You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2985 lines
117KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "msmpeg4data.h"
  31. #include "unary.h"
  32. #include "vc1.h"
  33. #include "vc1_pred.h"
  34. #include "vc1acdata.h"
  35. #include "vc1data.h"
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. // offset tables for interlaced picture MVDATA decoding
  39. static const uint8_t offset_table[2][9] = {
  40. { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
  41. { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
  42. };
  43. /***********************************************************************/
  44. /**
  45. * @name VC-1 Bitplane decoding
  46. * @see 8.7, p56
  47. * @{
  48. */
  49. static inline void init_block_index(VC1Context *v)
  50. {
  51. MpegEncContext *s = &v->s;
  52. ff_init_block_index(s);
  53. if (v->field_mode && !(v->second_field ^ v->tff)) {
  54. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  55. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  56. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  57. }
  58. }
  59. /** @} */ //Bitplane group
  60. static void vc1_put_signed_blocks_clamped(VC1Context *v)
  61. {
  62. MpegEncContext *s = &v->s;
  63. int topleft_mb_pos, top_mb_pos;
  64. int stride_y, fieldtx = 0;
  65. int v_dist;
  66. /* The put pixels loop is always one MB row behind the decoding loop,
  67. * because we can only put pixels when overlap filtering is done, and
  68. * for filtering of the bottom edge of a MB, we need the next MB row
  69. * present as well.
  70. * Within the row, the put pixels loop is also one MB col behind the
  71. * decoding loop. The reason for this is again, because for filtering
  72. * of the right MB edge, we need the next MB present. */
  73. if (!s->first_slice_line) {
  74. if (s->mb_x) {
  75. topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
  76. if (v->fcm == ILACE_FRAME)
  77. fieldtx = v->fieldtx_plane[topleft_mb_pos];
  78. stride_y = s->linesize << fieldtx;
  79. v_dist = (16 - fieldtx) >> (fieldtx == 0);
  80. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
  81. s->dest[0] - 16 * s->linesize - 16,
  82. stride_y);
  83. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
  84. s->dest[0] - 16 * s->linesize - 8,
  85. stride_y);
  86. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
  87. s->dest[0] - v_dist * s->linesize - 16,
  88. stride_y);
  89. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
  90. s->dest[0] - v_dist * s->linesize - 8,
  91. stride_y);
  92. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  93. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
  94. s->dest[1] - 8 * s->uvlinesize - 8,
  95. s->uvlinesize);
  96. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
  97. s->dest[2] - 8 * s->uvlinesize - 8,
  98. s->uvlinesize);
  99. }
  100. }
  101. if (s->mb_x == s->mb_width - 1) {
  102. top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
  103. if (v->fcm == ILACE_FRAME)
  104. fieldtx = v->fieldtx_plane[top_mb_pos];
  105. stride_y = s->linesize << fieldtx;
  106. v_dist = fieldtx ? 15 : 8;
  107. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
  108. s->dest[0] - 16 * s->linesize,
  109. stride_y);
  110. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
  111. s->dest[0] - 16 * s->linesize + 8,
  112. stride_y);
  113. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
  114. s->dest[0] - v_dist * s->linesize,
  115. stride_y);
  116. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
  117. s->dest[0] - v_dist * s->linesize + 8,
  118. stride_y);
  119. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  120. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
  121. s->dest[1] - 8 * s->uvlinesize,
  122. s->uvlinesize);
  123. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
  124. s->dest[2] - 8 * s->uvlinesize,
  125. s->uvlinesize);
  126. }
  127. }
  128. }
  129. #define inc_blk_idx(idx) do { \
  130. idx++; \
  131. if (idx >= v->n_allocated_blks) \
  132. idx = 0; \
  133. } while (0)
  134. inc_blk_idx(v->topleft_blk_idx);
  135. inc_blk_idx(v->top_blk_idx);
  136. inc_blk_idx(v->left_blk_idx);
  137. inc_blk_idx(v->cur_blk_idx);
  138. }
  139. /***********************************************************************/
  140. /**
