You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

668 lines
24KB

  1. ;******************************************************************************
  2. ;* x86-optimized input routines; does shuffling of packed
  3. ;* YUV formats into individual planes, and converts RGB
  4. ;* into YUV planes also.
  5. ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
  6. ;*
  7. ;* This file is part of Libav.
  8. ;*
  9. ;* Libav is free software; you can redistribute it and/or
  10. ;* modify it under the terms of the GNU Lesser General Public
  11. ;* License as published by the Free Software Foundation; either
  12. ;* version 2.1 of the License, or (at your option) any later version.
  13. ;*
  14. ;* Libav is distributed in the hope that it will be useful,
  15. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. ;* Lesser General Public License for more details.
  18. ;*
  19. ;* You should have received a copy of the GNU Lesser General Public
  20. ;* License along with Libav; if not, write to the Free Software
  21. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. ;******************************************************************************
  23. %include "x86inc.asm"
  24. %include "x86util.asm"
  25. SECTION_RODATA
  26. %define RY 0x20DE
  27. %define GY 0x4087
  28. %define BY 0x0C88
  29. %define RU 0xECFF
  30. %define GU 0xDAC8
  31. %define BU 0x3838
  32. %define RV 0x3838
  33. %define GV 0xD0E3
  34. %define BV 0xF6E4
  35. rgb_Yrnd: times 4 dd 0x80100 ; 16.5 << 15
  36. rgb_UVrnd: times 4 dd 0x400100 ; 128.5 << 15
  37. bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
  38. bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
  39. rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
  40. rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
  41. bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
  42. bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
  43. rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
  44. rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
  45. bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
  46. bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
  47. rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
  48. rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
  49. rgba_Ycoeff_rb: times 4 dw RY, BY
  50. rgba_Ycoeff_br: times 4 dw BY, RY
  51. rgba_Ycoeff_ga: times 4 dw GY, 0
  52. rgba_Ycoeff_ag: times 4 dw 0, GY
  53. rgba_Ucoeff_rb: times 4 dw RU, BU
  54. rgba_Ucoeff_br: times 4 dw BU, RU
  55. rgba_Ucoeff_ga: times 4 dw GU, 0
  56. rgba_Ucoeff_ag: times 4 dw 0, GU
  57. rgba_Vcoeff_rb: times 4 dw RV, BV
  58. rgba_Vcoeff_br: times 4 dw BV, RV
  59. rgba_Vcoeff_ga: times 4 dw GV, 0
  60. rgba_Vcoeff_ag: times 4 dw 0, GV
  61. shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
  62. 6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
  63. shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
  64. 8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
  65. SECTION .text
  66. ;-----------------------------------------------------------------------------
  67. ; RGB to Y/UV.
  68. ;
  69. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  70. ; and
  71. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  72. ; const uint8_t *unused, int w);
  73. ;-----------------------------------------------------------------------------
  74. ; %1 = nr. of XMM registers
  75. ; %2 = rgb or bgr
  76. %macro RGB24_TO_Y_FN 2-3
  77. cglobal %2 %+ 24ToY, 6, 6, %1, dst, src, u1, u2, w, u3
  78. %if mmsize == 8
  79. mova m5, [%2_Ycoeff_12x4]
  80. mova m6, [%2_Ycoeff_3x56]
  81. %define coeff1 m5
  82. %define coeff2 m6
  83. %elif ARCH_X86_64
  84. mova m8, [%2_Ycoeff_12x4]
  85. mova m9, [%2_Ycoeff_3x56]
  86. %define coeff1 m8
  87. %define coeff2 m9
  88. %else ; x86-32 && mmsize == 16
  89. %define coeff1 [%2_Ycoeff_12x4]
  90. %define coeff2 [%2_Ycoeff_3x56]
