You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1575 lines
53KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "internal.h"
  31. #include "get_bits.h"
  32. #include "put_bits.h"
  33. #include "dsputil.h"
  34. #include "thread.h"
  35. #include "huffman.h"
  36. #define VLC_BITS 11
  37. #if HAVE_BIGENDIAN
  38. #define B 3
  39. #define G 2
  40. #define R 1
  41. #define A 0
  42. #else
  43. #define B 0
  44. #define G 1
  45. #define R 2
  46. #define A 3
  47. #endif
  48. typedef enum Predictor {
  49. LEFT= 0,
  50. PLANE,
  51. MEDIAN,
  52. } Predictor;
  53. typedef struct HYuvContext {
  54. AVCodecContext *avctx;
  55. Predictor predictor;
  56. GetBitContext gb;
  57. PutBitContext pb;
  58. int interlaced;
  59. int decorrelate;
  60. int bitstream_bpp;
  61. int version;
  62. int yuy2; //use yuy2 instead of 422P
  63. int bgr32; //use bgr32 instead of bgr24
  64. int width, height;
  65. int flags;
  66. int context;
  67. int picture_number;
  68. int last_slice_end;
  69. uint8_t *temp[3];
  70. uint64_t stats[3][256];
  71. uint8_t len[3][256];
  72. uint32_t bits[3][256];
  73. uint32_t pix_bgr_map[1<<VLC_BITS];
  74. VLC vlc[6]; //Y,U,V,YY,YU,YV
  75. AVFrame picture;
  76. uint8_t *bitstream_buffer;
  77. unsigned int bitstream_buffer_size;
  78. DSPContext dsp;
  79. } HYuvContext;
  80. #define classic_shift_luma_table_size 42
  81. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  82. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  83. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  84. 69,68, 0,
  85. 0,0,0,0,0,0,0,0,
  86. };
  87. #define classic_shift_chroma_table_size 59
  88. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  89. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  90. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  91. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0,
  92. 0,0,0,0,0,0,0,0,
  93. };
  94. static const unsigned char classic_add_luma[256] = {
  95. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  96. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  97. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  98. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  99. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  100. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  101. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  102. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  103. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  104. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  105. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  106. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  107. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  108. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  109. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  110. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  111. };
  112. static const unsigned char classic_add_chroma[256] = {
  113. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  114. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  115. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  116. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  117. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  118. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  119. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  120. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  121. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  122. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  123. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  124. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  125. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  126. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  127. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  128. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  129. };
  130. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst,
  131. const uint8_t *src, int w, int left)
  132. {
  133. int i;
  134. if (w < 32) {
  135. for (i = 0; i < w; i++) {
  136. const int temp = src[i];
  137. dst[i] = temp - left;
  138. left = temp;
  139. }
  140. return left;
  141. } else {
  142. for (i = 0; i < 16; i++) {
  143. const int temp = src[i];
  144. dst[i] = temp - left;
  145. left = temp;
  146. }
  147. s->dsp.diff_bytes(dst + 16, src + 16, src + 15, w - 16);
  148. return src[w-1];
  149. }
  150. }
  151. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst,
  152. const uint8_t *src, int w,
  153. int *red, int *green, int *blue, int *alpha)
  154. {
  155. int i;
  156. int r,g,b,a;
  157. r = *red;
  158. g = *green;
  159. b = *blue;
  160. a = *alpha;
  161. for (i = 0; i < FFMIN(w, 4); i++) {
  162. const int rt = src[i * 4 + R];
  163. const int gt = src[i * 4 + G];
  164. const int bt = src[i * 4 + B];
  165. const int at = src[i * 4 + A];
  166. dst[i * 4 + R] = rt - r;
  167. dst[i * 4 + G] = gt - g;
  168. dst[i * 4 + B] = bt - b;
  169. dst[i * 4 + A] = at - a;
  170. r = rt;
  171. g = gt;
  172. b = bt;
  173. a = at;
  174. }
  175. s->dsp.diff_bytes(dst + 16, src + 16, src + 12, w * 4 - 16);
  176. *red = src[(w - 1) * 4 + R];
  177. *green = src[(w - 1) * 4 + G];
  178. *blue = src[(w - 1) * 4 + B];
  179. *alpha = src[(w - 1) * 4 + A];
  180. }
  181. static inline void sub_left_prediction_rgb24(HYuvContext *s, uint8_t *dst, const uint8_t *src, int w, int *red, int *green, int *blue){
  182. int i;
  183. int r,g,b;
  184. r = *red;
  185. g = *green;
  186. b = *blue;
  187. for (i = 0; i < FFMIN(w,16); i++) {
  188. const int rt = src[i*3 + 0];
  189. const int gt = src[i*3 + 1];
  190. const int bt = src[i*3 + 2];
  191. dst[i*3 + 0] = rt - r;
  192. dst[i*3 + 1] = gt - g;
  193. dst[i*3 + 2] = bt - b;
  194. r = rt;
  195. g = gt;
  196. b = bt;
  197. }
  198. s->dsp.diff_bytes(dst + 48, src + 48, src + 48 - 3, w*3 - 48);
  199. *red = src[(w - 1)*3 + 0];
  200. *green = src[(w - 1)*3 + 1];
  201. *blue = src[(w - 1)*3 + 2];
  202. }
  203. static int read_len_table(uint8_t *dst, GetBitContext *gb)
  204. {
  205. int i, val, repeat;
  206. for (i = 0; i < 256;) {
  207. repeat = get_bits(gb, 3);
  208. val = get_bits(gb, 5);
  209. if (repeat == 0)
  210. repeat = get_bits(gb, 8);
  211. if (i + repeat > 256 || get_bits_left(gb) < 0) {
  212. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  213. return -1;
  214. }
  215. while (repeat--)
  216. dst[i++] = val;
  217. }
  218. return 0;
  219. }
  220. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table)
  221. {
  222. int len, index;
  223. uint32_t bits = 0;
  224. for (len = 32; len > 0; len--) {
  225. for (index = 0; index < 256; index++) {
  226. if (len_table[index] == len)
  227. dst[index] = bits++;
  228. }
  229. if (bits & 1) {
  230. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  231. return -1;
  232. }
  233. bits >>= 1;
  234. }
  235. return 0;
  236. }
  237. static void generate_joint_tables(HYuvContext *s)
  238. {
  239. uint16_t symbols[1 << VLC_BITS];
  240. uint16_t bits[1 << VLC_BITS];
  241. uint8_t len[1 << VLC_BITS];
  242. if (s->bitstream_bpp < 24) {
  243. int p, i, y, u;
  244. for (p = 0; p < 3; p++) {
  245. for (i = y = 0; y < 256; y++) {
  246. int len0 = s->len[0][y];
  247. int limit = VLC_BITS - len0;
  248. if(limit <= 0)
  249. continue;
  250. for (u = 0; u < 256; u++) {
  251. int len1 = s->len[p][u];
  252. if (len1 > limit)
  253. continue;
  254. len[i] = len0 + len1;
  255. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  256. symbols[i] = (y << 8) + u;
  257. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  258. i++;
  259. }
  260. }
  261. ff_free_vlc(&s->vlc[3 + p]);
  262. ff_init_vlc_sparse(&s->vlc[3 + p], VLC_BITS, i, len, 1, 1,
  263. bits, 2, 2, symbols, 2, 2, 0);
  264. }
  265. } else {
  266. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  267. int i, b, g, r, code;
  268. int p0 = s->decorrelate;
  269. int p1 = !s->decorrelate;
  270. // restrict the range to +/-16 because that's pretty much guaranteed to
  271. // cover all the combinations that fit in 11 bits total, and it doesn't
  272. // matter if we miss a few rare codes.