  141. * @name VC-1 Block-level functions
  142. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  143. * @{
  144. */
  145. /**
  146. * @def GET_MQUANT
  147. * @brief Get macroblock-level quantizer scale
  148. */
  149. #define GET_MQUANT() \
  150. if (v->dquantfrm) { \
  151. int edges = 0; \
  152. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  153. if (v->dqbilevel) { \
  154. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  155. } else { \
  156. mqdiff = get_bits(gb, 3); \
  157. if (mqdiff != 7) \
  158. mquant = v->pq + mqdiff; \
  159. else \
  160. mquant = get_bits(gb, 5); \
  161. } \
  162. } \
  163. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  164. edges = 1 << v->dqsbedge; \
  165. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  166. edges = (3 << v->dqsbedge) % 15; \
  167. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  168. edges = 15; \
  169. if ((edges&1) && !s->mb_x) \
  170. mquant = v->altpq; \
  171. if ((edges&2) && s->first_slice_line) \
  172. mquant = v->altpq; \
  173. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  174. mquant = v->altpq; \
  175. if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
  176. mquant = v->altpq; \
  177. if (!mquant || mquant > 31) { \
  178. av_log(v->s.avctx, AV_LOG_ERROR, \
  179. "Overriding invalid mquant %d\n", mquant); \
  180. mquant = 1; \
  181. } \
  182. }
  183. /**
  184. * @def GET_MVDATA(_dmv_x, _dmv_y)
  185. * @brief Get MV differentials
  186. * @see MVDATA decoding from 8.3.5.2, p(1)20
  187. * @param _dmv_x Horizontal differential for decoded MV
  188. * @param _dmv_y Vertical differential for decoded MV
  189. */
  190. #define GET_MVDATA(_dmv_x, _dmv_y) \
  191. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  192. VC1_MV_DIFF_VLC_BITS, 2); \
  193. if (index > 36) { \
  194. mb_has_coeffs = 1; \
  195. index -= 37; \
  196. } else \
  197. mb_has_coeffs = 0; \
  198. s->mb_intra = 0; \
  199. if (!index) { \
  200. _dmv_x = _dmv_y = 0; \
  201. } else if (index == 35) { \
  202. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  203. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  204. } else if (index == 36) { \
  205. _dmv_x = 0; \
  206. _dmv_y = 0; \
  207. s->mb_intra = 1; \
  208. } else { \
  209. index1 = index % 6; \
  210. _dmv_x = offset_table[1][index1]; \
  211. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  212. if (val > 0) { \
  213. val = get_bits(gb, val); \
  214. sign = 0 - (val & 1); \
  215. _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
  216. } \
  217. \
  218. index1 = index / 6; \
  219. _dmv_y = offset_table[1][index1]; \
  220. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  221. if (val > 0) { \
  222. val = get_bits(gb, val); \
  223. sign = 0 - (val & 1); \
  224. _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
  225. } \
  226. }
  227. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  228. int *dmv_y, int *pred_flag)
  229. {
  230. int index, index1;
  231. int extend_x, extend_y;
  232. GetBitContext *gb = &v->s.gb;
  233. int bits, esc;
  234. int val, sign;
  235. if (v->numref) {
  236. bits = VC1_2REF_MVDATA_VLC_BITS;
  237. esc = 125;
  238. } else {
  239. bits = VC1_1REF_MVDATA_VLC_BITS;
  240. esc = 71;
  241. }
  242. extend_x = v->dmvrange & 1;
  243. extend_y = (v->dmvrange >> 1) & 1;
  244. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  245. if (index == esc) {
  246. *dmv_x = get_bits(gb, v->k_x);
  247. *dmv_y = get_bits(gb, v->k_y);
  248. if (v->numref) {
  249. if (pred_flag)
  250. *pred_flag = *dmv_y & 1;
  251. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  252. }
  253. }
  254. else {
  255. av_assert0(index < esc);
  256. index1 = (index + 1) % 9;
  257. if (index1 != 0) {
  258. val = get_bits(gb, index1 + extend_x);
  259. sign = 0 - (val & 1);
  260. *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
  261. } else
  262. *dmv_x = 0;
  263. index1 = (index + 1) / 9;
  264. if (index1 > v->numref) {
  265. val = get_bits(gb, (index1 >> v->numref) + extend_y);
  266. sign = 0 - (val & 1);
  267. *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
  268. } else
  269. *dmv_y = 0;
  270. if (v->numref && pred_flag)
  271. *pred_flag = index1 & 1;
  272. }
  273. }
  274. /** Reconstruct motion vector for B-frame and do motion compensation