  91. %endif ; x86-32/64 && mmsize == 8/16
  92. %if (ARCH_X86_64 || mmsize == 8) && %0 == 3
  93. jmp mangle(program_name %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
  94. %else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  95. .body:
  96. %if cpuflag(ssse3)
  97. mova m7, [shuf_rgb_12x4]
  98. %define shuf_rgb1 m7
  99. %if ARCH_X86_64
  100. mova m10, [shuf_rgb_3x56]
  101. %define shuf_rgb2 m10
  102. %else ; x86-32
  103. %define shuf_rgb2 [shuf_rgb_3x56]
  104. %endif ; x86-32/64
  105. %endif ; cpuflag(ssse3)
  106. %if ARCH_X86_64
  107. movsxd wq, wd
  108. %endif
  109. add wq, wq
  110. add dstq, wq
  111. neg wq
  112. %if notcpuflag(ssse3)
  113. pxor m7, m7
  114. %endif ; !cpuflag(ssse3)
  115. mova m4, [rgb_Yrnd]
  116. .loop:
  117. %if cpuflag(ssse3)
  118. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  119. movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  120. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  121. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  122. pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  123. pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  124. %else ; !cpuflag(ssse3)
  125. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  126. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  127. movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  128. movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  129. %if mmsize == 16 ; i.e. sse2
  130. punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  131. punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  132. movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  133. movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  134. movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  135. movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  136. punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  137. punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  138. %endif ; mmsize == 16
  139. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  140. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  141. punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  142. punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  143. %endif ; cpuflag(ssse3)
  144. add srcq, 3 * mmsize / 2
  145. pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
  146. pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
  147. pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
  148. pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
  149. paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
  150. paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
  151. paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
  152. paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
  153. psrad m0, 9
  154. psrad m2, 9
  155. packssdw m0, m2 ; (word) { Y[0-7] }
  156. mova [dstq+wq], m0
  157. add wq, mmsize
  158. jl .loop
  159. REP_RET
  160. %endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  161. %endmacro
  162. ; %1 = nr. of XMM registers
  163. ; %2 = rgb or bgr
  164. %macro RGB24_TO_UV_FN 2-3
  165. cglobal %2 %+ 24ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, u3
  166. %if ARCH_X86_64
  167. mova m8, [%2_Ucoeff_12x4]
  168. mova m9, [%2_Ucoeff_3x56]
  169. mova m10, [%2_Vcoeff_12x4]
  170. mova m11, [%2_Vcoeff_3x56]
  171. %define coeffU1 m8
  172. %define coeffU2 m9
  173. %define coeffV1 m10
  174. %define coeffV2 m11
  175. %else ; x86-32
  176. %define coeffU1 [%2_Ucoeff_12x4]
  177. %define coeffU2 [%2_Ucoeff_3x56]
  178. %define coeffV1 [%2_Vcoeff_12x4]
  179. %define coeffV2 [%2_Vcoeff_3x56]
  180. %endif ; x86-32/64
  181. %if ARCH_X86_64 && %0 == 3
  182. jmp mangle(program_name %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
  183. %else ; ARCH_X86_64 && %0 == 3
  184. .body:
  185. %if cpuflag(ssse3)
  186. mova m7, [shuf_rgb_12x4]