  273. for (i = 0, g = -16; g < 16; g++) {
  274. int len0 = s->len[p0][g & 255];
  275. int limit0 = VLC_BITS - len0;
  276. if (limit0 < 2)
  277. continue;
  278. for (b = -16; b < 16; b++) {
  279. int len1 = s->len[p1][b & 255];
  280. int limit1 = limit0 - len1;
  281. if (limit1 < 1)
  282. continue;
  283. code = (s->bits[p0][g & 255] << len1) + s->bits[p1][b & 255];
  284. for (r = -16; r < 16; r++) {
  285. int len2 = s->len[2][r & 255];
  286. if (len2 > limit1)
  287. continue;
  288. len[i] = len0 + len1 + len2;
  289. bits[i] = (code << len2) + s->bits[2][r & 255];
  290. if (s->decorrelate) {
  291. map[i][G] = g;
  292. map[i][B] = g + b;
  293. map[i][R] = g + r;
  294. } else {
  295. map[i][B] = g;
  296. map[i][G] = b;
  297. map[i][R] = r;
  298. }
  299. i++;
  300. }
  301. }
  302. }
  303. ff_free_vlc(&s->vlc[3]);
  304. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  305. }
  306. }
  307. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length)
  308. {
  309. GetBitContext gb;
  310. int i;
  311. init_get_bits(&gb, src, length * 8);
  312. for (i = 0; i < 3; i++) {
  313. if (read_len_table(s->len[i], &gb) < 0)
  314. return -1;
  315. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  316. return -1;
  317. }
  318. ff_free_vlc(&s->vlc[i]);
  319. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  320. s->bits[i], 4, 4, 0);
  321. }
  322. generate_joint_tables(s);
  323. return (get_bits_count(&gb) + 7) / 8;
  324. }
  325. static int read_old_huffman_tables(HYuvContext *s)
  326. {
  327. GetBitContext gb;
  328. int i;
  329. init_get_bits(&gb, classic_shift_luma,
  330. classic_shift_luma_table_size * 8);
  331. if (read_len_table(s->len[0], &gb) < 0)
  332. return -1;
  333. init_get_bits(&gb, classic_shift_chroma,
  334. classic_shift_chroma_table_size * 8);
  335. if (read_len_table(s->len[1], &gb) < 0)
  336. return -1;
  337. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  338. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  339. if (s->bitstream_bpp >= 24) {
  340. memcpy(s->bits[1], s->bits[0], 256 * sizeof(uint32_t));
  341. memcpy(s->len[1] , s->len [0], 256 * sizeof(uint8_t));
  342. }
  343. memcpy(s->bits[2], s->bits[1], 256 * sizeof(uint32_t));
  344. memcpy(s->len[2] , s->len [1], 256 * sizeof(uint8_t));
  345. for (i = 0; i < 3; i++) {
  346. ff_free_vlc(&s->vlc[i]);
  347. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1,
  348. s->bits[i], 4, 4, 0);
  349. }
  350. generate_joint_tables(s);
  351. return 0;
  352. }
  353. static av_cold void alloc_temp(HYuvContext *s)
  354. {
  355. int i;
  356. if (s->bitstream_bpp<24) {
  357. for (i=0; i<3; i++) {
  358. s->temp[i]= av_malloc(s->width + 16);
  359. }
  360. } else {
  361. s->temp[0]= av_mallocz(4*s->width + 16);
  362. }
  363. }
  364. static av_cold int common_init(AVCodecContext *avctx)
  365. {
  366. HYuvContext *s = avctx->priv_data;
  367. s->avctx = avctx;
  368. s->flags = avctx->flags;
  369. ff_dsputil_init(&s->dsp, avctx);
  370. s->width = avctx->width;
  371. s->height = avctx->height;
  372. av_assert1(s->width > 0 && s->height > 0);
  373. return 0;
  374. }
  375. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  376. static av_cold int decode_init(AVCodecContext *avctx)
  377. {
  378. HYuvContext *s = avctx->priv_data;
  379. common_init(avctx);
  380. memset(s->vlc, 0, 3 * sizeof(VLC));
  381. avctx->coded_frame = &s->picture;
  382. avcodec_get_frame_defaults(&s->picture);
  383. s->interlaced = s->height > 288;
  384. s->bgr32 = 1;
  385. if (avctx->extradata_size) {
  386. if ((avctx->bits_per_coded_sample & 7) &&
  387. avctx->bits_per_coded_sample != 12)
  388. s->version = 1; // do such files exist at all?
