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  766. int i, j;
  767. uint8_t *src, *src2;
  768. src = srcY;
  769. for(j = 0; j < 17 + s->mspel*2; j++) {
  770. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  771. src += s->linesize;
  772. }
  773. src = srcU; src2 = srcV;
  774. for(j = 0; j < 9; j++) {
  775. for(i = 0; i < 9; i++) {
  776. src[i] = v->lutuv[src[i]];
  777. src2[i] = v->lutuv[src2[i]];
  778. }
  779. src += s->uvlinesize;
  780. src2 += s->uvlinesize;
  781. }
  782. }
  783. srcY += s->mspel * (1 + s->linesize);
  784. }
  785. if(v->fastuvmc) {
  786. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  787. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  788. }
  789. if(s->mspel) {
  790. dxy = ((my & 3) << 2) | (mx & 3);
  791. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  792. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  793. srcY += s->linesize * 8;
  794. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  795. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  796. } else if(!s->quarter_sample) { // hpel mc
  797. mx >>= 1;
  798. my >>= 1;
  799. dxy = ((my & 1) << 1) | (mx & 1);
  800. if(!v->rnd)
  801. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  802. else
  803. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  804. } else {
  805. dxy = ((my & 3) << 2) | (mx & 3);
  806. if(!v->rnd)
  807. dsp->put_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  808. else
  809. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  810. }
  811. if(s->flags & CODEC_FLAG_GRAY) return;
  812. /* Chroma MC always uses qpel blilinear */
  813. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  814. if(!v->rnd){
  815. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  816. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  817. }else{
  818. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  819. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  820. }
  821. }
  822. /** Do motion compensation for 4-MV macroblock - luminance block
  823. */
  824. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  825. {
  826. MpegEncContext *s = &v->s;
  827. DSPContext *dsp = &v->s.dsp;
  828. uint8_t *srcY;
  829. int dxy, mx, my, src_x, src_y;
  830. int off;
  831. if(!v->s.last_picture.data[0])return;
  832. mx = s->mv[0][n][0];
  833. my = s->mv[0][n][1];
  834. srcY = s->last_picture.data[0];
  835. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  836. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  837. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  838. src_x = clip( src_x, -16, s->mb_width * 16);
  839. src_y = clip( src_y, -16, s->mb_height * 16);
  840. srcY += src_y * s->linesize + src_x;
  841. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  842. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel
  843. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel){
  844. srcY -= s->mspel * (1 + s->linesize);
  845. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  846. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  847. srcY = s->edge_emu_buffer;
  848. /* if we deal with range reduction we need to scale source blocks */
  849. if(v->rangeredfrm) {
  850. int i, j;
  851. uint8_t *src;
  852. src = srcY;
  853. for(j = 0; j < 9 + s->mspel*2; j++) {
  854. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  855. src += s->linesize;
  856. }
  857. }
  858. /* if we deal with intensity compensation we need to scale source blocks */
  859. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  860. int i, j;
  861. uint8_t *src;
  862. src = srcY;
  863. for(j = 0; j < 9 + s->mspel*2; j++) {
  864. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  865. src += s->linesize;
  866. }
  867. }
  868. srcY += s->mspel * (1 + s->linesize);
  869. }
  870. if(s->mspel) {
  871. dxy = ((my & 3) << 2) | (mx & 3);
  872. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  873. } else if(!s->quarter_sample) { // hpel mc
  874. mx >>= 1;
  875. my >>= 1;
  876. dxy = ((my & 1) << 1) | (mx & 1);
  877. if(!v->rnd)
  878. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  879. else
  880. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  881. } else {
  882. dxy = ((my & 3) << 2) | (mx & 3);
  883. if(!v->rnd)
  884. dsp->put_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  885. else
  886. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  887. }
  888. }
  889. static inline int median4(int a, int b, int c, int d)
  890. {
  891. if(a < b) {
  892. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  893. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  894. } else {
  895. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  896. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  897. }
  898. }
  899. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  900. */
  901. static void vc1_mc_4mv_chroma(VC1Context *v)
  902. {
  903. MpegEncContext *s = &v->s;
  904. DSPContext *dsp = &v->s.dsp;
  905. uint8_t *srcU, *srcV;
  906. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  907. int i, idx, tx = 0, ty = 0;
  908. int mvx[4], mvy[4], intra[4];
  909. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  910. if(!v->s.last_picture.data[0])return;
  911. if(s->flags & CODEC_FLAG_GRAY) return;
  912. for(i = 0; i < 4; i++) {
  913. mvx[i] = s->mv[0][i][0];
  914. mvy[i] = s->mv[0][i][1];
  915. intra[i] = v->mb_type[0][s->block_index[i]];
  916. }
  917. /* calculate chroma MV vector from four luma MVs */
  918. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  919. if(!idx) { // all blocks are inter
  920. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  921. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  922. } else if(count[idx] == 1) { // 3 inter blocks
  923. switch(idx) {
  924. case 0x1:
  925. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  926. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  927. break;
  928. case 0x2:
  929. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  930. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  931. break;
  932. case 0x4:
  933. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  934. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  935. break;
  936. case 0x8:
  937. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  938. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  939. break;
  940. }
  941. } else if(count[idx] == 2) {
  942. int t1 = 0, t2 = 0;
  943. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  944. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  945. tx = (mvx[t1] + mvx[t2]) / 2;
  946. ty = (mvy[t1] + mvy[t2]) / 2;
  947. } else
  948. return; //no need to do MC for inter blocks
  949. uvmx = (tx + ((tx&3) == 3)) >> 1;
  950. uvmy = (ty + ((ty&3) == 3)) >> 1;
  951. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  952. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  953. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  954. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  955. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  956. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  957. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  958. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  959. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  960. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  961. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  962. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  963. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  964. srcU = s->edge_emu_buffer;
  965. srcV = s->edge_emu_buffer + 16;
  966. /* if we deal with range reduction we need to scale source blocks */
  967. if(v->rangeredfrm) {
  968. int i, j;
  969. uint8_t *src, *src2;
  970. src = srcU; src2 = srcV;
  971. for(j = 0; j < 9; j++) {
  972. for(i = 0; i < 9; i++) {
  973. src[i] = ((src[i] - 128) >> 1) + 128;
  974. src2[i] = ((src2[i] - 128) >> 1) + 128;
  975. }
  976. src += s->uvlinesize;
  977. src2 += s->uvlinesize;
  978. }
  979. }
  980. /* if we deal with intensity compensation we need to scale source blocks */
  981. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  982. int i, j;
  983. uint8_t *src, *src2;
  984. src = srcU; src2 = srcV;
  985. for(j = 0; j < 9; j++) {
  986. for(i = 0; i < 9; i++) {
  987. src[i] = v->lutuv[src[i]];
  988. src2[i] = v->lutuv[src2[i]];
  989. }
  990. src += s->uvlinesize;
  991. src2 += s->uvlinesize;
  992. }
  993. }
  994. }
  995. if(v->fastuvmc) {
  996. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  997. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  998. }
  999. /* Chroma MC always uses qpel blilinear */
  1000. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1001. if(!v->rnd){
  1002. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1003. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1004. }else{
  1005. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1006. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1007. }
  1008. }
  1009. /**
  1010. * Decode Simple/Main Profiles sequence header
