You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1145 lines
41KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "copy_block.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "hpeldsp.h"
  37. #include "internal.h"
  38. #include "indeo3data.h"
  39. /* RLE opcodes. */
  40. enum {
  41. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  42. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  43. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  44. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  45. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  46. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  47. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  48. };
  49. /* Some constants for parsing frame bitstream flags. */
  50. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  51. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  52. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  53. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  54. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  55. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  56. typedef struct Plane {
  57. uint8_t *buffers[2];
  58. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  59. uint32_t width;
  60. uint32_t height;
  61. uint32_t pitch;
  62. } Plane;
  63. #define CELL_STACK_MAX 20
  64. typedef struct Cell {
  65. int16_t xpos; ///< cell coordinates in 4x4 blocks
  66. int16_t ypos;
  67. int16_t width; ///< cell width in 4x4 blocks
  68. int16_t height; ///< cell height in 4x4 blocks
  69. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  70. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  71. } Cell;
  72. typedef struct Indeo3DecodeContext {
  73. AVCodecContext *avctx;
  74. HpelDSPContext hdsp;
  75. GetBitContext gb;
  76. int need_resync;
  77. int skip_bits;
  78. const uint8_t *next_cell_data;
  79. const uint8_t *last_byte;
  80. const int8_t *mc_vectors;
  81. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  82. int16_t width, height;
  83. uint32_t frame_num; ///< current frame number (zero-based)
  84. uint32_t data_size; ///< size of the frame data in bytes
  85. uint16_t frame_flags; ///< frame properties
  86. uint8_t cb_offset; ///< needed for selecting VQ tables
  87. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  88. const uint8_t *y_data_ptr;
  89. const uint8_t *v_data_ptr;
  90. const uint8_t *u_data_ptr;
  91. int32_t y_data_size;
  92. int32_t v_data_size;
  93. int32_t u_data_size;
  94. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  95. Plane planes[3];
  96. } Indeo3DecodeContext;
  97. static uint8_t requant_tab[8][128];
  98. /*
  99. * Build the static requantization table.
  100. * This table is used to remap pixel values according to a specific
  101. * quant index and thus avoid overflows while adding deltas.
  102. */
  103. static av_cold void build_requant_tab(void)
  104. {
  105. static const int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  106. static const int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  107. int i, j, step;
  108. for (i = 0; i < 8; i++) {
  109. step = i + 2;
  110. for (j = 0; j < 128; j++)
  111. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  112. }
  113. /* some last elements calculated above will have values >= 128 */
  114. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  115. /* according with the quantization step of the respective section */
  116. requant_tab[0][127] = 126;
  117. requant_tab[1][119] = 118;
  118. requant_tab[1][120] = 118;
  119. requant_tab[2][126] = 124;
  120. requant_tab[2][127] = 124;
  121. requant_tab[6][124] = 120;
  122. requant_tab[6][125] = 120;
  123. requant_tab[6][126] = 120;
  124. requant_tab[6][127] = 120;
  125. /* Patch for compatibility with the Intel's binary decoders */
  126. requant_tab[1][7] = 10;
  127. requant_tab[4][8] = 10;
  128. }
  129. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  130. {
  131. int p;
  132. ctx->width = ctx->height = 0;
  133. for (p = 0; p < 3; p++) {
  134. av_freep(&ctx->planes[p].buffers[0]);
  135. av_freep(&ctx->planes[p].buffers[1]);
  136. ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
  137. }
  138. }
  139. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  140. AVCodecContext *avctx, int luma_width, int luma_height)
  141. {
  142. int p, chroma_width, chroma_height;
  143. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  144. if (luma_width < 16 || luma_width > 640 ||
  145. luma_height < 16 || luma_height > 480 ||
  146. luma_width & 3 || luma_height & 3) {
  147. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  148. luma_width, luma_height);
  149. return AVERROR_INVALIDDATA;
  150. }
  151. ctx->width = luma_width ;
  152. ctx->height = luma_height;
  153. chroma_width = FFALIGN(luma_width >> 2, 4);
  154. chroma_height = FFALIGN(luma_height >> 2, 4);
  155. luma_pitch = FFALIGN(luma_width, 16);
  156. chroma_pitch = FFALIGN(chroma_width, 16);
  157. /* Calculate size of the luminance plane. */
  158. /* Add one line more for INTRA prediction. */
  159. luma_size = luma_pitch * (luma_height + 1);
  160. /* Calculate size of a chrominance planes. */
  161. /* Add one line more for INTRA prediction. */
  162. chroma_size = chroma_pitch * (chroma_height + 1);
  163. /* allocate frame buffers */
  164. for (p = 0; p < 3; p++) {
  165. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  166. ctx->planes[p].width = !p ? luma_width : chroma_width;
  167. ctx->planes[p].height = !p ? luma_height : chroma_height;
  168. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  169. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  170. if (!ctx->planes[p].buffers[0] || !ctx->planes[p].buffers[1]) {
  171. free_frame_buffers(ctx);
  172. return AVERROR(ENOMEM);
  173. }
  174. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  175. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  176. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  177. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  178. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  179. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  180. memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  181. memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  182. }
  183. return 0;
  184. }
  185. /**
  186. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  187. * the cell(x, y) in the current frame.