  389. else
  390. s->version = 2;
  391. } else
  392. s->version = 0;
  393. if (s->version == 2) {
  394. int method, interlace;
  395. if (avctx->extradata_size < 4)
  396. return -1;
  397. method = ((uint8_t*)avctx->extradata)[0];
  398. s->decorrelate = method & 64 ? 1 : 0;
  399. s->predictor = method & 63;
  400. s->bitstream_bpp = ((uint8_t*)avctx->extradata)[1];
  401. if (s->bitstream_bpp == 0)
  402. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  403. interlace = (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  404. s->interlaced = (interlace == 1) ? 1 : (interlace == 2) ? 0 : s->interlaced;
  405. s->context = ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  406. if ( read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  407. avctx->extradata_size - 4) < 0)
  408. return -1;
  409. }else{
  410. switch (avctx->bits_per_coded_sample & 7) {
  411. case 1:
  412. s->predictor = LEFT;
  413. s->decorrelate = 0;
  414. break;
  415. case 2:
  416. s->predictor = LEFT;
  417. s->decorrelate = 1;
  418. break;
  419. case 3:
  420. s->predictor = PLANE;
  421. s->decorrelate = avctx->bits_per_coded_sample >= 24;
  422. break;
  423. case 4:
  424. s->predictor = MEDIAN;
  425. s->decorrelate = 0;
  426. break;
  427. default:
  428. s->predictor = LEFT; //OLD
  429. s->decorrelate = 0;
  430. break;
  431. }
  432. s->bitstream_bpp = avctx->bits_per_coded_sample & ~7;
  433. s->context = 0;
  434. if (read_old_huffman_tables(s) < 0)
  435. return -1;
  436. }
  437. switch (s->bitstream_bpp) {
  438. case 12:
  439. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  440. break;
  441. case 16:
  442. if (s->yuy2) {
  443. avctx->pix_fmt = AV_PIX_FMT_YUYV422;
  444. } else {
  445. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  446. }
  447. break;
  448. case 24:
  449. case 32:
  450. if (s->bgr32) {
  451. avctx->pix_fmt = AV_PIX_FMT_RGB32;
  452. } else {
  453. avctx->pix_fmt = AV_PIX_FMT_BGR24;
  454. }
  455. break;
  456. default:
  457. return AVERROR_INVALIDDATA;
  458. }
  459. if ((avctx->pix_fmt == AV_PIX_FMT_YUV422P || avctx->pix_fmt == AV_PIX_FMT_YUV420P) && avctx->width & 1) {
  460. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  461. return AVERROR_INVALIDDATA;
  462. }
  463. if (s->predictor == MEDIAN && avctx->pix_fmt == AV_PIX_FMT_YUV422P && avctx->width%4) {
  464. av_log(avctx, AV_LOG_ERROR, "width must be a multiple of 4 this colorspace and predictor\n");
  465. return AVERROR_INVALIDDATA;
  466. }
  467. alloc_temp(s);
  468. return 0;
  469. }
  470. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  471. {
  472. HYuvContext *s = avctx->priv_data;
  473. int i;
  474. avctx->coded_frame= &s->picture;
  475. alloc_temp(s);
  476. for (i = 0; i < 6; i++)
  477. s->vlc[i].table = NULL;
  478. if (s->version == 2) {
  479. if (read_huffman_tables(s, ((uint8_t*)avctx->extradata) + 4,
  480. avctx->extradata_size) < 0)
  481. return -1;
  482. } else {
  483. if (read_old_huffman_tables(s) < 0)
  484. return -1;
  485. }
  486. return 0;
  487. }
  488. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  489. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  490. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf)
  491. {
  492. int i;
  493. int index = 0;
  494. for (i = 0; i < 256;) {
  495. int val = len[i];
  496. int repeat = 0;
  497. for (; i < 256 && len[i] == val && repeat < 255; i++)
  498. repeat++;
  499. av_assert0(val < 32 && val >0 && repeat<256 && repeat>0);
  500. if (repeat > 7) {
  501. buf[index++] = val;
  502. buf[index++] = repeat;
  503. } else {
  504. buf[index++] = val | (repeat << 5);
  505. }
  506. }
  507. return index;
  508. }
  509. static av_cold int encode_init(AVCodecContext *avctx)
  510. {
  511. HYuvContext *s = avctx->priv_data;
  512. int i, j;
  513. common_init(avctx);
  514. avctx->extradata = av_mallocz(1024*30); // 256*3+4 == 772
  515. avctx->stats_out = av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  516. s->version = 2;
  517. avctx->coded_frame = &s->picture;
  518. switch (avctx->pix_fmt) {
  519. case AV_PIX_FMT_YUV420P:
  520. case AV_PIX_FMT_YUV422P:
  521. if (s->width & 1) {
  522. av_log(avctx, AV_LOG_ERROR, "width must be even for this colorspace\n");
  523. return AVERROR(EINVAL);
  524. }
  525. s->bitstream_bpp = avctx->pix_fmt == AV_PIX_FMT_YUV420P ? 12 : 16;
  526. break;
  527. case AV_PIX_FMT_RGB32:
  528. s->bitstream_bpp = 32;
  529. break;
  530. case AV_PIX_FMT_RGB24:
  531. s->bitstream_bpp = 24;
  532. break;
  533. default:
  534. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  535. return -1;
  536. }
  537. avctx->bits_per_coded_sample = s->bitstream_bpp;
  538. s->decorrelate = s->bitstream_bpp >= 24;
  539. s->predictor = avctx->prediction_method;
  540. s->interlaced = avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  541. if (avctx->context_model == 1) {
  542. s->context = avctx->context_model;
  543. if (s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)) {
  544. av_log(avctx, AV_LOG_ERROR,
  545. "context=1 is not compatible with "
  546. "2 pass huffyuv encoding\n");
  547. return -1;
  548. }
  549. }else s->context= 0;
  550. if (avctx->codec->id == AV_CODEC_ID_HUFFYUV) {
  551. if (avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  552. av_log(avctx, AV_LOG_ERROR,
  553. "Error: YV12 is not supported by huffyuv; use "
  554. "vcodec=ffvhuff or format=422p\n");
  555. return -1;
  556. }
  557. if (avctx->context_model) {
  558. av_log(avctx, AV_LOG_ERROR,
  559. "Error: per-frame huffman tables are not supported "
  560. "by huffyuv; use vcodec=ffvhuff\n");
  561. return -1;
  562. }
  563. if (s->interlaced != ( s->height > 288 ))