  1011. * @see Figure 7-8, p16-17
  1012. * @param avctx Codec context
  1013. * @param gb GetBit context initialized from Codec context extra_data
  1014. * @return Status
  1015. */
  1016. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1017. {
  1018. VC1Context *v = avctx->priv_data;
  1019. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1020. v->profile = get_bits(gb, 2);
  1021. if (v->profile == 2)
  1022. {
  1023. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1024. return -1;
  1025. }
  1026. if (v->profile == PROFILE_ADVANCED)
  1027. {
  1028. v->level = get_bits(gb, 3);
  1029. if(v->level >= 5)
  1030. {
  1031. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1032. }
  1033. v->chromaformat = get_bits(gb, 2);
  1034. if (v->chromaformat != 1)
  1035. {
  1036. av_log(avctx, AV_LOG_ERROR,
  1037. "Only 4:2:0 chroma format supported\n");
  1038. return -1;
  1039. }
  1040. }
  1041. else
  1042. {
  1043. v->res_sm = get_bits(gb, 2); //reserved
  1044. if (v->res_sm)
  1045. {
  1046. av_log(avctx, AV_LOG_ERROR,
  1047. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1048. return -1;
  1049. }
  1050. }
  1051. // (fps-2)/4 (->30)
  1052. v->frmrtq_postproc = get_bits(gb, 3); //common
  1053. // (bitrate-32kbps)/64kbps
  1054. v->bitrtq_postproc = get_bits(gb, 5); //common
  1055. v->s.loop_filter = get_bits(gb, 1); //common
  1056. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1057. {
  1058. av_log(avctx, AV_LOG_ERROR,
  1059. "LOOPFILTER shell not be enabled in simple profile\n");
  1060. }
  1061. if (v->profile < PROFILE_ADVANCED)
  1062. {
  1063. v->res_x8 = get_bits(gb, 1); //reserved
  1064. if (v->res_x8)
  1065. {
  1066. av_log(avctx, AV_LOG_ERROR,
  1067. "1 for reserved RES_X8 is forbidden\n");
  1068. //return -1;
  1069. }
  1070. v->multires = get_bits(gb, 1);
  1071. v->res_fasttx = get_bits(gb, 1);
  1072. if (!v->res_fasttx)
  1073. {
  1074. av_log(avctx, AV_LOG_ERROR,
  1075. "0 for reserved RES_FASTTX is forbidden\n");
  1076. //return -1;
  1077. }
  1078. }
  1079. v->fastuvmc = get_bits(gb, 1); //common
  1080. if (!v->profile && !v->fastuvmc)
  1081. {
  1082. av_log(avctx, AV_LOG_ERROR,
  1083. "FASTUVMC unavailable in Simple Profile\n");
  1084. return -1;
  1085. }
  1086. v->extended_mv = get_bits(gb, 1); //common
  1087. if (!v->profile && v->extended_mv)
  1088. {
  1089. av_log(avctx, AV_LOG_ERROR,
  1090. "Extended MVs unavailable in Simple Profile\n");
  1091. return -1;
  1092. }
  1093. v->dquant = get_bits(gb, 2); //common
  1094. v->vstransform = get_bits(gb, 1); //common
  1095. if (v->profile < PROFILE_ADVANCED)
  1096. {
  1097. v->res_transtab = get_bits(gb, 1);
  1098. if (v->res_transtab)
  1099. {
  1100. av_log(avctx, AV_LOG_ERROR,
  1101. "1 for reserved RES_TRANSTAB is forbidden\n");
  1102. return -1;
  1103. }
  1104. }
  1105. v->overlap = get_bits(gb, 1); //common
  1106. if (v->profile < PROFILE_ADVANCED)
  1107. {
  1108. v->s.resync_marker = get_bits(gb, 1);
  1109. v->rangered = get_bits(gb, 1);
  1110. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1111. {
  1112. av_log(avctx, AV_LOG_INFO,
  1113. "RANGERED should be set to 0 in simple profile\n");
  1114. }
  1115. }
  1116. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1117. v->quantizer_mode = get_bits(gb, 2); //common
  1118. if (v->profile < PROFILE_ADVANCED)
  1119. {
  1120. v->finterpflag = get_bits(gb, 1); //common
  1121. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1122. if (!v->res_rtm_flag)
  1123. {
  1124. // av_log(avctx, AV_LOG_ERROR,
  1125. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1126. av_log(avctx, AV_LOG_ERROR,
  1127. "Old WMV3 version detected, only I-frames will be decoded\n");
  1128. //return -1;
  1129. }
  1130. av_log(avctx, AV_LOG_DEBUG,
  1131. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1132. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1133. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1134. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1135. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1136. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1137. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1138. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1139. );
  1140. return 0;
  1141. }
  1142. return -1;
  1143. }
  1144. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1145. {
  1146. int pqindex, lowquant, status;
  1147. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1148. skip_bits(gb, 2); //framecnt unused
  1149. v->rangeredfrm = 0;
  1150. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1151. v->s.pict_type = get_bits(gb, 1);
  1152. if (v->s.avctx->max_b_frames) {
  1153. if (!v->s.pict_type) {
  1154. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1155. else v->s.pict_type = B_TYPE;
  1156. } else v->s.pict_type = P_TYPE;
  1157. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1158. if(v->s.pict_type == I_TYPE)
  1159. get_bits(gb, 7); // skip buffer fullness
  1160. if(v->s.pict_type == B_TYPE) {
  1161. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1162. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1163. if(v->bfraction == -1) {
  1164. v->s.pict_type = BI_TYPE;
  1165. }
  1166. }
  1167. /* calculate RND */
  1168. if(v->s.pict_type == I_TYPE)
  1169. v->rnd = 1;
  1170. if(v->s.pict_type == P_TYPE)
  1171. v->rnd ^= 1;
  1172. /* Quantizer stuff */
  1173. pqindex = get_bits(gb, 5);
  1174. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1175. v->pq = pquant_table[0][pqindex];
  1176. else
  1177. v->pq = pquant_table[1][pqindex];
  1178. v->pquantizer = 1;
  1179. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1180. v->pquantizer = pqindex < 9;
  1181. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1182. v->pquantizer = 0;
  1183. v->pqindex = pqindex;
  1184. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1185. else v->halfpq = 0;
  1186. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1187. v->pquantizer = get_bits(gb, 1);
  1188. v->dquantfrm = 0;
  1189. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1190. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1191. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1192. v->range_x = 1 << (v->k_x - 1);
  1193. v->range_y = 1 << (v->k_y - 1);
  1194. if (v->profile == PROFILE_ADVANCED)
  1195. {
  1196. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1197. }
  1198. else
  1199. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1200. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1201. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1202. //TODO: complete parsing for P/B/BI frames
  1203. switch(v->s.pict_type) {
  1204. case P_TYPE:
  1205. if (v->pq < 5) v->tt_index = 0;
  1206. else if(v->pq < 13) v->tt_index = 1;
  1207. else v->tt_index = 2;
  1208. lowquant = (v->pq > 12) ? 0 : 1;
  1209. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1210. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1211. {
  1212. int scale, shift, i;
  1213. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1214. v->lumscale = get_bits(gb, 6);
  1215. v->lumshift = get_bits(gb, 6);
  1216. /* fill lookup tables for intensity compensation */
  1217. if(!v->lumscale) {
  1218. scale = -64;
  1219. shift = (255 - v->lumshift * 2) << 6;
  1220. if(v->lumshift > 31)
  1221. shift += 128 << 6;
  1222. } else {
  1223. scale = v->lumscale + 32;
  1224. if(v->lumshift > 31)
  1225. shift = (v->lumshift - 64) << 6;
  1226. else
  1227. shift = v->lumshift << 6;
  1228. }
  1229. for(i = 0; i < 256; i++) {
  1230. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1231. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1232. }
  1233. }
  1234. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1235. v->s.quarter_sample = 0;
  1236. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1237. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1238. v->s.quarter_sample = 0;
  1239. else
  1240. v->s.quarter_sample = 1;
  1241. } else
  1242. v->s.quarter_sample = 1;
  1243. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1244. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1245. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1246. || v->mv_mode == MV_PMODE_MIXED_MV)
  1247. {
  1248. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1249. if (status < 0) return -1;
  1250. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1251. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1252. } else {
  1253. v->mv_type_is_raw = 0;
  1254. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1255. }
  1256. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1257. if (status < 0) return -1;
  1258. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1259. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1260. /* Hopefully this is correct for P frames */
  1261. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1262. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1263. if (v->dquant)
  1264. {
  1265. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1266. vop_dquant_decoding(v);
  1267. }
  1268. v->ttfrm = 0; //FIXME Is that so ?