  188. *
  189. * @param ctx pointer to the decoder context
  190. * @param plane pointer to the plane descriptor
  191. * @param cell pointer to the cell descriptor
  192. */
  193. static int copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  194. {
  195. int h, w, mv_x, mv_y, offset, offset_dst;
  196. uint8_t *src, *dst;
  197. /* setup output and reference pointers */
  198. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  199. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  200. if(cell->mv_ptr){
  201. mv_y = cell->mv_ptr[0];
  202. mv_x = cell->mv_ptr[1];
  203. }else
  204. mv_x= mv_y= 0;
  205. /* -1 because there is an extra line on top for prediction */
  206. if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
  207. ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
  208. ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
  209. av_log(ctx->avctx, AV_LOG_ERROR,
  210. "Motion vectors point out of the frame.\n");
  211. return AVERROR_INVALIDDATA;
  212. }
  213. offset = offset_dst + mv_y * plane->pitch + mv_x;
  214. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  215. h = cell->height << 2;
  216. for (w = cell->width; w > 0;) {
  217. /* copy using 16xH blocks */
  218. if (!((cell->xpos << 2) & 15) && w >= 4) {
  219. for (; w >= 4; src += 16, dst += 16, w -= 4)
  220. ctx->hdsp.put_pixels_tab[0][0](dst, src, plane->pitch, h);
  221. }
  222. /* copy using 8xH blocks */
  223. if (!((cell->xpos << 2) & 7) && w >= 2) {
  224. ctx->hdsp.put_pixels_tab[1][0](dst, src, plane->pitch, h);
  225. w -= 2;
  226. src += 8;
  227. dst += 8;
  228. } else if (w >= 1) {
  229. ctx->hdsp.put_pixels_tab[2][0](dst, src, plane->pitch, h);
  230. w--;
  231. src += 4;
  232. dst += 4;
  233. }
  234. }
  235. return 0;
  236. }
  237. /* Average 4/8 pixels at once without rounding using SWAR */
  238. #define AVG_32(dst, src, ref) \
  239. AV_WN32A(dst, ((AV_RN32(src) + AV_RN32(ref)) >> 1) & 0x7F7F7F7FUL)
  240. #define AVG_64(dst, src, ref) \
  241. AV_WN64A(dst, ((AV_RN64(src) + AV_RN64(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  242. /*
  243. * Replicate each even pixel as follows:
  244. * ABCDEFGH -> AACCEEGG
  245. */
  246. static inline uint64_t replicate64(uint64_t a) {
  247. #if HAVE_BIGENDIAN
  248. a &= 0xFF00FF00FF00FF00ULL;
  249. a |= a >> 8;
  250. #else
  251. a &= 0x00FF00FF00FF00FFULL;
  252. a |= a << 8;
  253. #endif
  254. return a;
  255. }
  256. static inline uint32_t replicate32(uint32_t a) {
  257. #if HAVE_BIGENDIAN
  258. a &= 0xFF00FF00UL;
  259. a |= a >> 8;
  260. #else
  261. a &= 0x00FF00FFUL;
  262. a |= a << 8;
  263. #endif
  264. return a;
  265. }
  266. /* Fill n lines with 64bit pixel value pix */
  267. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  268. int32_t row_offset)
  269. {
  270. for (; n > 0; dst += row_offset, n--)
  271. AV_WN64A(dst, pix);
  272. }
  273. /* Error codes for cell decoding. */
  274. enum {
  275. IV3_NOERR = 0,
  276. IV3_BAD_RLE = 1,
  277. IV3_BAD_DATA = 2,
  278. IV3_BAD_COUNTER = 3,
  279. IV3_UNSUPPORTED = 4,
  280. IV3_OUT_OF_DATA = 5
  281. };
  282. #define BUFFER_PRECHECK \
  283. if (*data_ptr >= last_ptr) \
  284. return IV3_OUT_OF_DATA; \
  285. #define RLE_BLOCK_COPY \
  286. if (cell->mv_ptr || !skip_flag) \
  287. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  288. #define RLE_BLOCK_COPY_8 \
  289. pix64 = AV_RN64(ref);\
  290. if (is_first_row) {/* special prediction case: top line of a cell */\
  291. pix64 = replicate64(pix64);\
