You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2258 lines
79KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diracdsp.h"
  39. #include "videodsp.h"
  40. /**
  41. * The spec limits the number of wavelet decompositions to 4 for both
  42. * level 1 (VC-2) and 128 (long-gop default).
  43. * 5 decompositions is the maximum before >16-bit buffers are needed.
  44. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  45. * the others to 4 decompositions (or 3 for the fidelity filter).
  46. *
  47. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  48. */
  49. #define MAX_DWT_LEVELS 5
  50. /**
  51. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  52. */
  53. #define MAX_REFERENCE_FRAMES 8
  54. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  55. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  56. #define MAX_QUANT 255 /* max quant for VC-2 */
  57. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  58. /**
  59. * DiracBlock->ref flags, if set then the block does MC from the given ref
  60. */
  61. #define DIRAC_REF_MASK_REF1 1
  62. #define DIRAC_REF_MASK_REF2 2
  63. #define DIRAC_REF_MASK_GLOBAL 4
  64. /**
  65. * Value of Picture.reference when Picture is not a reference picture, but
  66. * is held for delayed output.
  67. */
  68. #define DELAYED_PIC_REF 4
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. int reference;
  78. } DiracFrame;
  79. typedef struct {
  80. union {
  81. int16_t mv[2][2];
  82. int16_t dc[3];
  83. } u; /* anonymous unions aren't in C99 :( */
  84. uint8_t ref;
  85. } DiracBlock;
  86. typedef struct SubBand {
  87. int level;
  88. int orientation;
  89. int stride; /* in bytes */
  90. int width;
  91. int height;
  92. int pshift;
  93. int quant;
  94. uint8_t *ibuf;
  95. struct SubBand *parent;
  96. /* for low delay */
  97. unsigned length;
  98. const uint8_t *coeff_data;
  99. } SubBand;
  100. typedef struct Plane {
  101. int width;
  102. int height;
  103. ptrdiff_t stride;
  104. int idwt_width;
  105. int idwt_height;
  106. int idwt_stride;
  107. uint8_t *idwt_buf;
  108. uint8_t *idwt_buf_base;
  109. uint8_t *idwt_tmp;
  110. /* block length */
  111. uint8_t xblen;
  112. uint8_t yblen;
  113. /* block separation (block n+1 starts after this many pixels in block n) */
  114. uint8_t xbsep;
  115. uint8_t ybsep;
  116. /* amount of overspill on each edge (half of the overlap between blocks) */
  117. uint8_t xoffset;
  118. uint8_t yoffset;
  119. SubBand band[MAX_DWT_LEVELS][4];
  120. } Plane;
  121. typedef struct DiracContext {
  122. AVCodecContext *avctx;
  123. MpegvideoEncDSPContext mpvencdsp;
  124. VideoDSPContext vdsp;
  125. DiracDSPContext diracdsp;
  126. DiracVersionInfo version;
  127. GetBitContext gb;
  128. AVDiracSeqHeader seq;
  129. int seen_sequence_header;
  130. int frame_number; /* number of the next frame to display */
  131. Plane plane[3];
  132. int chroma_x_shift;
  133. int chroma_y_shift;
  134. int bit_depth; /* bit depth */
  135. int pshift; /* pixel shift = bit_depth > 8 */
  136. int zero_res; /* zero residue flag */
  137. int is_arith; /* whether coeffs use arith or golomb coding */
  138. int core_syntax; /* use core syntax only */
  139. int low_delay; /* use the low delay syntax */
  140. int hq_picture; /* high quality picture, enables low_delay */
  141. int ld_picture; /* use low delay picture, turns on low_delay */
  142. int dc_prediction; /* has dc prediction */
  143. int globalmc_flag; /* use global motion compensation */
  144. int num_refs; /* number of reference pictures */
  145. /* wavelet decoding */
  146. unsigned wavelet_depth; /* depth of the IDWT */
  147. unsigned wavelet_idx;
  148. /**
  149. * schroedinger older than 1.0.8 doesn't store
  150. * quant delta if only one codebook exists in a band
  151. */
  152. unsigned old_delta_quant;
  153. unsigned codeblock_mode;
  154. unsigned num_x; /* number of horizontal slices */
  155. unsigned num_y; /* number of vertical slices */
  156. struct {
  157. unsigned width;
  158. unsigned height;
  159. } codeblock[MAX_DWT_LEVELS+1];
  160. struct {
  161. AVRational bytes; /* average bytes per slice */
  162. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  163. } lowdelay;
  164. struct {
  165. unsigned prefix_bytes;
  166. unsigned size_scaler;
  167. } highquality;
  168. struct {
  169. int pan_tilt[2]; /* pan/tilt vector */
  170. int zrs[2][2]; /* zoom/rotate/shear matrix */
  171. int perspective[2]; /* perspective vector */
  172. unsigned zrs_exp;
  173. unsigned perspective_exp;
  174. } globalmc[2];
  175. /* motion compensation */
  176. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  177. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  178. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  179. int blwidth; /* number of blocks (horizontally) */
  180. int blheight; /* number of blocks (vertically) */
  181. int sbwidth; /* number of superblocks (horizontally) */
  182. int sbheight; /* number of superblocks (vertically) */
  183. uint8_t *sbsplit;
  184. DiracBlock *blmotion;
  185. uint8_t *edge_emu_buffer[4];
  186. uint8_t *edge_emu_buffer_base;
  187. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  188. uint8_t *mcscratch;
  189. int buffer_stride;
  190. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  191. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  192. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  193. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  194. dirac_weight_func weight_func;
  195. dirac_biweight_func biweight_func;
  196. DiracFrame *current_picture;
  197. DiracFrame *ref_pics[2];
  198. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  199. DiracFrame *delay_frames[MAX_DELAY+1];
  200. DiracFrame all_frames[MAX_FRAMES];
  201. } DiracContext;
  202. enum dirac_subband {
  203. subband_ll = 0,
  204. subband_hl = 1,
  205. subband_lh = 2,
  206. subband_hh = 3,
  207. subband_nb,
  208. };
  209. static const uint8_t default_qmat[][4][4] = {
  210. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  211. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  212. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  213. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  214. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  215. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  216. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  217. };
  218. static const int32_t qscale_tab[128] = {
  219. 4, 5, 6, 7, 8, 10, 11, 13,
  220. 16, 19, 23, 27, 32, 38, 45, 54,
  221. 64, 76, 91, 108, 128, 152, 181, 215,
  222. 256, 304, 362, 431, 512, 609, 724, 861,
  223. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  224. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  225. 16384, 19484, -13317, 27554, 32768, -1581, 9853, -10518,
  226. 65536, -3164, -16782, -21037, 131072, -6328, 2922, 23552,
  227. 262144, -12658, 5844, -18524, 524288, 15232, 11689, 28578,
  228. 1048576, -10085, -13110, -8471, 2097152, -20170, 10267, -16943,
  229. 4194304, 208, -15954, 31741, 8388608, 416, 4579, -2146,
  230. 16777216, 832, 9158, -4293, 33554432, 1663, -18172, -8587,
  231. 67108864, 3326, 143, -17175, 134217728, 6653, 285, 31276,
  232. 268435456, 13306, 570, -3075, 536870912, -13938, 1140, -6152,
  233. 1073741824, 12672, 2281, -12304, -2147483648, -15205, 4561, -24610,
  234. 0, 10138, 9122, 16407, 0, -20274, -18243, -32813,
  235. };
  236. static const int32_t qoffset_intra_tab[128] = {
  237. 1, 2, 3, 4, 4, 5, 6, 7,
  238. 8, 10, 12, 14, 16, 19, 23, 27,
  239. 32, 38, 46, 54, 64, 76, 91, 108,
  240. 128, 152, 181, 216, 256, 305, 362, 431,
  241. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  242. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  243. 8192, 9742, -6658, 13777, 16384, -790, 4927, -5258,
  244. 32768, -1581, -8390, -10518, 65536, -3163, 1461, 11776,
  245. 131072, -6328, 2922, -9261, 262144, 7616, 5845, 14289,
  246. 524288, -5042, -6554, -4235, 1048576, -10084, 5134, -8471,
  247. 2097152, 104, -7976, 15871, 4194304, 208, 2290, -1072,
  248. 8388608, 416, 4579, -2146, 16777216, 832, -9085, -4293,
  249. 33554432, 1663, 72, -8587, 67108864, 3327, 143, 15638,
  250. 134217728, 6653, 285, -1537, 268435456, -6968, 570, -3075,
  251. 536870912, 6336, 1141, -6151, -1073741823, -7602, 2281, -12304,
  252. 0, 5069, 4561, 8204, 0, -10136, -9121, -16406,
  253. };
  254. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  255. 1, 2, 2, 3, 3, 4, 4, 5,
  256. 6, 7, 9, 10, 12, 14, 17, 20,
  257. 24, 29, 34, 41, 48, 57, 68, 81,
  258. 96, 114, 136, 162, 192, 228, 272, 323,
  259. 384, 457, 543, 646, 768, 913, 1086, 1292,
  260. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  261. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  262. 24576, 29226
