You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1073 lines
36KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "internal.h"
  29. #include "ratecontrol.h"
  30. #include "mpegutils.h"
  31. #include "mpegvideo.h"
  32. #include "libavutil/eval.h"
  33. #ifndef M_E
  34. #define M_E 2.718281828
  35. #endif
  36. static int init_pass2(MpegEncContext *s);
  37. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  38. double rate_factor, int frame_num);
  39. void ff_write_pass1_stats(MpegEncContext *s)
  40. {
  41. snprintf(s->avctx->stats_out, 256,
  42. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  43. "fcode:%d bcode:%d mc-var:%"PRId64" var:%"PRId64" icount:%d skipcount:%d hbits:%d;\n",
  44. s->current_picture_ptr->f->display_picture_number,
  45. s->current_picture_ptr->f->coded_picture_number,
  46. s->pict_type,
  47. s->current_picture.f->quality,
  48. s->i_tex_bits,
  49. s->p_tex_bits,
  50. s->mv_bits,
  51. s->misc_bits,
  52. s->f_code,
  53. s->b_code,
  54. s->current_picture.mc_mb_var_sum,
  55. s->current_picture.mb_var_sum,
  56. s->i_count, s->skip_count,
  57. s->header_bits);
  58. }
  59. static double get_fps(AVCodecContext *avctx)
  60. {
  61. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  62. }
  63. static inline double qp2bits(RateControlEntry *rce, double qp)
  64. {
  65. if (qp <= 0.0) {
  66. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  67. }
  68. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  69. }
  70. static inline double bits2qp(RateControlEntry *rce, double bits)
  71. {
  72. if (bits < 0.9) {
  73. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  74. }
  75. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  76. }
  77. av_cold int ff_rate_control_init(MpegEncContext *s)
  78. {
  79. RateControlContext *rcc = &s->rc_context;
  80. int i, res;
  81. static const char * const const_names[] = {
  82. "PI",
  83. "E",
  84. "iTex",
  85. "pTex",
  86. "tex",
  87. "mv",
  88. "fCode",
  89. "iCount",
  90. "mcVar",
  91. "var",
  92. "isI",
  93. "isP",
  94. "isB",
  95. "avgQP",
  96. "qComp",
  97. #if 0
  98. "lastIQP",
  99. "lastPQP",
  100. "lastBQP",
  101. "nextNonBQP",
  102. #endif
  103. "avgIITex",
  104. "avgPITex",
  105. "avgPPTex",
  106. "avgBPTex",
  107. "avgTex",
  108. NULL
  109. };
  110. static double (* const func1[])(void *, double) = {
  111. (void *)bits2qp,
  112. (void *)qp2bits,
  113. NULL
  114. };
  115. static const char * const func1_names[] = {
  116. "bits2qp",
  117. "qp2bits",
  118. NULL
  119. };
  120. emms_c();
  121. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  122. if (s->avctx->rc_max_rate) {
  123. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
  124. } else
  125. s->avctx->rc_max_available_vbv_use = 1.0;
  126. }
  127. res = av_expr_parse(&rcc->rc_eq_eval,
  128. s->rc_eq ? s->rc_eq : "tex^qComp",
  129. const_names, func1_names, func1,
  130. NULL, NULL, 0, s->avctx);
  131. if (res < 0) {
  132. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  133. return res;
  134. }
  135. for (i = 0; i < 5; i++) {
  136. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  137. rcc->pred[i].count = 1.0;
  138. rcc->pred[i].decay = 0.4;
  139. rcc->i_cplx_sum [i] =
  140. rcc->p_cplx_sum [i] =
  141. rcc->mv_bits_sum[i] =
  142. rcc->qscale_sum [i] =
  143. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  144. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  145. }
  146. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  147. if (!rcc->buffer_index)
  148. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  149. if (s->avctx->flags & CODEC_FLAG_PASS2) {
  150. int i;
  151. char *p;
  152. /* find number of pics */
  153. p = s->avctx->stats_in;
  154. for (i = -1; p; i++)
  155. p = strchr(p + 1, ';');
  156. i += s->max_b_frames;
  157. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  158. return -1;
  159. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  160. if (!rcc->entry)
  161. return AVERROR(ENOMEM);
  162. rcc->num_entries = i;
  163. /* init all to skipped p frames
  164. * (with b frames we might have a not encoded frame at the end FIXME) */
  165. for (i = 0; i < rcc->num_entries; i++) {
  166. RateControlEntry *rce = &rcc->entry[i];
  167. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  168. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  169. rce->misc_bits = s->mb_num + 10;
