You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2719 lines
80KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "mpegaudio.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  34. audio decoder */
  35. #ifdef CONFIG_MPEGAUDIO_HP
  36. #define USE_HIGHPRECISION
  37. #endif
  38. #ifdef USE_HIGHPRECISION
  39. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  40. #define WFRAC_BITS 16 /* fractional bits for window */
  41. #else
  42. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  43. #define WFRAC_BITS 14 /* fractional bits for window */
  44. #endif
  45. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  46. typedef int32_t OUT_INT;
  47. #define OUT_MAX INT32_MAX
  48. #define OUT_MIN INT32_MIN
  49. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 31)
  50. #else
  51. typedef int16_t OUT_INT;
  52. #define OUT_MAX INT16_MAX
  53. #define OUT_MIN INT16_MIN
  54. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  55. #endif
  56. #define FRAC_ONE (1 << FRAC_BITS)
  57. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  58. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  59. #define FIX(a) ((int)((a) * FRAC_ONE))
  60. /* WARNING: only correct for posititive numbers */
  61. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  62. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  63. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  64. //#define MULH(a,b) (((int64_t)(a) * (int64_t)(b))>>32) //gcc 3.4 creates an incredibly bloated mess out of this
  65. static always_inline int MULH(int a, int b){
  66. return ((int64_t)(a) * (int64_t)(b))>>32;
  67. }
  68. #if FRAC_BITS <= 15
  69. typedef int16_t MPA_INT;
  70. #else
  71. typedef int32_t MPA_INT;
  72. #endif
  73. /****************/
  74. #define HEADER_SIZE 4
  75. #define BACKSTEP_SIZE 512
  76. struct GranuleDef;
  77. typedef struct MPADecodeContext {
  78. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  79. int inbuf_index;
  80. uint8_t *inbuf_ptr, *inbuf;
  81. int frame_size;
  82. int free_format_frame_size; /* frame size in case of free format
  83. (zero if currently unknown) */
  84. /* next header (used in free format parsing) */
  85. uint32_t free_format_next_header;
  86. int error_protection;
  87. int layer;
  88. int sample_rate;
  89. int sample_rate_index; /* between 0 and 8 */
  90. int bit_rate;
  91. int old_frame_size;
  92. GetBitContext gb;
  93. int nb_channels;
  94. int mode;
  95. int mode_ext;
  96. int lsf;
  97. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  98. int synth_buf_offset[MPA_MAX_CHANNELS];
  99. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  100. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  101. #ifdef DEBUG
  102. int frame_count;
  103. #endif
  104. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  105. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  106. unsigned int dither_state;
  107. } MPADecodeContext;
  108. /* layer 3 "granule" */
  109. typedef struct GranuleDef {
  110. uint8_t scfsi;
  111. int part2_3_length;
  112. int big_values;
  113. int global_gain;
  114. int scalefac_compress;
  115. uint8_t block_type;
  116. uint8_t switch_point;
  117. int table_select[3];
  118. int subblock_gain[3];
  119. uint8_t scalefac_scale;
  120. uint8_t count1table_select;
  121. int region_size[3]; /* number of huffman codes in each region */
  122. int preflag;
  123. int short_start, long_end; /* long/short band indexes */
  124. uint8_t scale_factors[40];
  125. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  126. } GranuleDef;
  127. #define MODE_EXT_MS_STEREO 2
  128. #define MODE_EXT_I_STEREO 1
  129. /* layer 3 huffman tables */
  130. typedef struct HuffTable {
  131. int xsize;
  132. const uint8_t *bits;
  133. const uint16_t *codes;
  134. } HuffTable;
  135. #include "mpegaudiodectab.h"
  136. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  137. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  138. /* vlc structure for decoding layer 3 huffman tables */
  139. static VLC huff_vlc[16];
  140. static uint8_t *huff_code_table[16];
  141. static VLC huff_quad_vlc[2];
  142. /* computed from band_size_long */
  143. static uint16_t band_index_long[9][23];
  144. /* XXX: free when all decoders are closed */
  145. #define TABLE_4_3_SIZE (8191 + 16)*4
  146. static int8_t *table_4_3_exp;
  147. static uint32_t *table_4_3_value;
  148. /* intensity stereo coef table */
  149. static int32_t is_table[2][16];
  150. static int32_t is_table_lsf[2][2][16];
  151. static int32_t csa_table[8][4];
  152. static float csa_table_float[8][4];
  153. static int32_t mdct_win[8][36];
  154. /* lower 2 bits: modulo 3, higher bits: shift */
  155. static uint16_t scale_factor_modshift[64];
  156. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  157. static int32_t scale_factor_mult[15][3];
  158. /* mult table for layer 2 group quantization */
  159. #define SCALE_GEN(v) \
  160. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  161. static int32_t scale_factor_mult2[3][3] = {
  162. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  163. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  164. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  165. };
  166. void ff_mpa_synth_init(MPA_INT *window);
  167. static MPA_INT window[512] __attribute__((aligned(16)));
  168. /* layer 1 unscaling */
  169. /* n = number of bits of the mantissa minus 1 */
  170. static inline int l1_unscale(int n, int mant, int scale_factor)
  171. {
  172. int shift, mod;
  173. int64_t val;
  174. shift = scale_factor_modshift[scale_factor];
  175. mod = shift & 3;
  176. shift >>= 2;
  177. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  178. shift += n;
  179. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  180. return (int)((val + (1LL << (shift - 1))) >> shift);
  181. }
  182. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  183. {
  184. int shift, mod, val;
  185. shift = scale_factor_modshift[scale_factor];
  186. mod = shift & 3;
  187. shift >>= 2;
  188. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  189. /* NOTE: at this point, 0 <= shift <= 21 */
  190. if (shift > 0)
  191. val = (val + (1 << (shift - 1))) >> shift;
  192. return val;
  193. }
  194. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  195. static inline int l3_unscale(int value, int exponent)
  196. {
  197. unsigned int m;
  198. int e;
  199. e = table_4_3_exp [4*value + (exponent&3)];
  200. m = table_4_3_value[4*value + (exponent&3)];
  201. e -= (exponent >> 2);
  202. assert(e>=1);
  203. if (e > 31)
  204. return 0;
  205. m = (m + (1 << (e-1))) >> e;
  206. return m;
  207. }
  208. /* all integer n^(4/3) computation code */
  209. #define DEV_ORDER 13
  210. #define POW_FRAC_BITS 24
  211. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  212. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  213. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  214. static int dev_4_3_coefs[DEV_ORDER];
  215. static int pow_mult3[3] = {
  216. POW_FIX(1.0),
  217. POW_FIX(1.25992104989487316476),
  218. POW_FIX(1.58740105196819947474),
  219. };
  220. static void int_pow_init(void)
  221. {
  222. int i, a;
  223. a = POW_FIX(1.0);
  224. for(i=0;i<DEV_ORDER;i++) {
  225. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  226. dev_4_3_coefs[i] = a;
  227. }
  228. }
  229. /* return the mantissa and the binary exponent */
  230. static int int_pow(int i, int *exp_ptr)
  231. {
  232. int e, er, eq, j;
  233. int a, a1;
  234. /* renormalize */
  235. a = i;
  236. e = POW_FRAC_BITS;
  237. while (a < (1 << (POW_FRAC_BITS - 1))) {
  238. a = a << 1;
  239. e--;
  240. }
  241. a -= (1 << POW_FRAC_BITS);
  242. a1 = 0;
  243. for(j = DEV_ORDER - 1; j >= 0; j--)
  244. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  245. a = (1 << POW_FRAC_BITS) + a1;
  246. /* exponent compute (exact) */
  247. e = e * 4;
  248. er = e % 3;
  249. eq = e / 3;
  250. a = POW_MULL(a, pow_mult3[er]);
  251. while (a >= 2 * POW_FRAC_ONE) {
  252. a = a >> 1;
  253. eq++;
  254. }
  255. /* convert to float */
  256. while (a < POW_FRAC_ONE) {
  257. a = a << 1;
  258. eq--;
  259. }
  260. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  261. #if POW_FRAC_BITS > FRAC_BITS
  262. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  263. /* correct overflow */
  264. if (a >= 2 * (1 << FRAC_BITS)) {
  265. a = a >> 1;
  266. eq++;
  267. }
  268. #endif
  269. *exp_ptr = eq;
  270. return a;
  271. }
  272. static int decode_init(AVCodecContext * avctx)
  273. {
  274. MPADecodeContext *s = avctx->priv_data;
  275. static int init=0;
  276. int i, j, k;
  277. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  278. avctx->sample_fmt= SAMPLE_FMT_S32;
  279. #else
  280. avctx->sample_fmt= SAMPLE_FMT_S16;
  281. #endif
  282. if(avctx->antialias_algo != FF_AA_FLOAT)
  283. s->compute_antialias= compute_antialias_integer;
  284. else
  285. s->compute_antialias= compute_antialias_float;
  286. if (!init && !avctx->parse_only) {
  287. /* scale factors table for layer 1/2 */
  288. for(i=0;i<64;i++) {
  289. int shift, mod;
  290. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  291. shift = (i / 3);
  292. mod = i % 3;
  293. scale_factor_modshift[i] = mod | (shift << 2);
  294. }
  295. /* scale factor multiply for layer 1 */
  296. for(i=0;i<15;i++) {
  297. int n, norm;
  298. n = i + 2;