  187. %define shuf_rgb1 m7
  188. %if ARCH_X86_64
  189. mova m12, [shuf_rgb_3x56]
  190. %define shuf_rgb2 m12
  191. %else ; x86-32
  192. %define shuf_rgb2 [shuf_rgb_3x56]
  193. %endif ; x86-32/64
  194. %endif ; cpuflag(ssse3)
  195. %if ARCH_X86_64
  196. movsxd wq, dword r5m
  197. %else ; x86-32
  198. mov wq, r5m
  199. %endif
  200. add wq, wq
  201. add dstUq, wq
  202. add dstVq, wq
  203. neg wq
  204. mova m6, [rgb_UVrnd]
  205. %if notcpuflag(ssse3)
  206. pxor m7, m7
  207. %endif
  208. .loop:
  209. %if cpuflag(ssse3)
  210. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  211. movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  212. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  213. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  214. %else ; !cpuflag(ssse3)
  215. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  216. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  217. movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  218. movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  219. %if mmsize == 16
  220. punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  221. punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  222. movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  223. movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  224. %endif ; mmsize == 16
  225. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  226. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  227. %endif ; cpuflag(ssse3)
  228. pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
  229. pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
  230. pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
  231. pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
  232. paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
  233. paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
  234. %if cpuflag(ssse3)
  235. pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  236. pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  237. %else ; !cpuflag(ssse3)
  238. %if mmsize == 16
  239. movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  240. movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  241. punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  242. punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  243. %endif ; mmsize == 16 && !cpuflag(ssse3)
  244. punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  245. punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  246. %endif ; cpuflag(ssse3)
  247. add srcq, 3 * mmsize / 2
  248. pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
  249. pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
  250. pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
  251. pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
  252. paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
  253. paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
  254. paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
  255. paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
  256. paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
  257. paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
  258. psrad m0, 9
  259. psrad m2, 9
  260. psrad m1, 9
  261. psrad m4, 9
  262. packssdw m0, m1 ; (word) { U[0-7] }
  263. packssdw m2, m4 ; (word) { V[0-7] }
  264. %if mmsize == 8
  265. mova [dstUq+wq], m0
  266. mova [dstVq+wq], m2
  267. %else ; mmsize == 16
  268. mova [dstUq+wq], m0
  269. mova [dstVq+wq], m2
  270. %endif ; mmsize == 8/16
  271. add wq, mmsize
  272. jl .loop
  273. REP_RET
  274. %endif ; ARCH_X86_64 && %0 == 3
  275. %endmacro
  276. ; %1 = nr. of XMM registers for rgb-to-Y func
  277. ; %2 = nr. of XMM registers for rgb-to-UV func
  278. %macro RGB24_FUNCS 2
  279. RGB24_TO_Y_FN %1, rgb
  280. RGB24_TO_Y_FN %1, bgr, rgb
  281. RGB24_TO_UV_FN %2, rgb
  282. RGB24_TO_UV_FN %2, bgr, rgb
  283. %endmacro