  170. rce->mb_var_sum = s->mb_num * 100;
  171. }
  172. /* read stats */
  173. p = s->avctx->stats_in;
  174. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  175. RateControlEntry *rce;
  176. int picture_number;
  177. int e;
  178. char *next;
  179. next = strchr(p, ';');
  180. if (next) {
  181. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  182. next++;
  183. }
  184. e = sscanf(p, " in:%d ", &picture_number);
  185. av_assert0(picture_number >= 0);
  186. av_assert0(picture_number < rcc->num_entries);
  187. rce = &rcc->entry[picture_number];
  188. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%"SCNd64" var:%"SCNd64" icount:%d skipcount:%d hbits:%d",
  189. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  190. &rce->mv_bits, &rce->misc_bits,
  191. &rce->f_code, &rce->b_code,
  192. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  193. &rce->i_count, &rce->skip_count, &rce->header_bits);
  194. if (e != 14) {
  195. av_log(s->avctx, AV_LOG_ERROR,
  196. "statistics are damaged at line %d, parser out=%d\n",
  197. i, e);
  198. return -1;
  199. }
  200. p = next;
  201. }
  202. if (init_pass2(s) < 0)
  203. return -1;
  204. // FIXME maybe move to end
  205. if ((s->avctx->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  206. #if CONFIG_LIBXVID
  207. return ff_xvid_rate_control_init(s);
  208. #else
  209. av_log(s->avctx, AV_LOG_ERROR,
  210. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  211. return -1;
  212. #endif
  213. }
  214. }
  215. if (!(s->avctx->flags & CODEC_FLAG_PASS2)) {
  216. rcc->short_term_qsum = 0.001;
  217. rcc->short_term_qcount = 0.001;
  218. rcc->pass1_rc_eq_output_sum = 0.001;
  219. rcc->pass1_wanted_bits = 0.001;
  220. if (s->avctx->qblur > 1.0) {
  221. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  222. return -1;
  223. }
  224. /* init stuff with the user specified complexity */
  225. if (s->rc_initial_cplx) {
  226. for (i = 0; i < 60 * 30; i++) {
  227. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  228. RateControlEntry rce;
  229. if (i % ((s->gop_size + 3) / 4) == 0)
  230. rce.pict_type = AV_PICTURE_TYPE_I;
  231. else if (i % (s->max_b_frames + 1))
  232. rce.pict_type = AV_PICTURE_TYPE_B;
  233. else
  234. rce.pict_type = AV_PICTURE_TYPE_P;
  235. rce.new_pict_type = rce.pict_type;
  236. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  237. rce.mb_var_sum = s->mb_num;
  238. rce.qscale = FF_QP2LAMBDA * 2;
  239. rce.f_code = 2;
  240. rce.b_code = 1;
  241. rce.misc_bits = 1;
  242. if (s->pict_type == AV_PICTURE_TYPE_I) {
  243. rce.i_count = s->mb_num;
  244. rce.i_tex_bits = bits;
  245. rce.p_tex_bits = 0;
  246. rce.mv_bits = 0;
  247. } else {
  248. rce.i_count = 0; // FIXME we do know this approx
  249. rce.i_tex_bits = 0;
  250. rce.p_tex_bits = bits * 0.9;
  251. rce.mv_bits = bits * 0.1;
  252. }
  253. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  254. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  255. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  256. rcc->frame_count[rce.pict_type]++;
  257. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  258. // FIXME misbehaves a little for variable fps
  259. rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
  260. }
  261. }
  262. }
  263. return 0;
  264. }
  265. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  266. {
  267. RateControlContext *rcc = &s->rc_context;
  268. emms_c();
  269. av_expr_free(rcc->rc_eq_eval);
  270. av_freep(&rcc->entry);
  271. #if CONFIG_LIBXVID
  272. if ((s->avctx->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  273. ff_xvid_rate_control_uninit(s);
  274. #endif
  275. }
  276. int ff_vbv_update(MpegEncContext *s, int frame_size)
  277. {
  278. RateControlContext *rcc = &s->rc_context;
  279. const double fps = get_fps(s->avctx);
  280. const int buffer_size = s->avctx->rc_buffer_size;
  281. const double min_rate = s->avctx->rc_min_rate / fps;
  282. const double max_rate = s->avctx->rc_max_rate / fps;
  283. ff_dlog(s, "%d %f %d %f %f\n",
  284. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  285. if (buffer_size) {
  286. int left;
  287. rcc->buffer_index -= frame_size;
  288. if (rcc->buffer_index < 0) {
  289. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  290. if (frame_size > max_rate && s->qscale == s->avctx->qmax) {
  291. av_log(s->avctx, AV_LOG_ERROR, "max bitrate possibly too small or try trellis with large lmax or increase qmax\n");
