You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1802 lines
63KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of Libav.
  5. *
  6. * Libav is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * Libav is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with Libav; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  22. #include <assert.h>
  23. #include <inttypes.h>
  24. #include <math.h>
  25. #include <stdio.h>
  26. #include <string.h>
  27. #if HAVE_SYS_MMAN_H
  28. #include <sys/mman.h>
  29. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  30. #define MAP_ANONYMOUS MAP_ANON
  31. #endif
  32. #endif
  33. #if HAVE_VIRTUALALLOC
  34. #define WIN32_LEAN_AND_MEAN
  35. #include <windows.h>
  36. #endif
  37. #include "libavutil/attributes.h"
  38. #include "libavutil/avutil.h"
  39. #include "libavutil/bswap.h"
  40. #include "libavutil/cpu.h"
  41. #include "libavutil/intreadwrite.h"
  42. #include "libavutil/mathematics.h"
  43. #include "libavutil/opt.h"
  44. #include "libavutil/pixdesc.h"
  45. #include "libavutil/ppc/cpu.h"
  46. #include "libavutil/x86/asm.h"
  47. #include "libavutil/x86/cpu.h"
  48. #include "rgb2rgb.h"
  49. #include "swscale.h"
  50. #include "swscale_internal.h"
  51. unsigned swscale_version(void)
  52. {
  53. return LIBSWSCALE_VERSION_INT;
  54. }
  55. const char *swscale_configuration(void)
  56. {
  57. return LIBAV_CONFIGURATION;
  58. }
  59. const char *swscale_license(void)
  60. {
  61. #define LICENSE_PREFIX "libswscale license: "
  62. return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  63. }
  64. #define RET 0xC3 // near return opcode for x86
  65. typedef struct FormatEntry {
  66. uint8_t is_supported_in :1;
  67. uint8_t is_supported_out :1;
  68. uint8_t is_supported_endianness :1;
  69. } FormatEntry;
  70. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  71. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  72. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  73. [AV_PIX_FMT_RGB24] = { 1, 1 },
  74. [AV_PIX_FMT_BGR24] = { 1, 1 },
  75. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  76. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  77. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  78. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  79. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  80. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  81. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  82. [AV_PIX_FMT_PAL8] = { 1, 0 },
  83. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  84. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  85. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  86. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  87. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  88. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  89. [AV_PIX_FMT_BGR8] = { 1, 1 },
  90. [AV_PIX_FMT_BGR4] = { 0, 1 },
  91. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  92. [AV_PIX_FMT_RGB8] = { 1, 1 },
  93. [AV_PIX_FMT_RGB4] = { 0, 1 },
  94. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  95. [AV_PIX_FMT_NV12] = { 1, 1 },
  96. [AV_PIX_FMT_NV21] = { 1, 1 },
  97. [AV_PIX_FMT_ARGB] = { 1, 1 },
  98. [AV_PIX_FMT_RGBA] = { 1, 1 },
  99. [AV_PIX_FMT_ABGR] = { 1, 1 },
  100. [AV_PIX_FMT_BGRA] = { 1, 1 },
  101. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  102. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  103. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  104. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  105. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  106. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  107. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  108. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  109. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  110. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  111. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  112. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  113. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  114. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  115. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  116. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  117. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  118. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  119. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  120. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  121. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  122. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  123. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  124. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  125. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  126. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  127. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  128. [AV_PIX_FMT_RGBA64BE] = { 0, 0, 1 },
  129. [AV_PIX_FMT_RGBA64LE] = { 0, 0, 1 },
  130. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  131. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  132. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  133. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  134. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  135. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  136. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  137. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  138. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  139. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  140. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  141. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  142. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  143. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  144. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  146. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  147. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  148. [AV_PIX_FMT_YA8] = { 1, 0 },
  149. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  150. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  151. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  152. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  153. [AV_PIX_FMT_BGRA64BE] = { 0, 0, 1 },
  154. [AV_PIX_FMT_BGRA64LE] = { 0, 0, 1 },
  155. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  158. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  159. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  160. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  161. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  162. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  163. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  164. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  165. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  166. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  167. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  168. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  169. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  173. [AV_PIX_FMT_GBRP] = { 1, 1 },
  174. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  175. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  176. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  177. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  178. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  179. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  180. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  181. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  182. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  183. [AV_PIX_FMT_XYZ12BE] = { 0, 0, 1 },
  184. [AV_PIX_FMT_XYZ12LE] = { 0, 0, 1 },
  185. [AV_PIX_FMT_P010LE] = { 1, 0 },
  186. [AV_PIX_FMT_P010BE] = { 1, 0 },
  187. };
  188. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  189. {
  190. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  191. format_entries[pix_fmt].is_supported_in : 0;
  192. }
  193. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  194. {
  195. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  196. format_entries[pix_fmt].is_supported_out : 0;
  197. }
  198. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  199. {
  200. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  201. format_entries[pix_fmt].is_supported_endianness : 0;
  202. }
  203. const char *sws_format_name(enum AVPixelFormat format)
  204. {
  205. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  206. if (desc)
  207. return desc->name;
  208. else
  209. return "Unknown format";
  210. }
  211. static double getSplineCoeff(double a, double b, double c, double d,