  564. av_log(avctx, AV_LOG_INFO,
  565. "using huffyuv 2.2.0 or newer interlacing flag\n");
  566. }
  567. if (s->bitstream_bpp >= 24 && s->predictor == MEDIAN) {
  568. av_log(avctx, AV_LOG_ERROR,
  569. "Error: RGB is incompatible with median predictor\n");
  570. return -1;
  571. }
  572. ((uint8_t*)avctx->extradata)[0] = s->predictor | (s->decorrelate << 6);
  573. ((uint8_t*)avctx->extradata)[1] = s->bitstream_bpp;
  574. ((uint8_t*)avctx->extradata)[2] = s->interlaced ? 0x10 : 0x20;
  575. if (s->context)
  576. ((uint8_t*)avctx->extradata)[2] |= 0x40;
  577. ((uint8_t*)avctx->extradata)[3] = 0;
  578. s->avctx->extradata_size = 4;
  579. if (avctx->stats_in) {
  580. char *p = avctx->stats_in;
  581. for (i = 0; i < 3; i++)
  582. for (j = 0; j < 256; j++)
  583. s->stats[i][j] = 1;
  584. for (;;) {
  585. for (i = 0; i < 3; i++) {
  586. char *next;
  587. for (j = 0; j < 256; j++) {
  588. s->stats[i][j] += strtol(p, &next, 0);
  589. if (next == p) return -1;
  590. p = next;
  591. }
  592. }
  593. if (p[0] == 0 || p[1] == 0 || p[2] == 0) break;
  594. }
  595. } else {
  596. for (i = 0; i < 3; i++)
  597. for (j = 0; j < 256; j++) {
  598. int d = FFMIN(j, 256 - j);
  599. s->stats[i][j] = 100000000 / (d + 1);
  600. }
  601. }
  602. for (i = 0; i < 3; i++) {
  603. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  604. if (generate_bits_table(s->bits[i], s->len[i]) < 0) {
  605. return -1;
  606. }
  607. s->avctx->extradata_size +=
  608. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  609. }
  610. if (s->context) {
  611. for (i = 0; i < 3; i++) {
  612. int pels = s->width * s->height / (i ? 40 : 10);
  613. for (j = 0; j < 256; j++) {
  614. int d = FFMIN(j, 256 - j);
  615. s->stats[i][j] = pels/(d + 1);
  616. }
  617. }
  618. } else {
  619. for (i = 0; i < 3; i++)
  620. for (j = 0; j < 256; j++)
  621. s->stats[i][j]= 0;
  622. }
  623. alloc_temp(s);
  624. s->picture_number=0;
  625. return 0;
  626. }
  627. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  628. /* TODO instead of restarting the read when the code isn't in the first level
  629. * of the joint table, jump into the 2nd level of the individual table. */
  630. #define READ_2PIX(dst0, dst1, plane1){\
  631. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  632. if(code != 0xffff){\
  633. dst0 = code>>8;\
  634. dst1 = code;\
  635. }else{\
  636. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  637. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  638. }\
  639. }
  640. static void decode_422_bitstream(HYuvContext *s, int count)
  641. {
  642. int i;
  643. count /= 2;
  644. if (count >= (get_bits_left(&s->gb)) / (31 * 4)) {
  645. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  646. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  647. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  648. }
  649. } else {
  650. for (i = 0; i < count; i++) {
  651. READ_2PIX(s->temp[0][2 * i ], s->temp[1][i], 1);
  652. READ_2PIX(s->temp[0][2 * i + 1], s->temp[2][i], 2);
  653. }
  654. }
  655. }
  656. static void decode_gray_bitstream(HYuvContext *s, int count)
  657. {
  658. int i;
  659. count/=2;
  660. if (count >= (get_bits_left(&s->gb)) / (31 * 2)) {
  661. for (i = 0; i < count && get_bits_left(&s->gb) > 0; i++) {
  662. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  663. }
  664. } else {
  665. for(i=0; i<count; i++){
  666. READ_2PIX(s->temp[0][2 * i], s->temp[0][2 * i + 1], 0);
  667. }
  668. }
  669. }
  670. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  671. static int encode_422_bitstream(HYuvContext *s, int offset, int count)
  672. {
  673. int i;
  674. const uint8_t *y = s->temp[0] + offset;
  675. const uint8_t *u = s->temp[1] + offset / 2;
  676. const uint8_t *v = s->temp[2] + offset / 2;
  677. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 2 * 4 * count) {
  678. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  679. return -1;
  680. }
  681. #define LOAD4\
  682. int y0 = y[2 * i];\
  683. int y1 = y[2 * i + 1];\
  684. int u0 = u[i];\
  685. int v0 = v[i];
  686. count /= 2;
  687. if (s->flags & CODEC_FLAG_PASS1) {
  688. for(i = 0; i < count; i++) {
  689. LOAD4;
  690. s->stats[0][y0]++;
  691. s->stats[1][u0]++;
  692. s->stats[0][y1]++;
  693. s->stats[2][v0]++;
  694. }
  695. }
  696. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  697. return 0;
  698. if (s->context) {
  699. for (i = 0; i < count; i++) {
  700. LOAD4;
  701. s->stats[0][y0]++;
  702. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  703. s->stats[1][u0]++;
  704. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  705. s->stats[0][y1]++;
  706. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  707. s->stats[2][v0]++;
  708. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  709. }
  710. } else {
  711. for(i = 0; i < count; i++) {
  712. LOAD4;
  713. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  714. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  715. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  716. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  717. }
  718. }
  719. return 0;
  720. }
  721. static int encode_gray_bitstream(HYuvContext *s, int count)
  722. {
  723. int i;
  724. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb) >> 3) < 4 * count) {
  725. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  726. return -1;
  727. }
  728. #define LOAD2\
  729. int y0 = s->temp[0][2 * i];\
  730. int y1 = s->temp[0][2 * i + 1];
  731. #define STAT2\
  732. s->stats[0][y0]++;\
  733. s->stats[0][y1]++;
  734. #define WRITE2\
  735. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  736. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  737. count /= 2;