  1269. if (v->vstransform)
  1270. {
  1271. v->ttmbf = get_bits(gb, 1);
  1272. if (v->ttmbf)
  1273. {
  1274. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1275. }
  1276. } else {
  1277. v->ttmbf = 1;
  1278. v->ttfrm = TT_8X8;
  1279. }
  1280. break;
  1281. case B_TYPE:
  1282. if (v->pq < 5) v->tt_index = 0;
  1283. else if(v->pq < 13) v->tt_index = 1;
  1284. else v->tt_index = 2;
  1285. lowquant = (v->pq > 12) ? 0 : 1;
  1286. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1287. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1288. v->s.mspel = v->s.quarter_sample;
  1289. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1290. if (status < 0) return -1;
  1291. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1292. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1293. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1294. if (status < 0) return -1;
  1295. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1296. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1297. v->s.mv_table_index = get_bits(gb, 2);
  1298. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1299. if (v->dquant)
  1300. {
  1301. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1302. vop_dquant_decoding(v);
  1303. }
  1304. v->ttfrm = 0;
  1305. if (v->vstransform)
  1306. {
  1307. v->ttmbf = get_bits(gb, 1);
  1308. if (v->ttmbf)
  1309. {
  1310. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1311. }
  1312. } else {
  1313. v->ttmbf = 1;
  1314. v->ttfrm = TT_8X8;
  1315. }
  1316. break;
  1317. }
  1318. /* AC Syntax */
  1319. v->c_ac_table_index = decode012(gb);
  1320. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1321. {
  1322. v->y_ac_table_index = decode012(gb);
  1323. }
  1324. /* DC Syntax */
  1325. v->s.dc_table_index = get_bits(gb, 1);
  1326. return 0;
  1327. }
  1328. /***********************************************************************/
  1329. /**
  1330. * @defgroup block VC-1 Block-level functions
  1331. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1332. * @todo TODO: Integrate to MpegEncContext facilities
  1333. * @{
  1334. */
  1335. /**
  1336. * @def GET_MQUANT
  1337. * @brief Get macroblock-level quantizer scale
  1338. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1339. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1340. */
  1341. #define GET_MQUANT() \
  1342. if (v->dquantfrm) \
  1343. { \
  1344. int edges = 0; \
  1345. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1346. { \
  1347. if (v->dqbilevel) \
  1348. { \
  1349. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1350. } \
  1351. else \
  1352. { \
  1353. mqdiff = get_bits(gb, 3); \
  1354. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1355. else mquant = get_bits(gb, 5); \
  1356. } \
  1357. } \
  1358. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1359. edges = 1 << v->dqsbedge; \
  1360. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1361. edges = (3 << v->dqsbedge) % 15; \
  1362. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1363. edges = 15; \
  1364. if((edges&1) && !s->mb_x) \
  1365. mquant = v->altpq; \
  1366. if((edges&2) && s->first_slice_line) \
  1367. mquant = v->altpq; \
  1368. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1369. mquant = v->altpq; \
  1370. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1371. mquant = v->altpq; \
  1372. }
  1373. /**
  1374. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1375. * @brief Get MV differentials
  1376. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1377. * @param _dmv_x Horizontal differential for decoded MV
  1378. * @param _dmv_y Vertical differential for decoded MV
  1379. * @todo TODO: Use MpegEncContext arrays to store them
  1380. */
  1381. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1382. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1383. VC1_MV_DIFF_VLC_BITS, 2); \
  1384. if (index > 36) \
  1385. { \
  1386. mb_has_coeffs = 1; \
  1387. index -= 37; \
  1388. } \
  1389. else mb_has_coeffs = 0; \
  1390. s->mb_intra = 0; \
  1391. if (!index) { _dmv_x = _dmv_y = 0; } \
  1392. else if (index == 35) \
  1393. { \
  1394. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1395. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1396. } \
  1397. else if (index == 36) \
  1398. { \
  1399. _dmv_x = 0; \
  1400. _dmv_y = 0; \
  1401. s->mb_intra = 1; \
  1402. } \
  1403. else \
  1404. { \
  1405. index1 = index%6; \
  1406. if (!s->quarter_sample && index1 == 5) val = 1; \
  1407. else val = 0; \
  1408. if(size_table[index1] - val > 0) \
  1409. val = get_bits(gb, size_table[index1] - val); \
  1410. else val = 0; \
  1411. sign = 0 - (val&1); \
  1412. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1413. \
  1414. index1 = index/6; \
  1415. if (!s->quarter_sample && index1 == 5) val = 1; \
  1416. else val = 0; \
  1417. if(size_table[index1] - val > 0) \
  1418. val = get_bits(gb, size_table[index1] - val); \
  1419. else val = 0; \
  1420. sign = 0 - (val&1); \
  1421. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1422. }
  1423. /** Predict and set motion vector
  1424. */
  1425. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1426. {
  1427. int xy, wrap, off = 0;
  1428. int16_t *A, *B, *C;
  1429. int px, py;
  1430. int sum;
  1431. /* scale MV difference to be quad-pel */
  1432. dmv_x <<= 1 - s->quarter_sample;
  1433. dmv_y <<= 1 - s->quarter_sample;
  1434. wrap = s->b8_stride;
  1435. xy = s->block_index[n];
  1436. if(s->mb_intra){
  1437. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1438. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1439. if(mv1) { /* duplicate motion data for 1-MV block */
  1440. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1441. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1442. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1443. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1444. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1445. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1446. }
  1447. return;
  1448. }
  1449. C = s->current_picture.motion_val[0][xy - 1];
  1450. A = s->current_picture.motion_val[0][xy - wrap];
  1451. if(mv1)
  1452. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1453. else {
  1454. //in 4-MV mode different blocks have different B predictor position
  1455. switch(n){
  1456. case 0:
  1457. off = (s->mb_x > 0) ? -1 : 1;
  1458. break;
  1459. case 1:
  1460. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1461. break;
  1462. case 2:
  1463. off = 1;
  1464. break;
  1465. case 3:
  1466. off = -1;
  1467. }
  1468. }
  1469. B = s->current_picture.motion_val[0][xy - wrap + off];
  1470. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1471. if(s->mb_width == 1) {
  1472. px = A[0];
  1473. py = A[1];
  1474. } else {
  1475. px = mid_pred(A[0], B[0], C[0]);
  1476. py = mid_pred(A[1], B[1], C[1]);
  1477. }
  1478. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1479. px = C[0];
  1480. py = C[1];
  1481. } else {
  1482. px = py = 0;
  1483. }
  1484. /* Pullback MV as specified in 8.3.5.3.4 */
  1485. {
  1486. int qx, qy, X, Y;
  1487. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1488. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1489. X = (s->mb_width << 6) - 4;
  1490. Y = (s->mb_height << 6) - 4;
  1491. if(mv1) {
  1492. if(qx + px < -60) px = -60 - qx;
  1493. if(qy + py < -60) py = -60 - qy;
  1494. } else {
  1495. if(qx + px < -28) px = -28 - qx;
  1496. if(qy + py < -28) py = -28 - qy;
  1497. }
  1498. if(qx + px > X) px = X - qx;
  1499. if(qy + py > Y) py = Y - qy;
  1500. }
  1501. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1502. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1503. if(is_intra[xy - wrap])
  1504. sum = ABS(px) + ABS(py);
  1505. else
  1506. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1507. if(sum > 32) {
  1508. if(get_bits1(&s->gb)) {
  1509. px = A[0];
  1510. py = A[1];
  1511. } else {
  1512. px = C[0];
  1513. py = C[1];
  1514. }
  1515. } else {
  1516. if(is_intra[xy - 1])
  1517. sum = ABS(px) + ABS(py);
  1518. else
  1519. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1520. if(sum > 32) {
  1521. if(get_bits1(&s->gb)) {
  1522. px = A[0];
  1523. py = A[1];
  1524. } else {
  1525. px = C[0];
  1526. py = C[1];
  1527. }
  1528. }
  1529. }
  1530. }
  1531. /* store MV using signed modulus of MV range defined in 4.11 */
  1532. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1533. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1534. if(mv1) { /* duplicate motion data for 1-MV block */
  1535. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1536. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1537. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1538. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1539. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1540. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1541. }
  1542. }
  1543. /** Reconstruct motion vector for B-frame and do motion compensation
  1544. */
  1545. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1546. {
  1547. MpegEncContext *s = &v->s;
  1548. int mx[4], my[4], mv_x, mv_y;
  1549. int i;
  1550. /* scale MV difference to be quad-pel */
  1551. dmv_x[0] <<= 1 - s->quarter_sample;
  1552. dmv_y[0] <<= 1 - s->quarter_sample;