  292. fill_64(dst + row_offset, pix64, 7, row_offset);\
  293. AVG_64(dst, ref, dst + row_offset);\
  294. } else \
  295. fill_64(dst, pix64, 8, row_offset)
  296. #define RLE_LINES_COPY \
  297. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  298. #define RLE_LINES_COPY_M10 \
  299. pix64 = AV_RN64(ref);\
  300. if (is_top_of_cell) {\
  301. pix64 = replicate64(pix64);\
  302. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  303. AVG_64(dst, ref, dst + row_offset);\
  304. } else \
  305. fill_64(dst, pix64, num_lines << 1, row_offset)
  306. #define APPLY_DELTA_4 \
  307. AV_WN16A(dst + line_offset ,\
  308. (AV_RN16(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  309. AV_WN16A(dst + line_offset + 2,\
  310. (AV_RN16(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  311. if (mode >= 3) {\
  312. if (is_top_of_cell && !cell->ypos) {\
  313. AV_COPY32U(dst, dst + row_offset);\
  314. } else {\
  315. AVG_32(dst, ref, dst + row_offset);\
  316. }\
  317. }
  318. #define APPLY_DELTA_8 \
  319. /* apply two 32-bit VQ deltas to next even line */\
  320. if (is_top_of_cell) { \
  321. AV_WN32A(dst + row_offset , \
  322. (replicate32(AV_RN32(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  323. AV_WN32A(dst + row_offset + 4, \
  324. (replicate32(AV_RN32(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  325. } else { \
  326. AV_WN32A(dst + row_offset , \
  327. (AV_RN32(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  328. AV_WN32A(dst + row_offset + 4, \
  329. (AV_RN32(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  330. } \
  331. /* odd lines are not coded but rather interpolated/replicated */\
  332. /* first line of the cell on the top of image? - replicate */\
  333. /* otherwise - interpolate */\
  334. if (is_top_of_cell && !cell->ypos) {\
  335. AV_COPY64U(dst, dst + row_offset);\
  336. } else \
  337. AVG_64(dst, ref, dst + row_offset);
  338. #define APPLY_DELTA_1011_INTER \
  339. if (mode == 10) { \
  340. AV_WN32A(dst , \
  341. (AV_RN32(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  342. AV_WN32A(dst + 4 , \
  343. (AV_RN32(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  344. AV_WN32A(dst + row_offset , \
  345. (AV_RN32(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  346. AV_WN32A(dst + row_offset + 4, \
  347. (AV_RN32(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  348. } else { \
  349. AV_WN16A(dst , \
  350. (AV_RN16(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  351. AV_WN16A(dst + 2 , \
  352. (AV_RN16(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  353. AV_WN16A(dst + row_offset , \
  354. (AV_RN16(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  355. AV_WN16A(dst + row_offset + 2, \
  356. (AV_RN16(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  357. }
  358. static int decode_cell_data(Indeo3DecodeContext *ctx, Cell *cell,
  359. uint8_t *block, uint8_t *ref_block,
  360. int pitch, int h_zoom, int v_zoom, int mode,
  361. const vqEntry *delta[2], int swap_quads[2],
  362. const uint8_t **data_ptr, const uint8_t *last_ptr)
  363. {
  364. int x, y, line, num_lines;
  365. int rle_blocks = 0;
  366. uint8_t code, *dst, *ref;
  367. const vqEntry *delta_tab;
  368. unsigned int dyad1, dyad2;
  369. uint64_t pix64;
  370. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  371. int row_offset, blk_row_offset, line_offset;
  372. row_offset = pitch;
  373. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  374. line_offset = v_zoom ? row_offset : 0;