  263. };
  264. /* magic number division by 3 from schroedinger */
  265. static inline int divide3(int x)
  266. {
  267. return ((x+1)*21845 + 10922) >> 16;
  268. }
  269. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  270. {
  271. DiracFrame *remove_pic = NULL;
  272. int i, remove_idx = -1;
  273. for (i = 0; framelist[i]; i++)
  274. if (framelist[i]->avframe->display_picture_number == picnum) {
  275. remove_pic = framelist[i];
  276. remove_idx = i;
  277. }
  278. if (remove_pic)
  279. for (i = remove_idx; framelist[i]; i++)
  280. framelist[i] = framelist[i+1];
  281. return remove_pic;
  282. }
  283. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  284. {
  285. int i;
  286. for (i = 0; i < maxframes; i++)
  287. if (!framelist[i]) {
  288. framelist[i] = frame;
  289. return 0;
  290. }
  291. return -1;
  292. }
  293. static int alloc_sequence_buffers(DiracContext *s)
  294. {
  295. int sbwidth = DIVRNDUP(s->seq.width, 4);
  296. int sbheight = DIVRNDUP(s->seq.height, 4);
  297. int i, w, h, top_padding;
  298. /* todo: think more about this / use or set Plane here */
  299. for (i = 0; i < 3; i++) {
  300. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  301. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  302. w = s->seq.width >> (i ? s->chroma_x_shift : 0);
  303. h = s->seq.height >> (i ? s->chroma_y_shift : 0);
  304. /* we allocate the max we support here since num decompositions can
  305. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  306. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  307. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  308. * on each side */
  309. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  310. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  311. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  312. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
  313. s->plane[i].idwt_tmp = av_malloc_array((w+16), 2 << s->pshift);
  314. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + (top_padding*w)*(2 << s->pshift);
  315. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  316. return AVERROR(ENOMEM);
  317. }
  318. /* fixme: allocate using real stride here */
  319. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  320. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  321. if (!s->sbsplit || !s->blmotion)
  322. return AVERROR(ENOMEM);
  323. return 0;
  324. }
  325. static int alloc_buffers(DiracContext *s, int stride)
  326. {
  327. int w = s->seq.width;
  328. int h = s->seq.height;
  329. av_assert0(stride >= w);
  330. stride += 64;
  331. if (s->buffer_stride >= stride)
  332. return 0;
  333. s->buffer_stride = 0;
  334. av_freep(&s->edge_emu_buffer_base);
  335. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  336. av_freep(&s->mctmp);
  337. av_freep(&s->mcscratch);
  338. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  339. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  340. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  341. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  342. return AVERROR(ENOMEM);
  343. s->buffer_stride = stride;
  344. return 0;
  345. }
  346. static void free_sequence_buffers(DiracContext *s)
  347. {
  348. int i, j, k;
  349. for (i = 0; i < MAX_FRAMES; i++) {
  350. if (s->all_frames[i].avframe->data[0]) {
  351. av_frame_unref(s->all_frames[i].avframe);
  352. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  353. }
  354. for (j = 0; j < 3; j++)
  355. for (k = 1; k < 4; k++)
  356. av_freep(&s->all_frames[i].hpel_base[j][k]);
  357. }
  358. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  359. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  360. for (i = 0; i < 3; i++) {
  361. av_freep(&s->plane[i].idwt_buf_base);
  362. av_freep(&s->plane[i].idwt_tmp);
  363. }
  364. s->buffer_stride = 0;
  365. av_freep(&s->sbsplit);
  366. av_freep(&s->blmotion);
  367. av_freep(&s->edge_emu_buffer_base);
  368. av_freep(&s->mctmp);
  369. av_freep(&s->mcscratch);
  370. }
  371. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  372. {
  373. DiracContext *s = avctx->priv_data;
  374. int i;
  375. s->avctx = avctx;
  376. s->frame_number = -1;
  377. ff_diracdsp_init(&s->diracdsp);
  378. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  379. ff_videodsp_init(&s->vdsp, 8);
  380. for (i = 0; i < MAX_FRAMES; i++) {
  381. s->all_frames[i].avframe = av_frame_alloc();
  382. if (!s->all_frames[i].avframe) {
  383. while (i > 0)
  384. av_frame_free(&s->all_frames[--i].avframe);
  385. return AVERROR(ENOMEM);
  386. }
  387. }
  388. return 0;
  389. }
  390. static void dirac_decode_flush(AVCodecContext *avctx)
  391. {
  392. DiracContext *s = avctx->priv_data;
  393. free_sequence_buffers(s);
  394. s->seen_sequence_header = 0;
  395. s->frame_number = -1;
  396. }
  397. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  398. {
  399. DiracContext *s = avctx->priv_data;
  400. int i;
  401. dirac_decode_flush(avctx);
  402. for (i = 0; i < MAX_FRAMES; i++)
  403. av_frame_free(&s->all_frames[i].avframe);
  404. return 0;
  405. }
  406. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  407. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  408. {
  409. int sign, coeff;
  410. uint32_t buf;
  411. OPEN_READER(re, gb);
  412. UPDATE_CACHE(re, gb);
  413. buf = GET_CACHE(re, gb);
  414. if (buf & 0xAA800000) {
  415. buf >>= 32 - 8;
  416. SKIP_BITS(re, gb, ff_interleaved_golomb_vlc_len[buf]);
  417. coeff = ff_interleaved_ue_golomb_vlc_code[buf];
  418. } else {
  419. unsigned ret = 1;
  420. do {
  421. buf >>= 32 - 8;
  422. SKIP_BITS(re, gb,
  423. FFMIN(ff_interleaved_golomb_vlc_len[buf], 8));
  424. if (ff_interleaved_golomb_vlc_len[buf] != 9) {
  425. ret <<= (ff_interleaved_golomb_vlc_len[buf] - 1) >> 1;
  426. ret |= ff_interleaved_dirac_golomb_vlc_code[buf];
  427. break;
  428. }
  429. ret = (ret << 4) | ff_interleaved_dirac_golomb_vlc_code[buf];
  430. UPDATE_CACHE(re, gb);
  431. buf = GET_CACHE(re, gb);
  432. } while (ret<0x8000000U && BITS_AVAILABLE(re, gb));
  433. coeff = ret - 1;
  434. }
  435. if (coeff) {
  436. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  437. sign = SHOW_SBITS(re, gb, 1);
  438. LAST_SKIP_BITS(re, gb, 1);
  439. coeff = (coeff ^ sign) - sign;
  440. }
  441. CLOSE_READER(re, gb);
  442. return coeff;
  443. }
  444. #define UNPACK_ARITH(n, type) \
  445. static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
  446. SubBand *b, type *buf, int x, int y) \
  447. { \
  448. int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
  449. const int mstride = -(b->stride >> (1+b->pshift)); \
  450. if (b->parent) { \
  451. const type *pbuf = (type *)b->parent->ibuf; \
  452. const int stride = b->parent->stride >> (1+b->parent->pshift); \
  453. pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
  454. } \
  455. if (b->orientation == subband_hl) \
  456. sign_pred = buf[mstride]; \
  457. if (x) { \
  458. pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
  459. if (b->orientation == subband_lh) \
  460. sign_pred = buf[-1]; \
  461. } else { \
  462. pred_ctx += !buf[mstride]; \
  463. } \
  464. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
  465. if (coeff) { \
  466. coeff = (coeff * qfactor + qoffset + 2) >> 2; \
  467. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
  468. coeff = (coeff ^ -sign) + sign; \
  469. } \
  470. *buf = coeff; \
  471. } \
  472. UNPACK_ARITH(8, int16_t)
  473. UNPACK_ARITH(10, int32_t)
  474. /**
  475. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  476. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  477. */
  478. static inline void codeblock(DiracContext *s, SubBand *b,
  479. GetBitContext *gb, DiracArith *c,
  480. int left, int right, int top, int bottom,
  481. int blockcnt_one, int is_arith)
  482. {
  483. int x, y, zero_block;
  484. int qoffset, qfactor;
  485. uint8_t *buf;
  486. /* check for any coded coefficients in this codeblock */
  487. if (!blockcnt_one) {
  488. if (is_arith)
  489. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  490. else
  491. zero_block = get_bits1(gb);
  492. if (zero_block)
  493. return;
  494. }
  495. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  496. int quant = b->quant;
  497. if (is_arith)
  498. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  499. else
  500. quant += dirac_get_se_golomb(gb);
  501. if (quant < 0) {
  502. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  503. return;
  504. }
  505. b->quant = quant;
  506. }
  507. b->quant = FFMIN(b->quant, MAX_QUANT);
  508. qfactor = qscale_tab[b->quant];
  509. /* TODO: context pointer? */
  510. if (!s->num_refs)
  511. qoffset = qoffset_intra_tab[b->quant];