  299. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  300. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  301. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  302. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  303. dprintf("%d: norm=%x s=%x %x %x\n",
  304. i, norm,
  305. scale_factor_mult[i][0],
  306. scale_factor_mult[i][1],
  307. scale_factor_mult[i][2]);
  308. }
  309. ff_mpa_synth_init(window);
  310. /* huffman decode tables */
  311. huff_code_table[0] = NULL;
  312. for(i=1;i<16;i++) {
  313. const HuffTable *h = &mpa_huff_tables[i];
  314. int xsize, x, y;
  315. unsigned int n;
  316. uint8_t *code_table;
  317. xsize = h->xsize;
  318. n = xsize * xsize;
  319. /* XXX: fail test */
  320. init_vlc(&huff_vlc[i], 8, n,
  321. h->bits, 1, 1, h->codes, 2, 2, 1);
  322. code_table = av_mallocz(n);
  323. j = 0;
  324. for(x=0;x<xsize;x++) {
  325. for(y=0;y<xsize;y++)
  326. code_table[j++] = (x << 4) | y;
  327. }
  328. huff_code_table[i] = code_table;
  329. }
  330. for(i=0;i<2;i++) {
  331. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  332. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  333. }
  334. for(i=0;i<9;i++) {
  335. k = 0;
  336. for(j=0;j<22;j++) {
  337. band_index_long[i][j] = k;
  338. k += band_size_long[i][j];
  339. }
  340. band_index_long[i][22] = k;
  341. }
  342. /* compute n ^ (4/3) and store it in mantissa/exp format */
  343. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  344. if(!table_4_3_exp)
  345. return -1;
  346. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  347. if(!table_4_3_value)
  348. return -1;
  349. int_pow_init();
  350. for(i=1;i<TABLE_4_3_SIZE;i++) {
  351. double f, fm;
  352. int e, m;
  353. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  354. fm = frexp(f, &e);
  355. m = FIXHR(fm*0.5);
  356. e+= FRAC_BITS - 31 + 5;
  357. /* normalized to FRAC_BITS */
  358. table_4_3_value[i] = m;
  359. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  360. table_4_3_exp[i] = -e;
  361. }
  362. for(i=0;i<7;i++) {
  363. float f;
  364. int v;
  365. if (i != 6) {
  366. f = tan((double)i * M_PI / 12.0);
  367. v = FIXR(f / (1.0 + f));
  368. } else {
  369. v = FIXR(1.0);
  370. }
  371. is_table[0][i] = v;
  372. is_table[1][6 - i] = v;
  373. }
  374. /* invalid values */
  375. for(i=7;i<16;i++)
  376. is_table[0][i] = is_table[1][i] = 0.0;
  377. for(i=0;i<16;i++) {
  378. double f;
  379. int e, k;
  380. for(j=0;j<2;j++) {
  381. e = -(j + 1) * ((i + 1) >> 1);
  382. f = pow(2.0, e / 4.0);
  383. k = i & 1;
  384. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  385. is_table_lsf[j][k][i] = FIXR(1.0);
  386. dprintf("is_table_lsf %d %d: %x %x\n",
  387. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  388. }
  389. }
  390. for(i=0;i<8;i++) {
  391. float ci, cs, ca;
  392. ci = ci_table[i];
  393. cs = 1.0 / sqrt(1.0 + ci * ci);
  394. ca = cs * ci;
  395. csa_table[i][0] = FIXHR(cs/4);
  396. csa_table[i][1] = FIXHR(ca/4);
  397. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  398. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  399. csa_table_float[i][0] = cs;
  400. csa_table_float[i][1] = ca;
  401. csa_table_float[i][2] = ca + cs;
  402. csa_table_float[i][3] = ca - cs;
  403. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  404. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  405. }
  406. /* compute mdct windows */
  407. for(i=0;i<36;i++) {
  408. for(j=0; j<4; j++){
  409. double d;
  410. if(j==2 && i%3 != 1)
  411. continue;
  412. d= sin(M_PI * (i + 0.5) / 36.0);
  413. if(j==1){
  414. if (i>=30) d= 0;
  415. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  416. else if(i>=18) d= 1;
  417. }else if(j==3){
  418. if (i< 6) d= 0;
  419. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  420. else if(i< 18) d= 1;
  421. }
  422. //merge last stage of imdct into the window coefficients
  423. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  424. if(j==2)
  425. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  426. else
  427. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  428. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  429. }
  430. }
  431. /* NOTE: we do frequency inversion adter the MDCT by changing
  432. the sign of the right window coefs */
  433. for(j=0;j<4;j++) {
  434. for(i=0;i<36;i+=2) {
  435. mdct_win[j + 4][i] = mdct_win[j][i];
  436. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  437. }
  438. }
  439. #if defined(DEBUG)
  440. for(j=0;j<8;j++) {
  441. printf("win%d=\n", j);
  442. for(i=0;i<36;i++)
  443. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  444. printf("\n");
  445. }
  446. #endif
  447. init = 1;
  448. }
  449. s->inbuf_index = 0;
  450. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  451. s->inbuf_ptr = s->inbuf;
  452. #ifdef DEBUG
  453. s->frame_count = 0;
  454. #endif
  455. if (avctx->codec_id == CODEC_ID_MP3ADU)
  456. s->adu_mode = 1;
  457. return 0;
  458. }
  459. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  460. /* cos(i*pi/64) */
  461. #define COS0_0 FIXR(0.50060299823519630134)
  462. #define COS0_1 FIXR(0.50547095989754365998)
  463. #define COS0_2 FIXR(0.51544730992262454697)
  464. #define COS0_3 FIXR(0.53104259108978417447)
  465. #define COS0_4 FIXR(0.55310389603444452782)
  466. #define COS0_5 FIXR(0.58293496820613387367)
  467. #define COS0_6 FIXR(0.62250412303566481615)
  468. #define COS0_7 FIXR(0.67480834145500574602)
  469. #define COS0_8 FIXR(0.74453627100229844977)
  470. #define COS0_9 FIXR(0.83934964541552703873)
  471. #define COS0_10 FIXR(0.97256823786196069369)
  472. #define COS0_11 FIXR(1.16943993343288495515)
  473. #define COS0_12 FIXR(1.48416461631416627724)
  474. #define COS0_13 FIXR(2.05778100995341155085)
  475. #define COS0_14 FIXR(3.40760841846871878570)
  476. #define COS0_15 FIXR(10.19000812354805681150)
  477. #define COS1_0 FIXR(0.50241928618815570551)
  478. #define COS1_1 FIXR(0.52249861493968888062)
  479. #define COS1_2 FIXR(0.56694403481635770368)
  480. #define COS1_3 FIXR(0.64682178335999012954)
  481. #define COS1_4 FIXR(0.78815462345125022473)
  482. #define COS1_5 FIXR(1.06067768599034747134)
  483. #define COS1_6 FIXR(1.72244709823833392782)
  484. #define COS1_7 FIXR(5.10114861868916385802)
  485. #define COS2_0 FIXR(0.50979557910415916894)
  486. #define COS2_1 FIXR(0.60134488693504528054)
  487. #define COS2_2 FIXR(0.89997622313641570463)
  488. #define COS2_3 FIXR(2.56291544774150617881)
  489. #define COS3_0 FIXR(0.54119610014619698439)
  490. #define COS3_1 FIXR(1.30656296487637652785)
  491. #define COS4_0 FIXR(0.70710678118654752439)
  492. /* butterfly operator */
  493. #define BF(a, b, c)\
  494. {\
  495. tmp0 = tab[a] + tab[b];\
  496. tmp1 = tab[a] - tab[b];\
  497. tab[a] = tmp0;\
  498. tab[b] = MULL(tmp1, c);\
  499. }
  500. #define BF1(a, b, c, d)\
  501. {\
  502. BF(a, b, COS4_0);\
  503. BF(c, d, -COS4_0);\
  504. tab[c] += tab[d];\
  505. }
  506. #define BF2(a, b, c, d)\
  507. {\
  508. BF(a, b, COS4_0);\
  509. BF(c, d, -COS4_0);\
  510. tab[c] += tab[d];\
  511. tab[a] += tab[c];\
  512. tab[c] += tab[b];\
  513. tab[b] += tab[d];\
  514. }
  515. #define ADD(a, b) tab[a] += tab[b]
  516. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  517. static void dct32(int32_t *out, int32_t *tab)
  518. {
  519. int tmp0, tmp1;
  520. /* pass 1 */
  521. BF(0, 31, COS0_0);
  522. BF(1, 30, COS0_1);
  523. BF(2, 29, COS0_2);
  524. BF(3, 28, COS0_3);
  525. BF(4, 27, COS0_4);
  526. BF(5, 26, COS0_5);
  527. BF(6, 25, COS0_6);
  528. BF(7, 24, COS0_7);
  529. BF(8, 23, COS0_8);
  530. BF(9, 22, COS0_9);
  531. BF(10, 21, COS0_10);
  532. BF(11, 20, COS0_11);
  533. BF(12, 19, COS0_12);
  534. BF(13, 18, COS0_13);
  535. BF(14, 17, COS0_14);
  536. BF(15, 16, COS0_15);
  537. /* pass 2 */
  538. BF(0, 15, COS1_0);
  539. BF(1, 14, COS1_1);
  540. BF(2, 13, COS1_2);
  541. BF(3, 12, COS1_3);
  542. BF(4, 11, COS1_4);
  543. BF(5, 10, COS1_5);
  544. BF(6, 9, COS1_6);
  545. BF(7, 8, COS1_7);
  546. BF(16, 31, -COS1_0);
  547. BF(17, 30, -COS1_1);
  548. BF(18, 29, -COS1_2);
  549. BF(19, 28, -COS1_3);
  550. BF(20, 27, -COS1_4);
  551. BF(21, 26, -COS1_5);
  552. BF(22, 25, -COS1_6);
  553. BF(23, 24, -COS1_7);
  554. /* pass 3 */
  555. BF(0, 7, COS2_0);
  556. BF(1, 6, COS2_1);
  557. BF(2, 5, COS2_2);
  558. BF(3, 4, COS2_3);
  559. BF(8, 15, -COS2_0);
  560. BF(9, 14, -COS2_1);
  561. BF(10, 13, -COS2_2);
  562. BF(11, 12, -COS2_3);
  563. BF(16, 23, COS2_0);
  564. BF(17, 22, COS2_1);
  565. BF(18, 21, COS2_2);
  566. BF(19, 20, COS2_3);
  567. BF(24, 31, -COS2_0);
  568. BF(25, 30, -COS2_1);
  569. BF(26, 29, -COS2_2);
  570. BF(27, 28, -COS2_3);
  571. /* pass 4 */
  572. BF(0, 3, COS3_0);
  573. BF(1, 2, COS3_1);
  574. BF(4, 7, -COS3_0);
  575. BF(5, 6, -COS3_1);
  576. BF(8, 11, COS3_0);
  577. BF(9, 10, COS3_1);
  578. BF(12, 15, -COS3_0);
  579. BF(13, 14, -COS3_1);
  580. BF(16, 19, COS3_0);
  581. BF(17, 18, COS3_1);
  582. BF(20, 23, -COS3_0);
  583. BF(21, 22, -COS3_1);
  584. BF(24, 27, COS3_0);
  585. BF(25, 26, COS3_1);
  586. BF(28, 31, -COS3_0);
  587. BF(29, 30, -COS3_1);
  588. /* pass 5 */
  589. BF1(0, 1, 2, 3);
  590. BF2(4, 5, 6, 7);
  591. BF1(8, 9, 10, 11);
  592. BF2(12, 13, 14, 15);
  593. BF1(16, 17, 18, 19);
  594. BF2(20, 21, 22, 23);
  595. BF1(24, 25, 26, 27);
  596. BF2(28, 29, 30, 31);
  597. /* pass 6 */
  598. ADD( 8, 12);
  599. ADD(12, 10);
  600. ADD(10, 14);
  601. ADD(14, 9);
  602. ADD( 9, 13);
  603. ADD(13, 11);
  604. ADD(11, 15);
  605. out[ 0] = tab[0];
  606. out[16] = tab[1];
  607. out[ 8] = tab[2];
  608. out[24] = tab[3];
  609. out[ 4] = tab[4];