  738. if (s->flags & CODEC_FLAG_PASS1) {
  739. for (i = 0; i < count; i++) {
  740. LOAD2;
  741. STAT2;
  742. }
  743. }
  744. if (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)
  745. return 0;
  746. if (s->context) {
  747. for (i = 0; i < count; i++) {
  748. LOAD2;
  749. STAT2;
  750. WRITE2;
  751. }
  752. } else {
  753. for (i = 0; i < count; i++) {
  754. LOAD2;
  755. WRITE2;
  756. }
  757. }
  758. return 0;
  759. }
  760. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  761. static av_always_inline void decode_bgr_1(HYuvContext *s, int count,
  762. int decorrelate, int alpha)
  763. {
  764. int i;
  765. for (i = 0; i < count; i++) {
  766. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  767. if (code != -1) {
  768. *(uint32_t*)&s->temp[0][4 * i] = s->pix_bgr_map[code];
  769. } else if(decorrelate) {
  770. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  771. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) +
  772. s->temp[0][4 * i + G];
  773. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) +
  774. s->temp[0][4 * i + G];
  775. } else {
  776. s->temp[0][4 * i + B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  777. s->temp[0][4 * i + G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  778. s->temp[0][4 * i + R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  779. }
  780. if (alpha)
  781. s->temp[0][4 * i + A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  782. }
  783. }
  784. static void decode_bgr_bitstream(HYuvContext *s, int count)
  785. {
  786. if (s->decorrelate) {
  787. if (s->bitstream_bpp==24)
  788. decode_bgr_1(s, count, 1, 0);
  789. else
  790. decode_bgr_1(s, count, 1, 1);
  791. } else {
  792. if (s->bitstream_bpp==24)
  793. decode_bgr_1(s, count, 0, 0);
  794. else
  795. decode_bgr_1(s, count, 0, 1);
  796. }
  797. }
  798. static inline int encode_bgra_bitstream(HYuvContext *s, int count, int planes)
  799. {
  800. int i;
  801. if (s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*planes*count) {
  802. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  803. return -1;
  804. }
  805. #define LOAD3\
  806. int g = s->temp[0][planes==3 ? 3*i + 1 : 4*i + G];\
  807. int b = (s->temp[0][planes==3 ? 3*i + 2 : 4*i + B] - g) & 0xff;\
  808. int r = (s->temp[0][planes==3 ? 3*i + 0 : 4*i + R] - g) & 0xff;\
  809. int a = s->temp[0][planes*i + A];
  810. #define STAT3\
  811. s->stats[0][b]++;\
  812. s->stats[1][g]++;\
  813. s->stats[2][r]++;\
  814. if(planes==4) s->stats[2][a]++;
  815. #define WRITE3\
  816. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  817. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  818. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);\
  819. if(planes==4) put_bits(&s->pb, s->len[2][a], s->bits[2][a]);
  820. if ((s->flags & CODEC_FLAG_PASS1) &&
  821. (s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  822. for (i = 0; i < count; i++) {
  823. LOAD3;
  824. STAT3;
  825. }
  826. } else if (s->context || (s->flags & CODEC_FLAG_PASS1)) {
  827. for (i = 0; i < count; i++) {
  828. LOAD3;
  829. STAT3;
  830. WRITE3;
  831. }
  832. } else {
  833. for (i = 0; i < count; i++) {
  834. LOAD3;
  835. WRITE3;
  836. }
  837. }
  838. return 0;
  839. }
  840. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  841. static void draw_slice(HYuvContext *s, int y)
  842. {
  843. int h, cy, i;
  844. int offset[AV_NUM_DATA_POINTERS];
  845. if (s->avctx->draw_horiz_band==NULL)
  846. return;
  847. h = y - s->last_slice_end;
  848. y -= h;
  849. if (s->bitstream_bpp == 12) {
  850. cy = y>>1;
  851. } else {
  852. cy = y;
  853. }
  854. offset[0] = s->picture.linesize[0]*y;
  855. offset[1] = s->picture.linesize[1]*cy;
  856. offset[2] = s->picture.linesize[2]*cy;
  857. for (i = 3; i < AV_NUM_DATA_POINTERS; i++)
  858. offset[i] = 0;
  859. emms_c();
  860. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  861. s->last_slice_end = y + h;
  862. }
  863. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  864. AVPacket *avpkt)
  865. {
  866. const uint8_t *buf = avpkt->data;
  867. int buf_size = avpkt->size;
  868. HYuvContext *s = avctx->priv_data;
  869. const int width = s->width;
  870. const int width2 = s->width>>1;
  871. const int height = s->height;
  872. int fake_ystride, fake_ustride, fake_vstride;
  873. AVFrame * const p = &s->picture;
  874. int table_size = 0;
  875. AVFrame *picture = data;
  876. av_fast_malloc(&s->bitstream_buffer,
  877. &s->bitstream_buffer_size,
  878. buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  879. if (!s->bitstream_buffer)
  880. return AVERROR(ENOMEM);
  881. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  882. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer,
  883. (const uint32_t*)buf, buf_size / 4);
  884. if (p->data[0])
  885. ff_thread_release_buffer(avctx, p);
  886. p->reference = 0;
  887. if (ff_thread_get_buffer(avctx, p) < 0) {
  888. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  889. return -1;
  890. }
  891. if (s->context) {
  892. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  893. if (table_size < 0)
  894. return -1;
  895. }
  896. if ((unsigned)(buf_size-table_size) >= INT_MAX / 8)
  897. return -1;
  898. init_get_bits(&s->gb, s->bitstream_buffer+table_size,
  899. (buf_size-table_size) * 8);
  900. fake_ystride = s->interlaced ? p->linesize[0] * 2 : p->linesize[0];
  901. fake_ustride = s->interlaced ? p->linesize[1] * 2 : p->linesize[1];
  902. fake_vstride = s->interlaced ? p->linesize[2] * 2 : p->linesize[2];
  903. s->last_slice_end = 0;
  904. if (s->bitstream_bpp < 24) {
  905. int y, cy;
  906. int lefty, leftu, leftv;
  907. int lefttopy, lefttopu, lefttopv;