  512. else
  513. qoffset = qoffset_inter_tab[b->quant];
  514. buf = b->ibuf + top * b->stride;
  515. if (is_arith) {
  516. for (y = top; y < bottom; y++) {
  517. for (x = left; x < right; x++) {
  518. if (b->pshift) {
  519. coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
  520. } else {
  521. coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
  522. }
  523. }
  524. buf += b->stride;
  525. }
  526. } else {
  527. for (y = top; y < bottom; y++) {
  528. for (x = left; x < right; x++) {
  529. int val = coeff_unpack_golomb(gb, qfactor, qoffset);
  530. if (b->pshift) {
  531. AV_WN32(&buf[4*x], val);
  532. } else {
  533. AV_WN16(&buf[2*x], val);
  534. }
  535. }
  536. buf += b->stride;
  537. }
  538. }
  539. }
  540. /**
  541. * Dirac Specification ->
  542. * 13.3 intra_dc_prediction(band)
  543. */
  544. #define INTRA_DC_PRED(n, type) \
  545. static inline void intra_dc_prediction_##n(SubBand *b) \
  546. { \
  547. type *buf = (type*)b->ibuf; \
  548. int x, y; \
  549. \
  550. for (x = 1; x < b->width; x++) \
  551. buf[x] += buf[x-1]; \
  552. buf += (b->stride >> (1+b->pshift)); \
  553. \
  554. for (y = 1; y < b->height; y++) { \
  555. buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
  556. \
  557. for (x = 1; x < b->width; x++) { \
  558. int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
  559. buf[x] += divide3(pred); \
  560. } \
  561. buf += (b->stride >> (1+b->pshift)); \
  562. } \
  563. } \
  564. INTRA_DC_PRED(8, int16_t)
  565. INTRA_DC_PRED(10, int32_t)
  566. /**
  567. * Dirac Specification ->
  568. * 13.4.2 Non-skipped subbands. subband_coeffs()
  569. */
  570. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  571. {
  572. int cb_x, cb_y, left, right, top, bottom;
  573. DiracArith c;
  574. GetBitContext gb;
  575. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  576. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  577. int blockcnt_one = (cb_width + cb_height) == 2;
  578. if (!b->length)
  579. return;
  580. init_get_bits8(&gb, b->coeff_data, b->length);
  581. if (is_arith)
  582. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  583. top = 0;
  584. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  585. bottom = (b->height * (cb_y+1LL)) / cb_height;
  586. left = 0;
  587. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  588. right = (b->width * (cb_x+1LL)) / cb_width;
  589. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  590. left = right;
  591. }
  592. top = bottom;
  593. }
  594. if (b->orientation == subband_ll && s->num_refs == 0) {
  595. if (s->pshift) {
  596. intra_dc_prediction_10(b);
  597. } else {
  598. intra_dc_prediction_8(b);
  599. }
  600. }
  601. }
  602. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  603. {
  604. DiracContext *s = avctx->priv_data;
  605. decode_subband_internal(s, b, 1);
  606. return 0;
  607. }
  608. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  609. {
  610. DiracContext *s = avctx->priv_data;
  611. SubBand **b = arg;
  612. decode_subband_internal(s, *b, 0);
  613. return 0;
  614. }
  615. /**
  616. * Dirac Specification ->
  617. * [DIRAC_STD] 13.4.1 core_transform_data()
  618. */
  619. static void decode_component(DiracContext *s, int comp)
  620. {
  621. AVCodecContext *avctx = s->avctx;
  622. SubBand *bands[3*MAX_DWT_LEVELS+1];
  623. enum dirac_subband orientation;
  624. int level, num_bands = 0;
  625. /* Unpack all subbands at all levels. */
  626. for (level = 0; level < s->wavelet_depth; level++) {
  627. for (orientation = !!level; orientation < 4; orientation++) {
  628. SubBand *b = &s->plane[comp].band[level][orientation];
  629. bands[num_bands++] = b;
  630. align_get_bits(&s->gb);
  631. /* [DIRAC_STD] 13.4.2 subband() */
  632. b->length = svq3_get_ue_golomb(&s->gb);
  633. if (b->length) {
  634. b->quant = svq3_get_ue_golomb(&s->gb);
  635. align_get_bits(&s->gb);
  636. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  637. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  638. skip_bits_long(&s->gb, b->length*8);
  639. }
  640. }
  641. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  642. if (s->is_arith)
  643. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  644. NULL, 4-!!level, sizeof(SubBand));
  645. }
  646. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  647. if (!s->is_arith)
  648. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  649. }
  650. #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
  651. type *buf = (type *)buf1; \
  652. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  653. if (get_bits_count(gb) >= ebits) \
  654. return; \
  655. if (buf2) { \
  656. buf = (type *)buf2; \
  657. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  658. if (get_bits_count(gb) >= ebits) \
  659. return; \
  660. } \
  661. static void decode_subband(DiracContext *s, GetBitContext *gb, int quant,
  662. int slice_x, int slice_y, int bits_end,
  663. SubBand *b1, SubBand *b2)
  664. {
  665. int left = b1->width * slice_x / s->num_x;
  666. int right = b1->width *(slice_x+1) / s->num_x;
  667. int top = b1->height * slice_y / s->num_y;
  668. int bottom = b1->height *(slice_y+1) / s->num_y;
  669. int qfactor = qscale_tab[quant & 0x7f];
  670. int qoffset = qoffset_intra_tab[quant & 0x7f];
  671. uint8_t *buf1 = b1->ibuf + top * b1->stride;
  672. uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
  673. int x, y;
  674. /* we have to constantly check for overread since the spec explicitly
  675. requires this, with the meaning that all remaining coeffs are set to 0 */
  676. if (get_bits_count(gb) >= bits_end)
  677. return;
  678. if (s->pshift) {
  679. for (y = top; y < bottom; y++) {
  680. for (x = left; x < right; x++) {
  681. PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
  682. }
  683. buf1 += b1->stride;
  684. if (buf2)
  685. buf2 += b2->stride;
  686. }
  687. }
  688. else {
  689. for (y = top; y < bottom; y++) {
  690. for (x = left; x < right; x++) {
  691. PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
  692. }
  693. buf1 += b1->stride;
  694. if (buf2)
  695. buf2 += b2->stride;
  696. }
  697. }
  698. }
  699. /* Used by Low Delay and High Quality profiles */
  700. typedef struct DiracSlice {
  701. GetBitContext gb;
  702. int slice_x;
  703. int slice_y;
  704. int bytes;
  705. } DiracSlice;
  706. /**
  707. * Dirac Specification ->
  708. * 13.5.2 Slices. slice(sx,sy)
  709. */
  710. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  711. {
  712. DiracContext *s = avctx->priv_data;
  713. DiracSlice *slice = arg;
  714. GetBitContext *gb = &slice->gb;
  715. enum dirac_subband orientation;
  716. int level, quant, chroma_bits, chroma_end;
  717. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  718. int length_bits = av_log2(8 * slice->bytes)+1;
  719. int luma_bits = get_bits_long(gb, length_bits);
  720. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  721. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  722. for (level = 0; level < s->wavelet_depth; level++)
  723. for (orientation = !!level; orientation < 4; orientation++) {
  724. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  725. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  726. &s->plane[0].band[level][orientation], NULL);
  727. }
  728. /* consume any unused bits from luma */
  729. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  730. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  731. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  732. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  733. for (level = 0; level < s->wavelet_depth; level++)
  734. for (orientation = !!level; orientation < 4; orientation++) {
  735. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  736. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  737. &s->plane[1].band[level][orientation],
  738. &s->plane[2].band[level][orientation]);
  739. }
  740. return 0;
  741. }
  742. /**
  743. * VC-2 Specification ->
  744. * 13.5.3 hq_slice(sx,sy)
  745. */
  746. static int decode_hq_slice(AVCodecContext *avctx, void *arg)
  747. {
  748. int i, quant, level, orientation, quant_idx;
  749. uint8_t quants[MAX_DWT_LEVELS][4];
  750. DiracContext *s = avctx->priv_data;
  751. DiracSlice *slice = arg;
  752. GetBitContext *gb = &slice->gb;
  753. skip_bits_long(gb, 8*s->highquality.prefix_bytes);
  754. quant_idx = get_bits(gb, 8);
  755. /* Slice quantization (slice_quantizers() in the specs) */
  756. for (level = 0; level < s->wavelet_depth; level++) {
  757. for (orientation = !!level; orientation < 4; orientation++) {
  758. quant = FFMAX(quant_idx - s->lowdelay.quant[level][orientation], 0);
  759. quants[level][orientation] = quant;
  760. }
  761. }