  610. out[20] = tab[5];
  611. out[12] = tab[6];
  612. out[28] = tab[7];
  613. out[ 2] = tab[8];
  614. out[18] = tab[9];
  615. out[10] = tab[10];
  616. out[26] = tab[11];
  617. out[ 6] = tab[12];
  618. out[22] = tab[13];
  619. out[14] = tab[14];
  620. out[30] = tab[15];
  621. ADD(24, 28);
  622. ADD(28, 26);
  623. ADD(26, 30);
  624. ADD(30, 25);
  625. ADD(25, 29);
  626. ADD(29, 27);
  627. ADD(27, 31);
  628. out[ 1] = tab[16] + tab[24];
  629. out[17] = tab[17] + tab[25];
  630. out[ 9] = tab[18] + tab[26];
  631. out[25] = tab[19] + tab[27];
  632. out[ 5] = tab[20] + tab[28];
  633. out[21] = tab[21] + tab[29];
  634. out[13] = tab[22] + tab[30];
  635. out[29] = tab[23] + tab[31];
  636. out[ 3] = tab[24] + tab[20];
  637. out[19] = tab[25] + tab[21];
  638. out[11] = tab[26] + tab[22];
  639. out[27] = tab[27] + tab[23];
  640. out[ 7] = tab[28] + tab[18];
  641. out[23] = tab[29] + tab[19];
  642. out[15] = tab[30] + tab[17];
  643. out[31] = tab[31];
  644. }
  645. #if FRAC_BITS <= 15
  646. static inline int round_sample(int *sum)
  647. {
  648. int sum1;
  649. sum1 = (*sum) >> OUT_SHIFT;
  650. *sum &= (1<<OUT_SHIFT)-1;
  651. if (sum1 < OUT_MIN)
  652. sum1 = OUT_MIN;
  653. else if (sum1 > OUT_MAX)
  654. sum1 = OUT_MAX;
  655. return sum1;
  656. }
  657. #if defined(ARCH_POWERPC_405)
  658. /* signed 16x16 -> 32 multiply add accumulate */
  659. #define MACS(rt, ra, rb) \
  660. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  661. /* signed 16x16 -> 32 multiply */
  662. #define MULS(ra, rb) \
  663. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  664. #else
  665. /* signed 16x16 -> 32 multiply add accumulate */
  666. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  667. /* signed 16x16 -> 32 multiply */
  668. #define MULS(ra, rb) ((ra) * (rb))
  669. #endif
  670. #else
  671. static inline int round_sample(int64_t *sum)
  672. {
  673. int sum1;
  674. sum1 = (int)((*sum) >> OUT_SHIFT);
  675. *sum &= (1<<OUT_SHIFT)-1;
  676. if (sum1 < OUT_MIN)
  677. sum1 = OUT_MIN;
  678. else if (sum1 > OUT_MAX)
  679. sum1 = OUT_MAX;
  680. return sum1;
  681. }
  682. #define MULS(ra, rb) MUL64(ra, rb)
  683. #endif
  684. #define SUM8(sum, op, w, p) \
  685. { \
  686. sum op MULS((w)[0 * 64], p[0 * 64]);\
  687. sum op MULS((w)[1 * 64], p[1 * 64]);\
  688. sum op MULS((w)[2 * 64], p[2 * 64]);\
  689. sum op MULS((w)[3 * 64], p[3 * 64]);\
  690. sum op MULS((w)[4 * 64], p[4 * 64]);\
  691. sum op MULS((w)[5 * 64], p[5 * 64]);\
  692. sum op MULS((w)[6 * 64], p[6 * 64]);\
  693. sum op MULS((w)[7 * 64], p[7 * 64]);\
  694. }
  695. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  696. { \
  697. int tmp;\
  698. tmp = p[0 * 64];\
  699. sum1 op1 MULS((w1)[0 * 64], tmp);\
  700. sum2 op2 MULS((w2)[0 * 64], tmp);\
  701. tmp = p[1 * 64];\
  702. sum1 op1 MULS((w1)[1 * 64], tmp);\
  703. sum2 op2 MULS((w2)[1 * 64], tmp);\
  704. tmp = p[2 * 64];\
  705. sum1 op1 MULS((w1)[2 * 64], tmp);\
  706. sum2 op2 MULS((w2)[2 * 64], tmp);\
  707. tmp = p[3 * 64];\
  708. sum1 op1 MULS((w1)[3 * 64], tmp);\
  709. sum2 op2 MULS((w2)[3 * 64], tmp);\
  710. tmp = p[4 * 64];\
  711. sum1 op1 MULS((w1)[4 * 64], tmp);\
  712. sum2 op2 MULS((w2)[4 * 64], tmp);\
  713. tmp = p[5 * 64];\
  714. sum1 op1 MULS((w1)[5 * 64], tmp);\
  715. sum2 op2 MULS((w2)[5 * 64], tmp);\
  716. tmp = p[6 * 64];\
  717. sum1 op1 MULS((w1)[6 * 64], tmp);\
  718. sum2 op2 MULS((w2)[6 * 64], tmp);\
  719. tmp = p[7 * 64];\
  720. sum1 op1 MULS((w1)[7 * 64], tmp);\
  721. sum2 op2 MULS((w2)[7 * 64], tmp);\
  722. }
  723. void ff_mpa_synth_init(MPA_INT *window)
  724. {
  725. int i;
  726. /* max = 18760, max sum over all 16 coefs : 44736 */
  727. for(i=0;i<257;i++) {
  728. int v;
  729. v = mpa_enwindow[i];
  730. #if WFRAC_BITS < 16
  731. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  732. #endif
  733. window[i] = v;
  734. if ((i & 63) != 0)
  735. v = -v;
  736. if (i != 0)
  737. window[512 - i] = v;
  738. }
  739. }
  740. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  741. 32 samples. */
  742. /* XXX: optimize by avoiding ring buffer usage */
  743. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  744. MPA_INT *window, int *dither_state,
  745. OUT_INT *samples, int incr,
  746. int32_t sb_samples[SBLIMIT])
  747. {
  748. int32_t tmp[32];
  749. register MPA_INT *synth_buf;
  750. register const MPA_INT *w, *w2, *p;
  751. int j, offset, v;
  752. OUT_INT *samples2;
  753. #if FRAC_BITS <= 15
  754. int sum, sum2;
  755. #else
  756. int64_t sum, sum2;
  757. #endif
  758. dct32(tmp, sb_samples);
  759. offset = *synth_buf_offset;
  760. synth_buf = synth_buf_ptr + offset;
  761. for(j=0;j<32;j++) {
  762. v = tmp[j];
  763. #if FRAC_BITS <= 15
  764. /* NOTE: can cause a loss in precision if very high amplitude
  765. sound */
  766. if (v > 32767)
  767. v = 32767;
  768. else if (v < -32768)
  769. v = -32768;
  770. #endif
  771. synth_buf[j] = v;
  772. }
  773. /* copy to avoid wrap */
  774. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  775. samples2 = samples + 31 * incr;
  776. w = window;
  777. w2 = window + 31;
  778. sum = *dither_state;
  779. p = synth_buf + 16;
  780. SUM8(sum, +=, w, p);
  781. p = synth_buf + 48;
  782. SUM8(sum, -=, w + 32, p);
  783. *samples = round_sample(&sum);
  784. samples += incr;
  785. w++;
  786. /* we calculate two samples at the same time to avoid one memory
  787. access per two sample */
  788. for(j=1;j<16;j++) {
  789. sum2 = 0;
  790. p = synth_buf + 16 + j;
  791. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  792. p = synth_buf + 48 - j;
  793. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  794. *samples = round_sample(&sum);
  795. samples += incr;
  796. sum += sum2;
  797. *samples2 = round_sample(&sum);
  798. samples2 -= incr;
  799. w++;
  800. w2--;
  801. }
  802. p = synth_buf + 32;
  803. SUM8(sum, -=, w + 32, p);
  804. *samples = round_sample(&sum);
  805. *dither_state= sum;
  806. offset = (offset - 32) & 511;
  807. *synth_buf_offset = offset;
  808. }
  809. #define C3 FIXHR(0.86602540378443864676/2)
  810. /* 0.5 / cos(pi*(2*i+1)/36) */
  811. static const int icos36[9] = {
  812. FIXR(0.50190991877167369479),
  813. FIXR(0.51763809020504152469), //0
  814. FIXR(0.55168895948124587824),
  815. FIXR(0.61038729438072803416),
  816. FIXR(0.70710678118654752439), //1
  817. FIXR(0.87172339781054900991),
  818. FIXR(1.18310079157624925896),
  819. FIXR(1.93185165257813657349), //2
  820. FIXR(5.73685662283492756461),
  821. };
  822. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  823. cases. */
  824. static void imdct12(int *out, int *in)
  825. {
  826. int in0, in1, in2, in3, in4, in5, t1, t2;
  827. in0= in[0*3];
  828. in1= in[1*3] + in[0*3];
  829. in2= in[2*3] + in[1*3];
  830. in3= in[3*3] + in[2*3];
  831. in4= in[4*3] + in[3*3];
  832. in5= in[5*3] + in[4*3];
  833. in5 += in3;
  834. in3 += in1;
  835. in2= MULH(2*in2, C3);
  836. in3= MULH(2*in3, C3);
  837. t1 = in0 - in4;
  838. t2 = MULL(in1 - in5, icos36[4]);
  839. out[ 7]=
  840. out[10]= t1 + t2;
  841. out[ 1]=
  842. out[ 4]= t1 - t2;
  843. in0 += in4>>1;
  844. in4 = in0 + in2;
  845. in1 += in5>>1;
  846. in5 = MULL(in1 + in3, icos36[1]);
  847. out[ 8]=
  848. out[ 9]= in4 + in5;
  849. out[ 2]=
  850. out[ 3]= in4 - in5;
  851. in0 -= in2;
  852. in1 = MULL(in1 - in3, icos36[7]);
  853. out[ 0]=
  854. out[ 5]= in0 - in1;
  855. out[ 6]=
  856. out[11]= in0 + in1;
  857. }
  858. /* cos(pi*i/18) */
  859. #define C1 FIXHR(0.98480775301220805936/2)
  860. #define C2 FIXHR(0.93969262078590838405/2)
  861. #define C3 FIXHR(0.86602540378443864676/2)
  862. #define C4 FIXHR(0.76604444311897803520/2)
  863. #define C5 FIXHR(0.64278760968653932632/2)
  864. #define C6 FIXHR(0.5/2)
  865. #define C7 FIXHR(0.34202014332566873304/2)
  866. #define C8 FIXHR(0.17364817766693034885/2)
  867. /* using Lee like decomposition followed by hand coded 9 points DCT */
  868. static void imdct36(int *out, int *buf, int *in, int *win)
  869. {
  870. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  871. int tmp[18], *tmp1, *in1;
  872. for(i=17;i>=1;i--)
  873. in[i] += in[i-1];
  874. for(i=17;i>=3;i-=2)
  875. in[i] += in[i-2];
  876. for(j=0;j<2;j++) {
  877. tmp1 = tmp + j;
  878. in1 = in + j;
  879. #if 0
  880. //more accurate but slower
  881. int64_t t0, t1, t2, t3;
  882. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  883. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  884. t1 = in1[2*0] - in1[2*6];
  885. tmp1[ 6] = t1 - (t2>>1);
  886. tmp1[16] = t1 + t2;
  887. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  888. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  889. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  890. tmp1[10] = (t3 - t0 - t2) >> 32;
  891. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  892. tmp1[14] = (t3 + t2 - t1) >> 32;
  893. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  894. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  895. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  896. t0 = MUL64(2*in1[2*3], C3);
  897. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  898. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  899. tmp1[12] = (t2 + t1 - t0) >> 32;
  900. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  901. #else
  902. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  903. t3 = in1[2*0] + (in1[2*6]>>1);
  904. t1 = in1[2*0] - in1[2*6];
  905. tmp1[ 6] = t1 - (t2>>1);
  906. tmp1[16] = t1 + t2;