  908. if (s->yuy2) {
  909. p->data[0][3] = get_bits(&s->gb, 8);
  910. p->data[0][2] = get_bits(&s->gb, 8);
  911. p->data[0][1] = get_bits(&s->gb, 8);
  912. p->data[0][0] = get_bits(&s->gb, 8);
  913. av_log(avctx, AV_LOG_ERROR,
  914. "YUY2 output is not implemented yet\n");
  915. return -1;
  916. } else {
  917. leftv = p->data[2][0] = get_bits(&s->gb, 8);
  918. lefty = p->data[0][1] = get_bits(&s->gb, 8);
  919. leftu = p->data[1][0] = get_bits(&s->gb, 8);
  920. p->data[0][0] = get_bits(&s->gb, 8);
  921. switch (s->predictor) {
  922. case LEFT:
  923. case PLANE:
  924. decode_422_bitstream(s, width-2);
  925. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  926. if (!(s->flags&CODEC_FLAG_GRAY)) {
  927. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  928. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  929. }
  930. for (cy = y = 1; y < s->height; y++, cy++) {
  931. uint8_t *ydst, *udst, *vdst;
  932. if (s->bitstream_bpp == 12) {
  933. decode_gray_bitstream(s, width);
  934. ydst = p->data[0] + p->linesize[0] * y;
  935. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  936. if (s->predictor == PLANE) {
  937. if (y > s->interlaced)
  938. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  939. }
  940. y++;
  941. if (y >= s->height) break;
  942. }
  943. draw_slice(s, y);
  944. ydst = p->data[0] + p->linesize[0]*y;
  945. udst = p->data[1] + p->linesize[1]*cy;
  946. vdst = p->data[2] + p->linesize[2]*cy;
  947. decode_422_bitstream(s, width);
  948. lefty = s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  949. if (!(s->flags & CODEC_FLAG_GRAY)) {
  950. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  951. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  952. }
  953. if (s->predictor == PLANE) {
  954. if (cy > s->interlaced) {
  955. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  956. if (!(s->flags & CODEC_FLAG_GRAY)) {
  957. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  958. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  959. }
  960. }
  961. }
  962. }
  963. draw_slice(s, height);
  964. break;
  965. case MEDIAN:
  966. /* first line except first 2 pixels is left predicted */
  967. decode_422_bitstream(s, width - 2);
  968. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width - 2, lefty);
  969. if (!(s->flags & CODEC_FLAG_GRAY)) {
  970. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2 - 1, leftu);
  971. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2 - 1, leftv);
  972. }
  973. cy = y = 1;
  974. /* second line is left predicted for interlaced case */
  975. if (s->interlaced) {
  976. decode_422_bitstream(s, width);
  977. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  978. if (!(s->flags & CODEC_FLAG_GRAY)) {
  979. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  980. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  981. }
  982. y++; cy++;
  983. }
  984. /* next 4 pixels are left predicted too */
  985. decode_422_bitstream(s, 4);
  986. lefty = s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  987. if (!(s->flags&CODEC_FLAG_GRAY)) {
  988. leftu = s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  989. leftv = s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  990. }
  991. /* next line except the first 4 pixels is median predicted */
  992. lefttopy = p->data[0][3];
  993. decode_422_bitstream(s, width - 4);
  994. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  995. if (!(s->flags&CODEC_FLAG_GRAY)) {
  996. lefttopu = p->data[1][1];
  997. lefttopv = p->data[2][1];
  998. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1] + 2, s->temp[1], width2 - 2, &leftu, &lefttopu);
  999. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2] + 2, s->temp[2], width2 - 2, &leftv, &lefttopv);
  1000. }
  1001. y++; cy++;
  1002. for (; y<height; y++, cy++) {
  1003. uint8_t *ydst, *udst, *vdst;
  1004. if (s->bitstream_bpp == 12) {
  1005. while (2 * cy > y) {
  1006. decode_gray_bitstream(s, width);
  1007. ydst = p->data[0] + p->linesize[0] * y;
  1008. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1009. y++;
  1010. }
  1011. if (y >= height) break;
  1012. }
  1013. draw_slice(s, y);
  1014. decode_422_bitstream(s, width);
  1015. ydst = p->data[0] + p->linesize[0] * y;
  1016. udst = p->data[1] + p->linesize[1] * cy;
  1017. vdst = p->data[2] + p->linesize[2] * cy;
  1018. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  1019. if (!(s->flags & CODEC_FLAG_GRAY)) {
  1020. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  1021. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  1022. }
  1023. }
  1024. draw_slice(s, height);
  1025. break;
  1026. }
  1027. }
  1028. } else {
  1029. int y;
  1030. int leftr, leftg, leftb, lefta;
  1031. const int last_line = (height - 1) * p->linesize[0];
  1032. if (s->bitstream_bpp == 32) {
  1033. lefta = p->data[0][last_line+A] = get_bits(&s->gb, 8);
  1034. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  1035. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  1036. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  1037. } else {
  1038. leftr = p->data[0][last_line+R] = get_bits(&s->gb, 8);
  1039. leftg = p->data[0][last_line+G] = get_bits(&s->gb, 8);
  1040. leftb = p->data[0][last_line+B] = get_bits(&s->gb, 8);
  1041. lefta = p->data[0][last_line+A] = 255;
  1042. skip_bits(&s->gb, 8);
  1043. }
  1044. if (s->bgr32) {
  1045. switch (s->predictor) {
  1046. case LEFT:
  1047. case PLANE:
  1048. decode_bgr_bitstream(s, width - 1);
  1049. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width - 1, &leftr, &leftg, &leftb, &lefta);
  1050. for (y = s->height - 2; y >= 0; y--) { //Yes it is stored upside down.