  1553. dmv_x[1] <<= 1 - s->quarter_sample;
  1554. dmv_y[1] <<= 1 - s->quarter_sample;
  1555. if(direct || mode == BMV_TYPE_INTERPOLATED) {
  1556. /* TODO */
  1557. return;
  1558. }
  1559. if(mode == BMV_TYPE_BACKWARD) {
  1560. for(i = 0; i < 4; i++) {
  1561. mx[i] = s->last_picture.motion_val[0][s->block_index[i]][0];
  1562. my[i] = s->last_picture.motion_val[0][s->block_index[i]][1];
  1563. }
  1564. } else {
  1565. for(i = 0; i < 4; i++) {
  1566. mx[i] = s->next_picture.motion_val[0][s->block_index[i]][0];
  1567. my[i] = s->next_picture.motion_val[0][s->block_index[i]][1];
  1568. }
  1569. }
  1570. /* XXX: not right but how to determine 4-MV intra/inter in another frame? */
  1571. mv_x = median4(mx[0], mx[1], mx[2], mx[3]);
  1572. mv_y = median4(my[0], my[1], my[2], my[3]);
  1573. s->mv[0][0][0] = mv_x;
  1574. s->mv[0][0][1] = mv_y;
  1575. vc1_mc_1mv(v, (mode == BMV_TYPE_FORWARD));
  1576. }
  1577. /** Get predicted DC value for I-frames only
  1578. * prediction dir: left=0, top=1
  1579. * @param s MpegEncContext
  1580. * @param[in] n block index in the current MB
  1581. * @param dc_val_ptr Pointer to DC predictor
  1582. * @param dir_ptr Prediction direction for use in AC prediction
  1583. */
  1584. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1585. int16_t **dc_val_ptr, int *dir_ptr)
  1586. {
  1587. int a, b, c, wrap, pred, scale;
  1588. int16_t *dc_val;
  1589. static const uint16_t dcpred[32] = {
  1590. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1591. 114, 102, 93, 85, 79, 73, 68, 64,
  1592. 60, 57, 54, 51, 49, 47, 45, 43,
  1593. 41, 39, 38, 37, 35, 34, 33
  1594. };
  1595. /* find prediction - wmv3_dc_scale always used here in fact */
  1596. if (n < 4) scale = s->y_dc_scale;
  1597. else scale = s->c_dc_scale;
  1598. wrap = s->block_wrap[n];
  1599. dc_val= s->dc_val[0] + s->block_index[n];
  1600. /* B A
  1601. * C X
  1602. */
  1603. c = dc_val[ - 1];
  1604. b = dc_val[ - 1 - wrap];
  1605. a = dc_val[ - wrap];
  1606. if (pq < 9 || !overlap)
  1607. {
  1608. /* Set outer values */
  1609. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1610. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1611. }
  1612. else
  1613. {
  1614. /* Set outer values */
  1615. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1616. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1617. }
  1618. if (abs(a - b) <= abs(b - c)) {
  1619. pred = c;
  1620. *dir_ptr = 1;//left
  1621. } else {
  1622. pred = a;
  1623. *dir_ptr = 0;//top
  1624. }
  1625. /* update predictor */
  1626. *dc_val_ptr = &dc_val[0];
  1627. return pred;
  1628. }
  1629. /** Get predicted DC value
  1630. * prediction dir: left=0, top=1
  1631. * @param s MpegEncContext
  1632. * @param[in] n block index in the current MB
  1633. * @param dc_val_ptr Pointer to DC predictor
  1634. * @param dir_ptr Prediction direction for use in AC prediction
  1635. */
  1636. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1637. int a_avail, int c_avail,
  1638. int16_t **dc_val_ptr, int *dir_ptr)
  1639. {
  1640. int a, b, c, wrap, pred, scale;
  1641. int16_t *dc_val;
  1642. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1643. int q1, q2 = 0;
  1644. /* find prediction - wmv3_dc_scale always used here in fact */
  1645. if (n < 4) scale = s->y_dc_scale;
  1646. else scale = s->c_dc_scale;
  1647. wrap = s->block_wrap[n];
  1648. dc_val= s->dc_val[0] + s->block_index[n];
  1649. /* B A
  1650. * C X
  1651. */
  1652. c = dc_val[ - 1];
  1653. b = dc_val[ - 1 - wrap];
  1654. a = dc_val[ - wrap];
  1655. /* scale predictors if needed */
  1656. q1 = s->current_picture.qscale_table[mb_pos];
  1657. if(c_avail && (n!= 1 && n!=3)) {
  1658. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1659. if(q2 && q2 != q1)
  1660. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1661. }
  1662. if(a_avail && (n!= 2 && n!=3)) {
  1663. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1664. if(q2 && q2 != q1)
  1665. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1666. }
  1667. if(a_avail && c_avail && (n!=3)) {
  1668. int off = mb_pos;
  1669. if(n != 1) off--;
  1670. if(n != 2) off -= s->mb_stride;
  1671. q2 = s->current_picture.qscale_table[off];
  1672. if(q2 && q2 != q1)
  1673. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1674. }
  1675. if(a_avail && c_avail) {
  1676. if(abs(a - b) <= abs(b - c)) {
  1677. pred = c;
  1678. *dir_ptr = 1;//left
  1679. } else {
  1680. pred = a;
  1681. *dir_ptr = 0;//top
  1682. }
  1683. } else if(a_avail) {
  1684. pred = a;
  1685. *dir_ptr = 0;//top
  1686. } else if(c_avail) {
  1687. pred = c;
  1688. *dir_ptr = 1;//left
  1689. } else {
  1690. pred = 0;
  1691. *dir_ptr = 1;//left
  1692. }
  1693. /* update predictor */
  1694. *dc_val_ptr = &dc_val[0];
  1695. return pred;
  1696. }
  1697. /**
  1698. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1699. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1700. * @todo TODO: Integrate to MpegEncContext facilities
  1701. * @{
  1702. */
  1703. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1704. {
  1705. int xy, wrap, pred, a, b, c;
  1706. xy = s->block_index[n];
  1707. wrap = s->b8_stride;
  1708. /* B C
  1709. * A X
  1710. */
  1711. a = s->coded_block[xy - 1 ];
  1712. b = s->coded_block[xy - 1 - wrap];
  1713. c = s->coded_block[xy - wrap];
  1714. if (b == c) {
  1715. pred = a;
  1716. } else {
  1717. pred = c;
  1718. }
  1719. /* store value */
  1720. *coded_block_ptr = &s->coded_block[xy];
  1721. return pred;
  1722. }
  1723. /**
  1724. * Decode one AC coefficient
  1725. * @param v The VC1 context
  1726. * @param last Last coefficient
  1727. * @param skip How much zero coefficients to skip
  1728. * @param value Decoded AC coefficient value
  1729. * @see 8.1.3.4
  1730. */
  1731. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1732. {
  1733. GetBitContext *gb = &v->s.gb;
  1734. int index, escape, run = 0, level = 0, lst = 0;
  1735. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1736. if (index != vc1_ac_sizes[codingset] - 1) {
  1737. run = vc1_index_decode_table[codingset][index][0];
  1738. level = vc1_index_decode_table[codingset][index][1];
  1739. lst = index >= vc1_last_decode_table[codingset];
  1740. if(get_bits(gb, 1))
  1741. level = -level;
  1742. } else {
  1743. escape = decode210(gb);
  1744. if (escape != 2) {
  1745. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1746. run = vc1_index_decode_table[codingset][index][0];
  1747. level = vc1_index_decode_table[codingset][index][1];
  1748. lst = index >= vc1_last_decode_table[codingset];
  1749. if(escape == 0) {
  1750. if(lst)
  1751. level += vc1_last_delta_level_table[codingset][run];
  1752. else
  1753. level += vc1_delta_level_table[codingset][run];
  1754. } else {
  1755. if(lst)
  1756. run += vc1_last_delta_run_table[codingset][level] + 1;
  1757. else
  1758. run += vc1_delta_run_table[codingset][level] + 1;
  1759. }
  1760. if(get_bits(gb, 1))
  1761. level = -level;
  1762. } else {
  1763. int sign;
  1764. lst = get_bits(gb, 1);
  1765. if(v->s.esc3_level_length == 0) {
  1766. if(v->pq < 8 || v->dquantfrm) { // table 59
  1767. v->s.esc3_level_length = get_bits(gb, 3);
  1768. if(!v->s.esc3_level_length)
  1769. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1770. } else { //table 60
  1771. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1772. }
  1773. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1774. }
  1775. run = get_bits(gb, v->s.esc3_run_length);
  1776. sign = get_bits(gb, 1);
  1777. level = get_bits(gb, v->s.esc3_level_length);
  1778. if(sign)
  1779. level = -level;
  1780. }
  1781. }
  1782. *last = lst;
  1783. *skip = run;
  1784. *value = level;
  1785. }
  1786. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1787. * @param v VC1Context
  1788. * @param block block to decode
  1789. * @param coded are AC coeffs present or not
  1790. * @param codingset set of VLC to decode data
  1791. */
  1792. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1793. {
  1794. GetBitContext *gb = &v->s.gb;
  1795. MpegEncContext *s = &v->s;
  1796. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1797. int run_diff, i;
  1798. int16_t *dc_val;
  1799. int16_t *ac_val, *ac_val2;
  1800. int dcdiff;
  1801. /* Get DC differential */
  1802. if (n < 4) {
  1803. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1804. } else {
  1805. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1806. }
  1807. if (dcdiff < 0){
  1808. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1809. return -1;
  1810. }
  1811. if (dcdiff)
  1812. {
  1813. if (dcdiff == 119 /* ESC index value */)
  1814. {
  1815. /* TODO: Optimize */
  1816. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1817. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1818. else dcdiff = get_bits(gb, 8);
  1819. }
  1820. else
  1821. {
  1822. if (v->pq == 1)
  1823. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1824. else if (v->pq == 2)
  1825. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1826. }
  1827. if (get_bits(gb, 1))
  1828. dcdiff = -dcdiff;
  1829. }
  1830. /* Prediction */
  1831. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1832. *dc_val = dcdiff;
  1833. /* Store the quantized DC coeff, used for prediction */
  1834. if (n < 4) {
  1835. block[0] = dcdiff * s->y_dc_scale;
  1836. } else {