  375. if (cell->height & v_zoom || cell->width & h_zoom)
  376. return IV3_BAD_DATA;
  377. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  378. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  379. ref = ref_block;
  380. dst = block;
  381. if (rle_blocks > 0) {
  382. if (mode <= 4) {
  383. RLE_BLOCK_COPY;
  384. } else if (mode == 10 && !cell->mv_ptr) {
  385. RLE_BLOCK_COPY_8;
  386. }
  387. rle_blocks--;
  388. } else {
  389. for (line = 0; line < 4;) {
  390. num_lines = 1;
  391. is_top_of_cell = is_first_row && !line;
  392. /* select primary VQ table for odd, secondary for even lines */
  393. if (mode <= 4)
  394. delta_tab = delta[line & 1];
  395. else
  396. delta_tab = delta[1];
  397. BUFFER_PRECHECK;
  398. code = bytestream_get_byte(data_ptr);
  399. if (code < 248) {
  400. if (code < delta_tab->num_dyads) {
  401. BUFFER_PRECHECK;
  402. dyad1 = bytestream_get_byte(data_ptr);
  403. dyad2 = code;
  404. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  405. return IV3_BAD_DATA;
  406. } else {
  407. /* process QUADS */
  408. code -= delta_tab->num_dyads;
  409. dyad1 = code / delta_tab->quad_exp;
  410. dyad2 = code % delta_tab->quad_exp;
  411. if (swap_quads[line & 1])
  412. FFSWAP(unsigned int, dyad1, dyad2);
  413. }
  414. if (mode <= 4) {
  415. APPLY_DELTA_4;
  416. } else if (mode == 10 && !cell->mv_ptr) {
  417. APPLY_DELTA_8;
  418. } else {
  419. APPLY_DELTA_1011_INTER;
  420. }
  421. } else {
  422. /* process RLE codes */
  423. switch (code) {
  424. case RLE_ESC_FC:
  425. skip_flag = 0;
  426. rle_blocks = 1;
  427. code = 253;
  428. /* FALLTHROUGH */
  429. case RLE_ESC_FF:
  430. case RLE_ESC_FE:
  431. case RLE_ESC_FD:
  432. num_lines = 257 - code - line;
  433. if (num_lines <= 0)
  434. return IV3_BAD_RLE;
  435. if (mode <= 4) {
  436. RLE_LINES_COPY;
  437. } else if (mode == 10 && !cell->mv_ptr) {
  438. RLE_LINES_COPY_M10;
  439. }
  440. break;
  441. case RLE_ESC_FB:
  442. BUFFER_PRECHECK;
  443. code = bytestream_get_byte(data_ptr);
  444. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  445. if (code >= 64 || rle_blocks < 0)
  446. return IV3_BAD_COUNTER;
  447. skip_flag = code & 0x20;
  448. num_lines = 4 - line; /* enforce next block processing */
  449. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  450. if (mode <= 4) {
  451. RLE_LINES_COPY;
  452. } else if (mode == 10 && !cell->mv_ptr) {
  453. RLE_LINES_COPY_M10;
  454. }
  455. }
  456. break;
  457. case RLE_ESC_F9:
  458. skip_flag = 1;
  459. rle_blocks = 1;
  460. /* FALLTHROUGH */
  461. case RLE_ESC_FA:
  462. if (line)
  463. return IV3_BAD_RLE;
  464. num_lines = 4; /* enforce next block processing */
  465. if (cell->mv_ptr) {
  466. if (mode <= 4) {
  467. RLE_LINES_COPY;
  468. } else if (mode == 10 && !cell->mv_ptr) {
  469. RLE_LINES_COPY_M10;
  470. }
  471. }
  472. break;
  473. default:
  474. return IV3_UNSUPPORTED;
  475. }
  476. }
  477. line += num_lines;
  478. ref += row_offset * (num_lines << v_zoom);
  479. dst += row_offset * (num_lines << v_zoom);
  480. }
  481. }
  482. /* move to next horizontal block */
  483. block += 4 << h_zoom;
  484. ref_block += 4 << h_zoom;
  485. }
  486. /* move to next line of blocks */
  487. ref_block += blk_row_offset;
  488. block += blk_row_offset;
  489. }
  490. return IV3_NOERR;
  491. }
  492. /**
  493. * Decode a vector-quantized cell.
  494. * It consists of several routines, each of which handles one or more "modes"
  495. * with which a cell can be encoded.