  275. */
  276. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  277. int direct, int mode)
  278. {
  279. if (direct) {
  280. ff_vc1_mc_1mv(v, 0);
  281. ff_vc1_interp_mc(v);
  282. return;
  283. }
  284. if (mode == BMV_TYPE_INTERPOLATED) {
  285. ff_vc1_mc_1mv(v, 0);
  286. ff_vc1_interp_mc(v);
  287. return;
  288. }
  289. ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  290. }
  291. /** Get predicted DC value for I-frames only
  292. * prediction dir: left=0, top=1
  293. * @param s MpegEncContext
  294. * @param overlap flag indicating that overlap filtering is used
  295. * @param pq integer part of picture quantizer
  296. * @param[in] n block index in the current MB
  297. * @param dc_val_ptr Pointer to DC predictor
  298. * @param dir_ptr Prediction direction for use in AC prediction
  299. */
  300. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  301. int16_t **dc_val_ptr, int *dir_ptr)
  302. {
  303. int a, b, c, wrap, pred, scale;
  304. int16_t *dc_val;
  305. static const uint16_t dcpred[32] = {
  306. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  307. 114, 102, 93, 85, 79, 73, 68, 64,
  308. 60, 57, 54, 51, 49, 47, 45, 43,
  309. 41, 39, 38, 37, 35, 34, 33
  310. };
  311. /* find prediction - wmv3_dc_scale always used here in fact */
  312. if (n < 4) scale = s->y_dc_scale;
  313. else scale = s->c_dc_scale;
  314. wrap = s->block_wrap[n];
  315. dc_val = s->dc_val[0] + s->block_index[n];
  316. /* B A
  317. * C X
  318. */
  319. c = dc_val[ - 1];
  320. b = dc_val[ - 1 - wrap];
  321. a = dc_val[ - wrap];
  322. if (pq < 9 || !overlap) {
  323. /* Set outer values */
  324. if (s->first_slice_line && (n != 2 && n != 3))
  325. b = a = dcpred[scale];
  326. if (s->mb_x == 0 && (n != 1 && n != 3))
  327. b = c = dcpred[scale];
  328. } else {
  329. /* Set outer values */
  330. if (s->first_slice_line && (n != 2 && n != 3))
  331. b = a = 0;
  332. if (s->mb_x == 0 && (n != 1 && n != 3))
  333. b = c = 0;
  334. }
  335. if (abs(a - b) <= abs(b - c)) {
  336. pred = c;
  337. *dir_ptr = 1; // left
  338. } else {
  339. pred = a;
  340. *dir_ptr = 0; // top
  341. }
  342. /* update predictor */
  343. *dc_val_ptr = &dc_val[0];
  344. return pred;
  345. }
  346. /** Get predicted DC value
  347. * prediction dir: left=0, top=1
  348. * @param s MpegEncContext
  349. * @param overlap flag indicating that overlap filtering is used
  350. * @param pq integer part of picture quantizer
  351. * @param[in] n block index in the current MB
  352. * @param a_avail flag indicating top block availability
  353. * @param c_avail flag indicating left block availability
  354. * @param dc_val_ptr Pointer to DC predictor
  355. * @param dir_ptr Prediction direction for use in AC prediction
  356. */
  357. static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  358. int a_avail, int c_avail,
  359. int16_t **dc_val_ptr, int *dir_ptr)
  360. {
  361. int a, b, c, wrap, pred;
  362. int16_t *dc_val;
  363. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  364. int q1, q2 = 0;
  365. int dqscale_index;
  366. /* scale predictors if needed */
  367. q1 = s->current_picture.qscale_table[mb_pos];
  368. dqscale_index = s->y_dc_scale_table[q1] - 1;
  369. if (dqscale_index < 0)
  370. return 0;
  371. wrap = s->block_wrap[n];
  372. dc_val = s->dc_val[0] + s->block_index[n];
  373. /* B A
  374. * C X
  375. */
  376. c = dc_val[ - 1];
  377. b = dc_val[ - 1 - wrap];
  378. a = dc_val[ - wrap];
  379. if (c_avail && (n != 1 && n != 3)) {
  380. q2 = s->current_picture.qscale_table[mb_pos - 1];
  381. if (q2 && q2 != q1)
  382. c = (int)((unsigned)c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  383. }
  384. if (a_avail && (n != 2 && n != 3)) {
  385. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  386. if (q2 && q2 != q1)
  387. a = (int)((unsigned)a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  388. }
  389. if (a_avail && c_avail && (n != 3)) {
  390. int off = mb_pos;
  391. if (n != 1)
  392. off--;
  393. if (n != 2)
  394. off -= s->mb_stride;
  395. q2 = s->current_picture.qscale_table[off];
  396. if (q2 && q2 != q1)
  397. b = (int)((unsigned)b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  398. }
  399. if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
  400. pred = c;