  212. double dist)
  213. {
  214. if (dist <= 1.0)
  215. return ((d * dist + c) * dist + b) * dist + a;
  216. else
  217. return getSplineCoeff(0.0,
  218. b + 2.0 * c + 3.0 * d,
  219. c + 3.0 * d,
  220. -b - 3.0 * c - 6.0 * d,
  221. dist - 1.0);
  222. }
  223. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  224. int *outFilterSize, int xInc, int srcW,
  225. int dstW, int filterAlign, int one,
  226. int flags, int cpu_flags,
  227. SwsVector *srcFilter, SwsVector *dstFilter,
  228. double param[2], int is_horizontal)
  229. {
  230. int i;
  231. int filterSize;
  232. int filter2Size;
  233. int minFilterSize;
  234. int64_t *filter = NULL;
  235. int64_t *filter2 = NULL;
  236. const int64_t fone = 1LL << 54;
  237. int ret = -1;
  238. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  239. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  240. FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW + 3) * sizeof(**filterPos), fail);
  241. if (FFABS(xInc - 0x10000) < 10) { // unscaled
  242. int i;
  243. filterSize = 1;
  244. FF_ALLOCZ_OR_GOTO(NULL, filter,
  245. dstW * sizeof(*filter) * filterSize, fail);
  246. for (i = 0; i < dstW; i++) {
  247. filter[i * filterSize] = fone;
  248. (*filterPos)[i] = i;
  249. }
  250. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  251. int i;
  252. int xDstInSrc;
  253. filterSize = 1;
  254. FF_ALLOC_OR_GOTO(NULL, filter,
  255. dstW * sizeof(*filter) * filterSize, fail);
  256. xDstInSrc = xInc / 2 - 0x8000;
  257. for (i = 0; i < dstW; i++) {
  258. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  259. (*filterPos)[i] = xx;
  260. filter[i] = fone;
  261. xDstInSrc += xInc;
  262. }
  263. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  264. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  265. int i;
  266. int xDstInSrc;
  267. filterSize = 2;
  268. FF_ALLOC_OR_GOTO(NULL, filter,
  269. dstW * sizeof(*filter) * filterSize, fail);
  270. xDstInSrc = xInc / 2 - 0x8000;
  271. for (i = 0; i < dstW; i++) {
  272. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  273. int j;
  274. (*filterPos)[i] = xx;
  275. // bilinear upscale / linear interpolate / area averaging
  276. for (j = 0; j < filterSize; j++) {
  277. int64_t coeff = fone - FFABS((xx << 16) - xDstInSrc) *
  278. (fone >> 16);
  279. if (coeff < 0)
  280. coeff = 0;
  281. filter[i * filterSize + j] = coeff;
  282. xx++;
  283. }
  284. xDstInSrc += xInc;
  285. }
  286. } else {
  287. int64_t xDstInSrc;
  288. int sizeFactor;
  289. if (flags & SWS_BICUBIC)
  290. sizeFactor = 4;
  291. else if (flags & SWS_X)
  292. sizeFactor = 8;
  293. else if (flags & SWS_AREA)
  294. sizeFactor = 1; // downscale only, for upscale it is bilinear
  295. else if (flags & SWS_GAUSS)
  296. sizeFactor = 8; // infinite ;)
  297. else if (flags & SWS_LANCZOS)
  298. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  299. else if (flags & SWS_SINC)
  300. sizeFactor = 20; // infinite ;)
  301. else if (flags & SWS_SPLINE)
  302. sizeFactor = 20; // infinite ;)
  303. else if (flags & SWS_BILINEAR)
  304. sizeFactor = 2;
  305. else {
  306. sizeFactor = 0; // GCC warning killer
  307. assert(0);
  308. }
  309. if (xInc <= 1 << 16)
  310. filterSize = 1 + sizeFactor; // upscale
  311. else
  312. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  313. filterSize = FFMIN(filterSize, srcW - 2);
  314. filterSize = FFMAX(filterSize, 1);
  315. FF_ALLOC_OR_GOTO(NULL, filter,
  316. dstW * sizeof(*filter) * filterSize, fail);
  317. xDstInSrc = xInc - 0x10000;
  318. for (i = 0; i < dstW; i++) {
  319. int xx = (xDstInSrc - ((int64_t)(filterSize - 2) << 16)) / (1 << 17);
  320. int j;
  321. (*filterPos)[i] = xx;
  322. for (j = 0; j < filterSize; j++) {
  323. int64_t d = (FFABS(((int64_t)xx << 17) - xDstInSrc)) << 13;
  324. double floatd;
  325. int64_t coeff;
  326. if (xInc > 1 << 16)
  327. d = d * dstW / srcW;
  328. floatd = d * (1.0 / (1 << 30));
  329. if (flags & SWS_BICUBIC) {
  330. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  331. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  332. if (d >= 1LL << 31) {
  333. coeff = 0.0;
  334. } else {
  335. int64_t dd = (d * d) >> 30;
  336. int64_t ddd = (dd * d) >> 30;
  337. if (d < 1LL << 30)
  338. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  339. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  340. (6 * (1 << 24) - 2 * B) * (1 << 30);
  341. else
  342. coeff = (-B - 6 * C) * ddd +
  343. (6 * B + 30 * C) * dd +
  344. (-12 * B - 48 * C) * d +
  345. (8 * B + 24 * C) * (1 << 30);
  346. }
  347. coeff *= fone >> (30 + 24);
  348. }
  349. else if (flags & SWS_X) {
  350. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  351. double c;
  352. if (floatd < 1.0)
  353. c = cos(floatd * M_PI);
  354. else
  355. c = -1.0;
  356. if (c < 0.0)
  357. c = -pow(-c, A);
  358. else
  359. c = pow(c, A);
  360. coeff = (c * 0.5 + 0.5) * fone;
  361. } else if (flags & SWS_AREA) {
  362. int64_t d2 = d - (1 << 29);
  363. if (d2 * xInc < -(1LL << (29 + 16)))
  364. coeff = 1.0 * (1LL << (30 + 16));
  365. else if (d2 * xInc < (1LL << (29 + 16)))
  366. coeff = -d2 * xInc + (1LL << (29 + 16));
  367. else
  368. coeff = 0.0;
  369. coeff *= fone >> (30 + 16);
  370. } else if (flags & SWS_GAUSS) {
  371. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  372. coeff = (pow(2.0, -p * floatd * floatd)) * fone;
  373. } else if (flags & SWS_SINC) {
  374. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  375. } else if (flags & SWS_LANCZOS) {
  376. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  377. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  378. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  379. if (floatd > p)
  380. coeff = 0;
  381. } else if (flags & SWS_BILINEAR) {
  382. coeff = (1 << 30) - d;
  383. if (coeff < 0)
  384. coeff = 0;
  385. coeff *= fone >> 30;
  386. } else if (flags & SWS_SPLINE) {
  387. double p = -2.196152422706632;
  388. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  389. } else {
  390. coeff = 0.0; // GCC warning killer
  391. assert(0);
  392. }
  393. filter[i * filterSize + j] = coeff;
  394. xx++;
  395. }
  396. xDstInSrc += 2 * xInc;
  397. }
  398. }
  399. /* apply src & dst Filter to filter -> filter2
  400. * av_free(filter);
  401. */
  402. assert(filterSize > 0);
  403. filter2Size = filterSize;
  404. if (srcFilter)
  405. filter2Size += srcFilter->length - 1;
  406. if (dstFilter)
  407. filter2Size += dstFilter->length - 1;
  408. assert(filter2Size > 0);
  409. FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size * dstW * sizeof(*filter2), fail);
  410. for (i = 0; i < dstW; i++) {
  411. int j, k;
  412. if (srcFilter) {
  413. for (k = 0; k < srcFilter->length; k++) {
  414. for (j = 0; j < filterSize; j++)
  415. filter2[i * filter2Size + k + j] +=
  416. srcFilter->coeff[k] * filter[i * filterSize + j];
  417. }
  418. } else {
  419. for (j = 0; j < filterSize; j++)
  420. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  421. }
  422. // FIXME dstFilter
  423. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  424. }
  425. av_freep(&filter);
  426. /* try to reduce the filter-size (step1 find size and shift left) */
  427. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  428. minFilterSize = 0;
  429. for (i = dstW - 1; i >= 0; i--) {
  430. int min = filter2Size;
  431. int j;
  432. int64_t cutOff = 0.0;
  433. /* get rid of near zero elements on the left by shifting left */
  434. for (j = 0; j < filter2Size; j++) {
  435. int k;
  436. cutOff += FFABS(filter2[i * filter2Size]);
  437. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  438. break;
  439. /* preserve monotonicity because the core can't handle the
  440. * filter otherwise */
  441. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  442. break;
  443. // move filter coefficients left
  444. for (k = 1; k < filter2Size; k++)
  445. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  446. filter2[i * filter2Size + k - 1] = 0;
  447. (*filterPos)[i]++;
  448. }
  449. cutOff = 0;
  450. /* count near zeros on the right */
  451. for (j = filter2Size - 1; j > 0; j--) {
  452. cutOff += FFABS(filter2[i * filter2Size + j]);
  453. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  454. break;
  455. min--;
  456. }
  457. if (min > minFilterSize)
  458. minFilterSize = min;
  459. }
  460. if (PPC_ALTIVEC(cpu_flags)) {
  461. // we can handle the special case 4, so we don't want to go the full 8
  462. if (minFilterSize < 5)
  463. filterAlign = 4;
  464. /* We really don't want to waste our time doing useless computation, so
  465. * fall back on the scalar C code for very small filters.