  762. /* Luma + 2 Chroma planes */
  763. for (i = 0; i < 3; i++) {
  764. int length = s->highquality.size_scaler * get_bits(gb, 8);
  765. int bits_left = 8 * length;
  766. int bits_end = get_bits_count(gb) + bits_left;
  767. for (level = 0; level < s->wavelet_depth; level++) {
  768. for (orientation = !!level; orientation < 4; orientation++) {
  769. decode_subband(s, gb, quants[level][orientation], slice->slice_x, slice->slice_y, bits_end,
  770. &s->plane[i].band[level][orientation], NULL);
  771. }
  772. }
  773. skip_bits_long(gb, bits_end - get_bits_count(gb));
  774. }
  775. return 0;
  776. }
  777. /**
  778. * Dirac Specification ->
  779. * 13.5.1 low_delay_transform_data()
  780. */
  781. static int decode_lowdelay(DiracContext *s)
  782. {
  783. AVCodecContext *avctx = s->avctx;
  784. int slice_x, slice_y, bytes = 0, bufsize;
  785. const uint8_t *buf;
  786. DiracSlice *slices;
  787. int slice_num = 0;
  788. slices = av_mallocz_array(s->num_x, s->num_y * sizeof(DiracSlice));
  789. if (!slices)
  790. return AVERROR(ENOMEM);
  791. align_get_bits(&s->gb);
  792. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  793. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  794. bufsize = get_bits_left(&s->gb);
  795. if (s->hq_picture) {
  796. int i;
  797. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  798. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  799. bytes = s->highquality.prefix_bytes + 1;
  800. for (i = 0; i < 3; i++) {
  801. if (bytes <= bufsize/8)
  802. bytes += buf[bytes] * s->highquality.size_scaler + 1;
  803. }
  804. slices[slice_num].bytes = bytes;
  805. slices[slice_num].slice_x = slice_x;
  806. slices[slice_num].slice_y = slice_y;
  807. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  808. slice_num++;
  809. buf += bytes;
  810. if (bufsize/8 >= bytes)
  811. bufsize -= bytes*8;
  812. else
  813. bufsize = 0;
  814. }
  815. }
  816. avctx->execute(avctx, decode_hq_slice, slices, NULL, slice_num,
  817. sizeof(DiracSlice));
  818. } else {
  819. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  820. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  821. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  822. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  823. slices[slice_num].bytes = bytes;
  824. slices[slice_num].slice_x = slice_x;
  825. slices[slice_num].slice_y = slice_y;
  826. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  827. slice_num++;
  828. buf += bytes;
  829. if (bufsize/8 >= bytes)
  830. bufsize -= bytes*8;
  831. else
  832. bufsize = 0;
  833. }
  834. }
  835. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  836. sizeof(DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
  837. }
  838. if (s->dc_prediction) {
  839. if (s->pshift) {
  840. intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  841. intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  842. intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  843. } else {
  844. intra_dc_prediction_8(&s->plane[0].band[0][0]);
  845. intra_dc_prediction_8(&s->plane[1].band[0][0]);
  846. intra_dc_prediction_8(&s->plane[2].band[0][0]);
  847. }
  848. }
  849. av_free(slices);
  850. return 0;
  851. }
  852. static void init_planes(DiracContext *s)
  853. {
  854. int i, w, h, level, orientation;
  855. for (i = 0; i < 3; i++) {
  856. Plane *p = &s->plane[i];
  857. p->width = s->seq.width >> (i ? s->chroma_x_shift : 0);
  858. p->height = s->seq.height >> (i ? s->chroma_y_shift : 0);
  859. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  860. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  861. p->idwt_stride = FFALIGN(p->idwt_width, 8) << (1 + s->pshift);
  862. for (level = s->wavelet_depth-1; level >= 0; level--) {
  863. w = w>>1;
  864. h = h>>1;
  865. for (orientation = !!level; orientation < 4; orientation++) {
  866. SubBand *b = &p->band[level][orientation];
  867. b->pshift = s->pshift;
  868. b->ibuf = p->idwt_buf;
  869. b->level = level;
  870. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  871. b->width = w;
  872. b->height = h;
  873. b->orientation = orientation;
  874. if (orientation & 1)
  875. b->ibuf += w << (1+b->pshift);
  876. if (orientation > 1)
  877. b->ibuf += (b->stride>>1);
  878. if (level)
  879. b->parent = &p->band[level-1][orientation];
  880. }
  881. }
  882. if (i > 0) {
  883. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  884. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  885. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  886. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  887. }
  888. p->xoffset = (p->xblen - p->xbsep)/2;
  889. p->yoffset = (p->yblen - p->ybsep)/2;
  890. }
  891. }
  892. /**
  893. * Unpack the motion compensation parameters
  894. * Dirac Specification ->
  895. * 11.2 Picture prediction data. picture_prediction()
  896. */
  897. static int dirac_unpack_prediction_parameters(DiracContext *s)
  898. {
  899. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  900. GetBitContext *gb = &s->gb;
  901. unsigned idx, ref;
  902. align_get_bits(gb);
  903. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  904. /* Luma and Chroma are equal. 11.2.3 */
  905. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  906. if (idx > 4) {
  907. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  908. return AVERROR_INVALIDDATA;
  909. }
  910. if (idx == 0) {
  911. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  912. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  913. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  914. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  915. } else {
  916. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  917. s->plane[0].xblen = default_blen[idx-1];
  918. s->plane[0].yblen = default_blen[idx-1];
  919. s->plane[0].xbsep = 4 * idx;
  920. s->plane[0].ybsep = 4 * idx;
  921. }
  922. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  923. Calculated in function dirac_unpack_block_motion_data */
  924. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  925. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  926. !s->plane[0].xblen || !s->plane[0].yblen) {
  927. av_log(s->avctx, AV_LOG_ERROR,
  928. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  929. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  930. return AVERROR_INVALIDDATA;
  931. }
  932. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  933. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  934. return AVERROR_INVALIDDATA;
  935. }
  936. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  937. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  938. return AVERROR_INVALIDDATA;
  939. }
  940. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  941. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  942. return AVERROR_PATCHWELCOME;
  943. }
  944. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  945. Read motion vector precision */
  946. s->mv_precision = svq3_get_ue_golomb(gb);
  947. if (s->mv_precision > 3) {
  948. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  949. return AVERROR_INVALIDDATA;
  950. }
  951. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  952. Read the global motion compensation parameters */
  953. s->globalmc_flag = get_bits1(gb);
  954. if (s->globalmc_flag) {
  955. memset(s->globalmc, 0, sizeof(s->globalmc));
  956. /* [DIRAC_STD] pan_tilt(gparams) */
  957. for (ref = 0; ref < s->num_refs; ref++) {
  958. if (get_bits1(gb)) {
  959. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  960. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  961. }
  962. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  963. zoom/rotation/shear parameters */
  964. if (get_bits1(gb)) {
  965. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  966. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  967. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  968. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  969. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  970. } else {
  971. s->globalmc[ref].zrs[0][0] = 1;
  972. s->globalmc[ref].zrs[1][1] = 1;
  973. }
  974. /* [DIRAC_STD] perspective(gparams) */
  975. if (get_bits1(gb)) {
  976. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  977. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  978. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  979. }
  980. }
  981. }
  982. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  983. Picture prediction mode, not currently used. */
  984. if (svq3_get_ue_golomb(gb)) {
  985. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  986. return AVERROR_INVALIDDATA;
  987. }
  988. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  989. just data read, weight calculation will be done later on. */