  401. *dir_ptr = 1; // left
  402. } else if (a_avail) {
  403. pred = a;
  404. *dir_ptr = 0; // top
  405. } else {
  406. pred = 0;
  407. *dir_ptr = 1; // left
  408. }
  409. /* update predictor */
  410. *dc_val_ptr = &dc_val[0];
  411. return pred;
  412. }
  413. /** @} */ // Block group
  414. /**
  415. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  416. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  417. * @{
  418. */
  419. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  420. uint8_t **coded_block_ptr)
  421. {
  422. int xy, wrap, pred, a, b, c;
  423. xy = s->block_index[n];
  424. wrap = s->b8_stride;
  425. /* B C
  426. * A X
  427. */
  428. a = s->coded_block[xy - 1 ];
  429. b = s->coded_block[xy - 1 - wrap];
  430. c = s->coded_block[xy - wrap];
  431. if (b == c) {
  432. pred = a;
  433. } else {
  434. pred = c;
  435. }
  436. /* store value */
  437. *coded_block_ptr = &s->coded_block[xy];
  438. return pred;
  439. }
  440. /**
  441. * Decode one AC coefficient
  442. * @param v The VC1 context
  443. * @param last Last coefficient
  444. * @param skip How much zero coefficients to skip
  445. * @param value Decoded AC coefficient value
  446. * @param codingset set of VLC to decode data
  447. * @see 8.1.3.4
  448. */
  449. static int vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  450. int *value, int codingset)
  451. {
  452. GetBitContext *gb = &v->s.gb;
  453. int index, run, level, lst, sign;
  454. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  455. if (index < 0)
  456. return index;
  457. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  458. run = vc1_index_decode_table[codingset][index][0];
  459. level = vc1_index_decode_table[codingset][index][1];
  460. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  461. sign = get_bits1(gb);
  462. } else {
  463. int escape = decode210(gb);
  464. if (escape != 2) {
  465. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  466. if (index >= ff_vc1_ac_sizes[codingset] - 1U)
  467. return AVERROR_INVALIDDATA;
  468. run = vc1_index_decode_table[codingset][index][0];
  469. level = vc1_index_decode_table[codingset][index][1];
  470. lst = index >= vc1_last_decode_table[codingset];
  471. if (escape == 0) {
  472. if (lst)
  473. level += vc1_last_delta_level_table[codingset][run];
  474. else
  475. level += vc1_delta_level_table[codingset][run];
  476. } else {
  477. if (lst)
  478. run += vc1_last_delta_run_table[codingset][level] + 1;
  479. else
  480. run += vc1_delta_run_table[codingset][level] + 1;
  481. }
  482. sign = get_bits1(gb);
  483. } else {
  484. lst = get_bits1(gb);
  485. if (v->s.esc3_level_length == 0) {
  486. if (v->pq < 8 || v->dquantfrm) { // table 59
  487. v->s.esc3_level_length = get_bits(gb, 3);
  488. if (!v->s.esc3_level_length)
  489. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  490. } else { // table 60
  491. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  492. }
  493. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  494. }
  495. run = get_bits(gb, v->s.esc3_run_length);
  496. sign = get_bits1(gb);
  497. level = get_bits(gb, v->s.esc3_level_length);
  498. }
  499. }
  500. *last = lst;
  501. *skip = run;
  502. *value = (level ^ -sign) + sign;
  503. return 0;
  504. }
  505. /** Decode intra block in intra frames - should be faster than decode_intra_block
  506. * @param v VC1Context
  507. * @param block block to decode
  508. * @param[in] n subblock index
  509. * @param coded are AC coeffs present or not
  510. * @param codingset set of VLC to decode data
  511. */
  512. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  513. int coded, int codingset)
  514. {
  515. GetBitContext *gb = &v->s.gb;
  516. MpegEncContext *s = &v->s;
  517. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  518. int i;
  519. int16_t *dc_val;
  520. int16_t *ac_val, *ac_val2;
  521. int dcdiff, scale;
  522. /* Get DC differential */
  523. if (n < 4) {
  524. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  525. } else {
  526. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  527. }
  528. if (dcdiff < 0) {
  529. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  530. return -1;
  531. }
  532. if (dcdiff) {
  533. const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