  466. * Vectorizing is worth it only if you have a decent-sized vector. */
  467. if (minFilterSize < 3)
  468. filterAlign = 1;
  469. }
  470. if (INLINE_MMX(cpu_flags)) {
  471. // special case for unscaled vertical filtering
  472. if (minFilterSize == 1 && filterAlign == 2)
  473. filterAlign = 1;
  474. }
  475. assert(minFilterSize > 0);
  476. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  477. assert(filterSize > 0);
  478. filter = av_malloc(filterSize * dstW * sizeof(*filter));
  479. if (filterSize >= MAX_FILTER_SIZE * 16 /
  480. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
  481. goto fail;
  482. *outFilterSize = filterSize;
  483. if (flags & SWS_PRINT_INFO)
  484. av_log(NULL, AV_LOG_VERBOSE,
  485. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  486. filter2Size, filterSize);
  487. /* try to reduce the filter-size (step2 reduce it) */
  488. for (i = 0; i < dstW; i++) {
  489. int j;
  490. for (j = 0; j < filterSize; j++) {
  491. if (j >= filter2Size)
  492. filter[i * filterSize + j] = 0;
  493. else
  494. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  495. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  496. filter[i * filterSize + j] = 0;
  497. }
  498. }
  499. // FIXME try to align filterPos if possible
  500. // fix borders
  501. if (is_horizontal) {
  502. for (i = 0; i < dstW; i++) {
  503. int j;
  504. if ((*filterPos)[i] < 0) {
  505. // move filter coefficients left to compensate for filterPos
  506. for (j = 1; j < filterSize; j++) {
  507. int left = FFMAX(j + (*filterPos)[i], 0);
  508. filter[i * filterSize + left] += filter[i * filterSize + j];
  509. filter[i * filterSize + j] = 0;
  510. }
  511. (*filterPos)[i] = 0;
  512. }
  513. if ((*filterPos)[i] + filterSize > srcW) {
  514. int shift = (*filterPos)[i] + filterSize - srcW;
  515. // move filter coefficients right to compensate for filterPos
  516. for (j = filterSize - 2; j >= 0; j--) {
  517. int right = FFMIN(j + shift, filterSize - 1);
  518. filter[i * filterSize + right] += filter[i * filterSize + j];
  519. filter[i * filterSize + j] = 0;
  520. }
  521. (*filterPos)[i] = srcW - filterSize;
  522. }
  523. }
  524. }
  525. // Note the +1 is for the MMX scaler which reads over the end
  526. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  527. FF_ALLOCZ_OR_GOTO(NULL, *outFilter,
  528. *outFilterSize * (dstW + 3) * sizeof(int16_t), fail);
  529. /* normalize & store in outFilter */
  530. for (i = 0; i < dstW; i++) {
  531. int j;
  532. int64_t error = 0;
  533. int64_t sum = 0;
  534. for (j = 0; j < filterSize; j++) {
  535. sum += filter[i * filterSize + j];
  536. }
  537. sum = (sum + one / 2) / one;
  538. for (j = 0; j < *outFilterSize; j++) {
  539. int64_t v = filter[i * filterSize + j] + error;
  540. int intV = ROUNDED_DIV(v, sum);
  541. (*outFilter)[i * (*outFilterSize) + j] = intV;
  542. error = v - intV * sum;
  543. }
  544. }
  545. (*filterPos)[dstW + 0] =
  546. (*filterPos)[dstW + 1] =
  547. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  548. * read over the end */
  549. for (i = 0; i < *outFilterSize; i++) {
  550. int k = (dstW - 1) * (*outFilterSize) + i;
  551. (*outFilter)[k + 1 * (*outFilterSize)] =
  552. (*outFilter)[k + 2 * (*outFilterSize)] =
  553. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  554. }
  555. ret = 0;
  556. fail:
  557. av_free(filter);
  558. av_free(filter2);
  559. return ret;
  560. }
  561. #if HAVE_MMXEXT_INLINE
  562. static av_cold int init_hscaler_mmxext(int dstW, int xInc, uint8_t *filterCode,
  563. int16_t *filter, int32_t *filterPos,
  564. int numSplits)
  565. {
  566. uint8_t *fragmentA;
  567. x86_reg imm8OfPShufW1A;
  568. x86_reg imm8OfPShufW2A;
  569. x86_reg fragmentLengthA;
  570. uint8_t *fragmentB;
  571. x86_reg imm8OfPShufW1B;
  572. x86_reg imm8OfPShufW2B;
  573. x86_reg fragmentLengthB;
  574. int fragmentPos;
  575. int xpos, i;
  576. // create an optimized horizontal scaling routine
  577. /* This scaler is made of runtime-generated MMXEXT code using specially tuned
  578. * pshufw instructions. For every four output pixels, if four input pixels
  579. * are enough for the fast bilinear scaling, then a chunk of fragmentB is
  580. * used. If five input pixels are needed, then a chunk of fragmentA is used.