  990. s->weight_log2denom = 1;
  991. s->weight[0] = 1;
  992. s->weight[1] = 1;
  993. if (get_bits1(gb)) {
  994. s->weight_log2denom = svq3_get_ue_golomb(gb);
  995. s->weight[0] = dirac_get_se_golomb(gb);
  996. if (s->num_refs == 2)
  997. s->weight[1] = dirac_get_se_golomb(gb);
  998. }
  999. return 0;
  1000. }
  1001. /**
  1002. * Dirac Specification ->
  1003. * 11.3 Wavelet transform data. wavelet_transform()
  1004. */
  1005. static int dirac_unpack_idwt_params(DiracContext *s)
  1006. {
  1007. GetBitContext *gb = &s->gb;
  1008. int i, level;
  1009. unsigned tmp;
  1010. #define CHECKEDREAD(dst, cond, errmsg) \
  1011. tmp = svq3_get_ue_golomb(gb); \
  1012. if (cond) { \
  1013. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  1014. return AVERROR_INVALIDDATA; \
  1015. }\
  1016. dst = tmp;
  1017. align_get_bits(gb);
  1018. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  1019. if (s->zero_res)
  1020. return 0;
  1021. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  1022. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  1023. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  1024. if (!s->low_delay) {
  1025. /* Codeblock parameters (core syntax only) */
  1026. if (get_bits1(gb)) {
  1027. for (i = 0; i <= s->wavelet_depth; i++) {
  1028. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  1029. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  1030. }
  1031. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  1032. }
  1033. else {
  1034. for (i = 0; i <= s->wavelet_depth; i++)
  1035. s->codeblock[i].width = s->codeblock[i].height = 1;
  1036. }
  1037. }
  1038. else {
  1039. s->num_x = svq3_get_ue_golomb(gb);
  1040. s->num_y = svq3_get_ue_golomb(gb);
  1041. if (s->ld_picture) {
  1042. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  1043. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  1044. if (s->lowdelay.bytes.den <= 0) {
  1045. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  1046. return AVERROR_INVALIDDATA;
  1047. }
  1048. } else if (s->hq_picture) {
  1049. s->highquality.prefix_bytes = svq3_get_ue_golomb(gb);
  1050. s->highquality.size_scaler = svq3_get_ue_golomb(gb);
  1051. }
  1052. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  1053. if (get_bits1(gb)) {
  1054. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  1055. /* custom quantization matrix */
  1056. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  1057. for (level = 0; level < s->wavelet_depth; level++) {
  1058. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  1059. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  1060. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  1061. }
  1062. } else {
  1063. if (s->wavelet_depth > 4) {
  1064. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  1065. return AVERROR_INVALIDDATA;
  1066. }
  1067. /* default quantization matrix */
  1068. for (level = 0; level < s->wavelet_depth; level++)
  1069. for (i = 0; i < 4; i++) {
  1070. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  1071. /* haar with no shift differs for different depths */
  1072. if (s->wavelet_idx == 3)
  1073. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  1074. }
  1075. }
  1076. }
  1077. return 0;
  1078. }
  1079. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  1080. {
  1081. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  1082. if (!(x|y))
  1083. return 0;
  1084. else if (!y)
  1085. return sbsplit[-1];
  1086. else if (!x)
  1087. return sbsplit[-stride];
  1088. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  1089. }
  1090. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  1091. {
  1092. int pred;
  1093. if (!(x|y))
  1094. return 0;
  1095. else if (!y)
  1096. return block[-1].ref & refmask;
  1097. else if (!x)
  1098. return block[-stride].ref & refmask;
  1099. /* return the majority */
  1100. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  1101. return (pred >> 1) & refmask;
  1102. }
  1103. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  1104. {
  1105. int i, n = 0;
  1106. memset(block->u.dc, 0, sizeof(block->u.dc));
  1107. if (x && !(block[-1].ref & 3)) {
  1108. for (i = 0; i < 3; i++)
  1109. block->u.dc[i] += block[-1].u.dc[i];
  1110. n++;
  1111. }
  1112. if (y && !(block[-stride].ref & 3)) {
  1113. for (i = 0; i < 3; i++)
  1114. block->u.dc[i] += block[-stride].u.dc[i];
  1115. n++;
  1116. }
  1117. if (x && y && !(block[-1-stride].ref & 3)) {
  1118. for (i = 0; i < 3; i++)
  1119. block->u.dc[i] += block[-1-stride].u.dc[i];
  1120. n++;
  1121. }
  1122. if (n == 2) {
  1123. for (i = 0; i < 3; i++)
  1124. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  1125. } else if (n == 3) {
  1126. for (i = 0; i < 3; i++)
  1127. block->u.dc[i] = divide3(block->u.dc[i]);
  1128. }
  1129. }
  1130. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  1131. {
  1132. int16_t *pred[3];
  1133. int refmask = ref+1;
  1134. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  1135. int n = 0;
  1136. if (x && (block[-1].ref & mask) == refmask)
  1137. pred[n++] = block[-1].u.mv[ref];
  1138. if (y && (block[-stride].ref & mask) == refmask)
  1139. pred[n++] = block[-stride].u.mv[ref];
  1140. if (x && y && (block[-stride-1].ref & mask) == refmask)
  1141. pred[n++] = block[-stride-1].u.mv[ref];
  1142. switch (n) {
  1143. case 0:
  1144. block->u.mv[ref][0] = 0;
  1145. block->u.mv[ref][1] = 0;
  1146. break;
  1147. case 1:
  1148. block->u.mv[ref][0] = pred[0][0];
  1149. block->u.mv[ref][1] = pred[0][1];
  1150. break;
  1151. case 2:
  1152. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  1153. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  1154. break;
  1155. case 3:
  1156. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  1157. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  1158. break;
  1159. }
  1160. }
  1161. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  1162. {
  1163. int ez = s->globalmc[ref].zrs_exp;
  1164. int ep = s->globalmc[ref].perspective_exp;
  1165. int (*A)[2] = s->globalmc[ref].zrs;
  1166. int *b = s->globalmc[ref].pan_tilt;
  1167. int *c = s->globalmc[ref].perspective;
  1168. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1169. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1170. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1171. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1172. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1173. }
  1174. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1175. int stride, int x, int y)
  1176. {
  1177. int i;
  1178. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1179. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1180. if (s->num_refs == 2) {
  1181. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1182. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1183. }
  1184. if (!block->ref) {
  1185. pred_block_dc(block, stride, x, y);
  1186. for (i = 0; i < 3; i++)
  1187. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1188. return;
  1189. }
  1190. if (s->globalmc_flag) {
  1191. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1192. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1193. }
  1194. for (i = 0; i < s->num_refs; i++)
  1195. if (block->ref & (i+1)) {
  1196. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1197. global_mv(s, block, x, y, i);
  1198. } else {
  1199. pred_mv(block, stride, x, y, i);
  1200. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1201. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1202. }
  1203. }
  1204. }
  1205. /**
  1206. * Copies the current block to the other blocks covered by the current superblock split mode
  1207. */
  1208. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1209. {
  1210. int x, y;
  1211. DiracBlock *dst = block;
  1212. for (x = 1; x < size; x++)
  1213. dst[x] = *block;
  1214. for (y = 1; y < size; y++) {
  1215. dst += stride;
  1216. for (x = 0; x < size; x++)
  1217. dst[x] = *block;
  1218. }
  1219. }
  1220. /**
  1221. * Dirac Specification ->
  1222. * 12. Block motion data syntax
  1223. */
  1224. static int dirac_unpack_block_motion_data(DiracContext *s)
  1225. {
  1226. GetBitContext *gb = &s->gb;
  1227. uint8_t *sbsplit = s->sbsplit;
  1228. int i, x, y, q, p;
  1229. DiracArith arith[8];
  1230. align_get_bits(gb);
  1231. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1232. s->sbwidth = DIVRNDUP(s->seq.width, 4*s->plane[0].xbsep);
  1233. s->sbheight = DIVRNDUP(s->seq.height, 4*s->plane[0].ybsep);
  1234. s->blwidth = 4 * s->sbwidth;
  1235. s->blheight = 4 * s->sbheight;
  1236. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1237. decode superblock split modes */