  292. }
  293. rcc->buffer_index = 0;
  294. }
  295. left = buffer_size - rcc->buffer_index - 1;
  296. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  297. if (rcc->buffer_index > buffer_size) {
  298. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  299. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  300. stuffing = 4;
  301. rcc->buffer_index -= 8 * stuffing;
  302. if (s->avctx->debug & FF_DEBUG_RC)
  303. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  304. return stuffing;
  305. }
  306. }
  307. return 0;
  308. }
  309. /**
  310. * Modify the bitrate curve from pass1 for one frame.
  311. */
  312. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  313. double rate_factor, int frame_num)
  314. {
  315. RateControlContext *rcc = &s->rc_context;
  316. AVCodecContext *a = s->avctx;
  317. const int pict_type = rce->new_pict_type;
  318. const double mb_num = s->mb_num;
  319. double q, bits;
  320. int i;
  321. double const_values[] = {
  322. M_PI,
  323. M_E,
  324. rce->i_tex_bits * rce->qscale,
  325. rce->p_tex_bits * rce->qscale,
  326. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  327. rce->mv_bits / mb_num,
  328. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  329. rce->i_count / mb_num,
  330. rce->mc_mb_var_sum / mb_num,
  331. rce->mb_var_sum / mb_num,
  332. rce->pict_type == AV_PICTURE_TYPE_I,
  333. rce->pict_type == AV_PICTURE_TYPE_P,
  334. rce->pict_type == AV_PICTURE_TYPE_B,
  335. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  336. a->qcompress,
  337. #if 0
  338. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  339. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  340. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  341. rcc->next_non_b_qscale,
  342. #endif
  343. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  344. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  345. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  346. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  347. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  348. 0
  349. };
  350. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  351. if (isnan(bits)) {
  352. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  353. return -1;
  354. }
  355. rcc->pass1_rc_eq_output_sum += bits;
  356. bits *= rate_factor;
  357. if (bits < 0.0)
  358. bits = 0.0;
  359. bits += 1.0; // avoid 1/0 issues
  360. /* user override */
  361. for (i = 0; i < s->avctx->rc_override_count; i++) {
  362. RcOverride *rco = s->avctx->rc_override;
  363. if (rco[i].start_frame > frame_num)
  364. continue;
  365. if (rco[i].end_frame < frame_num)
  366. continue;
  367. if (rco[i].qscale)
  368. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  369. else
  370. bits *= rco[i].quality_factor;
  371. }
  372. q = bits2qp(rce, bits);
  373. /* I/B difference */
  374. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  375. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  376. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  377. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  378. if (q < 1)
  379. q = 1;
  380. return q;
  381. }
  382. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  383. {
  384. RateControlContext *rcc = &s->rc_context;
  385. AVCodecContext *a = s->avctx;
  386. const int pict_type = rce->new_pict_type;
  387. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  388. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  389. if (pict_type == AV_PICTURE_TYPE_I &&
  390. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  391. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  392. else if (pict_type == AV_PICTURE_TYPE_B &&
  393. a->b_quant_factor > 0.0)
  394. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  395. if (q < 1)
  396. q = 1;
  397. /* last qscale / qdiff stuff */
  398. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  399. double last_q = rcc->last_qscale_for[pict_type];
  400. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  401. if (q > last_q + maxdiff)
  402. q = last_q + maxdiff;
  403. else if (q < last_q - maxdiff)
  404. q = last_q - maxdiff;
  405. }
  406. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  407. if (pict_type != AV_PICTURE_TYPE_B)
  408. rcc->last_non_b_pict_type = pict_type;
  409. return q;
  410. }
  411. /**
  412. * Get the qmin & qmax for pict_type.