  1837. block[0] = dcdiff * s->c_dc_scale;
  1838. }
  1839. /* Skip ? */
  1840. run_diff = 0;
  1841. i = 0;
  1842. if (!coded) {
  1843. goto not_coded;
  1844. }
  1845. //AC Decoding
  1846. i = 1;
  1847. {
  1848. int last = 0, skip, value;
  1849. const int8_t *zz_table;
  1850. int scale;
  1851. int k;
  1852. scale = v->pq * 2 + v->halfpq;
  1853. if(v->s.ac_pred) {
  1854. if(!dc_pred_dir)
  1855. zz_table = vc1_horizontal_zz;
  1856. else
  1857. zz_table = vc1_vertical_zz;
  1858. } else
  1859. zz_table = vc1_normal_zz;
  1860. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1861. ac_val2 = ac_val;
  1862. if(dc_pred_dir) //left
  1863. ac_val -= 16;
  1864. else //top
  1865. ac_val -= 16 * s->block_wrap[n];
  1866. while (!last) {
  1867. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1868. i += skip;
  1869. if(i > 63)
  1870. break;
  1871. block[zz_table[i++]] = value;
  1872. }
  1873. /* apply AC prediction if needed */
  1874. if(s->ac_pred) {
  1875. if(dc_pred_dir) { //left
  1876. for(k = 1; k < 8; k++)
  1877. block[k << 3] += ac_val[k];
  1878. } else { //top
  1879. for(k = 1; k < 8; k++)
  1880. block[k] += ac_val[k + 8];
  1881. }
  1882. }
  1883. /* save AC coeffs for further prediction */
  1884. for(k = 1; k < 8; k++) {
  1885. ac_val2[k] = block[k << 3];
  1886. ac_val2[k + 8] = block[k];
  1887. }
  1888. /* scale AC coeffs */
  1889. for(k = 1; k < 64; k++)
  1890. if(block[k]) {
  1891. block[k] *= scale;
  1892. if(!v->pquantizer)
  1893. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1894. }
  1895. if(s->ac_pred) i = 63;
  1896. }
  1897. not_coded:
  1898. if(!coded) {
  1899. int k, scale;
  1900. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1901. ac_val2 = ac_val;
  1902. scale = v->pq * 2 + v->halfpq;
  1903. memset(ac_val2, 0, 16 * 2);
  1904. if(dc_pred_dir) {//left
  1905. ac_val -= 16;
  1906. if(s->ac_pred)
  1907. memcpy(ac_val2, ac_val, 8 * 2);
  1908. } else {//top
  1909. ac_val -= 16 * s->block_wrap[n];
  1910. if(s->ac_pred)
  1911. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1912. }
  1913. /* apply AC prediction if needed */
  1914. if(s->ac_pred) {
  1915. if(dc_pred_dir) { //left
  1916. for(k = 1; k < 8; k++) {
  1917. block[k << 3] = ac_val[k] * scale;
  1918. if(!v->pquantizer && block[k << 3])
  1919. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1920. }
  1921. } else { //top
  1922. for(k = 1; k < 8; k++) {
  1923. block[k] = ac_val[k + 8] * scale;
  1924. if(!v->pquantizer && block[k])
  1925. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1926. }
  1927. }
  1928. i = 63;
  1929. }
  1930. }
  1931. s->block_last_index[n] = i;
  1932. return 0;
  1933. }
  1934. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1935. * @param v VC1Context
  1936. * @param block block to decode
  1937. * @param coded are AC coeffs present or not
  1938. * @param mquant block quantizer
  1939. * @param codingset set of VLC to decode data
  1940. */
  1941. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1942. {
  1943. GetBitContext *gb = &v->s.gb;
  1944. MpegEncContext *s = &v->s;
  1945. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1946. int run_diff, i;
  1947. int16_t *dc_val;
  1948. int16_t *ac_val, *ac_val2;
  1949. int dcdiff;
  1950. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1951. int a_avail = v->a_avail, c_avail = v->c_avail;
  1952. int use_pred = s->ac_pred;
  1953. int scale;
  1954. int q1, q2 = 0;
  1955. /* XXX: Guard against dumb values of mquant */
  1956. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1957. /* Set DC scale - y and c use the same */
  1958. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1959. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1960. /* Get DC differential */
  1961. if (n < 4) {
  1962. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1963. } else {
  1964. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1965. }
  1966. if (dcdiff < 0){
  1967. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1968. return -1;
  1969. }
  1970. if (dcdiff)
  1971. {
  1972. if (dcdiff == 119 /* ESC index value */)
  1973. {
  1974. /* TODO: Optimize */
  1975. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1976. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1977. else dcdiff = get_bits(gb, 8);
  1978. }
  1979. else
  1980. {
  1981. if (mquant == 1)
  1982. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1983. else if (mquant == 2)
  1984. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1985. }
  1986. if (get_bits(gb, 1))
  1987. dcdiff = -dcdiff;
  1988. }
  1989. /* Prediction */
  1990. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1991. *dc_val = dcdiff;
  1992. /* Store the quantized DC coeff, used for prediction */
  1993. if (n < 4) {
  1994. block[0] = dcdiff * s->y_dc_scale;
  1995. } else {
  1996. block[0] = dcdiff * s->c_dc_scale;
  1997. }
  1998. /* Skip ? */
  1999. run_diff = 0;
  2000. i = 0;
  2001. //AC Decoding
  2002. i = 1;
  2003. /* check if AC is needed at all and adjust direction if needed */
  2004. if(!a_avail) dc_pred_dir = 1;
  2005. if(!c_avail) dc_pred_dir = 0;
  2006. if(!a_avail && !c_avail) use_pred = 0;
  2007. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2008. ac_val2 = ac_val;
  2009. scale = mquant * 2 + v->halfpq;
  2010. if(dc_pred_dir) //left
  2011. ac_val -= 16;
  2012. else //top
  2013. ac_val -= 16 * s->block_wrap[n];
  2014. q1 = s->current_picture.qscale_table[mb_pos];
  2015. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2016. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2017. if(n && n<4) q2 = q1;
  2018. if(coded) {
  2019. int last = 0, skip, value;
  2020. const int8_t *zz_table;
  2021. int k;
  2022. zz_table = vc1_simple_progressive_8x8_zz;
  2023. while (!last) {
  2024. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2025. i += skip;
  2026. if(i > 63)
  2027. break;
  2028. block[zz_table[i++]] = value;
  2029. }
  2030. /* apply AC prediction if needed */
  2031. if(use_pred) {
  2032. /* scale predictors if needed*/
  2033. if(q2 && q1!=q2) {
  2034. q1 = q1 * 2 - 1;
  2035. q2 = q2 * 2 - 1;
  2036. if(dc_pred_dir) { //left
  2037. for(k = 1; k < 8; k++)
  2038. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2039. } else { //top
  2040. for(k = 1; k < 8; k++)
  2041. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2042. }
  2043. } else {
  2044. if(dc_pred_dir) { //left
  2045. for(k = 1; k < 8; k++)
  2046. block[k << 3] += ac_val[k];
  2047. } else { //top
  2048. for(k = 1; k < 8; k++)
  2049. block[k] += ac_val[k + 8];
  2050. }
  2051. }
  2052. }
  2053. /* save AC coeffs for further prediction */
  2054. for(k = 1; k < 8; k++) {
  2055. ac_val2[k] = block[k << 3];
  2056. ac_val2[k + 8] = block[k];
  2057. }
  2058. /* scale AC coeffs */
  2059. for(k = 1; k < 64; k++)
  2060. if(block[k]) {
  2061. block[k] *= scale;
  2062. if(!v->pquantizer)
  2063. block[k] += (block[k] < 0) ? -mquant : mquant;
  2064. }
  2065. if(use_pred) i = 63;
  2066. } else { // no AC coeffs
  2067. int k;
  2068. memset(ac_val2, 0, 16 * 2);
  2069. if(dc_pred_dir) {//left
  2070. if(use_pred) {
  2071. memcpy(ac_val2, ac_val, 8 * 2);
  2072. if(q2 && q1!=q2) {
  2073. q1 = q1 * 2 - 1;
  2074. q2 = q2 * 2 - 1;
  2075. for(k = 1; k < 8; k++)
  2076. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2077. }
  2078. }
  2079. } else {//top
  2080. if(use_pred) {
  2081. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2082. if(q2 && q1!=q2) {
  2083. q1 = q1 * 2 - 1;
  2084. q2 = q2 * 2 - 1;
  2085. for(k = 1; k < 8; k++)
  2086. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2087. }
  2088. }
  2089. }
  2090. /* apply AC prediction if needed */
  2091. if(use_pred) {
  2092. if(dc_pred_dir) { //left
  2093. for(k = 1; k < 8; k++) {
  2094. block[k << 3] = ac_val2[k] * scale;
  2095. if(!v->pquantizer && block[k << 3])
  2096. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2097. }
  2098. } else { //top
  2099. for(k = 1; k < 8; k++) {
  2100. block[k] = ac_val2[k + 8] * scale;
  2101. if(!v->pquantizer && block[k])
  2102. block[k] += (block[k] < 0) ? -mquant : mquant;
  2103. }
  2104. }
  2105. i = 63;
  2106. }
  2107. }
  2108. s->block_last_index[n] = i;
  2109. return 0;
  2110. }
  2111. /** Decode P block
  2112. */
  2113. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2114. {
  2115. MpegEncContext *s = &v->s;
  2116. GetBitContext *gb = &s->gb;
  2117. int i, j;
  2118. int subblkpat = 0;
  2119. int scale, off, idx, last, skip, value;
  2120. int ttblk = ttmb & 7;
  2121. if(ttmb == -1) {
  2122. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2123. }
  2124. if(ttblk == TT_4X4) {
  2125. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2126. }
  2127. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2128. subblkpat = decode012(gb);
  2129. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2130. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2131. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2132. }
  2133. scale = 2 * mquant + v->halfpq;
  2134. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2135. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2136. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2137. ttblk = TT_8X4;
  2138. }
  2139. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2140. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2141. ttblk = TT_4X8;