  284. %if ARCH_X86_32
  285. INIT_MMX mmx
  286. RGB24_FUNCS 0, 0
  287. %endif
  288. INIT_XMM sse2
  289. RGB24_FUNCS 10, 12
  290. INIT_XMM ssse3
  291. RGB24_FUNCS 11, 13
  292. INIT_XMM avx
  293. RGB24_FUNCS 11, 13
  294. ; %1 = nr. of XMM registers
  295. ; %2-5 = rgba, bgra, argb or abgr (in individual characters)
  296. %macro RGB32_TO_Y_FN 5-6
  297. cglobal %2%3%4%5 %+ ToY, 6, 6, %1, dst, src, u1, u2, w, u3
  298. mova m5, [rgba_Ycoeff_%2%4]
  299. mova m6, [rgba_Ycoeff_%3%5]
  300. %if %0 == 6
  301. jmp mangle(program_name %+ _ %+ %6 %+ ToY %+ SUFFIX).body
  302. %else ; %0 == 6
  303. .body:
  304. %if ARCH_X86_64
  305. movsxd wq, wd
  306. %endif
  307. lea srcq, [srcq+wq*4]
  308. add wq, wq
  309. add dstq, wq
  310. neg wq
  311. mova m4, [rgb_Yrnd]
  312. pcmpeqb m7, m7
  313. psrlw m7, 8 ; (word) { 0x00ff } x4
  314. .loop:
  315. ; FIXME check alignment and use mova
  316. movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
  317. movu m2, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
  318. DEINTB 1, 0, 3, 2, 7 ; (word) { Gx, xx (m0/m2) or Bx, Rx (m1/m3) }[0-3]/[4-7]
  319. pmaddwd m1, m5 ; (dword) { Bx*BY + Rx*RY }[0-3]
  320. pmaddwd m0, m6 ; (dword) { Gx*GY }[0-3]
  321. pmaddwd m3, m5 ; (dword) { Bx*BY + Rx*RY }[4-7]
  322. pmaddwd m2, m6 ; (dword) { Gx*GY }[4-7]
  323. paddd m0, m4 ; += rgb_Yrnd
  324. paddd m2, m4 ; += rgb_Yrnd
  325. paddd m0, m1 ; (dword) { Y[0-3] }
  326. paddd m2, m3 ; (dword) { Y[4-7] }
  327. psrad m0, 9
  328. psrad m2, 9
  329. packssdw m0, m2 ; (word) { Y[0-7] }
  330. mova [dstq+wq], m0
  331. add wq, mmsize
  332. jl .loop
  333. REP_RET
  334. %endif ; %0 == 3
  335. %endmacro
  336. ; %1 = nr. of XMM registers
  337. ; %2-5 = rgba, bgra, argb or abgr (in individual characters)
  338. %macro RGB32_TO_UV_FN 5-6
  339. cglobal %2%3%4%5 %+ ToUV, 7, 7, %1, dstU, dstV, u1, src, u2, w, u3
  340. %if ARCH_X86_64
  341. mova m8, [rgba_Ucoeff_%2%4]
  342. mova m9, [rgba_Ucoeff_%3%5]
  343. mova m10, [rgba_Vcoeff_%2%4]
  344. mova m11, [rgba_Vcoeff_%3%5]
  345. %define coeffU1 m8
  346. %define coeffU2 m9
  347. %define coeffV1 m10
  348. %define coeffV2 m11
  349. %else ; x86-32
  350. %define coeffU1 [rgba_Ucoeff_%2%4]
  351. %define coeffU2 [rgba_Ucoeff_%3%5]
  352. %define coeffV1 [rgba_Vcoeff_%2%4]
  353. %define coeffV2 [rgba_Vcoeff_%3%5]
  354. %endif ; x86-64/32
  355. %if ARCH_X86_64 && %0 == 6
  356. jmp mangle(program_name %+ _ %+ %6 %+ ToUV %+ SUFFIX).body
  357. %else ; ARCH_X86_64 && %0 == 6
  358. .body:
  359. %if ARCH_X86_64
  360. movsxd wq, dword r5m
  361. %else ; x86-32
  362. mov wq, r5m
  363. %endif
  364. add wq, wq
  365. add dstUq, wq
  366. add dstVq, wq
  367. lea srcq, [srcq+wq*2]
  368. neg wq
  369. pcmpeqb m7, m7
  370. psrlw m7, 8 ; (word) { 0x00ff } x4
  371. mova m6, [rgb_UVrnd]
  372. .loop:
  373. ; FIXME check alignment and use mova
  374. movu m0, [srcq+wq*2+0] ; (byte) { Bx, Gx, Rx, xx }[0-3]
  375. movu m4, [srcq+wq*2+mmsize] ; (byte) { Bx, Gx, Rx, xx }[4-7]
  376. DEINTB 1, 0, 5, 4, 7 ; (word) { Gx, xx (m0/m4) or Bx, Rx (m1/m5) }[0-3]/[4-7]
  377. pmaddwd m3, m1, coeffV1 ; (dword) { Bx*BV + Rx*RV }[0-3]
  378. pmaddwd m2, m0, coeffV2 ; (dword) { Gx*GV }[0-3]
  379. pmaddwd m1, coeffU1 ; (dword) { Bx*BU + Rx*RU }[0-3]
  380. pmaddwd m0, coeffU2 ; (dword) { Gx*GU }[0-3]
  381. paddd m3, m6 ; += rgb_UVrnd
  382. paddd m1, m6 ; += rgb_UVrnd
  383. paddd m2, m3 ; (dword) { V[0-3] }
  384. paddd m0, m1 ; (dword) { U[0-3] }
  385. pmaddwd m3, m5, coeffV1 ; (dword) { Bx*BV + Rx*RV }[4-7]
  386. pmaddwd m1, m4, coeffV2 ; (dword) { Gx*GV }[4-7]
  387. pmaddwd m5, coeffU1 ; (dword) { Bx*BU + Rx*RU }[4-7]
  388. pmaddwd m4, coeffU2 ; (dword) { Gx*GU }[4-7]
  389. paddd m3, m6 ; += rgb_UVrnd
  390. paddd m5, m6 ; += rgb_UVrnd
  391. psrad m0, 9
  392. paddd m1, m3 ; (dword) { V[4-7] }
  393. paddd m4, m5 ; (dword) { U[4-7] }
  394. psrad m2, 9
  395. psrad m4, 9
  396. psrad m1, 9