  496. *
  497. * @param ctx pointer to the decoder context
  498. * @param avctx ptr to the AVCodecContext
  499. * @param plane pointer to the plane descriptor
  500. * @param cell pointer to the cell descriptor
  501. * @param data_ptr pointer to the compressed data
  502. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  503. * @return number of consumed bytes or negative number in case of error
  504. */
  505. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  506. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  507. const uint8_t *last_ptr)
  508. {
  509. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  510. int zoom_fac;
  511. int offset, error = 0, swap_quads[2];
  512. uint8_t code, *block, *ref_block = 0;
  513. const vqEntry *delta[2];
  514. const uint8_t *data_start = data_ptr;
  515. /* get coding mode and VQ table index from the VQ descriptor byte */
  516. code = *data_ptr++;
  517. mode = code >> 4;
  518. vq_index = code & 0xF;
  519. /* setup output and reference pointers */
  520. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  521. block = plane->pixels[ctx->buf_sel] + offset;
  522. if (!cell->mv_ptr) {
  523. /* use previous line as reference for INTRA cells */
  524. ref_block = block - plane->pitch;
  525. } else if (mode >= 10) {
  526. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  527. /* so we don't need to do data copying for each RLE code later */
  528. int ret = copy_cell(ctx, plane, cell);
  529. if (ret < 0)
  530. return ret;
  531. } else {
  532. /* set the pointer to the reference pixels for modes 0-4 INTER */
  533. mv_y = cell->mv_ptr[0];
  534. mv_x = cell->mv_ptr[1];
  535. /* -1 because there is an extra line on top for prediction */
  536. if ((cell->ypos << 2) + mv_y < -1 || (cell->xpos << 2) + mv_x < 0 ||
  537. ((cell->ypos + cell->height) << 2) + mv_y > plane->height ||
  538. ((cell->xpos + cell->width) << 2) + mv_x > plane->width) {
  539. av_log(ctx->avctx, AV_LOG_ERROR,
  540. "Motion vectors point out of the frame.\n");
  541. return AVERROR_INVALIDDATA;
  542. }
  543. offset += mv_y * plane->pitch + mv_x;
  544. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  545. }
  546. /* select VQ tables as follows: */
  547. /* modes 0 and 3 use only the primary table for all lines in a block */
  548. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  549. if (mode == 1 || mode == 4) {
  550. code = ctx->alt_quant[vq_index];
  551. prim_indx = (code >> 4) + ctx->cb_offset;
  552. second_indx = (code & 0xF) + ctx->cb_offset;
  553. } else {
  554. vq_index += ctx->cb_offset;
  555. prim_indx = second_indx = vq_index;
  556. }
  557. if (prim_indx >= 24 || second_indx >= 24) {
  558. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  559. prim_indx, second_indx);
  560. return AVERROR_INVALIDDATA;
  561. }
  562. delta[0] = &vq_tab[second_indx];
  563. delta[1] = &vq_tab[prim_indx];
  564. swap_quads[0] = second_indx >= 16;
  565. swap_quads[1] = prim_indx >= 16;
  566. /* requantize the prediction if VQ index of this cell differs from VQ index */
  567. /* of the predicted cell in order to avoid overflows. */
  568. if (vq_index >= 8 && ref_block) {
  569. for (x = 0; x < cell->width << 2; x++)
  570. ref_block[x] = requant_tab[vq_index & 7][ref_block[x] & 127];
  571. }
  572. error = IV3_NOERR;
  573. switch (mode) {
  574. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  575. case 1:
  576. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  577. case 4:
  578. if (mode >= 3 && cell->mv_ptr) {
  579. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  580. return AVERROR_INVALIDDATA;
  581. }
  582. zoom_fac = mode >= 3;
  583. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  584. 0, zoom_fac, mode, delta, swap_quads,
  585. &data_ptr, last_ptr);
  586. break;
  587. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  588. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  589. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  590. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  591. 1, 1, mode, delta, swap_quads,
  592. &data_ptr, last_ptr);
  593. } else { /* mode 10 and 11 INTER processing */
  594. if (mode == 11 && !cell->mv_ptr) {
  595. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  596. return AVERROR_INVALIDDATA;
  597. }
  598. zoom_fac = mode == 10;
  599. error = decode_cell_data(ctx, cell, block, ref_block, plane->pitch,
  600. zoom_fac, 1, mode, delta, swap_quads,
  601. &data_ptr, last_ptr);
  602. }
  603. break;
  604. default:
  605. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  606. return AVERROR_INVALIDDATA;
  607. }//switch mode
  608. switch (error) {
  609. case IV3_BAD_RLE:
  610. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  611. mode, data_ptr[-1]);
  612. return AVERROR_INVALIDDATA;
  613. case IV3_BAD_DATA:
  614. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  615. return AVERROR_INVALIDDATA;