  413. */
  414. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  415. {
  416. int qmin = s->lmin;
  417. int qmax = s->lmax;
  418. av_assert0(qmin <= qmax);
  419. switch (pict_type) {
  420. case AV_PICTURE_TYPE_B:
  421. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  422. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  423. break;
  424. case AV_PICTURE_TYPE_I:
  425. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  426. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  427. break;
  428. }
  429. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  430. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  431. if (qmax < qmin)
  432. qmax = qmin;
  433. *qmin_ret = qmin;
  434. *qmax_ret = qmax;
  435. }
  436. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  437. double q, int frame_num)
  438. {
  439. RateControlContext *rcc = &s->rc_context;
  440. const double buffer_size = s->avctx->rc_buffer_size;
  441. const double fps = get_fps(s->avctx);
  442. const double min_rate = s->avctx->rc_min_rate / fps;
  443. const double max_rate = s->avctx->rc_max_rate / fps;
  444. const int pict_type = rce->new_pict_type;
  445. int qmin, qmax;
  446. get_qminmax(&qmin, &qmax, s, pict_type);
  447. /* modulation */
  448. if (s->rc_qmod_freq &&
  449. frame_num % s->rc_qmod_freq == 0 &&
  450. pict_type == AV_PICTURE_TYPE_P)
  451. q *= s->rc_qmod_amp;
  452. /* buffer overflow/underflow protection */
  453. if (buffer_size) {
  454. double expected_size = rcc->buffer_index;
  455. double q_limit;
  456. if (min_rate) {
  457. double d = 2 * (buffer_size - expected_size) / buffer_size;
  458. if (d > 1.0)
  459. d = 1.0;
  460. else if (d < 0.0001)
  461. d = 0.0001;
  462. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  463. q_limit = bits2qp(rce,
  464. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  465. s->avctx->rc_min_vbv_overflow_use, 1));
  466. if (q > q_limit) {
  467. if (s->avctx->debug & FF_DEBUG_RC)
  468. av_log(s->avctx, AV_LOG_DEBUG,
  469. "limiting QP %f -> %f\n", q, q_limit);
  470. q = q_limit;
  471. }
  472. }
  473. if (max_rate) {
  474. double d = 2 * expected_size / buffer_size;
  475. if (d > 1.0)
  476. d = 1.0;
  477. else if (d < 0.0001)
  478. d = 0.0001;
  479. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  480. q_limit = bits2qp(rce,
  481. FFMAX(rcc->buffer_index *
  482. s->avctx->rc_max_available_vbv_use,
  483. 1));
  484. if (q < q_limit) {
  485. if (s->avctx->debug & FF_DEBUG_RC)
  486. av_log(s->avctx, AV_LOG_DEBUG,
  487. "limiting QP %f -> %f\n", q, q_limit);
  488. q = q_limit;
  489. }
  490. }
  491. }
  492. ff_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  493. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  494. s->rc_buffer_aggressivity);
  495. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  496. if (q < qmin)
  497. q = qmin;
  498. else if (q > qmax)
  499. q = qmax;
  500. } else {
  501. double min2 = log(qmin);
  502. double max2 = log(qmax);
  503. q = log(q);
  504. q = (q - min2) / (max2 - min2) - 0.5;
  505. q *= -4.0;
  506. q = 1.0 / (1.0 + exp(q));
  507. q = q * (max2 - min2) + min2;
  508. q = exp(q);
  509. }
  510. return q;
  511. }
  512. // ----------------------------------
  513. // 1 Pass Code
  514. static double predict_size(Predictor *p, double q, double var)
  515. {
  516. return p->coeff * var / (q * p->count);
  517. }
  518. static void update_predictor(Predictor *p, double q, double var, double size)
  519. {
  520. double new_coeff = size * q / (var + 1);
  521. if (var < 10)
  522. return;
  523. p->count *= p->decay;
  524. p->coeff *= p->decay;
  525. p->count++;
  526. p->coeff += new_coeff;