  907. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  908. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  909. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  910. tmp1[10] = t3 - t0 - t2;
  911. tmp1[ 2] = t3 + t0 + t1;
  912. tmp1[14] = t3 + t2 - t1;
  913. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  914. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  915. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  916. t0 = MULH(2*in1[2*3], C3);
  917. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  918. tmp1[ 0] = t2 + t3 + t0;
  919. tmp1[12] = t2 + t1 - t0;
  920. tmp1[ 8] = t3 - t1 - t0;
  921. #endif
  922. }
  923. i = 0;
  924. for(j=0;j<4;j++) {
  925. t0 = tmp[i];
  926. t1 = tmp[i + 2];
  927. s0 = t1 + t0;
  928. s2 = t1 - t0;
  929. t2 = tmp[i + 1];
  930. t3 = tmp[i + 3];
  931. s1 = MULL(t3 + t2, icos36[j]);
  932. s3 = MULL(t3 - t2, icos36[8 - j]);
  933. t0 = s0 + s1;
  934. t1 = s0 - s1;
  935. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  936. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  937. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  938. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  939. t0 = s2 + s3;
  940. t1 = s2 - s3;
  941. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  942. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  943. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  944. buf[ + j] = MULH(t0, win[18 + j]);
  945. i += 4;
  946. }
  947. s0 = tmp[16];
  948. s1 = MULL(tmp[17], icos36[4]);
  949. t0 = s0 + s1;
  950. t1 = s0 - s1;
  951. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  952. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  953. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  954. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  955. }
  956. /* header decoding. MUST check the header before because no
  957. consistency check is done there. Return 1 if free format found and
  958. that the frame size must be computed externally */
  959. static int decode_header(MPADecodeContext *s, uint32_t header)
  960. {
  961. int sample_rate, frame_size, mpeg25, padding;
  962. int sample_rate_index, bitrate_index;
  963. if (header & (1<<20)) {
  964. s->lsf = (header & (1<<19)) ? 0 : 1;
  965. mpeg25 = 0;
  966. } else {
  967. s->lsf = 1;
  968. mpeg25 = 1;
  969. }
  970. s->layer = 4 - ((header >> 17) & 3);
  971. /* extract frequency */
  972. sample_rate_index = (header >> 10) & 3;
  973. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  974. sample_rate_index += 3 * (s->lsf + mpeg25);
  975. s->sample_rate_index = sample_rate_index;
  976. s->error_protection = ((header >> 16) & 1) ^ 1;
  977. s->sample_rate = sample_rate;
  978. bitrate_index = (header >> 12) & 0xf;
  979. padding = (header >> 9) & 1;
  980. //extension = (header >> 8) & 1;
  981. s->mode = (header >> 6) & 3;
  982. s->mode_ext = (header >> 4) & 3;
  983. //copyright = (header >> 3) & 1;
  984. //original = (header >> 2) & 1;
  985. //emphasis = header & 3;
  986. if (s->mode == MPA_MONO)
  987. s->nb_channels = 1;
  988. else
  989. s->nb_channels = 2;
  990. if (bitrate_index != 0) {
  991. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  992. s->bit_rate = frame_size * 1000;
  993. switch(s->layer) {
  994. case 1:
  995. frame_size = (frame_size * 12000) / sample_rate;
  996. frame_size = (frame_size + padding) * 4;
  997. break;
  998. case 2:
  999. frame_size = (frame_size * 144000) / sample_rate;
  1000. frame_size += padding;
  1001. break;
  1002. default:
  1003. case 3:
  1004. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1005. frame_size += padding;
  1006. break;
  1007. }
  1008. s->frame_size = frame_size;
  1009. } else {
  1010. /* if no frame size computed, signal it */
  1011. if (!s->free_format_frame_size)
  1012. return 1;
  1013. /* free format: compute bitrate and real frame size from the
  1014. frame size we extracted by reading the bitstream */
  1015. s->frame_size = s->free_format_frame_size;
  1016. switch(s->layer) {
  1017. case 1:
  1018. s->frame_size += padding * 4;
  1019. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1020. break;
  1021. case 2:
  1022. s->frame_size += padding;
  1023. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1024. break;
  1025. default:
  1026. case 3:
  1027. s->frame_size += padding;
  1028. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1029. break;
  1030. }
  1031. }
  1032. #if defined(DEBUG)
  1033. printf("layer%d, %d Hz, %d kbits/s, ",
  1034. s->layer, s->sample_rate, s->bit_rate);
  1035. if (s->nb_channels == 2) {
  1036. if (s->layer == 3) {
  1037. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1038. printf("ms-");
  1039. if (s->mode_ext & MODE_EXT_I_STEREO)
  1040. printf("i-");
  1041. }
  1042. printf("stereo");
  1043. } else {
  1044. printf("mono");
  1045. }
  1046. printf("\n");
  1047. #endif
  1048. return 0;
  1049. }
  1050. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1051. header, otherwise the coded frame size in bytes */
  1052. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1053. {
  1054. MPADecodeContext s1, *s = &s1;
  1055. memset( s, 0, sizeof(MPADecodeContext) );
  1056. if (ff_mpa_check_header(head) != 0)
  1057. return -1;
  1058. if (decode_header(s, head) != 0) {
  1059. return -1;
  1060. }
  1061. switch(s->layer) {
  1062. case 1:
  1063. avctx->frame_size = 384;
  1064. break;
  1065. case 2:
  1066. avctx->frame_size = 1152;
  1067. break;
  1068. default:
  1069. case 3:
  1070. if (s->lsf)
  1071. avctx->frame_size = 576;
  1072. else
  1073. avctx->frame_size = 1152;
  1074. break;
  1075. }
  1076. avctx->sample_rate = s->sample_rate;
  1077. avctx->channels = s->nb_channels;
  1078. avctx->bit_rate = s->bit_rate;
  1079. avctx->sub_id = s->layer;
  1080. return s->frame_size;
  1081. }
  1082. /* return the number of decoded frames */
  1083. static int mp_decode_layer1(MPADecodeContext *s)
  1084. {
  1085. int bound, i, v, n, ch, j, mant;
  1086. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1087. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1088. if (s->mode == MPA_JSTEREO)
  1089. bound = (s->mode_ext + 1) * 4;
  1090. else
  1091. bound = SBLIMIT;
  1092. /* allocation bits */
  1093. for(i=0;i<bound;i++) {
  1094. for(ch=0;ch<s->nb_channels;ch++) {
  1095. allocation[ch][i] = get_bits(&s->gb, 4);
  1096. }
  1097. }
  1098. for(i=bound;i<SBLIMIT;i++) {
  1099. allocation[0][i] = get_bits(&s->gb, 4);
  1100. }
  1101. /* scale factors */
  1102. for(i=0;i<bound;i++) {
  1103. for(ch=0;ch<s->nb_channels;ch++) {
  1104. if (allocation[ch][i])
  1105. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1106. }
  1107. }
  1108. for(i=bound;i<SBLIMIT;i++) {
  1109. if (allocation[0][i]) {
  1110. scale_factors[0][i] = get_bits(&s->gb, 6);
  1111. scale_factors[1][i] = get_bits(&s->gb, 6);
  1112. }
  1113. }
  1114. /* compute samples */
  1115. for(j=0;j<12;j++) {
  1116. for(i=0;i<bound;i++) {
  1117. for(ch=0;ch<s->nb_channels;ch++) {
  1118. n = allocation[ch][i];
  1119. if (n) {
  1120. mant = get_bits(&s->gb, n + 1);
  1121. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1122. } else {
  1123. v = 0;
  1124. }
  1125. s->sb_samples[ch][j][i] = v;
  1126. }
  1127. }
  1128. for(i=bound;i<SBLIMIT;i++) {
  1129. n = allocation[0][i];
  1130. if (n) {
  1131. mant = get_bits(&s->gb, n + 1);
  1132. v = l1_unscale(n, mant, scale_factors[0][i]);
  1133. s->sb_samples[0][j][i] = v;
  1134. v = l1_unscale(n, mant, scale_factors[1][i]);
  1135. s->sb_samples[1][j][i] = v;
  1136. } else {
  1137. s->sb_samples[0][j][i] = 0;
  1138. s->sb_samples[1][j][i] = 0;
  1139. }
  1140. }
  1141. }
  1142. return 12;
  1143. }
  1144. /* bitrate is in kb/s */
  1145. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1146. {
  1147. int ch_bitrate, table;
  1148. ch_bitrate = bitrate / nb_channels;
  1149. if (!lsf) {
  1150. if ((freq == 48000 && ch_bitrate >= 56) ||
  1151. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1152. table = 0;
  1153. else if (freq != 48000 && ch_bitrate >= 96)
  1154. table = 1;
  1155. else if (freq != 32000 && ch_bitrate <= 48)
  1156. table = 2;
  1157. else
  1158. table = 3;
  1159. } else {
  1160. table = 4;
  1161. }
  1162. return table;
  1163. }
  1164. static int mp_decode_layer2(MPADecodeContext *s)
  1165. {
  1166. int sblimit; /* number of used subbands */
  1167. const unsigned char *alloc_table;
  1168. int table, bit_alloc_bits, i, j, ch, bound, v;
  1169. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1170. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1171. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1172. int scale, qindex, bits, steps, k, l, m, b;
  1173. /* select decoding table */
  1174. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1175. s->sample_rate, s->lsf);
  1176. sblimit = sblimit_table[table];
  1177. alloc_table = alloc_tables[table];
  1178. if (s->mode == MPA_JSTEREO)
  1179. bound = (s->mode_ext + 1) * 4;
  1180. else
  1181. bound = sblimit;
  1182. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1183. /* sanity check */
  1184. if( bound > sblimit ) bound = sblimit;
  1185. /* parse bit allocation */
  1186. j = 0;
  1187. for(i=0;i<bound;i++) {
  1188. bit_alloc_bits = alloc_table[j];
  1189. for(ch=0;ch<s->nb_channels;ch++) {
  1190. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1191. }
  1192. j += 1 << bit_alloc_bits;
  1193. }
  1194. for(i=bound;i<sblimit;i++) {
  1195. bit_alloc_bits = alloc_table[j];