  616. case IV3_BAD_COUNTER:
  617. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  618. return AVERROR_INVALIDDATA;
  619. case IV3_UNSUPPORTED:
  620. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  621. return AVERROR_INVALIDDATA;
  622. case IV3_OUT_OF_DATA:
  623. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  624. return AVERROR_INVALIDDATA;
  625. }
  626. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  627. }
  628. /* Binary tree codes. */
  629. enum {
  630. H_SPLIT = 0,
  631. V_SPLIT = 1,
  632. INTRA_NULL = 2,
  633. INTER_DATA = 3
  634. };
  635. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  636. #define UPDATE_BITPOS(n) \
  637. ctx->skip_bits += (n); \
  638. ctx->need_resync = 1
  639. #define RESYNC_BITSTREAM \
  640. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  641. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  642. ctx->skip_bits = 0; \
  643. ctx->need_resync = 0; \
  644. }
  645. #define CHECK_CELL \
  646. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  647. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  648. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  649. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  650. return AVERROR_INVALIDDATA; \
  651. }
  652. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  653. Plane *plane, int code, Cell *ref_cell,
  654. const int depth, const int strip_width)
  655. {
  656. Cell curr_cell;
  657. int bytes_used, ret;
  658. if (depth <= 0) {
  659. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  660. return AVERROR_INVALIDDATA; // unwind recursion
  661. }
  662. curr_cell = *ref_cell; // clone parent cell
  663. if (code == H_SPLIT) {
  664. SPLIT_CELL(ref_cell->height, curr_cell.height);
  665. ref_cell->ypos += curr_cell.height;
  666. ref_cell->height -= curr_cell.height;
  667. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  668. return AVERROR_INVALIDDATA;
  669. } else if (code == V_SPLIT) {
  670. if (curr_cell.width > strip_width) {
  671. /* split strip */
  672. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  673. } else
  674. SPLIT_CELL(ref_cell->width, curr_cell.width);
  675. ref_cell->xpos += curr_cell.width;
  676. ref_cell->width -= curr_cell.width;
  677. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  678. return AVERROR_INVALIDDATA;
  679. }
  680. while (get_bits_left(&ctx->gb) >= 2) { /* loop until return */
  681. RESYNC_BITSTREAM;
  682. switch (code = get_bits(&ctx->gb, 2)) {
  683. case H_SPLIT:
  684. case V_SPLIT:
  685. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  686. return AVERROR_INVALIDDATA;
  687. break;
  688. case INTRA_NULL:
  689. if (!curr_cell.tree) { /* MC tree INTRA code */
  690. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  691. curr_cell.tree = 1; /* enter the VQ tree */
  692. } else { /* VQ tree NULL code */
  693. RESYNC_BITSTREAM;
  694. code = get_bits(&ctx->gb, 2);
  695. if (code >= 2) {
  696. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  697. return AVERROR_INVALIDDATA;
  698. }
  699. if (code == 1)
  700. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  701. CHECK_CELL
  702. if (!curr_cell.mv_ptr)
  703. return AVERROR_INVALIDDATA;
  704. ret = copy_cell(ctx, plane, &curr_cell);
  705. return ret;
  706. }
  707. break;
  708. case INTER_DATA:
  709. if (!curr_cell.tree) { /* MC tree INTER code */
  710. unsigned mv_idx;
  711. /* get motion vector index and setup the pointer to the mv set */
  712. if (!ctx->need_resync)
  713. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  714. if (ctx->next_cell_data >= ctx->last_byte) {
  715. av_log(avctx, AV_LOG_ERROR, "motion vector out of array\n");
  716. return AVERROR_INVALIDDATA;
  717. }
  718. mv_idx = *(ctx->next_cell_data++);
  719. if (mv_idx >= ctx->num_vectors) {
  720. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  721. return AVERROR_INVALIDDATA;
  722. }
  723. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  724. curr_cell.tree = 1; /* enter the VQ tree */
  725. UPDATE_BITPOS(8);
  726. } else { /* VQ tree DATA code */
  727. if (!ctx->need_resync)
  728. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  729. CHECK_CELL
  730. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  731. ctx->next_cell_data, ctx->last_byte);
  732. if (bytes_used < 0)
  733. return AVERROR_INVALIDDATA;
  734. UPDATE_BITPOS(bytes_used << 3);
  735. ctx->next_cell_data += bytes_used;
  736. return 0;
  737. }
  738. break;
  739. }
  740. }//while
  741. return AVERROR_INVALIDDATA;
  742. }
  743. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  744. Plane *plane, const uint8_t *data, int32_t data_size,
  745. int32_t strip_width)
  746. {
  747. Cell curr_cell;
  748. unsigned num_vectors;
  749. /* each plane data starts with mc_vector_count field, */
  750. /* an optional array of motion vectors followed by the vq data */