  581. */
  582. // code fragment
  583. __asm__ volatile (
  584. "jmp 9f \n\t"
  585. // Begin
  586. "0: \n\t"
  587. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  588. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  589. "movd 1(%%"FF_REG_c", %%"FF_REG_S"), %%mm1 \n\t"
  590. "punpcklbw %%mm7, %%mm1 \n\t"
  591. "punpcklbw %%mm7, %%mm0 \n\t"
  592. "pshufw $0xFF, %%mm1, %%mm1 \n\t"
  593. "1: \n\t"
  594. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  595. "2: \n\t"
  596. "psubw %%mm1, %%mm0 \n\t"
  597. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  598. "pmullw %%mm3, %%mm0 \n\t"
  599. "psllw $7, %%mm1 \n\t"
  600. "paddw %%mm1, %%mm0 \n\t"
  601. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  602. "add $8, %%"FF_REG_a" \n\t"
  603. // End
  604. "9: \n\t"
  605. // "int $3 \n\t"
  606. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  607. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  608. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  609. "dec %1 \n\t"
  610. "dec %2 \n\t"
  611. "sub %0, %1 \n\t"
  612. "sub %0, %2 \n\t"
  613. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  614. "sub %0, %3 \n\t"
  615. : "=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
  616. "=r" (fragmentLengthA)
  617. );
  618. __asm__ volatile (
  619. "jmp 9f \n\t"
  620. // Begin
  621. "0: \n\t"
  622. "movq (%%"FF_REG_d", %%"FF_REG_a"), %%mm3 \n\t"
  623. "movd (%%"FF_REG_c", %%"FF_REG_S"), %%mm0 \n\t"
  624. "punpcklbw %%mm7, %%mm0 \n\t"
  625. "pshufw $0xFF, %%mm0, %%mm1 \n\t"
  626. "1: \n\t"
  627. "pshufw $0xFF, %%mm0, %%mm0 \n\t"
  628. "2: \n\t"
  629. "psubw %%mm1, %%mm0 \n\t"
  630. "movl 8(%%"FF_REG_b", %%"FF_REG_a"), %%esi \n\t"
  631. "pmullw %%mm3, %%mm0 \n\t"
  632. "psllw $7, %%mm1 \n\t"
  633. "paddw %%mm1, %%mm0 \n\t"
  634. "movq %%mm0, (%%"FF_REG_D", %%"FF_REG_a") \n\t"
  635. "add $8, %%"FF_REG_a" \n\t"
  636. // End
  637. "9: \n\t"
  638. // "int $3 \n\t"
  639. "lea " LOCAL_MANGLE(0b) ", %0 \n\t"
  640. "lea " LOCAL_MANGLE(1b) ", %1 \n\t"
  641. "lea " LOCAL_MANGLE(2b) ", %2 \n\t"
  642. "dec %1 \n\t"
  643. "dec %2 \n\t"
  644. "sub %0, %1 \n\t"
  645. "sub %0, %2 \n\t"
  646. "lea " LOCAL_MANGLE(9b) ", %3 \n\t"
  647. "sub %0, %3 \n\t"
  648. : "=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
  649. "=r" (fragmentLengthB)
  650. );
  651. xpos = 0; // lumXInc/2 - 0x8000; // difference between pixel centers
  652. fragmentPos = 0;
  653. for (i = 0; i < dstW / numSplits; i++) {
  654. int xx = xpos >> 16;
  655. if ((i & 3) == 0) {
  656. int a = 0;
  657. int b = ((xpos + xInc) >> 16) - xx;
  658. int c = ((xpos + xInc * 2) >> 16) - xx;
  659. int d = ((xpos + xInc * 3) >> 16) - xx;
  660. int inc = (d + 1 < 4);
  661. uint8_t *fragment = (d + 1 < 4) ? fragmentB : fragmentA;
  662. x86_reg imm8OfPShufW1 = (d + 1 < 4) ? imm8OfPShufW1B : imm8OfPShufW1A;
  663. x86_reg imm8OfPShufW2 = (d + 1 < 4) ? imm8OfPShufW2B : imm8OfPShufW2A;
  664. x86_reg fragmentLength = (d + 1 < 4) ? fragmentLengthB : fragmentLengthA;
  665. int maxShift = 3 - (d + inc);
  666. int shift = 0;
  667. if (filterCode) {
  668. filter[i] = ((xpos & 0xFFFF) ^ 0xFFFF) >> 9;
  669. filter[i + 1] = (((xpos + xInc) & 0xFFFF) ^ 0xFFFF) >> 9;
  670. filter[i + 2] = (((xpos + xInc * 2) & 0xFFFF) ^ 0xFFFF) >> 9;
  671. filter[i + 3] = (((xpos + xInc * 3) & 0xFFFF) ^ 0xFFFF) >> 9;
  672. filterPos[i / 2] = xx;
  673. memcpy(filterCode + fragmentPos, fragment, fragmentLength);
  674. filterCode[fragmentPos + imm8OfPShufW1] = (a + inc) |
  675. ((b + inc) << 2) |
  676. ((c + inc) << 4) |
  677. ((d + inc) << 6);
  678. filterCode[fragmentPos + imm8OfPShufW2] = a | (b << 2) |
  679. (c << 4) |
  680. (d << 6);
  681. if (i + 4 - inc >= dstW)
  682. shift = maxShift; // avoid overread
  683. else if ((filterPos[i / 2] & 3) <= maxShift)
  684. shift = filterPos[i / 2] & 3; // align
  685. if (shift && i >= shift) {
  686. filterCode[fragmentPos + imm8OfPShufW1] += 0x55 * shift;
  687. filterCode[fragmentPos + imm8OfPShufW2] += 0x55 * shift;
  688. filterPos[i / 2] -= shift;
  689. }
  690. }
  691. fragmentPos += fragmentLength;
  692. if (filterCode)
  693. filterCode[fragmentPos] = RET;
  694. }
  695. xpos += xInc;
  696. }
  697. if (filterCode)
  698. filterPos[((i / 2) + 1) & (~1)] = xpos >> 16; // needed to jump to the next part
  699. return fragmentPos + 1;
  700. }
  701. #endif /* HAVE_MMXEXT_INLINE */
  702. static void getSubSampleFactors(int *h, int *v, enum AVPixelFormat format)
  703. {
  704. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format);
  705. *h = desc->log2_chroma_w;
  706. *v = desc->log2_chroma_h;
  707. }
  708. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  709. int srcRange, const int table[4], int dstRange,
  710. int brightness, int contrast, int saturation)
  711. {
  712. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  713. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(c->srcFormat);
  714. memcpy(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  715. memcpy(c->dstColorspaceTable, table, sizeof(int) * 4);
  716. c->brightness = brightness;
  717. c->contrast = contrast;
  718. c->saturation = saturation;
  719. c->srcRange = srcRange;
  720. c->dstRange = dstRange;
  721. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  722. return -1;
  723. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  724. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  725. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  726. contrast, saturation);
  727. // FIXME factorize
  728. if (ARCH_PPC)
  729. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  730. contrast, saturation);
  731. return 0;
  732. }
  733. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  734. int *srcRange, int **table, int *dstRange,
  735. int *brightness, int *contrast, int *saturation)
  736. {
  737. if (isYUV(c->dstFormat) || isGray(c->dstFormat))
  738. return -1;
  739. *inv_table = c->srcColorspaceTable;
  740. *table = c->dstColorspaceTable;
  741. *srcRange = c->srcRange;
  742. *dstRange = c->dstRange;
  743. *brightness = c->brightness;
  744. *contrast = c->contrast;
  745. *saturation = c->saturation;
  746. return 0;
  747. }
  748. static int handle_jpeg(enum AVPixelFormat *format)
  749. {
  750. switch (*format) {
  751. case AV_PIX_FMT_YUVJ420P:
  752. *format = AV_PIX_FMT_YUV420P;
  753. return 1;
  754. case AV_PIX_FMT_YUVJ422P:
  755. *format = AV_PIX_FMT_YUV422P;
  756. return 1;
  757. case AV_PIX_FMT_YUVJ444P:
  758. *format = AV_PIX_FMT_YUV444P;
  759. return 1;
  760. case AV_PIX_FMT_YUVJ440P:
  761. *format = AV_PIX_FMT_YUV440P;
  762. return 1;
  763. default:
  764. return 0;
  765. }
  766. }
  767. SwsContext *sws_alloc_context(void)
  768. {
  769. SwsContext *c = av_mallocz(sizeof(SwsContext));
  770. if (c) {
  771. c->av_class = &ff_sws_context_class;
  772. av_opt_set_defaults(c);
  773. }
  774. return c;
  775. }
  776. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  777. SwsFilter *dstFilter)
  778. {
  779. int i;
  780. int usesVFilter, usesHFilter;
  781. int unscaled;
  782. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  783. int srcW = c->srcW;
  784. int srcH = c->srcH;
  785. int dstW = c->dstW;
  786. int dstH = c->dstH;
  787. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16);
  788. int dst_stride_px = dst_stride >> 1;
  789. int flags, cpu_flags;
  790. enum AVPixelFormat srcFormat = c->srcFormat;