  534. if (dcdiff == 119 /* ESC index value */) {
  535. dcdiff = get_bits(gb, 8 + m);
  536. } else {
  537. if (m)
  538. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  539. }
  540. if (get_bits1(gb))
  541. dcdiff = -dcdiff;
  542. }
  543. /* Prediction */
  544. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  545. *dc_val = dcdiff;
  546. /* Store the quantized DC coeff, used for prediction */
  547. if (n < 4)
  548. scale = s->y_dc_scale;
  549. else
  550. scale = s->c_dc_scale;
  551. block[0] = dcdiff * scale;
  552. ac_val = s->ac_val[0][s->block_index[n]];
  553. ac_val2 = ac_val;
  554. if (dc_pred_dir) // left
  555. ac_val -= 16;
  556. else // top
  557. ac_val -= 16 * s->block_wrap[n];
  558. scale = v->pq * 2 + v->halfpq;
  559. //AC Decoding
  560. i = !!coded;
  561. if (coded) {
  562. int last = 0, skip, value;
  563. const uint8_t *zz_table;
  564. int k;
  565. if (v->s.ac_pred) {
  566. if (!dc_pred_dir)
  567. zz_table = v->zz_8x8[2];
  568. else
  569. zz_table = v->zz_8x8[3];
  570. } else
  571. zz_table = v->zz_8x8[1];
  572. while (!last) {
  573. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  574. if (ret < 0)
  575. return ret;
  576. i += skip;
  577. if (i > 63)
  578. break;
  579. block[zz_table[i++]] = value;
  580. }
  581. /* apply AC prediction if needed */
  582. if (s->ac_pred) {
  583. int sh;
  584. if (dc_pred_dir) { // left
  585. sh = v->left_blk_sh;
  586. } else { // top
  587. sh = v->top_blk_sh;
  588. ac_val += 8;
  589. }
  590. for (k = 1; k < 8; k++)
  591. block[k << sh] += ac_val[k];
  592. }
  593. /* save AC coeffs for further prediction */
  594. for (k = 1; k < 8; k++) {
  595. ac_val2[k] = block[k << v->left_blk_sh];
  596. ac_val2[k + 8] = block[k << v->top_blk_sh];
  597. }
  598. /* scale AC coeffs */
  599. for (k = 1; k < 64; k++)
  600. if (block[k]) {
  601. block[k] *= scale;
  602. if (!v->pquantizer)
  603. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  604. }
  605. } else {
  606. int k;
  607. memset(ac_val2, 0, 16 * 2);
  608. /* apply AC prediction if needed */
  609. if (s->ac_pred) {
  610. int sh;
  611. if (dc_pred_dir) { //left
  612. sh = v->left_blk_sh;
  613. } else { // top
  614. sh = v->top_blk_sh;
  615. ac_val += 8;
  616. ac_val2 += 8;
  617. }
  618. memcpy(ac_val2, ac_val, 8 * 2);
  619. for (k = 1; k < 8; k++) {
  620. block[k << sh] = ac_val[k] * scale;
  621. if (!v->pquantizer && block[k << sh])
  622. block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
  623. }
  624. }
  625. }
  626. if (s->ac_pred) i = 63;
  627. s->block_last_index[n] = i;
  628. return 0;
  629. }
  630. /** Decode intra block in intra frames - should be faster than decode_intra_block
  631. * @param v VC1Context
  632. * @param block block to decode
  633. * @param[in] n subblock number
  634. * @param coded are AC coeffs present or not
  635. * @param codingset set of VLC to decode data
  636. * @param mquant quantizer value for this macroblock
  637. */
  638. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  639. int coded, int codingset, int mquant)
  640. {
  641. GetBitContext *gb = &v->s.gb;
  642. MpegEncContext *s = &v->s;
  643. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  644. int i;
  645. int16_t *dc_val = NULL;
  646. int16_t *ac_val, *ac_val2;
  647. int dcdiff;
  648. int a_avail = v->a_avail, c_avail = v->c_avail;
  649. int use_pred = s->ac_pred;
  650. int scale;
  651. int q1, q2 = 0;
  652. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  653. /* Get DC differential */
  654. if (n < 4) {
  655. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  656. } else {
  657. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  658. }
  659. if (dcdiff < 0) {
  660. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  661. return -1;
  662. }
  663. if (dcdiff) {
  664. const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
  665. if (dcdiff == 119 /* ESC index value */) {
  666. dcdiff = get_bits(gb, 8 + m);
  667. } else {
  668. if (m)
  669. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  670. }
  671. if (get_bits1(gb))
  672. dcdiff = -dcdiff;
  673. }
  674. /* Prediction */
  675. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  676. *dc_val = dcdiff;
  677. /* Store the quantized DC coeff, used for prediction */