  1238. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1239. for (y = 0; y < s->sbheight; y++) {
  1240. for (x = 0; x < s->sbwidth; x++) {
  1241. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1242. if (split > 2)
  1243. return AVERROR_INVALIDDATA;
  1244. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1245. }
  1246. sbsplit += s->sbwidth;
  1247. }
  1248. /* setup arith decoding */
  1249. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1250. for (i = 0; i < s->num_refs; i++) {
  1251. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1252. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1253. }
  1254. for (i = 0; i < 3; i++)
  1255. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1256. for (y = 0; y < s->sbheight; y++)
  1257. for (x = 0; x < s->sbwidth; x++) {
  1258. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1259. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1260. for (q = 0; q < blkcnt; q++)
  1261. for (p = 0; p < blkcnt; p++) {
  1262. int bx = 4 * x + p*step;
  1263. int by = 4 * y + q*step;
  1264. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1265. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1266. propagate_block_data(block, s->blwidth, step);
  1267. }
  1268. }
  1269. return 0;
  1270. }
  1271. static int weight(int i, int blen, int offset)
  1272. {
  1273. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1274. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1275. if (i < 2*offset)
  1276. return ROLLOFF(i);
  1277. else if (i > blen-1 - 2*offset)
  1278. return ROLLOFF(blen-1 - i);
  1279. return 8;
  1280. }
  1281. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1282. int left, int right, int wy)
  1283. {
  1284. int x;
  1285. for (x = 0; left && x < p->xblen >> 1; x++)
  1286. obmc_weight[x] = wy*8;
  1287. for (; x < p->xblen >> right; x++)
  1288. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1289. for (; x < p->xblen; x++)
  1290. obmc_weight[x] = wy*8;
  1291. for (; x < stride; x++)
  1292. obmc_weight[x] = 0;
  1293. }
  1294. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1295. int left, int right, int top, int bottom)
  1296. {
  1297. int y;
  1298. for (y = 0; top && y < p->yblen >> 1; y++) {
  1299. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1300. obmc_weight += stride;
  1301. }
  1302. for (; y < p->yblen >> bottom; y++) {
  1303. int wy = weight(y, p->yblen, p->yoffset);
  1304. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1305. obmc_weight += stride;
  1306. }
  1307. for (; y < p->yblen; y++) {
  1308. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1309. obmc_weight += stride;
  1310. }
  1311. }
  1312. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1313. {
  1314. int top = !by;
  1315. int bottom = by == s->blheight-1;
  1316. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1317. if (top || bottom || by == 1) {
  1318. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1319. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1320. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1321. }
  1322. }
  1323. static const uint8_t epel_weights[4][4][4] = {
  1324. {{ 16, 0, 0, 0 },
  1325. { 12, 4, 0, 0 },
  1326. { 8, 8, 0, 0 },
  1327. { 4, 12, 0, 0 }},
  1328. {{ 12, 0, 4, 0 },
  1329. { 9, 3, 3, 1 },
  1330. { 6, 6, 2, 2 },
  1331. { 3, 9, 1, 3 }},
  1332. {{ 8, 0, 8, 0 },
  1333. { 6, 2, 6, 2 },
  1334. { 4, 4, 4, 4 },
  1335. { 2, 6, 2, 6 }},
  1336. {{ 4, 0, 12, 0 },
  1337. { 3, 1, 9, 3 },
  1338. { 2, 2, 6, 6 },
  1339. { 1, 3, 3, 9 }}
  1340. };
  1341. /**
  1342. * For block x,y, determine which of the hpel planes to do bilinear
  1343. * interpolation from and set src[] to the location in each hpel plane
  1344. * to MC from.
  1345. *
  1346. * @return the index of the put_dirac_pixels_tab function to use
  1347. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1348. */
  1349. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1350. int x, int y, int ref, int plane)
  1351. {
  1352. Plane *p = &s->plane[plane];
  1353. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1354. int motion_x = block->u.mv[ref][0];
  1355. int motion_y = block->u.mv[ref][1];
  1356. int mx, my, i, epel, nplanes = 0;
  1357. if (plane) {
  1358. motion_x >>= s->chroma_x_shift;
  1359. motion_y >>= s->chroma_y_shift;
  1360. }
  1361. mx = motion_x & ~(-1U << s->mv_precision);
  1362. my = motion_y & ~(-1U << s->mv_precision);
  1363. motion_x >>= s->mv_precision;
  1364. motion_y >>= s->mv_precision;
  1365. /* normalize subpel coordinates to epel */
  1366. /* TODO: template this function? */
  1367. mx <<= 3 - s->mv_precision;
  1368. my <<= 3 - s->mv_precision;
  1369. x += motion_x;
  1370. y += motion_y;
  1371. epel = (mx|my)&1;
  1372. /* hpel position */
  1373. if (!((mx|my)&3)) {
  1374. nplanes = 1;
  1375. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1376. } else {
  1377. /* qpel or epel */
  1378. nplanes = 4;
  1379. for (i = 0; i < 4; i++)
  1380. src[i] = ref_hpel[i] + y*p->stride + x;
  1381. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1382. we increment x/y because the edge changes for half of the pixels */
  1383. if (mx > 4) {
  1384. src[0] += 1;
  1385. src[2] += 1;
  1386. x++;
  1387. }
  1388. if (my > 4) {
  1389. src[0] += p->stride;
  1390. src[1] += p->stride;
  1391. y++;
  1392. }
  1393. /* hpel planes are:
  1394. [0]: F [1]: H
  1395. [2]: V [3]: C */
  1396. if (!epel) {
  1397. /* check if we really only need 2 planes since either mx or my is
  1398. a hpel position. (epel weights of 0 handle this there) */
  1399. if (!(mx&3)) {
  1400. /* mx == 0: average [0] and [2]
  1401. mx == 4: average [1] and [3] */
  1402. src[!mx] = src[2 + !!mx];
  1403. nplanes = 2;
  1404. } else if (!(my&3)) {
  1405. src[0] = src[(my>>1) ];
  1406. src[1] = src[(my>>1)+1];
  1407. nplanes = 2;
  1408. }
  1409. } else {
  1410. /* adjust the ordering if needed so the weights work */
  1411. if (mx > 4) {
  1412. FFSWAP(const uint8_t *, src[0], src[1]);
  1413. FFSWAP(const uint8_t *, src[2], src[3]);
  1414. }
  1415. if (my > 4) {
  1416. FFSWAP(const uint8_t *, src[0], src[2]);
  1417. FFSWAP(const uint8_t *, src[1], src[3]);
  1418. }
  1419. src[4] = epel_weights[my&3][mx&3];
  1420. }
  1421. }
  1422. /* fixme: v/h _edge_pos */
  1423. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1424. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1425. x < 0 || y < 0) {
  1426. for (i = 0; i < nplanes; i++) {
  1427. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1428. p->stride, p->stride,
  1429. p->xblen, p->yblen, x, y,
  1430. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1431. src[i] = s->edge_emu_buffer[i];
  1432. }
  1433. }
  1434. return (nplanes>>1) + epel;
  1435. }
  1436. static void add_dc(uint16_t *dst, int dc, int stride,
  1437. uint8_t *obmc_weight, int xblen, int yblen)
  1438. {
  1439. int x, y;
  1440. dc += 128;
  1441. for (y = 0; y < yblen; y++) {
  1442. for (x = 0; x < xblen; x += 2) {
  1443. dst[x ] += dc * obmc_weight[x ];
  1444. dst[x+1] += dc * obmc_weight[x+1];
  1445. }
  1446. dst += stride;
  1447. obmc_weight += MAX_BLOCKSIZE;
  1448. }
  1449. }
  1450. static void block_mc(DiracContext *s, DiracBlock *block,
  1451. uint16_t *mctmp, uint8_t *obmc_weight,
  1452. int plane, int dstx, int dsty)
  1453. {
  1454. Plane *p = &s->plane[plane];
  1455. const uint8_t *src[5];
  1456. int idx;
  1457. switch (block->ref&3) {
  1458. case 0: /* DC */
  1459. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1460. return;
  1461. case 1:
  1462. case 2:
  1463. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1464. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1465. if (s->weight_func)
  1466. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1467. s->weight[0] + s->weight[1], p->yblen);
  1468. break;
  1469. case 3:
  1470. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1471. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1472. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1473. if (s->biweight_func) {
  1474. /* fixme: +32 is a quick hack */
  1475. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1476. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1477. s->weight[0], s->weight[1], p->yblen);
  1478. } else
  1479. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1480. break;
  1481. }
  1482. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1483. }
  1484. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1485. {
  1486. Plane *p = &s->plane[plane];
  1487. int x, dstx = p->xbsep - p->xoffset;
  1488. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1489. mctmp += p->xbsep;
  1490. for (x = 1; x < s->blwidth-1; x++) {