  791. enum AVPixelFormat dstFormat = c->dstFormat;
  792. const AVPixFmtDescriptor *desc_src = av_pix_fmt_desc_get(srcFormat);
  793. const AVPixFmtDescriptor *desc_dst = av_pix_fmt_desc_get(dstFormat);
  794. cpu_flags = av_get_cpu_flags();
  795. flags = c->flags;
  796. emms_c();
  797. if (!rgb15to16)
  798. ff_rgb2rgb_init();
  799. unscaled = (srcW == dstW && srcH == dstH);
  800. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  801. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  802. if (!sws_isSupportedInput(srcFormat)) {
  803. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  804. sws_format_name(srcFormat));
  805. return AVERROR(EINVAL);
  806. }
  807. if (!sws_isSupportedOutput(dstFormat)) {
  808. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  809. sws_format_name(dstFormat));
  810. return AVERROR(EINVAL);
  811. }
  812. }
  813. i = flags & (SWS_POINT |
  814. SWS_AREA |
  815. SWS_BILINEAR |
  816. SWS_FAST_BILINEAR |
  817. SWS_BICUBIC |
  818. SWS_X |
  819. SWS_GAUSS |
  820. SWS_LANCZOS |
  821. SWS_SINC |
  822. SWS_SPLINE |
  823. SWS_BICUBLIN);
  824. /* provide a default scaler if not set by caller */
  825. if (!i) {
  826. if (dstW < srcW && dstH < srcH)
  827. flags |= SWS_GAUSS;
  828. else if (dstW > srcW && dstH > srcH)
  829. flags |= SWS_SINC;
  830. else
  831. flags |= SWS_LANCZOS;
  832. c->flags = flags;
  833. } else if (i & (i - 1)) {
  834. av_log(c, AV_LOG_ERROR,
  835. "Exactly one scaler algorithm must be chosen\n");
  836. return AVERROR(EINVAL);
  837. }
  838. /* sanity check */
  839. if (srcW < 4 || srcH < 1 || dstW < 8 || dstH < 1) {
  840. /* FIXME check if these are enough and try to lower them after
  841. * fixing the relevant parts of the code */
  842. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  843. srcW, srcH, dstW, dstH);
  844. return AVERROR(EINVAL);
  845. }
  846. if (!dstFilter)
  847. dstFilter = &dummyFilter;
  848. if (!srcFilter)
  849. srcFilter = &dummyFilter;
  850. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  851. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  852. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  853. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  854. c->vRounder = 4 * 0x0001000100010001ULL;
  855. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  856. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  857. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  858. (dstFilter->chrV && dstFilter->chrV->length > 1);
  859. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  860. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  861. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  862. (dstFilter->chrH && dstFilter->chrH->length > 1);
  863. getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
  864. getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
  865. if (isPlanarRGB(dstFormat)) {
  866. if (!(flags & SWS_FULL_CHR_H_INT)) {
  867. av_log(c, AV_LOG_DEBUG,
  868. "%s output is not supported with half chroma resolution, switching to full\n",
  869. av_get_pix_fmt_name(dstFormat));
  870. flags |= SWS_FULL_CHR_H_INT;
  871. c->flags = flags;
  872. }
  873. }
  874. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  875. * chroma interpolation */
  876. if (flags & SWS_FULL_CHR_H_INT &&
  877. isAnyRGB(dstFormat) &&
  878. !isPlanarRGB(dstFormat) &&
  879. dstFormat != AV_PIX_FMT_RGBA &&
  880. dstFormat != AV_PIX_FMT_ARGB &&
  881. dstFormat != AV_PIX_FMT_BGRA &&
  882. dstFormat != AV_PIX_FMT_ABGR &&
  883. dstFormat != AV_PIX_FMT_RGB24 &&
  884. dstFormat != AV_PIX_FMT_BGR24) {
  885. av_log(c, AV_LOG_ERROR,
  886. "full chroma interpolation for destination format '%s' not yet implemented\n",
  887. sws_format_name(dstFormat));
  888. flags &= ~SWS_FULL_CHR_H_INT;
  889. c->flags = flags;
  890. }
  891. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  892. c->chrDstHSubSample = 1;
  893. // drop some chroma lines if the user wants it
  894. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  895. SWS_SRC_V_CHR_DROP_SHIFT;
  896. c->chrSrcVSubSample += c->vChrDrop;
  897. /* drop every other pixel for chroma calculation unless user
  898. * wants full chroma */
  899. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  900. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  901. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  902. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  903. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  904. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  905. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  906. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  907. (flags & SWS_FAST_BILINEAR)))
  908. c->chrSrcHSubSample = 1;
  909. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  910. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  911. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  912. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  913. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  914. /* unscaled special cases */
  915. if (unscaled && !usesHFilter && !usesVFilter &&
  916. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  917. ff_get_unscaled_swscale(c);
  918. if (c->swscale) {
  919. if (flags & SWS_PRINT_INFO)
  920. av_log(c, AV_LOG_INFO,
  921. "using unscaled %s -> %s special converter\n",
  922. sws_format_name(srcFormat), sws_format_name(dstFormat));
  923. return 0;
  924. }
  925. }
  926. c->srcBpc = desc_src->comp[0].depth;
  927. if (c->srcBpc < 8)
  928. c->srcBpc = 8;
  929. c->dstBpc = desc_dst->comp[0].depth;
  930. if (c->dstBpc < 8)
  931. c->dstBpc = 8;
  932. if (c->dstBpc == 16)
  933. dst_stride <<= 1;
  934. FF_ALLOC_OR_GOTO(c, c->formatConvBuffer,
  935. (FFALIGN(srcW, 16) * 2 * FFALIGN(c->srcBpc, 8) >> 3) + 16,
  936. fail);
  937. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 10) {
  938. c->canMMXEXTBeUsed = (dstW >= srcW && (dstW & 31) == 0 &&
  939. (srcW & 15) == 0) ? 1 : 0;
  940. if (!c->canMMXEXTBeUsed && dstW >= srcW && (srcW & 15) == 0
  941. && (flags & SWS_FAST_BILINEAR)) {
  942. if (flags & SWS_PRINT_INFO)
  943. av_log(c, AV_LOG_INFO,
  944. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  945. }
  946. if (usesHFilter)
  947. c->canMMXEXTBeUsed = 0;
  948. } else
  949. c->canMMXEXTBeUsed = 0;
  950. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  951. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  952. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  953. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  954. * correct scaling.
  955. * n-2 is the last chrominance sample available.
  956. * This is not perfect, but no one should notice the difference, the more
  957. * correct variant would be like the vertical one, but that would require
  958. * some special code for the first and last pixel */
  959. if (flags & SWS_FAST_BILINEAR) {
  960. if (c->canMMXEXTBeUsed) {
  961. c->lumXInc += 20;
  962. c->chrXInc += 20;
  963. }
  964. // we don't use the x86 asm scaler if MMX is available
  965. else if (INLINE_MMX(cpu_flags)) {
  966. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  967. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  968. }
  969. }
  970. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  971. /* precalculate horizontal scaler filter coefficients */
  972. {
  973. #if HAVE_MMXEXT_INLINE
  974. // can't downscale !!!