  678. if (n < 4)
  679. scale = s->y_dc_scale;
  680. else
  681. scale = s->c_dc_scale;
  682. block[0] = dcdiff * scale;
  683. /* check if AC is needed at all */
  684. if (!a_avail && !c_avail)
  685. use_pred = 0;
  686. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  687. ac_val = s->ac_val[0][s->block_index[n]];
  688. ac_val2 = ac_val;
  689. if (dc_pred_dir) // left
  690. ac_val -= 16;
  691. else // top
  692. ac_val -= 16 * s->block_wrap[n];
  693. q1 = s->current_picture.qscale_table[mb_pos];
  694. if (n == 3)
  695. q2 = q1;
  696. else if (dc_pred_dir) {
  697. if (n == 1)
  698. q2 = q1;
  699. else if (c_avail && mb_pos)
  700. q2 = s->current_picture.qscale_table[mb_pos - 1];
  701. } else {
  702. if (n == 2)
  703. q2 = q1;
  704. else if (a_avail && mb_pos >= s->mb_stride)
  705. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  706. }
  707. //AC Decoding
  708. i = 1;
  709. if (coded) {
  710. int last = 0, skip, value;
  711. const uint8_t *zz_table;
  712. int k;
  713. if (v->s.ac_pred) {
  714. if (!use_pred && v->fcm == ILACE_FRAME) {
  715. zz_table = v->zzi_8x8;
  716. } else {
  717. if (!dc_pred_dir) // top
  718. zz_table = v->zz_8x8[2];
  719. else // left
  720. zz_table = v->zz_8x8[3];
  721. }
  722. } else {
  723. if (v->fcm != ILACE_FRAME)
  724. zz_table = v->zz_8x8[1];
  725. else
  726. zz_table = v->zzi_8x8;
  727. }
  728. while (!last) {
  729. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  730. if (ret < 0)
  731. return ret;
  732. i += skip;
  733. if (i > 63)
  734. break;
  735. block[zz_table[i++]] = value;
  736. }
  737. /* apply AC prediction if needed */
  738. if (use_pred) {
  739. int sh;
  740. if (dc_pred_dir) { // left
  741. sh = v->left_blk_sh;
  742. } else { // top
  743. sh = v->top_blk_sh;
  744. ac_val += 8;
  745. }
  746. /* scale predictors if needed*/
  747. if (q2 && q1 != q2) {
  748. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  749. if (q1 < 1)
  750. return AVERROR_INVALIDDATA;
  751. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  752. for (k = 1; k < 8; k++)
  753. block[k << sh] += (int)(ac_val[k] * (unsigned)q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  754. } else {
  755. for (k = 1; k < 8; k++)
  756. block[k << sh] += ac_val[k];
  757. }
  758. }
  759. /* save AC coeffs for further prediction */
  760. for (k = 1; k < 8; k++) {
  761. ac_val2[k ] = block[k << v->left_blk_sh];
  762. ac_val2[k + 8] = block[k << v->top_blk_sh];
  763. }
  764. /* scale AC coeffs */
  765. for (k = 1; k < 64; k++)
  766. if (block[k]) {
  767. block[k] *= scale;
  768. if (!v->pquantizer)
  769. block[k] += (block[k] < 0) ? -mquant : mquant;
  770. }
  771. } else { // no AC coeffs
  772. int k;
  773. memset(ac_val2, 0, 16 * 2);
  774. /* apply AC prediction if needed */
  775. if (use_pred) {
  776. int sh;
  777. if (dc_pred_dir) { // left
  778. sh = v->left_blk_sh;
  779. } else { // top
  780. sh = v->top_blk_sh;
  781. ac_val += 8;
  782. ac_val2 += 8;
  783. }
  784. memcpy(ac_val2, ac_val, 8 * 2);
  785. if (q2 && q1 != q2) {
  786. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  787. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  788. if (q1 < 1)
  789. return AVERROR_INVALIDDATA;
  790. for (k = 1; k < 8; k++)
  791. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  792. }
  793. for (k = 1; k < 8; k++) {
  794. block[k << sh] = ac_val2[k] * scale;
  795. if (!v->pquantizer && block[k << sh])
  796. block[k << sh] += (block[k << sh] < 0) ? -mquant : mquant;
  797. }
  798. }
  799. }
  800. if (use_pred) i = 63;
  801. s->block_last_index[n] = i;
  802. return 0;
  803. }
  804. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  805. * @param v VC1Context
  806. * @param block block to decode
  807. * @param[in] n subblock index
  808. * @param coded are AC coeffs present or not
  809. * @param mquant block quantizer
  810. * @param codingset set of VLC to decode data
  811. */
  812. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  813. int coded, int mquant, int codingset)
  814. {
  815. GetBitContext *gb = &v->s.gb;
  816. MpegEncContext *s = &v->s;
  817. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  818. int i;
  819. int16_t *dc_val = NULL;
  820. int16_t *ac_val, *ac_val2;
  821. int dcdiff;