  751. num_vectors = bytestream_get_le32(&data); data_size -= 4;
  752. if (num_vectors > 256) {
  753. av_log(ctx->avctx, AV_LOG_ERROR,
  754. "Read invalid number of motion vectors %d\n", num_vectors);
  755. return AVERROR_INVALIDDATA;
  756. }
  757. if (num_vectors * 2 > data_size)
  758. return AVERROR_INVALIDDATA;
  759. ctx->num_vectors = num_vectors;
  760. ctx->mc_vectors = num_vectors ? data : 0;
  761. /* init the bitreader */
  762. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  763. ctx->skip_bits = 0;
  764. ctx->need_resync = 0;
  765. ctx->last_byte = data + data_size;
  766. /* initialize the 1st cell and set its dimensions to whole plane */
  767. curr_cell.xpos = curr_cell.ypos = 0;
  768. curr_cell.width = plane->width >> 2;
  769. curr_cell.height = plane->height >> 2;
  770. curr_cell.tree = 0; // we are in the MC tree now
  771. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  772. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  773. }
  774. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  775. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  776. const uint8_t *buf, int buf_size)
  777. {
  778. GetByteContext gb;
  779. const uint8_t *bs_hdr;
  780. uint32_t frame_num, word2, check_sum, data_size;
  781. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  782. uint16_t height, width;
  783. int i, j;
  784. bytestream2_init(&gb, buf, buf_size);
  785. /* parse and check the OS header */
  786. frame_num = bytestream2_get_le32(&gb);
  787. word2 = bytestream2_get_le32(&gb);
  788. check_sum = bytestream2_get_le32(&gb);
  789. data_size = bytestream2_get_le32(&gb);
  790. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  791. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  792. return AVERROR_INVALIDDATA;
  793. }
  794. /* parse the bitstream header */
  795. bs_hdr = gb.buffer;
  796. if (bytestream2_get_le16(&gb) != 32) {
  797. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  798. return AVERROR_INVALIDDATA;
  799. }
  800. ctx->frame_num = frame_num;
  801. ctx->frame_flags = bytestream2_get_le16(&gb);
  802. ctx->data_size = (bytestream2_get_le32(&gb) + 7) >> 3;
  803. ctx->cb_offset = bytestream2_get_byte(&gb);
  804. if (ctx->data_size == 16)
  805. return 4;
  806. ctx->data_size = FFMIN(ctx->data_size, buf_size - 16);
  807. bytestream2_skip(&gb, 3); // skip reserved byte and checksum
  808. /* check frame dimensions */
  809. height = bytestream2_get_le16(&gb);
  810. width = bytestream2_get_le16(&gb);
  811. if (av_image_check_size(width, height, 0, avctx))
  812. return AVERROR_INVALIDDATA;
  813. if (width != ctx->width || height != ctx->height) {
  814. int res;
  815. av_dlog(avctx, "Frame dimensions changed!\n");
  816. if (width < 16 || width > 640 ||
  817. height < 16 || height > 480 ||
  818. width & 3 || height & 3) {
  819. av_log(avctx, AV_LOG_ERROR,
  820. "Invalid picture dimensions: %d x %d!\n", width, height);
  821. return AVERROR_INVALIDDATA;
  822. }
  823. free_frame_buffers(ctx);
  824. if ((res = allocate_frame_buffers(ctx, avctx, width, height)) < 0)
  825. return res;
  826. if ((res = ff_set_dimensions(avctx, width, height)) < 0)
  827. return res;
  828. }
  829. y_offset = bytestream2_get_le32(&gb);
  830. v_offset = bytestream2_get_le32(&gb);
  831. u_offset = bytestream2_get_le32(&gb);
  832. bytestream2_skip(&gb, 4);
  833. /* unfortunately there is no common order of planes in the buffer */
  834. /* so we use that sorting algo for determining planes data sizes */
  835. starts[0] = y_offset;
  836. starts[1] = v_offset;
  837. starts[2] = u_offset;
  838. for (j = 0; j < 3; j++) {
  839. ends[j] = ctx->data_size;
  840. for (i = 2; i >= 0; i--)
  841. if (starts[i] < ends[j] && starts[i] > starts[j])
  842. ends[j] = starts[i];
  843. }
  844. ctx->y_data_size = ends[0] - starts[0];
  845. ctx->v_data_size = ends[1] - starts[1];
  846. ctx->u_data_size = ends[2] - starts[2];
  847. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  848. FFMIN3(y_offset, v_offset, u_offset) < gb.buffer - bs_hdr + 16 ||
  849. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  850. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  851. return AVERROR_INVALIDDATA;
  852. }
  853. ctx->y_data_ptr = bs_hdr + y_offset;
  854. ctx->v_data_ptr = bs_hdr + v_offset;
  855. ctx->u_data_ptr = bs_hdr + u_offset;
  856. ctx->alt_quant = gb.buffer;
  857. if (ctx->data_size == 16) {
  858. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  859. return 16;
  860. }
  861. if (ctx->frame_flags & BS_8BIT_PEL) {
  862. avpriv_request_sample(avctx, "8-bit pixel format");
  863. return AVERROR_PATCHWELCOME;
  864. }
  865. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  866. avpriv_request_sample(avctx, "Halfpel motion vectors");
  867. return AVERROR_PATCHWELCOME;
  868. }
  869. return 0;
  870. }
  871. /**
  872. * Convert and output the current plane.