  975. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  976. c->lumMmxextFilterCodeSize = init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  977. NULL, NULL, 8);
  978. c->chrMmxextFilterCodeSize = init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  979. NULL, NULL, NULL, 4);
  980. #if USE_MMAP
  981. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  982. PROT_READ | PROT_WRITE,
  983. MAP_PRIVATE | MAP_ANONYMOUS,
  984. -1, 0);
  985. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  986. PROT_READ | PROT_WRITE,
  987. MAP_PRIVATE | MAP_ANONYMOUS,
  988. -1, 0);
  989. #elif HAVE_VIRTUALALLOC
  990. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  991. c->lumMmxextFilterCodeSize,
  992. MEM_COMMIT,
  993. PAGE_EXECUTE_READWRITE);
  994. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  995. c->chrMmxextFilterCodeSize,
  996. MEM_COMMIT,
  997. PAGE_EXECUTE_READWRITE);
  998. #else
  999. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1000. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1001. #endif
  1002. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1003. return AVERROR(ENOMEM);
  1004. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1005. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1006. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1007. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1008. init_hscaler_mmxext(dstW, c->lumXInc, c->lumMmxextFilterCode,
  1009. c->hLumFilter, c->hLumFilterPos, 8);
  1010. init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1011. c->hChrFilter, c->hChrFilterPos, 4);
  1012. #if USE_MMAP
  1013. mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1014. mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ);
  1015. #endif
  1016. } else
  1017. #endif /* HAVE_MMXEXT_INLINE */
  1018. {
  1019. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1020. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1021. if (initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1022. &c->hLumFilterSize, c->lumXInc,
  1023. srcW, dstW, filterAlign, 1 << 14,
  1024. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1025. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1026. c->param, 1) < 0)
  1027. goto fail;
  1028. if (initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1029. &c->hChrFilterSize, c->chrXInc,
  1030. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1031. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1032. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1033. c->param, 1) < 0)
  1034. goto fail;
  1035. }
  1036. } // initialize horizontal stuff
  1037. /* precalculate vertical scaler filter coefficients */
  1038. {
  1039. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1040. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1041. if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1042. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1043. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1044. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1045. c->param, 0) < 0)
  1046. goto fail;
  1047. if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1048. c->chrYInc, c->chrSrcH, c->chrDstH,
  1049. filterAlign, (1 << 12),
  1050. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1051. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1052. c->param, 0) < 0)
  1053. goto fail;
  1054. #if HAVE_ALTIVEC
  1055. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1056. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1057. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1058. int j;
  1059. short *p = (short *)&c->vYCoeffsBank[i];
  1060. for (j = 0; j < 8; j++)
  1061. p[j] = c->vLumFilter[i];
  1062. }
  1063. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1064. int j;
  1065. short *p = (short *)&c->vCCoeffsBank[i];
  1066. for (j = 0; j < 8; j++)
  1067. p[j] = c->vChrFilter[i];
  1068. }
  1069. #endif
  1070. }
  1071. // calculate buffer sizes so that they won't run out while handling these damn slices
  1072. c->vLumBufSize = c->vLumFilterSize;
  1073. c->vChrBufSize = c->vChrFilterSize;
  1074. for (i = 0; i < dstH; i++) {
  1075. int chrI = (int64_t)i * c->chrDstH / dstH;
  1076. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1077. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1078. << c->chrSrcVSubSample));
  1079. nextSlice >>= c->chrSrcVSubSample;
  1080. nextSlice <<= c->chrSrcVSubSample;
  1081. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1082. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1083. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1084. (nextSlice >> c->chrSrcVSubSample))
  1085. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1086. c->vChrFilterPos[chrI];
  1087. }
  1088. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1089. * need to allocate several megabytes to handle all possible cases) */
  1090. FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1091. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1092. FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1093. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1094. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1095. /* Note we need at least one pixel more at the end because of the MMX code
  1096. * (just in case someone wants to replace the 4000/8000). */
  1097. /* align at 16 bytes for AltiVec */
  1098. for (i = 0; i < c->vLumBufSize; i++) {
  1099. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1100. dst_stride + 16, fail);
  1101. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1102. }
  1103. // 64 / (c->dstBpc & ~7) is the same as 16 / sizeof(scaling_intermediate)
  1104. c->uv_off_px = dst_stride_px + 64 / (c->dstBpc & ~7);
  1105. c->uv_off_byte = dst_stride + 16;
  1106. for (i = 0; i < c->vChrBufSize; i++) {
  1107. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1108. dst_stride * 2 + 32, fail);
  1109. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1110. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1111. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1112. }
  1113. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1114. for (i = 0; i < c->vLumBufSize; i++) {
  1115. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1116. dst_stride + 16, fail);
  1117. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1118. }
  1119. // try to avoid drawing green stuff between the right end and the stride end
  1120. for (i = 0; i < c->vChrBufSize; i++)
  1121. memset(c->chrUPixBuf[i], 64, dst_stride * 2 + 1);
  1122. assert(c->chrDstH <= dstH);
  1123. if (flags & SWS_PRINT_INFO) {
  1124. if (flags & SWS_FAST_BILINEAR)
  1125. av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
  1126. else if (flags & SWS_BILINEAR)
  1127. av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
  1128. else if (flags & SWS_BICUBIC)
  1129. av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
  1130. else if (flags & SWS_X)
  1131. av_log(c, AV_LOG_INFO, "Experimental scaler, ");
  1132. else if (flags & SWS_POINT)
  1133. av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
  1134. else if (flags & SWS_AREA)
  1135. av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
  1136. else if (flags & SWS_BICUBLIN)