  822. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  823. int a_avail = v->a_avail, c_avail = v->c_avail;
  824. int use_pred = s->ac_pred;
  825. int scale;
  826. int q1, q2 = 0;
  827. s->bdsp.clear_block(block);
  828. /* XXX: Guard against dumb values of mquant */
  829. mquant = av_clip_uintp2(mquant, 5);
  830. /* Set DC scale - y and c use the same */
  831. s->y_dc_scale = s->y_dc_scale_table[mquant];
  832. s->c_dc_scale = s->c_dc_scale_table[mquant];
  833. /* Get DC differential */
  834. if (n < 4) {
  835. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  836. } else {
  837. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  838. }
  839. if (dcdiff < 0) {
  840. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  841. return -1;
  842. }
  843. if (dcdiff) {
  844. const int m = (mquant == 1 || mquant == 2) ? 3 - mquant : 0;
  845. if (dcdiff == 119 /* ESC index value */) {
  846. dcdiff = get_bits(gb, 8 + m);
  847. } else {
  848. if (m)
  849. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  850. }
  851. if (get_bits1(gb))
  852. dcdiff = -dcdiff;
  853. }
  854. /* Prediction */
  855. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  856. *dc_val = dcdiff;
  857. /* Store the quantized DC coeff, used for prediction */
  858. if (n < 4) {
  859. block[0] = dcdiff * s->y_dc_scale;
  860. } else {
  861. block[0] = dcdiff * s->c_dc_scale;
  862. }
  863. //AC Decoding
  864. i = 1;
  865. /* check if AC is needed at all and adjust direction if needed */
  866. if (!a_avail) dc_pred_dir = 1;
  867. if (!c_avail) dc_pred_dir = 0;
  868. if (!a_avail && !c_avail) use_pred = 0;
  869. ac_val = s->ac_val[0][s->block_index[n]];
  870. ac_val2 = ac_val;
  871. scale = mquant * 2 + v->halfpq;
  872. if (dc_pred_dir) //left
  873. ac_val -= 16;
  874. else //top
  875. ac_val -= 16 * s->block_wrap[n];
  876. q1 = s->current_picture.qscale_table[mb_pos];
  877. if (dc_pred_dir && c_avail && mb_pos)
  878. q2 = s->current_picture.qscale_table[mb_pos - 1];
  879. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  880. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  881. if (dc_pred_dir && n == 1)
  882. q2 = q1;
  883. if (!dc_pred_dir && n == 2)
  884. q2 = q1;
  885. if (n == 3) q2 = q1;
  886. if (coded) {
  887. int last = 0, skip, value;
  888. int k;
  889. while (!last) {
  890. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  891. if (ret < 0)
  892. return ret;
  893. i += skip;
  894. if (i > 63)
  895. break;
  896. if (v->fcm == PROGRESSIVE)
  897. block[v->zz_8x8[0][i++]] = value;
  898. else {
  899. if (use_pred && (v->fcm == ILACE_FRAME)) {
  900. if (!dc_pred_dir) // top
  901. block[v->zz_8x8[2][i++]] = value;
  902. else // left
  903. block[v->zz_8x8[3][i++]] = value;
  904. } else {
  905. block[v->zzi_8x8[i++]] = value;
  906. }
  907. }
  908. }
  909. /* apply AC prediction if needed */
  910. if (use_pred) {
  911. /* scale predictors if needed*/
  912. if (q2 && q1 != q2) {
  913. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  914. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  915. if (q1 < 1)
  916. return AVERROR_INVALIDDATA;
  917. if (dc_pred_dir) { // left
  918. for (k = 1; k < 8; k++)
  919. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  920. } else { //top
  921. for (k = 1; k < 8; k++)
  922. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  923. }
  924. } else {
  925. if (dc_pred_dir) { // left
  926. for (k = 1; k < 8; k++)
  927. block[k << v->left_blk_sh] += ac_val[k];
  928. } else { // top
  929. for (k = 1; k < 8; k++)
  930. block[k << v->top_blk_sh] += ac_val[k + 8];
  931. }
  932. }
  933. }
  934. /* save AC coeffs for further prediction */
  935. for (k = 1; k < 8; k++) {
  936. ac_val2[k ] = block[k << v->left_blk_sh];
  937. ac_val2[k + 8] = block[k << v->top_blk_sh];
  938. }
  939. /* scale AC coeffs */
  940. for (k = 1; k < 64; k++)
  941. if (block[k]) {
  942. block[k] *= scale;
  943. if (!v->pquantizer)
  944. block[k] += (block[k] < 0) ? -mquant : mquant;
  945. }
  946. if (use_pred) i = 63;
  947. } else { // no AC coeffs
  948. int k;
  949. memset(ac_val2, 0, 16 * 2);
  950. if (dc_pred_dir) { // left
  951. if (use_pred) {
  952. memcpy(ac_val2, ac_val, 8 * 2);
  953. if (q2 && q1 != q2) {