  527. }
  528. static void adaptive_quantization(MpegEncContext *s, double q)
  529. {
  530. int i;
  531. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  532. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  533. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  534. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  535. const float p_masking = s->avctx->p_masking;
  536. const float border_masking = s->border_masking;
  537. float bits_sum = 0.0;
  538. float cplx_sum = 0.0;
  539. float *cplx_tab = s->cplx_tab;
  540. float *bits_tab = s->bits_tab;
  541. const int qmin = s->avctx->mb_lmin;
  542. const int qmax = s->avctx->mb_lmax;
  543. Picture *const pic = &s->current_picture;
  544. const int mb_width = s->mb_width;
  545. const int mb_height = s->mb_height;
  546. for (i = 0; i < s->mb_num; i++) {
  547. const int mb_xy = s->mb_index2xy[i];
  548. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  549. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  550. const int lumi = pic->mb_mean[mb_xy];
  551. float bits, cplx, factor;
  552. int mb_x = mb_xy % s->mb_stride;
  553. int mb_y = mb_xy / s->mb_stride;
  554. int mb_distance;
  555. float mb_factor = 0.0;
  556. if (spat_cplx < 4)
  557. spat_cplx = 4; // FIXME finetune
  558. if (temp_cplx < 4)
  559. temp_cplx = 4; // FIXME finetune
  560. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  561. cplx = spat_cplx;
  562. factor = 1.0 + p_masking;
  563. } else {
  564. cplx = temp_cplx;
  565. factor = pow(temp_cplx, -temp_cplx_masking);
  566. }
  567. factor *= pow(spat_cplx, -spatial_cplx_masking);
  568. if (lumi > 127)
  569. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  570. else
  571. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  572. if (mb_x < mb_width / 5) {
  573. mb_distance = mb_width / 5 - mb_x;
  574. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  575. } else if (mb_x > 4 * mb_width / 5) {
  576. mb_distance = mb_x - 4 * mb_width / 5;
  577. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  578. }
  579. if (mb_y < mb_height / 5) {
  580. mb_distance = mb_height / 5 - mb_y;
  581. mb_factor = FFMAX(mb_factor,
  582. (float)mb_distance / (float)(mb_height / 5));
  583. } else if (mb_y > 4 * mb_height / 5) {
  584. mb_distance = mb_y - 4 * mb_height / 5;
  585. mb_factor = FFMAX(mb_factor,
  586. (float)mb_distance / (float)(mb_height / 5));
  587. }
  588. factor *= 1.0 - border_masking * mb_factor;
  589. if (factor < 0.00001)
  590. factor = 0.00001;
  591. bits = cplx * factor;
  592. cplx_sum += cplx;
  593. bits_sum += bits;
  594. cplx_tab[i] = cplx;
  595. bits_tab[i] = bits;
  596. }
  597. /* handle qmin/qmax clipping */
  598. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  599. float factor = bits_sum / cplx_sum;
  600. for (i = 0; i < s->mb_num; i++) {
  601. float newq = q * cplx_tab[i] / bits_tab[i];
  602. newq *= factor;
  603. if (newq > qmax) {
  604. bits_sum -= bits_tab[i];
  605. cplx_sum -= cplx_tab[i] * q / qmax;
  606. } else if (newq < qmin) {
  607. bits_sum -= bits_tab[i];
  608. cplx_sum -= cplx_tab[i] * q / qmin;
  609. }
  610. }
  611. if (bits_sum < 0.001)
  612. bits_sum = 0.001;
  613. if (cplx_sum < 0.001)
  614. cplx_sum = 0.001;
  615. }
  616. for (i = 0; i < s->mb_num; i++) {
  617. const int mb_xy = s->mb_index2xy[i];
  618. float newq = q * cplx_tab[i] / bits_tab[i];
  619. int intq;
  620. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  621. newq *= bits_sum / cplx_sum;
  622. }
  623. intq = (int)(newq + 0.5);
  624. if (intq > qmax)
  625. intq = qmax;
  626. else if (intq < qmin)
  627. intq = qmin;
  628. s->lambda_table[mb_xy] = intq;