  1137. av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
  1138. else if (flags & SWS_GAUSS)
  1139. av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
  1140. else if (flags & SWS_SINC)
  1141. av_log(c, AV_LOG_INFO, "Sinc scaler, ");
  1142. else if (flags & SWS_LANCZOS)
  1143. av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
  1144. else if (flags & SWS_SPLINE)
  1145. av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
  1146. else
  1147. av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
  1148. av_log(c, AV_LOG_INFO, "from %s to %s%s ",
  1149. sws_format_name(srcFormat),
  1150. #ifdef DITHER1XBPP
  1151. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1152. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1153. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1154. "dithered " : "",
  1155. #else
  1156. "",
  1157. #endif
  1158. sws_format_name(dstFormat));
  1159. if (INLINE_MMXEXT(cpu_flags))
  1160. av_log(c, AV_LOG_INFO, "using MMXEXT\n");
  1161. else if (INLINE_AMD3DNOW(cpu_flags))
  1162. av_log(c, AV_LOG_INFO, "using 3DNOW\n");
  1163. else if (INLINE_MMX(cpu_flags))
  1164. av_log(c, AV_LOG_INFO, "using MMX\n");
  1165. else if (PPC_ALTIVEC(cpu_flags))
  1166. av_log(c, AV_LOG_INFO, "using AltiVec\n");
  1167. else
  1168. av_log(c, AV_LOG_INFO, "using C\n");
  1169. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1170. av_log(c, AV_LOG_DEBUG,
  1171. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1172. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1173. av_log(c, AV_LOG_DEBUG,
  1174. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1175. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1176. c->chrXInc, c->chrYInc);
  1177. }
  1178. c->swscale = ff_getSwsFunc(c);
  1179. return 0;
  1180. fail: // FIXME replace things by appropriate error codes
  1181. return -1;
  1182. }
  1183. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1184. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1185. int flags, SwsFilter *srcFilter,
  1186. SwsFilter *dstFilter, const double *param)
  1187. {
  1188. SwsContext *c;
  1189. if (!(c = sws_alloc_context()))
  1190. return NULL;
  1191. c->flags = flags;
  1192. c->srcW = srcW;
  1193. c->srcH = srcH;
  1194. c->dstW = dstW;
  1195. c->dstH = dstH;
  1196. c->srcRange = handle_jpeg(&srcFormat);
  1197. c->dstRange = handle_jpeg(&dstFormat);
  1198. c->srcFormat = srcFormat;
  1199. c->dstFormat = dstFormat;
  1200. if (param) {
  1201. c->param[0] = param[0];
  1202. c->param[1] = param[1];
  1203. }
  1204. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1205. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1206. c->dstRange, 0, 1 << 16, 1 << 16);
  1207. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1208. sws_freeContext(c);
  1209. return NULL;
  1210. }
  1211. return c;
  1212. }
  1213. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1214. float lumaSharpen, float chromaSharpen,
  1215. float chromaHShift, float chromaVShift,
  1216. int verbose)
  1217. {
  1218. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1219. if (!filter)
  1220. return NULL;
  1221. if (lumaGBlur != 0.0) {
  1222. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1223. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1224. } else {
  1225. filter->lumH = sws_getIdentityVec();
  1226. filter->lumV = sws_getIdentityVec();
  1227. }
  1228. if (chromaGBlur != 0.0) {
  1229. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1230. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1231. } else {
  1232. filter->chrH = sws_getIdentityVec();
  1233. filter->chrV = sws_getIdentityVec();
  1234. }
  1235. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1236. goto fail;
  1237. if (chromaSharpen != 0.0) {
  1238. SwsVector *id = sws_getIdentityVec();
  1239. if (!id)
  1240. goto fail;
  1241. sws_scaleVec(filter->chrH, -chromaSharpen);
  1242. sws_scaleVec(filter->chrV, -chromaSharpen);
  1243. sws_addVec(filter->chrH, id);
  1244. sws_addVec(filter->chrV, id);
  1245. sws_freeVec(id);
  1246. }
  1247. if (lumaSharpen != 0.0) {
  1248. SwsVector *id = sws_getIdentityVec();
  1249. if (!id)
  1250. goto fail;
  1251. sws_scaleVec(filter->lumH, -lumaSharpen);
  1252. sws_scaleVec(filter->lumV, -lumaSharpen);
  1253. sws_addVec(filter->lumH, id);
  1254. sws_addVec(filter->lumV, id);
  1255. sws_freeVec(id);
  1256. }
  1257. if (chromaHShift != 0.0)
  1258. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1259. if (chromaVShift != 0.0)
  1260. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1261. sws_normalizeVec(filter->chrH, 1.0);
  1262. sws_normalizeVec(filter->chrV, 1.0);
  1263. sws_normalizeVec(filter->lumH, 1.0);
  1264. sws_normalizeVec(filter->lumV, 1.0);
  1265. if (verbose)
  1266. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1267. if (verbose)
  1268. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1269. return filter;
  1270. fail:
  1271. sws_freeVec(filter->lumH);
  1272. sws_freeVec(filter->lumV);
  1273. sws_freeVec(filter->chrH);
  1274. sws_freeVec(filter->chrV);
  1275. av_freep(&filter);
  1276. return NULL;
  1277. }
  1278. SwsVector *sws_allocVec(int length)
  1279. {
  1280. SwsVector *vec = av_malloc(sizeof(SwsVector));
  1281. if (!vec)
  1282. return NULL;
  1283. vec->length = length;
  1284. vec->coeff = av_malloc(sizeof(double) * length);
  1285. if (!vec->coeff)
  1286. av_freep(&vec);
  1287. return vec;
  1288. }
  1289. SwsVector *sws_getGaussianVec(double variance, double quality)
  1290. {
  1291. const int length = (int)(variance * quality + 0.5) | 1;
  1292. int i;
  1293. double middle = (length - 1) * 0.5;
  1294. SwsVector *vec = sws_allocVec(length);
  1295. if (!vec)
  1296. return NULL;
  1297. for (i = 0; i < length; i++) {
  1298. double dist = i - middle;
  1299. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1300. sqrt(2 * variance * M_PI);
  1301. }
  1302. sws_normalizeVec(vec, 1.0);
  1303. return vec;
  1304. }
  1305. SwsVector *sws_getConstVec(double c, int length)
  1306. {
  1307. int i;
  1308. SwsVector *vec = sws_allocVec(length);
  1309. if (!vec)
  1310. return NULL;
  1311. for (i = 0; i < length; i++)
  1312. vec->coeff[i] = c;
  1313. return vec;
  1314. }
  1315. SwsVector *sws_getIdentityVec(void)
  1316. {
  1317. return sws_getConstVec(1.0, 1);
  1318. }
  1319. static double sws_dcVec(SwsVector *a)
  1320. {
  1321. int i;
  1322. double sum = 0;
  1323. for (i = 0; i < a->length; i++)
  1324. sum += a->coeff[i];
  1325. return sum;
  1326. }
  1327. void sws_scaleVec(SwsVector *a, double scalar)
  1328. {
  1329. int i;
  1330. for (i = 0; i < a->length; i++)
  1331. a->coeff[i] *= scalar;
  1332. }
  1333. void sws_normalizeVec(SwsVector *a, double height)
  1334. {
  1335. sws_scaleVec(a, height / sws_dcVec(a));
  1336. }
  1337. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1338. {
  1339. int length = a->length + b->length - 1;
  1340. int i, j;
  1341. SwsVector *vec = sws_getConstVec(0.0, length);
  1342. if (!vec)
  1343. return NULL;
  1344. for (i = 0; i < a->length; i++) {
  1345. for (j = 0; j < b->length; j++) {
  1346. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1347. }
  1348. }
  1349. return vec;
  1350. }