  1051. decode_bgr_bitstream(s, width);
  1052. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1053. if (s->predictor == PLANE) {
  1054. if (s->bitstream_bpp != 32) lefta = 0;
  1055. if ((y & s->interlaced) == 0 &&
  1056. y < s->height - 1 - s->interlaced) {
  1057. s->dsp.add_bytes(p->data[0] + p->linesize[0] * y,
  1058. p->data[0] + p->linesize[0] * y +
  1059. fake_ystride, fake_ystride);
  1060. }
  1061. }
  1062. }
  1063. // just 1 large slice as this is not possible in reverse order
  1064. draw_slice(s, height);
  1065. break;
  1066. default:
  1067. av_log(avctx, AV_LOG_ERROR,
  1068. "prediction type not supported!\n");
  1069. }
  1070. }else{
  1071. av_log(avctx, AV_LOG_ERROR,
  1072. "BGR24 output is not implemented yet\n");
  1073. return -1;
  1074. }
  1075. }
  1076. emms_c();
  1077. *picture = *p;
  1078. *data_size = sizeof(AVFrame);
  1079. return (get_bits_count(&s->gb) + 31) / 32 * 4 + table_size;
  1080. }
  1081. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1082. static int common_end(HYuvContext *s)
  1083. {
  1084. int i;
  1085. for(i = 0; i < 3; i++) {
  1086. av_freep(&s->temp[i]);
  1087. }
  1088. return 0;
  1089. }
  1090. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1091. static av_cold int decode_end(AVCodecContext *avctx)
  1092. {
  1093. HYuvContext *s = avctx->priv_data;
  1094. int i;
  1095. if (s->picture.data[0])
  1096. avctx->release_buffer(avctx, &s->picture);
  1097. common_end(s);
  1098. av_freep(&s->bitstream_buffer);
  1099. for (i = 0; i < 6; i++) {
  1100. ff_free_vlc(&s->vlc[i]);
  1101. }
  1102. return 0;
  1103. }
  1104. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1105. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1106. static int encode_frame(AVCodecContext *avctx, AVPacket *pkt,
  1107. const AVFrame *pict, int *got_packet)
  1108. {
  1109. HYuvContext *s = avctx->priv_data;
  1110. const int width = s->width;
  1111. const int width2 = s->width>>1;
  1112. const int height = s->height;
  1113. const int fake_ystride = s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1114. const int fake_ustride = s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1115. const int fake_vstride = s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1116. AVFrame * const p = &s->picture;
  1117. int i, j, size = 0, ret;
  1118. if ((ret = ff_alloc_packet2(avctx, pkt, width * height * 3 * 4 + FF_MIN_BUFFER_SIZE)) < 0)
  1119. return ret;
  1120. *p = *pict;
  1121. p->pict_type = AV_PICTURE_TYPE_I;
  1122. p->key_frame = 1;
  1123. if (s->context) {
  1124. for (i = 0; i < 3; i++) {
  1125. ff_huff_gen_len_table(s->len[i], s->stats[i]);
  1126. if (generate_bits_table(s->bits[i], s->len[i]) < 0)
  1127. return -1;
  1128. size += store_table(s, s->len[i], &pkt->data[size]);
  1129. }
  1130. for (i = 0; i < 3; i++)
  1131. for (j = 0; j < 256; j++)
  1132. s->stats[i][j] >>= 1;
  1133. }
  1134. init_put_bits(&s->pb, pkt->data + size, pkt->size - size);
  1135. if (avctx->pix_fmt == AV_PIX_FMT_YUV422P ||
  1136. avctx->pix_fmt == AV_PIX_FMT_YUV420P) {
  1137. int lefty, leftu, leftv, y, cy;
  1138. put_bits(&s->pb, 8, leftv = p->data[2][0]);
  1139. put_bits(&s->pb, 8, lefty = p->data[0][1]);
  1140. put_bits(&s->pb, 8, leftu = p->data[1][0]);
  1141. put_bits(&s->pb, 8, p->data[0][0]);
  1142. lefty = sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1143. leftu = sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1144. leftv = sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1145. encode_422_bitstream(s, 2, width-2);
  1146. if (s->predictor==MEDIAN) {
  1147. int lefttopy, lefttopu, lefttopv;
  1148. cy = y = 1;
  1149. if (s->interlaced) {
  1150. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + p->linesize[0], width , lefty);
  1151. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + p->linesize[1], width2, leftu);
  1152. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + p->linesize[2], width2, leftv);
  1153. encode_422_bitstream(s, 0, width);
  1154. y++; cy++;
  1155. }
  1156. lefty = sub_left_prediction(s, s->temp[0], p->data[0] + fake_ystride, 4, lefty);
  1157. leftu = sub_left_prediction(s, s->temp[1], p->data[1] + fake_ustride, 2, leftu);
  1158. leftv = sub_left_prediction(s, s->temp[2], p->data[2] + fake_vstride, 2, leftv);
  1159. encode_422_bitstream(s, 0, 4);
  1160. lefttopy = p->data[0][3];
  1161. lefttopu = p->data[1][1];
  1162. lefttopv = p->data[2][1];
  1163. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride + 4, width - 4 , &lefty, &lefttopy);
  1164. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride + 2, width2 - 2, &leftu, &lefttopu);
  1165. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride + 2, width2 - 2, &leftv, &lefttopv);
  1166. encode_422_bitstream(s, 0, width - 4);
  1167. y++; cy++;
  1168. for (; y < height; y++,cy++) {
  1169. uint8_t *ydst, *udst, *vdst;
  1170. if (s->bitstream_bpp == 12) {
  1171. while (2 * cy > y) {
  1172. ydst = p->data[0] + p->linesize[0] * y;
  1173. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1174. encode_gray_bitstream(s, width);
  1175. y++;
  1176. }
  1177. if (y >= height) break;
  1178. }
  1179. ydst = p->data[0] + p->linesize[0] * y;
  1180. udst = p->data[1] + p->linesize[1] * cy;
  1181. vdst = p->data[2] + p->linesize[2] * cy;
  1182. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1183. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1184. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1185. encode_422_bitstream(s, 0, width);
  1186. }
  1187. } else {
  1188. for (cy = y = 1; y < height; y++, cy++) {
  1189. uint8_t *ydst, *udst, *vdst;
  1190. /* encode a luma only line & y++ */
  1191. if (s->bitstream_bpp == 12) {
  1192. ydst = p->data[0] + p->linesize[0] * y;
  1193. if (s->predictor == PLANE && s->interlaced < y) {
  1194. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1195. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1196. } else {
  1197. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1198. }
  1199. encode_gray_bitstream(s, width);
  1200. y++;
  1201. if (y >= height) break;
  1202. }
  1203. ydst = p->data[0] + p->linesize[0] * y;
  1204. udst = p->data[1] + p->linesize[1] * cy;
  1205. vdst = p->data[2] + p->linesize[2] * cy;