  397. packssdw m0, m4 ; (word) { U[0-7] }
  398. packssdw m2, m1 ; (word) { V[0-7] }
  399. %if mmsize == 8
  400. mova [dstUq+wq], m0
  401. mova [dstVq+wq], m2
  402. %else ; mmsize == 16
  403. mova [dstUq+wq], m0
  404. mova [dstVq+wq], m2
  405. %endif ; mmsize == 8/16
  406. add wq, mmsize
  407. jl .loop
  408. REP_RET
  409. %endif ; ARCH_X86_64 && %0 == 3
  410. %endmacro
  411. ; %1 = nr. of XMM registers for rgb-to-Y func
  412. ; %2 = nr. of XMM registers for rgb-to-UV func
  413. %macro RGB32_FUNCS 2
  414. RGB32_TO_Y_FN %1, r, g, b, a
  415. RGB32_TO_Y_FN %1, b, g, r, a, rgba
  416. RGB32_TO_Y_FN %1, a, r, g, b, rgba
  417. RGB32_TO_Y_FN %1, a, b, g, r, rgba
  418. RGB32_TO_UV_FN %2, r, g, b, a
  419. RGB32_TO_UV_FN %2, b, g, r, a, rgba
  420. RGB32_TO_UV_FN %2, a, r, g, b, rgba
  421. RGB32_TO_UV_FN %2, a, b, g, r, rgba
  422. %endmacro
  423. %if ARCH_X86_32
  424. INIT_MMX mmx
  425. RGB32_FUNCS 0, 0
  426. %endif
  427. INIT_XMM sse2
  428. RGB32_FUNCS 8, 12
  429. INIT_XMM avx
  430. RGB32_FUNCS 8, 12
  431. ;-----------------------------------------------------------------------------
  432. ; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
  433. ;
  434. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  435. ; and
  436. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  437. ; const uint8_t *unused, int w);
  438. ;-----------------------------------------------------------------------------
  439. ; %1 = a (aligned) or u (unaligned)
  440. ; %2 = yuyv or uyvy
  441. %macro LOOP_YUYV_TO_Y 2
  442. .loop_%1:
  443. mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
  444. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  445. %ifidn %2, yuyv
  446. pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
  447. pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
  448. %else ; uyvy
  449. psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
  450. psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
  451. %endif ; yuyv/uyvy
  452. packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
  453. mova [dstq+wq], m0
  454. add wq, mmsize
  455. jl .loop_%1
  456. REP_RET
  457. %endmacro
  458. ; %1 = nr. of XMM registers
  459. ; %2 = yuyv or uyvy
  460. ; %3 = if specified, it means that unaligned and aligned code in loop
  461. ; will be the same (i.e. YUYV+AVX), and thus we don't need to
  462. ; split the loop in an aligned and unaligned case
  463. %macro YUYV_TO_Y_FN 2-3
  464. cglobal %2ToY, 5, 5, %1, dst, unused0, unused1, src, w
  465. %if ARCH_X86_64
  466. movsxd wq, wd
  467. %endif
  468. add dstq, wq
  469. %if mmsize == 16
  470. test srcq, 15
  471. %endif
  472. lea srcq, [srcq+wq*2]
  473. %ifidn %2, yuyv
  474. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  475. psrlw m2, 8 ; (word) { 0x00ff } x 8
  476. %endif ; yuyv
  477. %if mmsize == 16
  478. jnz .loop_u_start
  479. neg wq
  480. LOOP_YUYV_TO_Y a, %2
  481. .loop_u_start:
  482. neg wq
  483. LOOP_YUYV_TO_Y u, %2
  484. %else ; mmsize == 8
  485. neg wq
  486. LOOP_YUYV_TO_Y a, %2
  487. %endif ; mmsize == 8/16
  488. %endmacro
  489. ; %1 = a (aligned) or u (unaligned)
  490. ; %2 = yuyv or uyvy
  491. %macro LOOP_YUYV_TO_UV 2
  492. .loop_%1:
  493. %ifidn %2, yuyv
  494. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  495. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  496. psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
  497. psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
  498. %else ; uyvy
  499. %if cpuflag(avx)
  500. vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
  501. vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
  502. %else
  503. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  504. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  505. pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
  506. pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
  507. %endif