  1351. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1352. {
  1353. int length = FFMAX(a->length, b->length);
  1354. int i;
  1355. SwsVector *vec = sws_getConstVec(0.0, length);
  1356. if (!vec)
  1357. return NULL;
  1358. for (i = 0; i < a->length; i++)
  1359. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1360. for (i = 0; i < b->length; i++)
  1361. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1362. return vec;
  1363. }
  1364. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1365. {
  1366. int length = FFMAX(a->length, b->length);
  1367. int i;
  1368. SwsVector *vec = sws_getConstVec(0.0, length);
  1369. if (!vec)
  1370. return NULL;
  1371. for (i = 0; i < a->length; i++)
  1372. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1373. for (i = 0; i < b->length; i++)
  1374. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1375. return vec;
  1376. }
  1377. /* shift left / or right if "shift" is negative */
  1378. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1379. {
  1380. int length = a->length + FFABS(shift) * 2;
  1381. int i;
  1382. SwsVector *vec = sws_getConstVec(0.0, length);
  1383. if (!vec)
  1384. return NULL;
  1385. for (i = 0; i < a->length; i++) {
  1386. vec->coeff[i + (length - 1) / 2 -
  1387. (a->length - 1) / 2 - shift] = a->coeff[i];
  1388. }
  1389. return vec;
  1390. }
  1391. void sws_shiftVec(SwsVector *a, int shift)
  1392. {
  1393. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1394. av_free(a->coeff);
  1395. a->coeff = shifted->coeff;
  1396. a->length = shifted->length;
  1397. av_free(shifted);
  1398. }
  1399. void sws_addVec(SwsVector *a, SwsVector *b)
  1400. {
  1401. SwsVector *sum = sws_sumVec(a, b);
  1402. av_free(a->coeff);
  1403. a->coeff = sum->coeff;
  1404. a->length = sum->length;
  1405. av_free(sum);
  1406. }
  1407. void sws_subVec(SwsVector *a, SwsVector *b)
  1408. {
  1409. SwsVector *diff = sws_diffVec(a, b);
  1410. av_free(a->coeff);
  1411. a->coeff = diff->coeff;
  1412. a->length = diff->length;
  1413. av_free(diff);
  1414. }
  1415. void sws_convVec(SwsVector *a, SwsVector *b)
  1416. {
  1417. SwsVector *conv = sws_getConvVec(a, b);
  1418. av_free(a->coeff);
  1419. a->coeff = conv->coeff;
  1420. a->length = conv->length;
  1421. av_free(conv);
  1422. }
  1423. SwsVector *sws_cloneVec(SwsVector *a)
  1424. {
  1425. int i;
  1426. SwsVector *vec = sws_allocVec(a->length);
  1427. if (!vec)
  1428. return NULL;
  1429. for (i = 0; i < a->length; i++)
  1430. vec->coeff[i] = a->coeff[i];
  1431. return vec;
  1432. }
  1433. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1434. {
  1435. int i;
  1436. double max = 0;
  1437. double min = 0;
  1438. double range;
  1439. for (i = 0; i < a->length; i++)
  1440. if (a->coeff[i] > max)
  1441. max = a->coeff[i];
  1442. for (i = 0; i < a->length; i++)
  1443. if (a->coeff[i] < min)
  1444. min = a->coeff[i];
  1445. range = max - min;
  1446. for (i = 0; i < a->length; i++) {
  1447. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1448. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1449. for (; x > 0; x--)
  1450. av_log(log_ctx, log_level, " ");
  1451. av_log(log_ctx, log_level, "|\n");
  1452. }
  1453. }
  1454. void sws_freeVec(SwsVector *a)
  1455. {
  1456. if (!a)
  1457. return;
  1458. av_freep(&a->coeff);
  1459. a->length = 0;
  1460. av_free(a);
  1461. }
  1462. void sws_freeFilter(SwsFilter *filter)
  1463. {
  1464. if (!filter)
  1465. return;
  1466. if (filter->lumH)
  1467. sws_freeVec(filter->lumH);
  1468. if (filter->lumV)
  1469. sws_freeVec(filter->lumV);
  1470. if (filter->chrH)
  1471. sws_freeVec(filter->chrH);
  1472. if (filter->chrV)
  1473. sws_freeVec(filter->chrV);
  1474. av_free(filter);
  1475. }
  1476. void sws_freeContext(SwsContext *c)
  1477. {
  1478. int i;
  1479. if (!c)
  1480. return;
  1481. if (c->lumPixBuf) {
  1482. for (i = 0; i < c->vLumBufSize; i++)
  1483. av_freep(&c->lumPixBuf[i]);
  1484. av_freep(&c->lumPixBuf);
  1485. }
  1486. if (c->chrUPixBuf) {
  1487. for (i = 0; i < c->vChrBufSize; i++)
  1488. av_freep(&c->chrUPixBuf[i]);
  1489. av_freep(&c->chrUPixBuf);
  1490. av_freep(&c->chrVPixBuf);
  1491. }
  1492. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  1493. for (i = 0; i < c->vLumBufSize; i++)
  1494. av_freep(&c->alpPixBuf[i]);
  1495. av_freep(&c->alpPixBuf);
  1496. }
  1497. av_freep(&c->vLumFilter);
  1498. av_freep(&c->vChrFilter);
  1499. av_freep(&c->hLumFilter);
  1500. av_freep(&c->hChrFilter);
  1501. #if HAVE_ALTIVEC
  1502. av_freep(&c->vYCoeffsBank);
  1503. av_freep(&c->vCCoeffsBank);
  1504. #endif
  1505. av_freep(&c->vLumFilterPos);
  1506. av_freep(&c->vChrFilterPos);
  1507. av_freep(&c->hLumFilterPos);
  1508. av_freep(&c->hChrFilterPos);
  1509. #if HAVE_MMX_INLINE
  1510. #if USE_MMAP
  1511. if (c->lumMmxextFilterCode)
  1512. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  1513. if (c->chrMmxextFilterCode)
  1514. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  1515. #elif HAVE_VIRTUALALLOC
  1516. if (c->lumMmxextFilterCode)
  1517. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  1518. if (c->chrMmxextFilterCode)
  1519. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  1520. #else
  1521. av_free(c->lumMmxextFilterCode);
  1522. av_free(c->chrMmxextFilterCode);
  1523. #endif
  1524. c->lumMmxextFilterCode = NULL;
  1525. c->chrMmxextFilterCode = NULL;
  1526. #endif /* HAVE_MMX_INLINE */
  1527. av_freep(&c->yuvTable);
  1528. av_free(c->formatConvBuffer);
  1529. av_free(c);
  1530. }
  1531. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  1532. int srcH, enum AVPixelFormat srcFormat,
  1533. int dstW, int dstH,
  1534. enum AVPixelFormat dstFormat, int flags,
  1535. SwsFilter *srcFilter,
  1536. SwsFilter *dstFilter,
  1537. const double *param)
  1538. {
  1539. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  1540. SWS_PARAM_DEFAULT };
  1541. if (!param)
  1542. param = default_param;
  1543. if (context &&
  1544. (context->srcW != srcW ||
  1545. context->srcH != srcH ||
  1546. context->srcFormat != srcFormat ||
  1547. context->dstW != dstW ||
  1548. context->dstH != dstH ||
  1549. context->dstFormat != dstFormat ||
  1550. context->flags != flags ||
  1551. context->param[0] != param[0] ||
  1552. context->param[1] != param[1])) {
  1553. sws_freeContext(context);
  1554. context = NULL;
  1555. }
  1556. if (!context) {
  1557. if (!(context = sws_alloc_context()))
  1558. return NULL;
  1559. context->srcW = srcW;
  1560. context->srcH = srcH;
  1561. context->srcRange = handle_jpeg(&srcFormat);
  1562. context->srcFormat = srcFormat;
  1563. context->dstW = dstW;
  1564. context->dstH = dstH;
  1565. context->dstRange = handle_jpeg(&dstFormat);
  1566. context->dstFormat = dstFormat;
  1567. context->flags = flags;
  1568. context->param[0] = param[0];
  1569. context->param[1] = param[1];
  1570. sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1571. context->srcRange,
  1572. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/,
  1573. context->dstRange, 0, 1 << 16, 1 << 16);
  1574. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  1575. sws_freeContext(context);
  1576. return NULL;
  1577. }
  1578. }
  1579. return context;
  1580. }