  1206. if (s->predictor == PLANE && s->interlaced < cy) {
  1207. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1208. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1209. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1210. lefty = sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1211. leftu = sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1212. leftv = sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1213. } else {
  1214. lefty = sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1215. leftu = sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1216. leftv = sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1217. }
  1218. encode_422_bitstream(s, 0, width);
  1219. }
  1220. }
  1221. } else if(avctx->pix_fmt == AV_PIX_FMT_RGB32) {
  1222. uint8_t *data = p->data[0] + (height - 1) * p->linesize[0];
  1223. const int stride = -p->linesize[0];
  1224. const int fake_stride = -fake_ystride;
  1225. int y;
  1226. int leftr, leftg, leftb, lefta;
  1227. put_bits(&s->pb, 8, lefta = data[A]);
  1228. put_bits(&s->pb, 8, leftr = data[R]);
  1229. put_bits(&s->pb, 8, leftg = data[G]);
  1230. put_bits(&s->pb, 8, leftb = data[B]);
  1231. sub_left_prediction_bgr32(s, s->temp[0], data + 4, width - 1, &leftr, &leftg, &leftb, &lefta);
  1232. encode_bgra_bitstream(s, width - 1, 4);
  1233. for (y = 1; y < s->height; y++) {
  1234. uint8_t *dst = data + y*stride;
  1235. if (s->predictor == PLANE && s->interlaced < y) {
  1236. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width * 4);
  1237. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb, &lefta);
  1238. } else {
  1239. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb, &lefta);
  1240. }
  1241. encode_bgra_bitstream(s, width, 4);
  1242. }
  1243. }else if(avctx->pix_fmt == AV_PIX_FMT_RGB24){
  1244. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1245. const int stride = -p->linesize[0];
  1246. const int fake_stride = -fake_ystride;
  1247. int y;
  1248. int leftr, leftg, leftb;
  1249. put_bits(&s->pb, 8, leftr= data[0]);
  1250. put_bits(&s->pb, 8, leftg= data[1]);
  1251. put_bits(&s->pb, 8, leftb= data[2]);
  1252. put_bits(&s->pb, 8, 0);
  1253. sub_left_prediction_rgb24(s, s->temp[0], data+3, width-1, &leftr, &leftg, &leftb);
  1254. encode_bgra_bitstream(s, width-1, 3);
  1255. for(y=1; y<s->height; y++){
  1256. uint8_t *dst = data + y*stride;
  1257. if(s->predictor == PLANE && s->interlaced < y){
  1258. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*3);
  1259. sub_left_prediction_rgb24(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1260. }else{
  1261. sub_left_prediction_rgb24(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1262. }
  1263. encode_bgra_bitstream(s, width, 3);
  1264. }
  1265. } else {
  1266. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1267. }
  1268. emms_c();
  1269. size += (put_bits_count(&s->pb) + 31) / 8;
  1270. put_bits(&s->pb, 16, 0);
  1271. put_bits(&s->pb, 15, 0);
  1272. size /= 4;
  1273. if ((s->flags&CODEC_FLAG_PASS1) && (s->picture_number & 31) == 0) {
  1274. int j;
  1275. char *p = avctx->stats_out;
  1276. char *end = p + 1024*30;
  1277. for (i = 0; i < 3; i++) {
  1278. for (j = 0; j < 256; j++) {
  1279. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1280. p += strlen(p);
  1281. s->stats[i][j]= 0;
  1282. }
  1283. snprintf(p, end-p, "\n");
  1284. p++;
  1285. }
  1286. } else
  1287. avctx->stats_out[0] = '\0';
  1288. if (!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)) {
  1289. flush_put_bits(&s->pb);
  1290. s->dsp.bswap_buf((uint32_t*)pkt->data, (uint32_t*)pkt->data, size);
  1291. }
  1292. s->picture_number++;
  1293. pkt->size = size * 4;
  1294. pkt->flags |= AV_PKT_FLAG_KEY;
  1295. *got_packet = 1;
  1296. return 0;
  1297. }
  1298. static av_cold int encode_end(AVCodecContext *avctx)
  1299. {
  1300. HYuvContext *s = avctx->priv_data;
  1301. common_end(s);
  1302. av_freep(&avctx->extradata);
  1303. av_freep(&avctx->stats_out);
  1304. return 0;
  1305. }
  1306. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1307. #if CONFIG_HUFFYUV_DECODER
  1308. AVCodec ff_huffyuv_decoder = {
  1309. .name = "huffyuv",
  1310. .type = AVMEDIA_TYPE_VIDEO,
  1311. .id = AV_CODEC_ID_HUFFYUV,
  1312. .priv_data_size = sizeof(HYuvContext),
  1313. .init = decode_init,
  1314. .close = decode_end,
  1315. .decode = decode_frame,
  1316. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1317. CODEC_CAP_FRAME_THREADS,
  1318. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1319. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1320. };
  1321. #endif
  1322. #if CONFIG_FFVHUFF_DECODER
  1323. AVCodec ff_ffvhuff_decoder = {
  1324. .name = "ffvhuff",
  1325. .type = AVMEDIA_TYPE_VIDEO,
  1326. .id = AV_CODEC_ID_FFVHUFF,
  1327. .priv_data_size = sizeof(HYuvContext),
  1328. .init = decode_init,
  1329. .close = decode_end,
  1330. .decode = decode_frame,
  1331. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND |
  1332. CODEC_CAP_FRAME_THREADS,
  1333. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1334. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1335. };
  1336. #endif
  1337. #if CONFIG_HUFFYUV_ENCODER
  1338. AVCodec ff_huffyuv_encoder = {
  1339. .name = "huffyuv",
  1340. .type = AVMEDIA_TYPE_VIDEO,
  1341. .id = AV_CODEC_ID_HUFFYUV,
  1342. .priv_data_size = sizeof(HYuvContext),
  1343. .init = encode_init,
  1344. .encode2 = encode_frame,
  1345. .close = encode_end,
  1346. .pix_fmts = (const enum AVPixelFormat[]){
  1347. AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  1348. },
  1349. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1350. };
  1351. #endif
  1352. #if CONFIG_FFVHUFF_ENCODER
  1353. AVCodec ff_ffvhuff_encoder = {
  1354. .name = "ffvhuff",
  1355. .type = AVMEDIA_TYPE_VIDEO,
  1356. .id = AV_CODEC_ID_FFVHUFF,
  1357. .priv_data_size = sizeof(HYuvContext),
  1358. .init = encode_init,
  1359. .encode2 = encode_frame,
  1360. .close = encode_end,
  1361. .pix_fmts = (const enum AVPixelFormat[]){
  1362. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_RGB24, AV_PIX_FMT_RGB32, AV_PIX_FMT_NONE
  1363. },
  1364. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1365. };
  1366. #endif