  1491. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1492. dstx += p->xbsep;
  1493. mctmp += p->xbsep;
  1494. }
  1495. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1496. }
  1497. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1498. {
  1499. int idx = 0;
  1500. if (xblen > 8)
  1501. idx = 1;
  1502. if (xblen > 16)
  1503. idx = 2;
  1504. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1505. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1506. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1507. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1508. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1509. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1510. } else {
  1511. s->weight_func = NULL;
  1512. s->biweight_func = NULL;
  1513. }
  1514. }
  1515. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1516. {
  1517. /* chroma allocates an edge of 8 when subsampled
  1518. which for 4:2:2 means an h edge of 16 and v edge of 8
  1519. just use 8 for everything for the moment */
  1520. int i, edge = EDGE_WIDTH/2;
  1521. ref->hpel[plane][0] = ref->avframe->data[plane];
  1522. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1523. /* no need for hpel if we only have fpel vectors */
  1524. if (!s->mv_precision)
  1525. return 0;
  1526. for (i = 1; i < 4; i++) {
  1527. if (!ref->hpel_base[plane][i])
  1528. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1529. if (!ref->hpel_base[plane][i]) {
  1530. return AVERROR(ENOMEM);
  1531. }
  1532. /* we need to be 16-byte aligned even for chroma */
  1533. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1534. }
  1535. if (!ref->interpolated[plane]) {
  1536. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1537. ref->hpel[plane][3], ref->hpel[plane][0],
  1538. ref->avframe->linesize[plane], width, height);
  1539. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1540. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1541. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1542. }
  1543. ref->interpolated[plane] = 1;
  1544. return 0;
  1545. }
  1546. /**
  1547. * Dirac Specification ->
  1548. * 13.0 Transform data syntax. transform_data()
  1549. */
  1550. static int dirac_decode_frame_internal(DiracContext *s)
  1551. {
  1552. DWTContext d;
  1553. int y, i, comp, dsty;
  1554. int ret;
  1555. if (s->low_delay) {
  1556. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1557. for (comp = 0; comp < 3; comp++) {
  1558. Plane *p = &s->plane[comp];
  1559. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1560. }
  1561. if (!s->zero_res) {
  1562. if ((ret = decode_lowdelay(s)) < 0)
  1563. return ret;
  1564. }
  1565. }
  1566. for (comp = 0; comp < 3; comp++) {
  1567. Plane *p = &s->plane[comp];
  1568. uint8_t *frame = s->current_picture->avframe->data[comp];
  1569. /* FIXME: small resolutions */
  1570. for (i = 0; i < 4; i++)
  1571. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1572. if (!s->zero_res && !s->low_delay)
  1573. {
  1574. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1575. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1576. }
  1577. ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1578. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp, s->bit_depth);
  1579. if (ret < 0)
  1580. return ret;
  1581. if (!s->num_refs) { /* intra */
  1582. for (y = 0; y < p->height; y += 16) {
  1583. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1584. s->diracdsp.put_signed_rect_clamped[s->pshift](frame + y*p->stride, p->stride,
  1585. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1586. }
  1587. } else { /* inter */
  1588. int rowheight = p->ybsep*p->stride;
  1589. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1590. for (i = 0; i < s->num_refs; i++) {
  1591. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1592. if (ret < 0)
  1593. return ret;
  1594. }
  1595. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1596. dsty = -p->yoffset;
  1597. for (y = 0; y < s->blheight; y++) {
  1598. int h = 0,
  1599. start = FFMAX(dsty, 0);
  1600. uint16_t *mctmp = s->mctmp + y*rowheight;
  1601. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1602. init_obmc_weights(s, p, y);
  1603. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1604. h = p->height - start;
  1605. else
  1606. h = p->ybsep - (start - dsty);
  1607. if (h < 0)
  1608. break;
  1609. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1610. mc_row(s, blocks, mctmp, comp, dsty);
  1611. mctmp += (start - dsty)*p->stride + p->xoffset;
  1612. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1613. /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
  1614. * idwt_stride is passed as pixels, not in bytes as in the rest of the decoder */
  1615. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1616. (int16_t*)(p->idwt_buf) + start*(p->idwt_stride >> 1), (p->idwt_stride >> 1), p->width, h);
  1617. dsty += p->ybsep;
  1618. }
  1619. }
  1620. }
  1621. return 0;
  1622. }
  1623. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1624. {
  1625. int ret, i;
  1626. int chroma_x_shift, chroma_y_shift;
  1627. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1628. f->width = avctx->width + 2 * EDGE_WIDTH;
  1629. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1630. ret = ff_get_buffer(avctx, f, flags);
  1631. if (ret < 0)
  1632. return ret;
  1633. for (i = 0; f->data[i]; i++) {
  1634. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1635. f->linesize[i] + 32;
  1636. f->data[i] += offset;
  1637. }
  1638. f->width = avctx->width;
  1639. f->height = avctx->height;
  1640. return 0;
  1641. }
  1642. /**
  1643. * Dirac Specification ->
  1644. * 11.1.1 Picture Header. picture_header()
  1645. */
  1646. static int dirac_decode_picture_header(DiracContext *s)
  1647. {
  1648. unsigned retire, picnum;
  1649. int i, j, ret;
  1650. int64_t refdist, refnum;
  1651. GetBitContext *gb = &s->gb;
  1652. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1653. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1654. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1655. /* if this is the first keyframe after a sequence header, start our
  1656. reordering from here */
  1657. if (s->frame_number < 0)
  1658. s->frame_number = picnum;
  1659. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1660. for (i = 0; i < s->num_refs; i++) {
  1661. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1662. refdist = INT64_MAX;
  1663. /* find the closest reference to the one we want */
  1664. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1665. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1666. if (s->ref_frames[j]
  1667. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1668. s->ref_pics[i] = s->ref_frames[j];
  1669. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1670. }
  1671. if (!s->ref_pics[i] || refdist)
  1672. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1673. /* if there were no references at all, allocate one */
  1674. if (!s->ref_pics[i])
  1675. for (j = 0; j < MAX_FRAMES; j++)
  1676. if (!s->all_frames[j].avframe->data[0]) {
  1677. s->ref_pics[i] = &s->all_frames[j];
  1678. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1679. break;
  1680. }
  1681. if (!s->ref_pics[i]) {
  1682. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1683. return AVERROR_INVALIDDATA;
  1684. }
  1685. }
  1686. /* retire the reference frames that are not used anymore */
  1687. if (s->current_picture->reference) {
  1688. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1689. if (retire != picnum) {
  1690. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1691. if (retire_pic)
  1692. retire_pic->reference &= DELAYED_PIC_REF;
  1693. else
  1694. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1695. }
  1696. /* if reference array is full, remove the oldest as per the spec */
  1697. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1698. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1699. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
  1700. }
  1701. }
  1702. if (s->num_refs) {
  1703. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1704. if (ret < 0)
  1705. return ret;
  1706. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1707. if (ret < 0)
  1708. return ret;
  1709. }
  1710. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1711. if (ret < 0)
  1712. return ret;
  1713. init_planes(s);
  1714. return 0;
  1715. }
  1716. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1717. {
  1718. DiracFrame *out = s->delay_frames[0];
  1719. int i, out_idx = 0;
  1720. int ret;
  1721. /* find frame with lowest picture number */
  1722. for (i = 1; s->delay_frames[i]; i++)
  1723. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1724. out = s->delay_frames[i];