  1196. v = get_bits(&s->gb, bit_alloc_bits);
  1197. bit_alloc[0][i] = v;
  1198. bit_alloc[1][i] = v;
  1199. j += 1 << bit_alloc_bits;
  1200. }
  1201. #ifdef DEBUG
  1202. {
  1203. for(ch=0;ch<s->nb_channels;ch++) {
  1204. for(i=0;i<sblimit;i++)
  1205. printf(" %d", bit_alloc[ch][i]);
  1206. printf("\n");
  1207. }
  1208. }
  1209. #endif
  1210. /* scale codes */
  1211. for(i=0;i<sblimit;i++) {
  1212. for(ch=0;ch<s->nb_channels;ch++) {
  1213. if (bit_alloc[ch][i])
  1214. scale_code[ch][i] = get_bits(&s->gb, 2);
  1215. }
  1216. }
  1217. /* scale factors */
  1218. for(i=0;i<sblimit;i++) {
  1219. for(ch=0;ch<s->nb_channels;ch++) {
  1220. if (bit_alloc[ch][i]) {
  1221. sf = scale_factors[ch][i];
  1222. switch(scale_code[ch][i]) {
  1223. default:
  1224. case 0:
  1225. sf[0] = get_bits(&s->gb, 6);
  1226. sf[1] = get_bits(&s->gb, 6);
  1227. sf[2] = get_bits(&s->gb, 6);
  1228. break;
  1229. case 2:
  1230. sf[0] = get_bits(&s->gb, 6);
  1231. sf[1] = sf[0];
  1232. sf[2] = sf[0];
  1233. break;
  1234. case 1:
  1235. sf[0] = get_bits(&s->gb, 6);
  1236. sf[2] = get_bits(&s->gb, 6);
  1237. sf[1] = sf[0];
  1238. break;
  1239. case 3:
  1240. sf[0] = get_bits(&s->gb, 6);
  1241. sf[2] = get_bits(&s->gb, 6);
  1242. sf[1] = sf[2];
  1243. break;
  1244. }
  1245. }
  1246. }
  1247. }
  1248. #ifdef DEBUG
  1249. for(ch=0;ch<s->nb_channels;ch++) {
  1250. for(i=0;i<sblimit;i++) {
  1251. if (bit_alloc[ch][i]) {
  1252. sf = scale_factors[ch][i];
  1253. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1254. } else {
  1255. printf(" -");
  1256. }
  1257. }
  1258. printf("\n");
  1259. }
  1260. #endif
  1261. /* samples */
  1262. for(k=0;k<3;k++) {
  1263. for(l=0;l<12;l+=3) {
  1264. j = 0;
  1265. for(i=0;i<bound;i++) {
  1266. bit_alloc_bits = alloc_table[j];
  1267. for(ch=0;ch<s->nb_channels;ch++) {
  1268. b = bit_alloc[ch][i];
  1269. if (b) {
  1270. scale = scale_factors[ch][i][k];
  1271. qindex = alloc_table[j+b];
  1272. bits = quant_bits[qindex];
  1273. if (bits < 0) {
  1274. /* 3 values at the same time */
  1275. v = get_bits(&s->gb, -bits);
  1276. steps = quant_steps[qindex];
  1277. s->sb_samples[ch][k * 12 + l + 0][i] =
  1278. l2_unscale_group(steps, v % steps, scale);
  1279. v = v / steps;
  1280. s->sb_samples[ch][k * 12 + l + 1][i] =
  1281. l2_unscale_group(steps, v % steps, scale);
  1282. v = v / steps;
  1283. s->sb_samples[ch][k * 12 + l + 2][i] =
  1284. l2_unscale_group(steps, v, scale);
  1285. } else {
  1286. for(m=0;m<3;m++) {
  1287. v = get_bits(&s->gb, bits);
  1288. v = l1_unscale(bits - 1, v, scale);
  1289. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1290. }
  1291. }
  1292. } else {
  1293. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1294. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1295. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1296. }
  1297. }
  1298. /* next subband in alloc table */
  1299. j += 1 << bit_alloc_bits;
  1300. }
  1301. /* XXX: find a way to avoid this duplication of code */
  1302. for(i=bound;i<sblimit;i++) {
  1303. bit_alloc_bits = alloc_table[j];
  1304. b = bit_alloc[0][i];
  1305. if (b) {
  1306. int mant, scale0, scale1;
  1307. scale0 = scale_factors[0][i][k];
  1308. scale1 = scale_factors[1][i][k];
  1309. qindex = alloc_table[j+b];
  1310. bits = quant_bits[qindex];
  1311. if (bits < 0) {
  1312. /* 3 values at the same time */
  1313. v = get_bits(&s->gb, -bits);
  1314. steps = quant_steps[qindex];
  1315. mant = v % steps;
  1316. v = v / steps;
  1317. s->sb_samples[0][k * 12 + l + 0][i] =
  1318. l2_unscale_group(steps, mant, scale0);
  1319. s->sb_samples[1][k * 12 + l + 0][i] =
  1320. l2_unscale_group(steps, mant, scale1);
  1321. mant = v % steps;
  1322. v = v / steps;
  1323. s->sb_samples[0][k * 12 + l + 1][i] =
  1324. l2_unscale_group(steps, mant, scale0);
  1325. s->sb_samples[1][k * 12 + l + 1][i] =
  1326. l2_unscale_group(steps, mant, scale1);
  1327. s->sb_samples[0][k * 12 + l + 2][i] =
  1328. l2_unscale_group(steps, v, scale0);
  1329. s->sb_samples[1][k * 12 + l + 2][i] =
  1330. l2_unscale_group(steps, v, scale1);
  1331. } else {
  1332. for(m=0;m<3;m++) {
  1333. mant = get_bits(&s->gb, bits);
  1334. s->sb_samples[0][k * 12 + l + m][i] =
  1335. l1_unscale(bits - 1, mant, scale0);
  1336. s->sb_samples[1][k * 12 + l + m][i] =
  1337. l1_unscale(bits - 1, mant, scale1);
  1338. }
  1339. }
  1340. } else {
  1341. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1342. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1343. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1344. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1345. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1346. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1347. }
  1348. /* next subband in alloc table */
  1349. j += 1 << bit_alloc_bits;
  1350. }
  1351. /* fill remaining samples to zero */
  1352. for(i=sblimit;i<SBLIMIT;i++) {
  1353. for(ch=0;ch<s->nb_channels;ch++) {
  1354. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1355. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1356. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1357. }
  1358. }
  1359. }
  1360. }
  1361. return 3 * 12;
  1362. }
  1363. /*
  1364. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1365. */
  1366. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1367. {
  1368. uint8_t *ptr;
  1369. /* compute current position in stream */
  1370. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1371. /* copy old data before current one */
  1372. ptr -= backstep;
  1373. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1374. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1375. /* init get bits again */
  1376. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1377. /* prepare next buffer */
  1378. s->inbuf_index ^= 1;
  1379. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1380. s->old_frame_size = s->frame_size;
  1381. }
  1382. static inline void lsf_sf_expand(int *slen,
  1383. int sf, int n1, int n2, int n3)
  1384. {
  1385. if (n3) {
  1386. slen[3] = sf % n3;
  1387. sf /= n3;
  1388. } else {
  1389. slen[3] = 0;
  1390. }
  1391. if (n2) {
  1392. slen[2] = sf % n2;
  1393. sf /= n2;
  1394. } else {
  1395. slen[2] = 0;
  1396. }
  1397. slen[1] = sf % n1;
  1398. sf /= n1;
  1399. slen[0] = sf;
  1400. }
  1401. static void exponents_from_scale_factors(MPADecodeContext *s,
  1402. GranuleDef *g,
  1403. int16_t *exponents)
  1404. {
  1405. const uint8_t *bstab, *pretab;
  1406. int len, i, j, k, l, v0, shift, gain, gains[3];
  1407. int16_t *exp_ptr;
  1408. exp_ptr = exponents;
  1409. gain = g->global_gain - 210;
  1410. shift = g->scalefac_scale + 1;
  1411. bstab = band_size_long[s->sample_rate_index];
  1412. pretab = mpa_pretab[g->preflag];
  1413. for(i=0;i<g->long_end;i++) {
  1414. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1415. len = bstab[i];
  1416. for(j=len;j>0;j--)
  1417. *exp_ptr++ = v0;
  1418. }
  1419. if (g->short_start < 13) {
  1420. bstab = band_size_short[s->sample_rate_index];
  1421. gains[0] = gain - (g->subblock_gain[0] << 3);
  1422. gains[1] = gain - (g->subblock_gain[1] << 3);
  1423. gains[2] = gain - (g->subblock_gain[2] << 3);
  1424. k = g->long_end;
  1425. for(i=g->short_start;i<13;i++) {
  1426. len = bstab[i];
  1427. for(l=0;l<3;l++) {
  1428. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1429. for(j=len;j>0;j--)
  1430. *exp_ptr++ = v0;
  1431. }
  1432. }
  1433. }
  1434. }
  1435. /* handle n = 0 too */
  1436. static inline int get_bitsz(GetBitContext *s, int n)
  1437. {
  1438. if (n == 0)
  1439. return 0;
  1440. else
  1441. return get_bits(s, n);
  1442. }
  1443. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1444. int16_t *exponents, int end_pos)
  1445. {
  1446. int s_index;
  1447. int linbits, code, x, y, l, v, i, j, k, pos;
  1448. GetBitContext last_gb;
  1449. VLC *vlc;
  1450. uint8_t *code_table;
  1451. /* low frequencies (called big values) */
  1452. s_index = 0;
  1453. for(i=0;i<3;i++) {
  1454. j = g->region_size[i];
  1455. if (j == 0)
  1456. continue;
  1457. /* select vlc table */
  1458. k = g->table_select[i];
  1459. l = mpa_huff_data[k][0];
  1460. linbits = mpa_huff_data[k][1];
  1461. vlc = &huff_vlc[l];
  1462. code_table = huff_code_table[l];
  1463. /* read huffcode and compute each couple */
  1464. for(;j>0;j--) {
  1465. if (get_bits_count(&s->gb) >= end_pos)
  1466. break;
  1467. if (code_table) {
  1468. code = get_vlc(&s->gb, vlc);
  1469. if (code < 0)
  1470. return -1;
  1471. y = code_table[code];
  1472. x = y >> 4;
  1473. y = y & 0x0f;
  1474. } else {
  1475. x = 0;
  1476. y = 0;
  1477. }
  1478. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1479. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1480. if (x) {
  1481. if (x == 15)
  1482. x += get_bitsz(&s->gb, linbits);
  1483. v = l3_unscale(x, exponents[s_index]);
  1484. if (get_bits1(&s->gb))
  1485. v = -v;
  1486. } else {
  1487. v = 0;
  1488. }
  1489. g->sb_hybrid[s_index++] = v;
  1490. if (y) {
  1491. if (y == 15)
  1492. y += get_bitsz(&s->gb, linbits);
  1493. v = l3_unscale(y, exponents[s_index]);
  1494. if (get_bits1(&s->gb))
  1495. v = -v;
  1496. } else {
  1497. v = 0;
  1498. }
  1499. g->sb_hybrid[s_index++] = v;
  1500. }
  1501. }
  1502. /* high frequencies */
  1503. vlc = &huff_quad_vlc[g->count1table_select];
  1504. last_gb.buffer = NULL;
  1505. while (s_index <= 572) {
  1506. pos = get_bits_count(&s->gb);
  1507. if (pos >= end_pos) {