  629. }
  630. }
  631. void ff_get_2pass_fcode(MpegEncContext *s)
  632. {
  633. RateControlContext *rcc = &s->rc_context;
  634. RateControlEntry *rce = &rcc->entry[s->picture_number];
  635. s->f_code = rce->f_code;
  636. s->b_code = rce->b_code;
  637. }
  638. // FIXME rd or at least approx for dquant
  639. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  640. {
  641. float q;
  642. int qmin, qmax;
  643. float br_compensation;
  644. double diff;
  645. double short_term_q;
  646. double fps;
  647. int picture_number = s->picture_number;
  648. int64_t wanted_bits;
  649. RateControlContext *rcc = &s->rc_context;
  650. AVCodecContext *a = s->avctx;
  651. RateControlEntry local_rce, *rce;
  652. double bits;
  653. double rate_factor;
  654. int64_t var;
  655. const int pict_type = s->pict_type;
  656. Picture * const pic = &s->current_picture;
  657. emms_c();
  658. #if CONFIG_LIBXVID
  659. if ((s->avctx->flags & CODEC_FLAG_PASS2) &&
  660. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  661. return ff_xvid_rate_estimate_qscale(s, dry_run);
  662. #endif
  663. get_qminmax(&qmin, &qmax, s, pict_type);
  664. fps = get_fps(s->avctx);
  665. /* update predictors */
  666. if (picture_number > 2 && !dry_run) {
  667. const int64_t last_var =
  668. s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  669. : rcc->last_mc_mb_var_sum;
  670. av_assert1(s->frame_bits >= s->stuffing_bits);
  671. update_predictor(&rcc->pred[s->last_pict_type],
  672. rcc->last_qscale,
  673. sqrt(last_var),
  674. s->frame_bits - s->stuffing_bits);
  675. }
  676. if (s->avctx->flags & CODEC_FLAG_PASS2) {
  677. av_assert0(picture_number >= 0);
  678. if (picture_number >= rcc->num_entries) {
  679. av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
  680. return -1;
  681. }
  682. rce = &rcc->entry[picture_number];
  683. wanted_bits = rce->expected_bits;
  684. } else {
  685. Picture *dts_pic;
  686. rce = &local_rce;
  687. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  688. * here instead of reordering but the reordering is simpler for now
  689. * until H.264 B-pyramid must be handled. */
  690. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  691. dts_pic = s->current_picture_ptr;
  692. else
  693. dts_pic = s->last_picture_ptr;
  694. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  695. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  696. else
  697. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  698. }
  699. diff = s->total_bits - wanted_bits;
  700. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  701. if (br_compensation <= 0.0)
  702. br_compensation = 0.001;
  703. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  704. short_term_q = 0; /* avoid warning */
  705. if (s->avctx->flags & CODEC_FLAG_PASS2) {
  706. if (pict_type != AV_PICTURE_TYPE_I)
  707. av_assert0(pict_type == rce->new_pict_type);
  708. q = rce->new_qscale / br_compensation;
  709. ff_dlog(s, "%f %f %f last:%d var:%"PRId64" type:%d//\n", q, rce->new_qscale,
  710. br_compensation, s->frame_bits, var, pict_type);
  711. } else {
  712. rce->pict_type =
  713. rce->new_pict_type = pict_type;
  714. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  715. rce->mb_var_sum = pic->mb_var_sum;
  716. rce->qscale = FF_QP2LAMBDA * 2;
  717. rce->f_code = s->f_code;
  718. rce->b_code = s->b_code;
  719. rce->misc_bits = 1;
  720. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  721. if (pict_type == AV_PICTURE_TYPE_I) {
  722. rce->i_count = s->mb_num;
  723. rce->i_tex_bits = bits;
  724. rce->p_tex_bits = 0;
  725. rce->mv_bits = 0;
  726. } else {
  727. rce->i_count = 0; // FIXME we do know this approx