  2142. }
  2143. switch(ttblk) {
  2144. case TT_8X8:
  2145. i = 0;
  2146. last = 0;
  2147. while (!last) {
  2148. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2149. i += skip;
  2150. if(i > 63)
  2151. break;
  2152. idx = vc1_simple_progressive_8x8_zz[i++];
  2153. block[idx] = value * scale;
  2154. if(!v->pquantizer)
  2155. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2156. }
  2157. s->dsp.vc1_inv_trans_8x8(block);
  2158. break;
  2159. case TT_4X4:
  2160. for(j = 0; j < 4; j++) {
  2161. last = subblkpat & (1 << (3 - j));
  2162. i = 0;
  2163. off = (j & 1) * 4 + (j & 2) * 16;
  2164. while (!last) {
  2165. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2166. i += skip;
  2167. if(i > 15)
  2168. break;
  2169. idx = vc1_simple_progressive_4x4_zz[i++];
  2170. block[idx + off] = value * scale;
  2171. if(!v->pquantizer)
  2172. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2173. }
  2174. if(!(subblkpat & (1 << (3 - j))))
  2175. s->dsp.vc1_inv_trans_4x4(block, j);
  2176. }
  2177. break;
  2178. case TT_8X4:
  2179. for(j = 0; j < 2; j++) {
  2180. last = subblkpat & (1 << (1 - j));
  2181. i = 0;
  2182. off = j * 32;
  2183. while (!last) {
  2184. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2185. i += skip;
  2186. if(i > 31)
  2187. break;
  2188. idx = vc1_simple_progressive_8x4_zz[i++];
  2189. block[idx + off] = value * scale;
  2190. if(!v->pquantizer)
  2191. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2192. }
  2193. if(!(subblkpat & (1 << (1 - j))))
  2194. s->dsp.vc1_inv_trans_8x4(block, j);
  2195. }
  2196. break;
  2197. case TT_4X8:
  2198. for(j = 0; j < 2; j++) {
  2199. last = subblkpat & (1 << (1 - j));
  2200. i = 0;
  2201. off = j * 4;
  2202. while (!last) {
  2203. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2204. i += skip;
  2205. if(i > 31)
  2206. break;
  2207. idx = vc1_simple_progressive_4x8_zz[i++];
  2208. block[idx + off] = value * scale;
  2209. if(!v->pquantizer)
  2210. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2211. }
  2212. if(!(subblkpat & (1 << (1 - j))))
  2213. s->dsp.vc1_inv_trans_4x8(block, j);
  2214. }
  2215. break;
  2216. }
  2217. return 0;
  2218. }
  2219. /** Decode one P-frame MB (in Simple/Main profile)
  2220. * @todo TODO: Extend to AP
  2221. * @fixme FIXME: DC value for inter blocks not set
  2222. */
  2223. static int vc1_decode_p_mb(VC1Context *v)
  2224. {
  2225. MpegEncContext *s = &v->s;
  2226. GetBitContext *gb = &s->gb;
  2227. int i, j;
  2228. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2229. int cbp; /* cbp decoding stuff */
  2230. int mqdiff, mquant; /* MB quantization */
  2231. int ttmb = v->ttfrm; /* MB Transform type */
  2232. int status;
  2233. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2234. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2235. int mb_has_coeffs = 1; /* last_flag */
  2236. int dmv_x, dmv_y; /* Differential MV components */
  2237. int index, index1; /* LUT indices */
  2238. int val, sign; /* temp values */
  2239. int first_block = 1;
  2240. int dst_idx, off;
  2241. int skipped, fourmv;
  2242. mquant = v->pq; /* Loosy initialization */
  2243. if (v->mv_type_is_raw)
  2244. fourmv = get_bits1(gb);
  2245. else
  2246. fourmv = v->mv_type_mb_plane[mb_pos];
  2247. if (v->skip_is_raw)
  2248. skipped = get_bits1(gb);
  2249. else
  2250. skipped = v->s.mbskip_table[mb_pos];
  2251. s->dsp.clear_blocks(s->block[0]);
  2252. if (!fourmv) /* 1MV mode */
  2253. {
  2254. if (!skipped)
  2255. {
  2256. GET_MVDATA(dmv_x, dmv_y);
  2257. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2258. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2259. /* FIXME Set DC val for inter block ? */
  2260. if (s->mb_intra && !mb_has_coeffs)
  2261. {
  2262. GET_MQUANT();
  2263. s->ac_pred = get_bits(gb, 1);
  2264. cbp = 0;
  2265. }
  2266. else if (mb_has_coeffs)
  2267. {
  2268. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2269. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2270. GET_MQUANT();
  2271. }
  2272. else
  2273. {
  2274. mquant = v->pq;
  2275. cbp = 0;
  2276. }
  2277. s->current_picture.qscale_table[mb_pos] = mquant;
  2278. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2279. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2280. VC1_TTMB_VLC_BITS, 2);
  2281. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2282. dst_idx = 0;
  2283. for (i=0; i<6; i++)
  2284. {
  2285. s->dc_val[0][s->block_index[i]] = 0;
  2286. dst_idx += i >> 2;
  2287. val = ((cbp >> (5 - i)) & 1);
  2288. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2289. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2290. if(s->mb_intra) {
  2291. /* check if prediction blocks A and C are available */
  2292. v->a_avail = v->c_avail = 0;
  2293. if(i == 2 || i == 3 || !s->first_slice_line)
  2294. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2295. if(i == 1 || i == 3 || s->mb_x)
  2296. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2297. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2298. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2299. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2300. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2301. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2302. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2303. /* TODO: proper loop filtering */
  2304. if(v->pq >= 9 && v->overlap) {
  2305. if(v->a_avail)
  2306. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2307. if(v->c_avail)
  2308. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2309. }
  2310. } else if(val) {
  2311. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2312. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2313. first_block = 0;
  2314. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2315. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2316. }
  2317. }
  2318. }
  2319. else //Skipped
  2320. {
  2321. s->mb_intra = 0;
  2322. for(i = 0; i < 6; i++) {
  2323. v->mb_type[0][s->block_index[i]] = 0;
  2324. s->dc_val[0][s->block_index[i]] = 0;
  2325. }
  2326. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2327. s->current_picture.qscale_table[mb_pos] = 0;
  2328. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2329. vc1_mc_1mv(v, 0);
  2330. return 0;
  2331. }
  2332. } //1MV mode
  2333. else //4MV mode
  2334. {
  2335. if (!skipped /* unskipped MB */)
  2336. {
  2337. int intra_count = 0, coded_inter = 0;
  2338. int is_intra[6], is_coded[6];
  2339. /* Get CBPCY */
  2340. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2341. for (i=0; i<6; i++)
  2342. {
  2343. val = ((cbp >> (5 - i)) & 1);
  2344. s->dc_val[0][s->block_index[i]] = 0;
  2345. s->mb_intra = 0;
  2346. if(i < 4) {
  2347. dmv_x = dmv_y = 0;
  2348. s->mb_intra = 0;
  2349. mb_has_coeffs = 0;
  2350. if(val) {
  2351. GET_MVDATA(dmv_x, dmv_y);
  2352. }
  2353. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2354. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2355. intra_count += s->mb_intra;
  2356. is_intra[i] = s->mb_intra;
  2357. is_coded[i] = mb_has_coeffs;
  2358. }
  2359. if(i&4){
  2360. is_intra[i] = (intra_count >= 3);
  2361. is_coded[i] = val;
  2362. }
  2363. if(i == 4) vc1_mc_4mv_chroma(v);
  2364. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2365. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2366. }
  2367. // if there are no coded blocks then don't do anything more
  2368. if(!intra_count && !coded_inter) return 0;
  2369. dst_idx = 0;
  2370. GET_MQUANT();
  2371. s->current_picture.qscale_table[mb_pos] = mquant;
  2372. /* test if block is intra and has pred */
  2373. {
  2374. int intrapred = 0;
  2375. for(i=0; i<6; i++)
  2376. if(is_intra[i]) {
  2377. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2378. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2379. intrapred = 1;
  2380. break;
  2381. }
  2382. }
  2383. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2384. else s->ac_pred = 0;
  2385. }
  2386. if (!v->ttmbf && coded_inter)
  2387. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2388. for (i=0; i<6; i++)
  2389. {
  2390. dst_idx += i >> 2;
  2391. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2392. s->mb_intra = is_intra[i];
  2393. if (is_intra[i]) {
  2394. /* check if prediction blocks A and C are available */
  2395. v->a_avail = v->c_avail = 0;
  2396. if(i == 2 || i == 3 || !s->first_slice_line)
  2397. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2398. if(i == 1 || i == 3 || s->mb_x)
  2399. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2400. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2401. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2402. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2403. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2404. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2405. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2406. /* TODO: proper loop filtering */
  2407. if(v->pq >= 9 && v->overlap) {
  2408. if(v->a_avail)
  2409. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2410. if(v->c_avail)
  2411. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2412. }
  2413. } else if(is_coded[i]) {
  2414. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2415. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2416. first_block = 0;