  1508. if (pos > end_pos && last_gb.buffer != NULL) {
  1509. /* some encoders generate an incorrect size for this
  1510. part. We must go back into the data */
  1511. s_index -= 4;
  1512. s->gb = last_gb;
  1513. }
  1514. break;
  1515. }
  1516. last_gb= s->gb;
  1517. code = get_vlc(&s->gb, vlc);
  1518. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1519. if (code < 0)
  1520. return -1;
  1521. for(i=0;i<4;i++) {
  1522. if (code & (8 >> i)) {
  1523. /* non zero value. Could use a hand coded function for
  1524. 'one' value */
  1525. v = l3_unscale(1, exponents[s_index]);
  1526. if(get_bits1(&s->gb))
  1527. v = -v;
  1528. } else {
  1529. v = 0;
  1530. }
  1531. g->sb_hybrid[s_index++] = v;
  1532. }
  1533. }
  1534. while (s_index < 576)
  1535. g->sb_hybrid[s_index++] = 0;
  1536. return 0;
  1537. }
  1538. /* Reorder short blocks from bitstream order to interleaved order. It
  1539. would be faster to do it in parsing, but the code would be far more
  1540. complicated */
  1541. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1542. {
  1543. int i, j, k, len;
  1544. int32_t *ptr, *dst, *ptr1;
  1545. int32_t tmp[576];
  1546. if (g->block_type != 2)
  1547. return;
  1548. if (g->switch_point) {
  1549. if (s->sample_rate_index != 8) {
  1550. ptr = g->sb_hybrid + 36;
  1551. } else {
  1552. ptr = g->sb_hybrid + 48;
  1553. }
  1554. } else {
  1555. ptr = g->sb_hybrid;
  1556. }
  1557. for(i=g->short_start;i<13;i++) {
  1558. len = band_size_short[s->sample_rate_index][i];
  1559. ptr1 = ptr;
  1560. for(k=0;k<3;k++) {
  1561. dst = tmp + k;
  1562. for(j=len;j>0;j--) {
  1563. *dst = *ptr++;
  1564. dst += 3;
  1565. }
  1566. }
  1567. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1568. }
  1569. }
  1570. #define ISQRT2 FIXR(0.70710678118654752440)
  1571. static void compute_stereo(MPADecodeContext *s,
  1572. GranuleDef *g0, GranuleDef *g1)
  1573. {
  1574. int i, j, k, l;
  1575. int32_t v1, v2;
  1576. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1577. int32_t (*is_tab)[16];
  1578. int32_t *tab0, *tab1;
  1579. int non_zero_found_short[3];
  1580. /* intensity stereo */
  1581. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1582. if (!s->lsf) {
  1583. is_tab = is_table;
  1584. sf_max = 7;
  1585. } else {
  1586. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1587. sf_max = 16;
  1588. }
  1589. tab0 = g0->sb_hybrid + 576;
  1590. tab1 = g1->sb_hybrid + 576;
  1591. non_zero_found_short[0] = 0;
  1592. non_zero_found_short[1] = 0;
  1593. non_zero_found_short[2] = 0;
  1594. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1595. for(i = 12;i >= g1->short_start;i--) {
  1596. /* for last band, use previous scale factor */
  1597. if (i != 11)
  1598. k -= 3;
  1599. len = band_size_short[s->sample_rate_index][i];
  1600. for(l=2;l>=0;l--) {
  1601. tab0 -= len;
  1602. tab1 -= len;
  1603. if (!non_zero_found_short[l]) {
  1604. /* test if non zero band. if so, stop doing i-stereo */
  1605. for(j=0;j<len;j++) {
  1606. if (tab1[j] != 0) {
  1607. non_zero_found_short[l] = 1;
  1608. goto found1;
  1609. }
  1610. }
  1611. sf = g1->scale_factors[k + l];
  1612. if (sf >= sf_max)
  1613. goto found1;
  1614. v1 = is_tab[0][sf];
  1615. v2 = is_tab[1][sf];
  1616. for(j=0;j<len;j++) {
  1617. tmp0 = tab0[j];
  1618. tab0[j] = MULL(tmp0, v1);
  1619. tab1[j] = MULL(tmp0, v2);
  1620. }
  1621. } else {
  1622. found1:
  1623. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1624. /* lower part of the spectrum : do ms stereo
  1625. if enabled */
  1626. for(j=0;j<len;j++) {
  1627. tmp0 = tab0[j];
  1628. tmp1 = tab1[j];
  1629. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1630. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1631. }
  1632. }
  1633. }
  1634. }
  1635. }
  1636. non_zero_found = non_zero_found_short[0] |
  1637. non_zero_found_short[1] |
  1638. non_zero_found_short[2];
  1639. for(i = g1->long_end - 1;i >= 0;i--) {
  1640. len = band_size_long[s->sample_rate_index][i];
  1641. tab0 -= len;
  1642. tab1 -= len;
  1643. /* test if non zero band. if so, stop doing i-stereo */
  1644. if (!non_zero_found) {
  1645. for(j=0;j<len;j++) {
  1646. if (tab1[j] != 0) {
  1647. non_zero_found = 1;
  1648. goto found2;
  1649. }
  1650. }
  1651. /* for last band, use previous scale factor */
  1652. k = (i == 21) ? 20 : i;
  1653. sf = g1->scale_factors[k];
  1654. if (sf >= sf_max)
  1655. goto found2;
  1656. v1 = is_tab[0][sf];
  1657. v2 = is_tab[1][sf];
  1658. for(j=0;j<len;j++) {
  1659. tmp0 = tab0[j];
  1660. tab0[j] = MULL(tmp0, v1);
  1661. tab1[j] = MULL(tmp0, v2);
  1662. }
  1663. } else {
  1664. found2:
  1665. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1666. /* lower part of the spectrum : do ms stereo
  1667. if enabled */
  1668. for(j=0;j<len;j++) {
  1669. tmp0 = tab0[j];
  1670. tmp1 = tab1[j];
  1671. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1672. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1673. }
  1674. }
  1675. }
  1676. }
  1677. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1678. /* ms stereo ONLY */
  1679. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1680. global gain */
  1681. tab0 = g0->sb_hybrid;
  1682. tab1 = g1->sb_hybrid;
  1683. for(i=0;i<576;i++) {
  1684. tmp0 = tab0[i];
  1685. tmp1 = tab1[i];
  1686. tab0[i] = tmp0 + tmp1;
  1687. tab1[i] = tmp0 - tmp1;
  1688. }
  1689. }
  1690. }
  1691. static void compute_antialias_integer(MPADecodeContext *s,
  1692. GranuleDef *g)
  1693. {
  1694. int32_t *ptr, *csa;
  1695. int n, i;
  1696. /* we antialias only "long" bands */
  1697. if (g->block_type == 2) {
  1698. if (!g->switch_point)
  1699. return;
  1700. /* XXX: check this for 8000Hz case */
  1701. n = 1;
  1702. } else {
  1703. n = SBLIMIT - 1;
  1704. }
  1705. ptr = g->sb_hybrid + 18;
  1706. for(i = n;i > 0;i--) {
  1707. int tmp0, tmp1, tmp2;
  1708. csa = &csa_table[0][0];
  1709. #define INT_AA(j) \
  1710. tmp0 = ptr[-1-j];\
  1711. tmp1 = ptr[ j];\
  1712. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1713. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1714. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1715. INT_AA(0)
  1716. INT_AA(1)
  1717. INT_AA(2)
  1718. INT_AA(3)
  1719. INT_AA(4)
  1720. INT_AA(5)
  1721. INT_AA(6)
  1722. INT_AA(7)
  1723. ptr += 18;
  1724. }
  1725. }
  1726. static void compute_antialias_float(MPADecodeContext *s,
  1727. GranuleDef *g)
  1728. {
  1729. int32_t *ptr;
  1730. int n, i;
  1731. /* we antialias only "long" bands */
  1732. if (g->block_type == 2) {
  1733. if (!g->switch_point)
  1734. return;
  1735. /* XXX: check this for 8000Hz case */
  1736. n = 1;
  1737. } else {
  1738. n = SBLIMIT - 1;
  1739. }
  1740. ptr = g->sb_hybrid + 18;
  1741. for(i = n;i > 0;i--) {
  1742. float tmp0, tmp1;
  1743. float *csa = &csa_table_float[0][0];
  1744. #define FLOAT_AA(j)\
  1745. tmp0= ptr[-1-j];\
  1746. tmp1= ptr[ j];\
  1747. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1748. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1749. FLOAT_AA(0)
  1750. FLOAT_AA(1)
  1751. FLOAT_AA(2)
  1752. FLOAT_AA(3)
  1753. FLOAT_AA(4)
  1754. FLOAT_AA(5)
  1755. FLOAT_AA(6)
  1756. FLOAT_AA(7)
  1757. ptr += 18;
  1758. }
  1759. }
  1760. static void compute_imdct(MPADecodeContext *s,
  1761. GranuleDef *g,
  1762. int32_t *sb_samples,
  1763. int32_t *mdct_buf)
  1764. {
  1765. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1766. int32_t out2[12];
  1767. int i, j, mdct_long_end, v, sblimit;
  1768. /* find last non zero block */
  1769. ptr = g->sb_hybrid + 576;
  1770. ptr1 = g->sb_hybrid + 2 * 18;
  1771. while (ptr >= ptr1) {
  1772. ptr -= 6;
  1773. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1774. if (v != 0)
  1775. break;
  1776. }
  1777. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1778. if (g->block_type == 2) {
  1779. /* XXX: check for 8000 Hz */
  1780. if (g->switch_point)
  1781. mdct_long_end = 2;
  1782. else
  1783. mdct_long_end = 0;
  1784. } else {
  1785. mdct_long_end = sblimit;
  1786. }
  1787. buf = mdct_buf;
  1788. ptr = g->sb_hybrid;
  1789. for(j=0;j<mdct_long_end;j++) {
  1790. /* apply window & overlap with previous buffer */
  1791. out_ptr = sb_samples + j;
  1792. /* select window */
  1793. if (g->switch_point && j < 2)
  1794. win1 = mdct_win[0];
  1795. else
  1796. win1 = mdct_win[g->block_type];
  1797. /* select frequency inversion */
  1798. win = win1 + ((4 * 36) & -(j & 1));
  1799. imdct36(out_ptr, buf, ptr, win);
  1800. out_ptr += 18*SBLIMIT;
  1801. ptr += 18;
  1802. buf += 18;
  1803. }
  1804. for(j=mdct_long_end;j<sblimit;j++) {
  1805. /* select frequency inversion */
  1806. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1807. out_ptr = sb_samples + j;
  1808. for(i=0; i<6; i++){
  1809. *out_ptr = buf[i];
  1810. out_ptr += SBLIMIT;
  1811. }
  1812. imdct12(out2, ptr + 0);
  1813. for(i=0;i<6;i++) {
  1814. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1815. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1816. out_ptr += SBLIMIT;
  1817. }
  1818. imdct12(out2, ptr + 1);
  1819. for(i=0;i<6;i++) {
  1820. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1821. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1822. out_ptr += SBLIMIT;
  1823. }
  1824. imdct12(out2, ptr + 2);
  1825. for(i=0;i<6;i++) {
  1826. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1827. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1828. buf[i + 6*2] = 0;
  1829. }
  1830. ptr += 18;