  728. rce->i_tex_bits = 0;
  729. rce->p_tex_bits = bits * 0.9;
  730. rce->mv_bits = bits * 0.1;
  731. }
  732. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  733. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  734. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  735. rcc->frame_count[pict_type]++;
  736. rate_factor = rcc->pass1_wanted_bits /
  737. rcc->pass1_rc_eq_output_sum * br_compensation;
  738. q = get_qscale(s, rce, rate_factor, picture_number);
  739. if (q < 0)
  740. return -1;
  741. av_assert0(q > 0.0);
  742. q = get_diff_limited_q(s, rce, q);
  743. av_assert0(q > 0.0);
  744. // FIXME type dependent blur like in 2-pass
  745. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  746. rcc->short_term_qsum *= a->qblur;
  747. rcc->short_term_qcount *= a->qblur;
  748. rcc->short_term_qsum += q;
  749. rcc->short_term_qcount++;
  750. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  751. }
  752. av_assert0(q > 0.0);
  753. q = modify_qscale(s, rce, q, picture_number);
  754. rcc->pass1_wanted_bits += s->bit_rate / fps;
  755. av_assert0(q > 0.0);
  756. }
  757. if (s->avctx->debug & FF_DEBUG_RC) {
  758. av_log(s->avctx, AV_LOG_DEBUG,
  759. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  760. "size:%d var:%"PRId64"/%"PRId64" br:%d fps:%d\n",
  761. av_get_picture_type_char(pict_type),
  762. qmin, q, qmax, picture_number,
  763. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  764. br_compensation, short_term_q, s->frame_bits,
  765. pic->mb_var_sum, pic->mc_mb_var_sum,
  766. s->bit_rate / 1000, (int)fps);
  767. }
  768. if (q < qmin)
  769. q = qmin;
  770. else if (q > qmax)
  771. q = qmax;
  772. if (s->adaptive_quant)
  773. adaptive_quantization(s, q);
  774. else
  775. q = (int)(q + 0.5);
  776. if (!dry_run) {
  777. rcc->last_qscale = q;
  778. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  779. rcc->last_mb_var_sum = pic->mb_var_sum;
  780. }
  781. return q;
  782. }
  783. // ----------------------------------------------
  784. // 2-Pass code
  785. static int init_pass2(MpegEncContext *s)
  786. {
  787. RateControlContext *rcc = &s->rc_context;
  788. AVCodecContext *a = s->avctx;
  789. int i, toobig;
  790. double fps = get_fps(s->avctx);
  791. double complexity[5] = { 0 }; // approximate bits at quant=1
  792. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  793. uint64_t all_const_bits;
  794. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  795. (double)rcc->num_entries / fps);
  796. double rate_factor = 0;
  797. double step;
  798. const int filter_size = (int)(a->qblur * 4) | 1;
  799. double expected_bits = 0; // init to silence gcc warning
  800. double *qscale, *blurred_qscale, qscale_sum;
  801. /* find complexity & const_bits & decide the pict_types */
  802. for (i = 0; i < rcc->num_entries; i++) {
  803. RateControlEntry *rce = &rcc->entry[i];
  804. rce->new_pict_type = rce->pict_type;
  805. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  806. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  807. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  808. rcc->frame_count[rce->pict_type]++;
  809. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  810. (double)rce->qscale;
  811. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  812. }
  813. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  814. const_bits[AV_PICTURE_TYPE_P] +
  815. const_bits[AV_PICTURE_TYPE_B];
  816. if (all_available_bits < all_const_bits) {
  817. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  818. return -1;
  819. }
  820. qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  821. blurred_qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  822. if (!qscale || !blurred_qscale) {