  508. %endif ; yuyv/uyvy
  509. packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
  510. pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
  511. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  512. %if mmsize == 16
  513. packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
  514. movh [dstUq+wq], m1
  515. movhps [dstVq+wq], m1
  516. %else ; mmsize == 8
  517. packuswb m1, m1 ; (byte) { U0, ... U3 }
  518. packuswb m0, m0 ; (byte) { V0, ... V3 }
  519. movh [dstUq+wq], m1
  520. movh [dstVq+wq], m0
  521. %endif ; mmsize == 8/16
  522. add wq, mmsize / 2
  523. jl .loop_%1
  524. REP_RET
  525. %endmacro
  526. ; %1 = nr. of XMM registers
  527. ; %2 = yuyv or uyvy
  528. ; %3 = if specified, it means that unaligned and aligned code in loop
  529. ; will be the same (i.e. UYVY+AVX), and thus we don't need to
  530. ; split the loop in an aligned and unaligned case
  531. %macro YUYV_TO_UV_FN 2-3
  532. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  533. %if ARCH_X86_64
  534. movsxd wq, dword r5m
  535. %else ; x86-32
  536. mov wq, r5m
  537. %endif
  538. add dstUq, wq
  539. add dstVq, wq
  540. %if mmsize == 16 && %0 == 2
  541. test srcq, 15
  542. %endif
  543. lea srcq, [srcq+wq*4]
  544. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  545. psrlw m2, 8 ; (word) { 0x00ff } x 8
  546. ; NOTE: if uyvy+avx, u/a are identical
  547. %if mmsize == 16 && %0 == 2
  548. jnz .loop_u_start
  549. neg wq
  550. LOOP_YUYV_TO_UV a, %2
  551. .loop_u_start:
  552. neg wq
  553. LOOP_YUYV_TO_UV u, %2
  554. %else ; mmsize == 8
  555. neg wq
  556. LOOP_YUYV_TO_UV a, %2
  557. %endif ; mmsize == 8/16
  558. %endmacro
  559. ; %1 = a (aligned) or u (unaligned)
  560. ; %2 = nv12 or nv21
  561. %macro LOOP_NVXX_TO_UV 2
  562. .loop_%1:
  563. mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
  564. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
  565. pand m2, m0, m5 ; (word) { U0, U1, ..., U7 }
  566. pand m3, m1, m5 ; (word) { U8, U9, ..., U15 }
  567. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  568. psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
  569. packuswb m2, m3 ; (byte) { U0, ..., U15 }
  570. packuswb m0, m1 ; (byte) { V0, ..., V15 }
  571. %ifidn %2, nv12
  572. mova [dstUq+wq], m2
  573. mova [dstVq+wq], m0
  574. %else ; nv21
  575. mova [dstVq+wq], m2
  576. mova [dstUq+wq], m0
  577. %endif ; nv12/21
  578. add wq, mmsize
  579. jl .loop_%1
  580. REP_RET
  581. %endmacro
  582. ; %1 = nr. of XMM registers
  583. ; %2 = nv12 or nv21
  584. %macro NVXX_TO_UV_FN 2
  585. cglobal %2ToUV, 4, 5, %1, dstU, dstV, unused, src, w
  586. %if ARCH_X86_64
  587. movsxd wq, dword r5m
  588. %else ; x86-32
  589. mov wq, r5m
  590. %endif
  591. add dstUq, wq
  592. add dstVq, wq
  593. %if mmsize == 16
  594. test srcq, 15
  595. %endif
  596. lea srcq, [srcq+wq*2]
  597. pcmpeqb m5, m5 ; (byte) { 0xff } x 16
  598. psrlw m5, 8 ; (word) { 0x00ff } x 8
  599. %if mmsize == 16
  600. jnz .loop_u_start
  601. neg wq
  602. LOOP_NVXX_TO_UV a, %2
  603. .loop_u_start:
  604. neg wq
  605. LOOP_NVXX_TO_UV u, %2
  606. %else ; mmsize == 8
  607. neg wq
  608. LOOP_NVXX_TO_UV a, %2
  609. %endif ; mmsize == 8/16
  610. %endmacro
  611. %if ARCH_X86_32
  612. INIT_MMX mmx
  613. YUYV_TO_Y_FN 0, yuyv
  614. YUYV_TO_Y_FN 0, uyvy
  615. YUYV_TO_UV_FN 0, yuyv
  616. YUYV_TO_UV_FN 0, uyvy
  617. NVXX_TO_UV_FN 0, nv12
  618. NVXX_TO_UV_FN 0, nv21
  619. %endif
  620. INIT_XMM sse2
  621. YUYV_TO_Y_FN 3, yuyv
  622. YUYV_TO_Y_FN 2, uyvy
  623. YUYV_TO_UV_FN 3, yuyv
  624. YUYV_TO_UV_FN 3, uyvy
  625. NVXX_TO_UV_FN 5, nv12
  626. NVXX_TO_UV_FN 5, nv21
  627. %ifdef HAVE_AVX
  628. INIT_XMM avx
  629. ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
  630. ; that's not faster in practice
  631. YUYV_TO_UV_FN 3, yuyv
  632. YUYV_TO_UV_FN 3, uyvy, 1
  633. NVXX_TO_UV_FN 5, nv12
  634. NVXX_TO_UV_FN 5, nv21
  635. %endif