  1831. buf += 18;
  1832. }
  1833. /* zero bands */
  1834. for(j=sblimit;j<SBLIMIT;j++) {
  1835. /* overlap */
  1836. out_ptr = sb_samples + j;
  1837. for(i=0;i<18;i++) {
  1838. *out_ptr = buf[i];
  1839. buf[i] = 0;
  1840. out_ptr += SBLIMIT;
  1841. }
  1842. buf += 18;
  1843. }
  1844. }
  1845. #if defined(DEBUG)
  1846. void sample_dump(int fnum, int32_t *tab, int n)
  1847. {
  1848. static FILE *files[16], *f;
  1849. char buf[512];
  1850. int i;
  1851. int32_t v;
  1852. f = files[fnum];
  1853. if (!f) {
  1854. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1855. fnum,
  1856. #ifdef USE_HIGHPRECISION
  1857. "hp"
  1858. #else
  1859. "lp"
  1860. #endif
  1861. );
  1862. f = fopen(buf, "w");
  1863. if (!f)
  1864. return;
  1865. files[fnum] = f;
  1866. }
  1867. if (fnum == 0) {
  1868. static int pos = 0;
  1869. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1870. for(i=0;i<n;i++) {
  1871. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1872. if ((i % 18) == 17)
  1873. av_log(NULL, AV_LOG_DEBUG, "\n");
  1874. }
  1875. pos += n;
  1876. }
  1877. for(i=0;i<n;i++) {
  1878. /* normalize to 23 frac bits */
  1879. v = tab[i] << (23 - FRAC_BITS);
  1880. fwrite(&v, 1, sizeof(int32_t), f);
  1881. }
  1882. }
  1883. #endif
  1884. /* main layer3 decoding function */
  1885. static int mp_decode_layer3(MPADecodeContext *s)
  1886. {
  1887. int nb_granules, main_data_begin, private_bits;
  1888. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1889. GranuleDef granules[2][2], *g;
  1890. int16_t exponents[576];
  1891. /* read side info */
  1892. if (s->lsf) {
  1893. main_data_begin = get_bits(&s->gb, 8);
  1894. if (s->nb_channels == 2)
  1895. private_bits = get_bits(&s->gb, 2);
  1896. else
  1897. private_bits = get_bits(&s->gb, 1);
  1898. nb_granules = 1;
  1899. } else {
  1900. main_data_begin = get_bits(&s->gb, 9);
  1901. if (s->nb_channels == 2)
  1902. private_bits = get_bits(&s->gb, 3);
  1903. else
  1904. private_bits = get_bits(&s->gb, 5);
  1905. nb_granules = 2;
  1906. for(ch=0;ch<s->nb_channels;ch++) {
  1907. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1908. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1909. }
  1910. }
  1911. for(gr=0;gr<nb_granules;gr++) {
  1912. for(ch=0;ch<s->nb_channels;ch++) {
  1913. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1914. g = &granules[ch][gr];
  1915. g->part2_3_length = get_bits(&s->gb, 12);
  1916. g->big_values = get_bits(&s->gb, 9);
  1917. g->global_gain = get_bits(&s->gb, 8);
  1918. /* if MS stereo only is selected, we precompute the
  1919. 1/sqrt(2) renormalization factor */
  1920. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1921. MODE_EXT_MS_STEREO)
  1922. g->global_gain -= 2;
  1923. if (s->lsf)
  1924. g->scalefac_compress = get_bits(&s->gb, 9);
  1925. else
  1926. g->scalefac_compress = get_bits(&s->gb, 4);
  1927. blocksplit_flag = get_bits(&s->gb, 1);
  1928. if (blocksplit_flag) {
  1929. g->block_type = get_bits(&s->gb, 2);
  1930. if (g->block_type == 0)
  1931. return -1;
  1932. g->switch_point = get_bits(&s->gb, 1);
  1933. for(i=0;i<2;i++)
  1934. g->table_select[i] = get_bits(&s->gb, 5);
  1935. for(i=0;i<3;i++)
  1936. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1937. /* compute huffman coded region sizes */
  1938. if (g->block_type == 2)
  1939. g->region_size[0] = (36 / 2);
  1940. else {
  1941. if (s->sample_rate_index <= 2)
  1942. g->region_size[0] = (36 / 2);
  1943. else if (s->sample_rate_index != 8)
  1944. g->region_size[0] = (54 / 2);
  1945. else
  1946. g->region_size[0] = (108 / 2);
  1947. }
  1948. g->region_size[1] = (576 / 2);
  1949. } else {
  1950. int region_address1, region_address2, l;
  1951. g->block_type = 0;
  1952. g->switch_point = 0;
  1953. for(i=0;i<3;i++)
  1954. g->table_select[i] = get_bits(&s->gb, 5);
  1955. /* compute huffman coded region sizes */
  1956. region_address1 = get_bits(&s->gb, 4);
  1957. region_address2 = get_bits(&s->gb, 3);
  1958. dprintf("region1=%d region2=%d\n",
  1959. region_address1, region_address2);
  1960. g->region_size[0] =
  1961. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1962. l = region_address1 + region_address2 + 2;
  1963. /* should not overflow */
  1964. if (l > 22)
  1965. l = 22;
  1966. g->region_size[1] =
  1967. band_index_long[s->sample_rate_index][l] >> 1;
  1968. }
  1969. /* convert region offsets to region sizes and truncate
  1970. size to big_values */
  1971. g->region_size[2] = (576 / 2);
  1972. j = 0;
  1973. for(i=0;i<3;i++) {
  1974. k = g->region_size[i];
  1975. if (k > g->big_values)
  1976. k = g->big_values;
  1977. g->region_size[i] = k - j;
  1978. j = k;
  1979. }
  1980. /* compute band indexes */
  1981. if (g->block_type == 2) {
  1982. if (g->switch_point) {
  1983. /* if switched mode, we handle the 36 first samples as
  1984. long blocks. For 8000Hz, we handle the 48 first
  1985. exponents as long blocks (XXX: check this!) */
  1986. if (s->sample_rate_index <= 2)
  1987. g->long_end = 8;
  1988. else if (s->sample_rate_index != 8)
  1989. g->long_end = 6;
  1990. else
  1991. g->long_end = 4; /* 8000 Hz */
  1992. if (s->sample_rate_index != 8)
  1993. g->short_start = 3;
  1994. else
  1995. g->short_start = 2;
  1996. } else {
  1997. g->long_end = 0;
  1998. g->short_start = 0;
  1999. }
  2000. } else {
  2001. g->short_start = 13;
  2002. g->long_end = 22;
  2003. }
  2004. g->preflag = 0;
  2005. if (!s->lsf)
  2006. g->preflag = get_bits(&s->gb, 1);
  2007. g->scalefac_scale = get_bits(&s->gb, 1);
  2008. g->count1table_select = get_bits(&s->gb, 1);
  2009. dprintf("block_type=%d switch_point=%d\n",
  2010. g->block_type, g->switch_point);
  2011. }
  2012. }
  2013. if (!s->adu_mode) {
  2014. /* now we get bits from the main_data_begin offset */
  2015. dprintf("seekback: %d\n", main_data_begin);
  2016. seek_to_maindata(s, main_data_begin);
  2017. }
  2018. for(gr=0;gr<nb_granules;gr++) {
  2019. for(ch=0;ch<s->nb_channels;ch++) {
  2020. g = &granules[ch][gr];
  2021. bits_pos = get_bits_count(&s->gb);
  2022. if (!s->lsf) {
  2023. uint8_t *sc;
  2024. int slen, slen1, slen2;
  2025. /* MPEG1 scale factors */
  2026. slen1 = slen_table[0][g->scalefac_compress];
  2027. slen2 = slen_table[1][g->scalefac_compress];
  2028. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2029. if (g->block_type == 2) {
  2030. n = g->switch_point ? 17 : 18;
  2031. j = 0;
  2032. for(i=0;i<n;i++)
  2033. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2034. for(i=0;i<18;i++)
  2035. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2036. for(i=0;i<3;i++)
  2037. g->scale_factors[j++] = 0;
  2038. } else {
  2039. sc = granules[ch][0].scale_factors;
  2040. j = 0;
  2041. for(k=0;k<4;k++) {
  2042. n = (k == 0 ? 6 : 5);
  2043. if ((g->scfsi & (0x8 >> k)) == 0) {
  2044. slen = (k < 2) ? slen1 : slen2;
  2045. for(i=0;i<n;i++)
  2046. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2047. } else {
  2048. /* simply copy from last granule */
  2049. for(i=0;i<n;i++) {
  2050. g->scale_factors[j] = sc[j];
  2051. j++;
  2052. }
  2053. }
  2054. }
  2055. g->scale_factors[j++] = 0;
  2056. }
  2057. #if defined(DEBUG)
  2058. {
  2059. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2060. g->scfsi, gr, ch);
  2061. for(i=0;i<j;i++)
  2062. printf(" %d", g->scale_factors[i]);
  2063. printf("\n");
  2064. }
  2065. #endif
  2066. } else {
  2067. int tindex, tindex2, slen[4], sl, sf;
  2068. /* LSF scale factors */
  2069. if (g->block_type == 2) {
  2070. tindex = g->switch_point ? 2 : 1;
  2071. } else {
  2072. tindex = 0;
  2073. }
  2074. sf = g->scalefac_compress;
  2075. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2076. /* intensity stereo case */
  2077. sf >>= 1;
  2078. if (sf < 180) {
  2079. lsf_sf_expand(slen, sf, 6, 6, 0);
  2080. tindex2 = 3;
  2081. } else if (sf < 244) {
  2082. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2083. tindex2 = 4;
  2084. } else {
  2085. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2086. tindex2 = 5;
  2087. }
  2088. } else {
  2089. /* normal case */
  2090. if (sf < 400) {
  2091. lsf_sf_expand(slen, sf, 5, 4, 4);
  2092. tindex2 = 0;
  2093. } else if (sf < 500) {
  2094. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2095. tindex2 = 1;
  2096. } else {
  2097. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2098. tindex2 = 2;
  2099. g->preflag = 1;
  2100. }
  2101. }
  2102. j = 0;
  2103. for(k=0;k<4;k++) {
  2104. n = lsf_nsf_table[tindex2][tindex][k];
  2105. sl = slen[k];
  2106. for(i=0;i<n;i++)
  2107. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2108. }
  2109. /* XXX: should compute exact size */
  2110. for(;j<40;j++)
  2111. g->scale_factors[j] = 0;
  2112. #if defined(DEBUG)
  2113. {
  2114. printf("gr=%d ch=%d scale_factors:\n",
  2115. gr, ch);
  2116. for(i=0;i<40;i++)
  2117. printf(" %d", g->scale_factors[i]);
  2118. printf("\n");
  2119. }
  2120. #endif
  2121. }
  2122. exponents_from_scale_factors(s, g, exponents);
  2123. /* read Huffman coded residue */
  2124. if (huffman_decode(s, g, exponents,
  2125. bits_pos + g->part2_3_length) < 0)
  2126. return -1;
  2127. #if defined(DEBUG)
  2128. sample_dump(0, g->sb_hybrid, 576);
  2129. #endif
  2130. /* skip extension bits */
  2131. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2132. if (bits_left < 0) {
  2133. dprintf("bits_left=%d\n", bits_left);
  2134. return -1;
  2135. }
  2136. while (bits_left >= 16) {
  2137. skip_bits(&s->gb, 16);
  2138. bits_left -= 16;