  873. * All pixel values will be upsampled by shifting right by one bit.
  874. *
  875. * @param[in] plane pointer to the descriptor of the plane being processed
  876. * @param[in] buf_sel indicates which frame buffer the input data stored in
  877. * @param[out] dst pointer to the buffer receiving converted pixels
  878. * @param[in] dst_pitch pitch for moving to the next y line
  879. * @param[in] dst_height output plane height
  880. */
  881. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
  882. int dst_pitch, int dst_height)
  883. {
  884. int x,y;
  885. const uint8_t *src = plane->pixels[buf_sel];
  886. uint32_t pitch = plane->pitch;
  887. dst_height = FFMIN(dst_height, plane->height);
  888. for (y = 0; y < dst_height; y++) {
  889. /* convert four pixels at once using SWAR */
  890. for (x = 0; x < plane->width >> 2; x++) {
  891. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  892. src += 4;
  893. dst += 4;
  894. }
  895. for (x <<= 2; x < plane->width; x++)
  896. *dst++ = *src++ << 1;
  897. src += pitch - plane->width;
  898. dst += dst_pitch - plane->width;
  899. }
  900. }
  901. static av_cold int decode_init(AVCodecContext *avctx)
  902. {
  903. Indeo3DecodeContext *ctx = avctx->priv_data;
  904. ctx->avctx = avctx;
  905. avctx->pix_fmt = AV_PIX_FMT_YUV410P;
  906. build_requant_tab();
  907. ff_hpeldsp_init(&ctx->hdsp, avctx->flags);
  908. return allocate_frame_buffers(ctx, avctx, avctx->width, avctx->height);
  909. }
  910. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  911. AVPacket *avpkt)
  912. {
  913. Indeo3DecodeContext *ctx = avctx->priv_data;
  914. const uint8_t *buf = avpkt->data;
  915. int buf_size = avpkt->size;
  916. AVFrame *frame = data;
  917. int res;
  918. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  919. if (res < 0)
  920. return res;
  921. /* skip sync(null) frames */
  922. if (res) {
  923. // we have processed 16 bytes but no data was decoded
  924. *got_frame = 0;
  925. return buf_size;
  926. }
  927. /* skip droppable INTER frames if requested */
  928. if (ctx->frame_flags & BS_NONREF &&
  929. (avctx->skip_frame >= AVDISCARD_NONREF))
  930. return 0;
  931. /* skip INTER frames if requested */
  932. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  933. return 0;
  934. /* use BS_BUFFER flag for buffer switching */
  935. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  936. if ((res = ff_get_buffer(avctx, frame, 0)) < 0)
  937. return res;
  938. /* decode luma plane */
  939. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  940. return res;
  941. /* decode chroma planes */
  942. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  943. return res;
  944. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  945. return res;
  946. output_plane(&ctx->planes[0], ctx->buf_sel,
  947. frame->data[0], frame->linesize[0],
  948. avctx->height);
  949. output_plane(&ctx->planes[1], ctx->buf_sel,
  950. frame->data[1], frame->linesize[1],
  951. (avctx->height + 3) >> 2);
  952. output_plane(&ctx->planes[2], ctx->buf_sel,
  953. frame->data[2], frame->linesize[2],
  954. (avctx->height + 3) >> 2);
  955. *got_frame = 1;
  956. return buf_size;
  957. }
  958. static av_cold int decode_close(AVCodecContext *avctx)
  959. {
  960. free_frame_buffers(avctx->priv_data);
  961. return 0;
  962. }
  963. AVCodec ff_indeo3_decoder = {
  964. .name = "indeo3",
  965. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  966. .type = AVMEDIA_TYPE_VIDEO,
  967. .id = AV_CODEC_ID_INDEO3,
  968. .priv_data_size = sizeof(Indeo3DecodeContext),
  969. .init = decode_init,
  970. .close = decode_close,
  971. .decode = decode_frame,
  972. .capabilities = CODEC_CAP_DR1,
  973. };