  2417. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2418. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2419. }
  2420. }
  2421. return status;
  2422. }
  2423. else //Skipped MB
  2424. {
  2425. s->mb_intra = 0;
  2426. s->current_picture.qscale_table[mb_pos] = 0;
  2427. for (i=0; i<6; i++) {
  2428. v->mb_type[0][s->block_index[i]] = 0;
  2429. s->dc_val[0][s->block_index[i]] = 0;
  2430. }
  2431. for (i=0; i<4; i++)
  2432. {
  2433. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2434. vc1_mc_4mv_luma(v, i);
  2435. }
  2436. vc1_mc_4mv_chroma(v);
  2437. s->current_picture.qscale_table[mb_pos] = 0;
  2438. return 0;
  2439. }
  2440. }
  2441. /* Should never happen */
  2442. return -1;
  2443. }
  2444. /** Decode one B-frame MB (in Main profile)
  2445. */
  2446. static void vc1_decode_b_mb(VC1Context *v)
  2447. {
  2448. MpegEncContext *s = &v->s;
  2449. GetBitContext *gb = &s->gb;
  2450. int i, j;
  2451. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2452. int cbp; /* cbp decoding stuff */
  2453. int mqdiff, mquant; /* MB quantization */
  2454. int ttmb = v->ttfrm; /* MB Transform type */
  2455. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2456. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2457. int mb_has_coeffs = 0; /* last_flag */
  2458. int index, index1; /* LUT indices */
  2459. int val, sign; /* temp values */
  2460. int first_block = 1;
  2461. int dst_idx, off;
  2462. int skipped, direct;
  2463. int dmv_x[2], dmv_y[2];
  2464. int bmvtype = BMV_TYPE_BACKWARD; /* XXX: is it so? */
  2465. mquant = v->pq; /* Loosy initialization */
  2466. s->mb_intra = 0;
  2467. if (v->dmb_is_raw)
  2468. direct = get_bits1(gb);
  2469. else
  2470. direct = v->direct_mb_plane[mb_pos];
  2471. if (v->skip_is_raw)
  2472. skipped = get_bits1(gb);
  2473. else
  2474. skipped = v->s.mbskip_table[mb_pos];
  2475. s->dsp.clear_blocks(s->block[0]);
  2476. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2477. for(i = 0; i < 6; i++) {
  2478. v->mb_type[0][s->block_index[i]] = 0;
  2479. s->dc_val[0][s->block_index[i]] = 0;
  2480. }
  2481. s->current_picture.qscale_table[mb_pos] = 0;
  2482. if (!direct) {
  2483. if (!skipped) {
  2484. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2485. }
  2486. if(skipped || !s->mb_intra) {
  2487. bmvtype = decode012(gb);
  2488. switch(bmvtype) {
  2489. case 0:
  2490. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2491. break;
  2492. case 1:
  2493. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2494. break;
  2495. case 2:
  2496. bmvtype = BMV_TYPE_INTERPOLATED;
  2497. }
  2498. }
  2499. }
  2500. if (skipped) {
  2501. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2502. return;
  2503. }
  2504. if (direct) {
  2505. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2506. GET_MQUANT();
  2507. s->current_picture.qscale_table[mb_pos] = mquant;
  2508. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2509. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2510. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2511. } else {
  2512. if(!mb_has_coeffs && !s->mb_intra) {
  2513. /* no coded blocks - effectively skipped */
  2514. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2515. return;
  2516. }
  2517. if(s->mb_intra && !mb_has_coeffs) {
  2518. GET_MQUANT();
  2519. s->current_picture.qscale_table[mb_pos] = mquant;
  2520. s->ac_pred = get_bits1(gb);
  2521. cbp = 0;
  2522. } else {
  2523. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2524. GET_MVDATA(dmv_x[1], dmv_y[1]);
  2525. if(!mb_has_coeffs) {
  2526. /* interpolated skipped block */
  2527. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2528. return;
  2529. }
  2530. }
  2531. if(!s->mb_intra)
  2532. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2533. if(s->mb_intra)
  2534. s->ac_pred = get_bits1(gb);
  2535. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2536. GET_MQUANT();
  2537. s->current_picture.qscale_table[mb_pos] = mquant;
  2538. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2539. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2540. }
  2541. }
  2542. dst_idx = 0;
  2543. for (i=0; i<6; i++)
  2544. {
  2545. s->dc_val[0][s->block_index[i]] = 0;
  2546. dst_idx += i >> 2;
  2547. val = ((cbp >> (5 - i)) & 1);
  2548. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2549. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2550. if(s->mb_intra) {
  2551. /* check if prediction blocks A and C are available */
  2552. v->a_avail = v->c_avail = 0;
  2553. if(i == 2 || i == 3 || !s->first_slice_line)
  2554. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2555. if(i == 1 || i == 3 || s->mb_x)
  2556. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2557. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2558. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2559. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2560. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2561. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2562. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2563. /* TODO: proper loop filtering */
  2564. if(v->pq >= 9 && v->overlap) {
  2565. if(v->a_avail)
  2566. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  2567. if(v->c_avail)
  2568. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  2569. }
  2570. } else if(val) {
  2571. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2572. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2573. first_block = 0;
  2574. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2575. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2576. }
  2577. }
  2578. }
  2579. /** Decode blocks of I-frame
  2580. */
  2581. static void vc1_decode_i_blocks(VC1Context *v)
  2582. {
  2583. int k, j;
  2584. MpegEncContext *s = &v->s;
  2585. int cbp, val;
  2586. uint8_t *coded_val;
  2587. int mb_pos;
  2588. /* select codingmode used for VLC tables selection */
  2589. switch(v->y_ac_table_index){
  2590. case 0:
  2591. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2592. break;
  2593. case 1:
  2594. v->codingset = CS_HIGH_MOT_INTRA;
  2595. break;
  2596. case 2:
  2597. v->codingset = CS_MID_RATE_INTRA;
  2598. break;
  2599. }
  2600. switch(v->c_ac_table_index){
  2601. case 0:
  2602. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2603. break;
  2604. case 1:
  2605. v->codingset2 = CS_HIGH_MOT_INTER;
  2606. break;
  2607. case 2:
  2608. v->codingset2 = CS_MID_RATE_INTER;
  2609. break;
  2610. }
  2611. /* Set DC scale - y and c use the same */
  2612. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2613. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2614. //do frame decode
  2615. s->mb_x = s->mb_y = 0;
  2616. s->mb_intra = 1;
  2617. s->first_slice_line = 1;
  2618. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2619. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2620. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2621. ff_init_block_index(s);
  2622. ff_update_block_index(s);
  2623. s->dsp.clear_blocks(s->block[0]);
  2624. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2625. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2626. s->current_picture.qscale_table[mb_pos] = v->pq;
  2627. // do actual MB decoding and displaying
  2628. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2629. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2630. for(k = 0; k < 6; k++) {
  2631. val = ((cbp >> (5 - k)) & 1);
  2632. if (k < 4) {
  2633. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2634. val = val ^ pred;
  2635. *coded_val = val;
  2636. }
  2637. cbp |= val << (5 - k);
  2638. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2639. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  2640. if(v->pq >= 9 && v->overlap) {
  2641. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2642. }
  2643. }
  2644. vc1_put_block(v, s->block);
  2645. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2646. if(!s->first_slice_line) {
  2647. s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
  2648. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  2649. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2650. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  2651. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  2652. }
  2653. }
  2654. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  2655. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2656. if(s->mb_x) {
  2657. s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
  2658. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  2659. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2660. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  2661. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  2662. }
  2663. }
  2664. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  2665. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  2666. }
  2667. if(get_bits_count(&s->gb) > v->bits) {
  2668. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2669. return;
  2670. }
  2671. }
  2672. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2673. s->first_slice_line = 0;
  2674. }
  2675. }
  2676. static void vc1_decode_p_blocks(VC1Context *v)
  2677. {
  2678. MpegEncContext *s = &v->s;
  2679. /* select codingmode used for VLC tables selection */
  2680. switch(v->c_ac_table_index){