  1725. out_idx = i;
  1726. }
  1727. for (i = out_idx; s->delay_frames[i]; i++)
  1728. s->delay_frames[i] = s->delay_frames[i+1];
  1729. if (out) {
  1730. out->reference ^= DELAYED_PIC_REF;
  1731. *got_frame = 1;
  1732. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1733. return ret;
  1734. }
  1735. return 0;
  1736. }
  1737. /**
  1738. * Dirac Specification ->
  1739. * 9.6 Parse Info Header Syntax. parse_info()
  1740. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1741. */
  1742. #define DATA_UNIT_HEADER_SIZE 13
  1743. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1744. inside the function parse_sequence() */
  1745. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1746. {
  1747. DiracContext *s = avctx->priv_data;
  1748. DiracFrame *pic = NULL;
  1749. AVDiracSeqHeader *dsh;
  1750. int ret, i;
  1751. uint8_t parse_code;
  1752. unsigned tmp;
  1753. if (size < DATA_UNIT_HEADER_SIZE)
  1754. return AVERROR_INVALIDDATA;
  1755. parse_code = buf[4];
  1756. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1757. if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
  1758. if (s->seen_sequence_header)
  1759. return 0;
  1760. /* [DIRAC_STD] 10. Sequence header */
  1761. ret = av_dirac_parse_sequence_header(&dsh, buf + DATA_UNIT_HEADER_SIZE, size - DATA_UNIT_HEADER_SIZE, avctx);
  1762. if (ret < 0) {
  1763. av_log(avctx, AV_LOG_ERROR, "error parsing sequence header");
  1764. return ret;
  1765. }
  1766. ret = ff_set_dimensions(avctx, dsh->width, dsh->height);
  1767. if (ret < 0) {
  1768. av_freep(&dsh);
  1769. return ret;
  1770. }
  1771. ff_set_sar(avctx, dsh->sample_aspect_ratio);
  1772. avctx->pix_fmt = dsh->pix_fmt;
  1773. avctx->color_range = dsh->color_range;
  1774. avctx->color_trc = dsh->color_trc;
  1775. avctx->color_primaries = dsh->color_primaries;
  1776. avctx->colorspace = dsh->colorspace;
  1777. avctx->profile = dsh->profile;
  1778. avctx->level = dsh->level;
  1779. avctx->framerate = dsh->framerate;
  1780. s->bit_depth = dsh->bit_depth;
  1781. s->seq = *dsh;
  1782. av_freep(&dsh);
  1783. s->pshift = s->bit_depth > 8;
  1784. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1785. ret = alloc_sequence_buffers(s);
  1786. if (ret < 0)
  1787. return ret;
  1788. s->seen_sequence_header = 1;
  1789. } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
  1790. free_sequence_buffers(s);
  1791. s->seen_sequence_header = 0;
  1792. } else if (parse_code == DIRAC_PCODE_AUX) {
  1793. if (buf[13] == 1) { /* encoder implementation/version */
  1794. int ver[3];
  1795. /* versions older than 1.0.8 don't store quant delta for
  1796. subbands with only one codeblock */
  1797. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1798. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1799. s->old_delta_quant = 1;
  1800. }
  1801. } else if (parse_code & 0x8) { /* picture data unit */
  1802. if (!s->seen_sequence_header) {
  1803. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1804. return AVERROR_INVALIDDATA;
  1805. }
  1806. /* find an unused frame */
  1807. for (i = 0; i < MAX_FRAMES; i++)
  1808. if (s->all_frames[i].avframe->data[0] == NULL)
  1809. pic = &s->all_frames[i];
  1810. if (!pic) {
  1811. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1812. return AVERROR_INVALIDDATA;
  1813. }
  1814. av_frame_unref(pic->avframe);
  1815. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1816. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1817. if (tmp > 2) {
  1818. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1819. return AVERROR_INVALIDDATA;
  1820. }
  1821. s->num_refs = tmp;
  1822. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1823. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1824. s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
  1825. s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
  1826. s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
  1827. s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
  1828. pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1829. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1830. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1831. if (s->version.minor == 2 && parse_code == 0x88)
  1832. s->ld_picture = 1;
  1833. if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
  1834. av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
  1835. return AVERROR_INVALIDDATA;
  1836. }
  1837. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1838. return ret;
  1839. s->current_picture = pic;
  1840. s->plane[0].stride = pic->avframe->linesize[0];
  1841. s->plane[1].stride = pic->avframe->linesize[1];
  1842. s->plane[2].stride = pic->avframe->linesize[2];
  1843. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1844. return AVERROR(ENOMEM);
  1845. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1846. ret = dirac_decode_picture_header(s);
  1847. if (ret < 0)
  1848. return ret;
  1849. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1850. ret = dirac_decode_frame_internal(s);
  1851. if (ret < 0)
  1852. return ret;
  1853. }
  1854. return 0;
  1855. }
  1856. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1857. {
  1858. DiracContext *s = avctx->priv_data;
  1859. AVFrame *picture = data;
  1860. uint8_t *buf = pkt->data;
  1861. int buf_size = pkt->size;
  1862. int i, buf_idx = 0;
  1863. int ret;
  1864. unsigned data_unit_size;
  1865. /* release unused frames */
  1866. for (i = 0; i < MAX_FRAMES; i++)
  1867. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
  1868. av_frame_unref(s->all_frames[i].avframe);
  1869. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1870. }
  1871. s->current_picture = NULL;
  1872. *got_frame = 0;
  1873. /* end of stream, so flush delayed pics */
  1874. if (buf_size == 0)
  1875. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1876. for (;;) {
  1877. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1878. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1879. BBCD start code search */
  1880. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1881. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1882. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1883. break;
  1884. }
  1885. /* BBCD found or end of data */
  1886. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1887. break;
  1888. data_unit_size = AV_RB32(buf+buf_idx+5);
  1889. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1890. if(data_unit_size > buf_size - buf_idx)
  1891. av_log(s->avctx, AV_LOG_ERROR,
  1892. "Data unit with size %d is larger than input buffer, discarding\n",
  1893. data_unit_size);
  1894. buf_idx += 4;
  1895. continue;
  1896. }
  1897. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1898. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1899. if (ret < 0)
  1900. {
  1901. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1902. return ret;
  1903. }
  1904. buf_idx += data_unit_size;
  1905. }
  1906. if (!s->current_picture)
  1907. return buf_size;
  1908. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1909. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1910. s->current_picture->reference |= DELAYED_PIC_REF;
  1911. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1912. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1913. /* Too many delayed frames, so we display the frame with the lowest pts */
  1914. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1915. for (i = 1; s->delay_frames[i]; i++)
  1916. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1917. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1918. delayed_frame = remove_frame(s->delay_frames, min_num);
  1919. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1920. }
  1921. if (delayed_frame) {
  1922. delayed_frame->reference ^= DELAYED_PIC_REF;
  1923. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1924. return ret;
  1925. *got_frame = 1;
  1926. }
  1927. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1928. /* The right frame at the right time :-) */
  1929. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1930. return ret;
  1931. *got_frame = 1;
  1932. }
  1933. if (*got_frame)
  1934. s->frame_number = picture->display_picture_number + 1;
  1935. return buf_idx;
  1936. }
  1937. AVCodec ff_dirac_decoder = {
  1938. .name = "dirac",
  1939. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1940. .type = AVMEDIA_TYPE_VIDEO,
  1941. .id = AV_CODEC_ID_DIRAC,
  1942. .priv_data_size = sizeof(DiracContext),
  1943. .init = dirac_decode_init,
  1944. .close = dirac_decode_end,
  1945. .decode = dirac_decode_frame,
  1946. .capabilities = AV_CODEC_CAP_DELAY | AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_DR1,
  1947. .flush = dirac_decode_flush,
  1948. };