  2139. }
  2140. if (bits_left > 0)
  2141. skip_bits(&s->gb, bits_left);
  2142. } /* ch */
  2143. if (s->nb_channels == 2)
  2144. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2145. for(ch=0;ch<s->nb_channels;ch++) {
  2146. g = &granules[ch][gr];
  2147. reorder_block(s, g);
  2148. #if defined(DEBUG)
  2149. sample_dump(0, g->sb_hybrid, 576);
  2150. #endif
  2151. s->compute_antialias(s, g);
  2152. #if defined(DEBUG)
  2153. sample_dump(1, g->sb_hybrid, 576);
  2154. #endif
  2155. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2156. #if defined(DEBUG)
  2157. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2158. #endif
  2159. }
  2160. } /* gr */
  2161. return nb_granules * 18;
  2162. }
  2163. static int mp_decode_frame(MPADecodeContext *s,
  2164. OUT_INT *samples)
  2165. {
  2166. int i, nb_frames, ch;
  2167. OUT_INT *samples_ptr;
  2168. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2169. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2170. /* skip error protection field */
  2171. if (s->error_protection)
  2172. get_bits(&s->gb, 16);
  2173. dprintf("frame %d:\n", s->frame_count);
  2174. switch(s->layer) {
  2175. case 1:
  2176. nb_frames = mp_decode_layer1(s);
  2177. break;
  2178. case 2:
  2179. nb_frames = mp_decode_layer2(s);
  2180. break;
  2181. case 3:
  2182. default:
  2183. nb_frames = mp_decode_layer3(s);
  2184. break;
  2185. }
  2186. #if defined(DEBUG)
  2187. for(i=0;i<nb_frames;i++) {
  2188. for(ch=0;ch<s->nb_channels;ch++) {
  2189. int j;
  2190. printf("%d-%d:", i, ch);
  2191. for(j=0;j<SBLIMIT;j++)
  2192. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2193. printf("\n");
  2194. }
  2195. }
  2196. #endif
  2197. /* apply the synthesis filter */
  2198. for(ch=0;ch<s->nb_channels;ch++) {
  2199. samples_ptr = samples + ch;
  2200. for(i=0;i<nb_frames;i++) {
  2201. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2202. window, &s->dither_state,
  2203. samples_ptr, s->nb_channels,
  2204. s->sb_samples[ch][i]);
  2205. samples_ptr += 32 * s->nb_channels;
  2206. }
  2207. }
  2208. #ifdef DEBUG
  2209. s->frame_count++;
  2210. #endif
  2211. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2212. }
  2213. static int decode_frame(AVCodecContext * avctx,
  2214. void *data, int *data_size,
  2215. uint8_t * buf, int buf_size)
  2216. {
  2217. MPADecodeContext *s = avctx->priv_data;
  2218. uint32_t header;
  2219. uint8_t *buf_ptr;
  2220. int len, out_size;
  2221. OUT_INT *out_samples = data;
  2222. buf_ptr = buf;
  2223. while (buf_size > 0) {
  2224. len = s->inbuf_ptr - s->inbuf;
  2225. if (s->frame_size == 0) {
  2226. /* special case for next header for first frame in free
  2227. format case (XXX: find a simpler method) */
  2228. if (s->free_format_next_header != 0) {
  2229. s->inbuf[0] = s->free_format_next_header >> 24;
  2230. s->inbuf[1] = s->free_format_next_header >> 16;
  2231. s->inbuf[2] = s->free_format_next_header >> 8;
  2232. s->inbuf[3] = s->free_format_next_header;
  2233. s->inbuf_ptr = s->inbuf + 4;
  2234. s->free_format_next_header = 0;
  2235. goto got_header;
  2236. }
  2237. /* no header seen : find one. We need at least HEADER_SIZE
  2238. bytes to parse it */
  2239. len = HEADER_SIZE - len;
  2240. if (len > buf_size)
  2241. len = buf_size;
  2242. if (len > 0) {
  2243. memcpy(s->inbuf_ptr, buf_ptr, len);
  2244. buf_ptr += len;
  2245. buf_size -= len;
  2246. s->inbuf_ptr += len;
  2247. }
  2248. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2249. got_header:
  2250. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2251. (s->inbuf[2] << 8) | s->inbuf[3];
  2252. if (ff_mpa_check_header(header) < 0) {
  2253. /* no sync found : move by one byte (inefficient, but simple!) */
  2254. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2255. s->inbuf_ptr--;
  2256. dprintf("skip %x\n", header);
  2257. /* reset free format frame size to give a chance
  2258. to get a new bitrate */
  2259. s->free_format_frame_size = 0;
  2260. } else {
  2261. if (decode_header(s, header) == 1) {
  2262. /* free format: prepare to compute frame size */
  2263. s->frame_size = -1;
  2264. }
  2265. /* update codec info */
  2266. avctx->sample_rate = s->sample_rate;
  2267. avctx->channels = s->nb_channels;
  2268. avctx->bit_rate = s->bit_rate;
  2269. avctx->sub_id = s->layer;
  2270. switch(s->layer) {
  2271. case 1:
  2272. avctx->frame_size = 384;
  2273. break;
  2274. case 2:
  2275. avctx->frame_size = 1152;
  2276. break;
  2277. case 3:
  2278. if (s->lsf)
  2279. avctx->frame_size = 576;
  2280. else
  2281. avctx->frame_size = 1152;
  2282. break;
  2283. }
  2284. }
  2285. }
  2286. } else if (s->frame_size == -1) {
  2287. /* free format : find next sync to compute frame size */
  2288. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2289. if (len > buf_size)
  2290. len = buf_size;
  2291. if (len == 0) {
  2292. /* frame too long: resync */
  2293. s->frame_size = 0;
  2294. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2295. s->inbuf_ptr--;
  2296. } else {
  2297. uint8_t *p, *pend;
  2298. uint32_t header1;
  2299. int padding;
  2300. memcpy(s->inbuf_ptr, buf_ptr, len);
  2301. /* check for header */
  2302. p = s->inbuf_ptr - 3;
  2303. pend = s->inbuf_ptr + len - 4;
  2304. while (p <= pend) {
  2305. header = (p[0] << 24) | (p[1] << 16) |
  2306. (p[2] << 8) | p[3];
  2307. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2308. (s->inbuf[2] << 8) | s->inbuf[3];
  2309. /* check with high probability that we have a
  2310. valid header */
  2311. if ((header & SAME_HEADER_MASK) ==
  2312. (header1 & SAME_HEADER_MASK)) {
  2313. /* header found: update pointers */
  2314. len = (p + 4) - s->inbuf_ptr;
  2315. buf_ptr += len;
  2316. buf_size -= len;
  2317. s->inbuf_ptr = p;
  2318. /* compute frame size */
  2319. s->free_format_next_header = header;
  2320. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2321. padding = (header1 >> 9) & 1;
  2322. if (s->layer == 1)
  2323. s->free_format_frame_size -= padding * 4;
  2324. else
  2325. s->free_format_frame_size -= padding;
  2326. dprintf("free frame size=%d padding=%d\n",
  2327. s->free_format_frame_size, padding);
  2328. decode_header(s, header1);
  2329. goto next_data;
  2330. }
  2331. p++;
  2332. }
  2333. /* not found: simply increase pointers */
  2334. buf_ptr += len;
  2335. s->inbuf_ptr += len;
  2336. buf_size -= len;
  2337. }
  2338. } else if (len < s->frame_size) {
  2339. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2340. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2341. len = s->frame_size - len;
  2342. if (len > buf_size)
  2343. len = buf_size;
  2344. memcpy(s->inbuf_ptr, buf_ptr, len);
  2345. buf_ptr += len;
  2346. s->inbuf_ptr += len;
  2347. buf_size -= len;
  2348. }
  2349. next_data:
  2350. if (s->frame_size > 0 &&
  2351. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2352. if (avctx->parse_only) {
  2353. /* simply return the frame data */
  2354. *(uint8_t **)data = s->inbuf;
  2355. out_size = s->inbuf_ptr - s->inbuf;
  2356. } else {
  2357. out_size = mp_decode_frame(s, out_samples);
  2358. }
  2359. s->inbuf_ptr = s->inbuf;
  2360. s->frame_size = 0;
  2361. *data_size = out_size;
  2362. break;
  2363. }
  2364. }
  2365. return buf_ptr - buf;
  2366. }
  2367. static int decode_frame_adu(AVCodecContext * avctx,
  2368. void *data, int *data_size,
  2369. uint8_t * buf, int buf_size)
  2370. {
  2371. MPADecodeContext *s = avctx->priv_data;
  2372. uint32_t header;
  2373. int len, out_size;
  2374. OUT_INT *out_samples = data;
  2375. len = buf_size;
  2376. // Discard too short frames
  2377. if (buf_size < HEADER_SIZE) {
  2378. *data_size = 0;
  2379. return buf_size;
  2380. }
  2381. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2382. len = MPA_MAX_CODED_FRAME_SIZE;
  2383. memcpy(s->inbuf, buf, len);
  2384. s->inbuf_ptr = s->inbuf + len;
  2385. // Get header and restore sync word
  2386. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2387. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2388. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2389. *data_size = 0;
  2390. return buf_size;
  2391. }
  2392. decode_header(s, header);
  2393. /* update codec info */
  2394. avctx->sample_rate = s->sample_rate;
  2395. avctx->channels = s->nb_channels;
  2396. avctx->bit_rate = s->bit_rate;
  2397. avctx->sub_id = s->layer;
  2398. avctx->frame_size=s->frame_size = len;
  2399. if (avctx->parse_only) {
  2400. /* simply return the frame data */
  2401. *(uint8_t **)data = s->inbuf;
  2402. out_size = s->inbuf_ptr - s->inbuf;
  2403. } else {
  2404. out_size = mp_decode_frame(s, out_samples);
  2405. }
  2406. *data_size = out_size;
  2407. return buf_size;
  2408. }
  2409. AVCodec mp2_decoder =
  2410. {
  2411. "mp2",
  2412. CODEC_TYPE_AUDIO,
  2413. CODEC_ID_MP2,
  2414. sizeof(MPADecodeContext),
  2415. decode_init,
  2416. NULL,
  2417. NULL,
  2418. decode_frame,
  2419. CODEC_CAP_PARSE_ONLY,
  2420. };
  2421. AVCodec mp3_decoder =
  2422. {
  2423. "mp3",
  2424. CODEC_TYPE_AUDIO,
  2425. CODEC_ID_MP3,
  2426. sizeof(MPADecodeContext),
  2427. decode_init,
  2428. NULL,
  2429. NULL,
  2430. decode_frame,
  2431. CODEC_CAP_PARSE_ONLY,
  2432. };
  2433. AVCodec mp3adu_decoder =
  2434. {
  2435. "mp3adu",
  2436. CODEC_TYPE_AUDIO,
  2437. CODEC_ID_MP3ADU,
  2438. sizeof(MPADecodeContext),
  2439. decode_init,
  2440. NULL,
  2441. NULL,
  2442. decode_frame_adu,
  2443. CODEC_CAP_PARSE_ONLY,
  2444. };