  2681. case 0:
  2682. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2683. break;
  2684. case 1:
  2685. v->codingset = CS_HIGH_MOT_INTRA;
  2686. break;
  2687. case 2:
  2688. v->codingset = CS_MID_RATE_INTRA;
  2689. break;
  2690. }
  2691. switch(v->c_ac_table_index){
  2692. case 0:
  2693. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2694. break;
  2695. case 1:
  2696. v->codingset2 = CS_HIGH_MOT_INTER;
  2697. break;
  2698. case 2:
  2699. v->codingset2 = CS_MID_RATE_INTER;
  2700. break;
  2701. }
  2702. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2703. s->first_slice_line = 1;
  2704. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2705. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2706. ff_init_block_index(s);
  2707. ff_update_block_index(s);
  2708. s->dsp.clear_blocks(s->block[0]);
  2709. vc1_decode_p_mb(v);
  2710. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2711. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2712. return;
  2713. }
  2714. }
  2715. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2716. s->first_slice_line = 0;
  2717. }
  2718. }
  2719. static void vc1_decode_b_blocks(VC1Context *v)
  2720. {
  2721. MpegEncContext *s = &v->s;
  2722. /* select codingmode used for VLC tables selection */
  2723. switch(v->c_ac_table_index){
  2724. case 0:
  2725. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2726. break;
  2727. case 1:
  2728. v->codingset = CS_HIGH_MOT_INTRA;
  2729. break;
  2730. case 2:
  2731. v->codingset = CS_MID_RATE_INTRA;
  2732. break;
  2733. }
  2734. switch(v->c_ac_table_index){
  2735. case 0:
  2736. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2737. break;
  2738. case 1:
  2739. v->codingset2 = CS_HIGH_MOT_INTER;
  2740. break;
  2741. case 2:
  2742. v->codingset2 = CS_MID_RATE_INTER;
  2743. break;
  2744. }
  2745. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2746. s->first_slice_line = 1;
  2747. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2748. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2749. ff_init_block_index(s);
  2750. ff_update_block_index(s);
  2751. s->dsp.clear_blocks(s->block[0]);
  2752. vc1_decode_b_mb(v);
  2753. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2754. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2755. return;
  2756. }
  2757. }
  2758. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2759. s->first_slice_line = 0;
  2760. }
  2761. }
  2762. static void vc1_decode_blocks(VC1Context *v)
  2763. {
  2764. v->s.esc3_level_length = 0;
  2765. switch(v->s.pict_type) {
  2766. case I_TYPE:
  2767. vc1_decode_i_blocks(v);
  2768. break;
  2769. case P_TYPE:
  2770. vc1_decode_p_blocks(v);
  2771. break;
  2772. case B_TYPE:
  2773. vc1_decode_b_blocks(v);
  2774. break;
  2775. }
  2776. }
  2777. /** Initialize a VC1/WMV3 decoder
  2778. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2779. * @todo TODO: Decypher remaining bits in extra_data
  2780. */
  2781. static int vc1_decode_init(AVCodecContext *avctx)
  2782. {
  2783. VC1Context *v = avctx->priv_data;
  2784. MpegEncContext *s = &v->s;
  2785. GetBitContext gb;
  2786. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2787. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2788. avctx->pix_fmt = PIX_FMT_YUV420P;
  2789. else
  2790. avctx->pix_fmt = PIX_FMT_GRAY8;
  2791. v->s.avctx = avctx;
  2792. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2793. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2794. if(ff_h263_decode_init(avctx) < 0)
  2795. return -1;
  2796. if (vc1_init_common(v) < 0) return -1;
  2797. avctx->coded_width = avctx->width;
  2798. avctx->coded_height = avctx->height;
  2799. if (avctx->codec_id == CODEC_ID_WMV3)
  2800. {
  2801. int count = 0;
  2802. // looks like WMV3 has a sequence header stored in the extradata
  2803. // advanced sequence header may be before the first frame
  2804. // the last byte of the extradata is a version number, 1 for the
  2805. // samples we can decode
  2806. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2807. if (decode_sequence_header(avctx, &gb) < 0)
  2808. return -1;
  2809. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2810. if (count>0)
  2811. {
  2812. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2813. count, get_bits(&gb, count));
  2814. }
  2815. else if (count < 0)
  2816. {
  2817. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2818. }
  2819. }
  2820. avctx->has_b_frames= !!(avctx->max_b_frames);
  2821. s->mb_width = (avctx->coded_width+15)>>4;
  2822. s->mb_height = (avctx->coded_height+15)>>4;
  2823. /* Allocate mb bitplanes */
  2824. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2825. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2826. /* allocate block type info in that way so it could be used with s->block_index[] */
  2827. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2828. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2829. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2830. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2831. /* Init coded blocks info */
  2832. if (v->profile == PROFILE_ADVANCED)
  2833. {
  2834. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2835. // return -1;
  2836. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2837. // return -1;
  2838. }
  2839. return 0;
  2840. }
  2841. /** Decode a VC1/WMV3 frame
  2842. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2843. * @warning Initial try at using MpegEncContext stuff
  2844. */
  2845. static int vc1_decode_frame(AVCodecContext *avctx,
  2846. void *data, int *data_size,
  2847. uint8_t *buf, int buf_size)
  2848. {
  2849. VC1Context *v = avctx->priv_data;
  2850. MpegEncContext *s = &v->s;
  2851. AVFrame *pict = data;
  2852. /* no supplementary picture */
  2853. if (buf_size == 0) {
  2854. /* special case for last picture */
  2855. if (s->low_delay==0 && s->next_picture_ptr) {
  2856. *pict= *(AVFrame*)s->next_picture_ptr;
  2857. s->next_picture_ptr= NULL;
  2858. *data_size = sizeof(AVFrame);
  2859. }
  2860. return 0;
  2861. }
  2862. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2863. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2864. int i= ff_find_unused_picture(s, 0);
  2865. s->current_picture_ptr= &s->picture[i];
  2866. }
  2867. avctx->has_b_frames= !s->low_delay;
  2868. init_get_bits(&s->gb, buf, buf_size*8);
  2869. // do parse frame header
  2870. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2871. return -1;
  2872. if(s->pict_type != I_TYPE && !v->res_rtm_flag)return -1;
  2873. // for hurry_up==5
  2874. s->current_picture.pict_type= s->pict_type;
  2875. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2876. /* skip B-frames if we don't have reference frames */
  2877. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2878. /* skip b frames if we are in a hurry */
  2879. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2880. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2881. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2882. || avctx->skip_frame >= AVDISCARD_ALL)
  2883. return buf_size;
  2884. /* skip everything if we are in a hurry>=5 */
  2885. if(avctx->hurry_up>=5) return -1;//buf_size;
  2886. if(s->next_p_frame_damaged){
  2887. if(s->pict_type==B_TYPE)
  2888. return buf_size;
  2889. else
  2890. s->next_p_frame_damaged=0;
  2891. }
  2892. if(MPV_frame_start(s, avctx) < 0)
  2893. return -1;
  2894. ff_er_frame_start(s);
  2895. v->bits = buf_size * 8;
  2896. vc1_decode_blocks(v);
  2897. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2898. // if(get_bits_count(&s->gb) > buf_size * 8)
  2899. // return -1;
  2900. ff_er_frame_end(s);
  2901. MPV_frame_end(s);
  2902. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2903. assert(s->current_picture.pict_type == s->pict_type);
  2904. if (s->pict_type == B_TYPE || s->low_delay) {
  2905. *pict= *(AVFrame*)s->current_picture_ptr;
  2906. } else if (s->last_picture_ptr != NULL) {
  2907. *pict= *(AVFrame*)s->last_picture_ptr;
  2908. }
  2909. if(s->last_picture_ptr || s->low_delay){
  2910. *data_size = sizeof(AVFrame);
  2911. ff_print_debug_info(s, pict);
  2912. }
  2913. /* Return the Picture timestamp as the frame number */
  2914. /* we substract 1 because it is added on utils.c */
  2915. avctx->frame_number = s->picture_number - 1;
  2916. return buf_size;
  2917. }
  2918. /** Close a VC1/WMV3 decoder
  2919. * @warning Initial try at using MpegEncContext stuff
  2920. */
  2921. static int vc1_decode_end(AVCodecContext *avctx)
  2922. {
  2923. VC1Context *v = avctx->priv_data;
  2924. av_freep(&v->hrd_rate);
  2925. av_freep(&v->hrd_buffer);
  2926. MPV_common_end(&v->s);
  2927. av_freep(&v->mv_type_mb_plane);
  2928. av_freep(&v->direct_mb_plane);
  2929. av_freep(&v->mb_type_base);
  2930. return 0;
  2931. }
  2932. AVCodec vc1_decoder = {
  2933. "vc1",
  2934. CODEC_TYPE_VIDEO,
  2935. CODEC_ID_VC1,
  2936. sizeof(VC1Context),
  2937. vc1_decode_init,
  2938. NULL,
  2939. vc1_decode_end,
  2940. vc1_decode_frame,
  2941. CODEC_CAP_DELAY,
  2942. NULL
  2943. };
  2944. AVCodec wmv3_decoder = {
  2945. "wmv3",
  2946. CODEC_TYPE_VIDEO,
  2947. CODEC_ID_WMV3,
  2948. sizeof(VC1Context),
  2949. vc1_decode_init,
  2950. NULL,
  2951. vc1_decode_end,
  2952. vc1_decode_frame,
  2953. CODEC_CAP_DELAY,
  2954. NULL
  2955. };