  823. av_free(qscale);
  824. av_free(blurred_qscale);
  825. return AVERROR(ENOMEM);
  826. }
  827. toobig = 0;
  828. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  829. expected_bits = 0;
  830. rate_factor += step;
  831. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  832. /* find qscale */
  833. for (i = 0; i < rcc->num_entries; i++) {
  834. RateControlEntry *rce = &rcc->entry[i];
  835. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  836. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  837. }
  838. av_assert0(filter_size % 2 == 1);
  839. /* fixed I/B QP relative to P mode */
  840. for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
  841. RateControlEntry *rce = &rcc->entry[i];
  842. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  843. }
  844. for (i = rcc->num_entries - 1; i >= 0; i--) {
  845. RateControlEntry *rce = &rcc->entry[i];
  846. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  847. }
  848. /* smooth curve */
  849. for (i = 0; i < rcc->num_entries; i++) {
  850. RateControlEntry *rce = &rcc->entry[i];
  851. const int pict_type = rce->new_pict_type;
  852. int j;
  853. double q = 0.0, sum = 0.0;
  854. for (j = 0; j < filter_size; j++) {
  855. int index = i + j - filter_size / 2;
  856. double d = index - i;
  857. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  858. if (index < 0 || index >= rcc->num_entries)
  859. continue;
  860. if (pict_type != rcc->entry[index].new_pict_type)
  861. continue;
  862. q += qscale[index] * coeff;
  863. sum += coeff;
  864. }
  865. blurred_qscale[i] = q / sum;
  866. }
  867. /* find expected bits */
  868. for (i = 0; i < rcc->num_entries; i++) {
  869. RateControlEntry *rce = &rcc->entry[i];
  870. double bits;
  871. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  872. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  873. bits += 8 * ff_vbv_update(s, bits);
  874. rce->expected_bits = expected_bits;
  875. expected_bits += bits;
  876. }
  877. ff_dlog(s->avctx,
  878. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  879. expected_bits, (int)all_available_bits, rate_factor);
  880. if (expected_bits > all_available_bits) {
  881. rate_factor -= step;
  882. ++toobig;
  883. }
  884. }
  885. av_free(qscale);
  886. av_free(blurred_qscale);
  887. /* check bitrate calculations and print info */
  888. qscale_sum = 0.0;
  889. for (i = 0; i < rcc->num_entries; i++) {
  890. ff_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  891. i,
  892. rcc->entry[i].new_qscale,
  893. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  894. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  895. s->avctx->qmin, s->avctx->qmax);
  896. }
  897. av_assert0(toobig <= 40);
  898. av_log(s->avctx, AV_LOG_DEBUG,
  899. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  900. s->bit_rate,
  901. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  902. av_log(s->avctx, AV_LOG_DEBUG,
  903. "[lavc rc] estimated target average qp: %.3f\n",
  904. (float)qscale_sum / rcc->num_entries);
  905. if (toobig == 0) {
  906. av_log(s->avctx, AV_LOG_INFO,
  907. "[lavc rc] Using all of requested bitrate is not "
  908. "necessary for this video with these parameters.\n");
  909. } else if (toobig == 40) {
  910. av_log(s->avctx, AV_LOG_ERROR,
  911. "[lavc rc] Error: bitrate too low for this video "
  912. "with these parameters.\n");
  913. return -1;
  914. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  915. av_log(s->avctx, AV_LOG_ERROR,
  916. "[lavc rc] Error: 2pass curve failed to converge\n");
  917. return -1;
  918. }
  919. return 0;
  920. }