  954. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  955. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  956. if (q1 < 1)
  957. return AVERROR_INVALIDDATA;
  958. for (k = 1; k < 8; k++)
  959. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  960. }
  961. }
  962. } else { // top
  963. if (use_pred) {
  964. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  965. if (q2 && q1 != q2) {
  966. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  967. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  968. if (q1 < 1)
  969. return AVERROR_INVALIDDATA;
  970. for (k = 1; k < 8; k++)
  971. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  972. }
  973. }
  974. }
  975. /* apply AC prediction if needed */
  976. if (use_pred) {
  977. if (dc_pred_dir) { // left
  978. for (k = 1; k < 8; k++) {
  979. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  980. if (!v->pquantizer && block[k << v->left_blk_sh])
  981. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
  982. }
  983. } else { // top
  984. for (k = 1; k < 8; k++) {
  985. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  986. if (!v->pquantizer && block[k << v->top_blk_sh])
  987. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
  988. }
  989. }
  990. i = 63;
  991. }
  992. }
  993. s->block_last_index[n] = i;
  994. return 0;
  995. }
  996. /** Decode P block
  997. */
  998. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  999. int mquant, int ttmb, int first_block,
  1000. uint8_t *dst, int linesize, int skip_block,
  1001. int *ttmb_out)
  1002. {
  1003. MpegEncContext *s = &v->s;
  1004. GetBitContext *gb = &s->gb;
  1005. int i, j;
  1006. int subblkpat = 0;
  1007. int scale, off, idx, last, skip, value;
  1008. int ttblk = ttmb & 7;
  1009. int pat = 0;
  1010. s->bdsp.clear_block(block);
  1011. if (ttmb == -1) {
  1012. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1013. }
  1014. if (ttblk == TT_4X4) {
  1015. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1016. }
  1017. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  1018. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1019. || (!v->res_rtm_flag && !first_block))) {
  1020. subblkpat = decode012(gb);
  1021. if (subblkpat)
  1022. subblkpat ^= 3; // swap decoded pattern bits
  1023. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  1024. ttblk = TT_8X4;
  1025. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  1026. ttblk = TT_4X8;
  1027. }
  1028. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1029. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1030. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1031. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1032. ttblk = TT_8X4;
  1033. }
  1034. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1035. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1036. ttblk = TT_4X8;
  1037. }
  1038. switch (ttblk) {
  1039. case TT_8X8:
  1040. pat = 0xF;
  1041. i = 0;
  1042. last = 0;
  1043. while (!last) {
  1044. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1045. if (ret < 0)
  1046. return ret;
  1047. i += skip;
  1048. if (i > 63)
  1049. break;
  1050. if (!v->fcm)
  1051. idx = v->zz_8x8[0][i++];
  1052. else
  1053. idx = v->zzi_8x8[i++];
  1054. block[idx] = value * scale;
  1055. if (!v->pquantizer)
  1056. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1057. }
  1058. if (!skip_block) {
  1059. if (i == 1)
  1060. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1061. else {
  1062. v->vc1dsp.vc1_inv_trans_8x8(block);
  1063. s->idsp.add_pixels_clamped(block, dst, linesize);
  1064. }
  1065. }
  1066. break;
  1067. case TT_4X4:
  1068. pat = ~subblkpat & 0xF;
  1069. for (j = 0; j < 4; j++) {
  1070. last = subblkpat & (1 << (3 - j));
  1071. i = 0;
  1072. off = (j & 1) * 4 + (j & 2) * 16;
  1073. while (!last) {
  1074. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1075. if (ret < 0)
  1076. return ret;
  1077. i += skip;
  1078. if (i > 15)
  1079. break;
  1080. if (!v->fcm)
  1081. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1082. else
  1083. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  1084. block[idx + off] = value * scale;
  1085. if (!v->pquantizer)
  1086. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1087. }
  1088. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  1089. if (i == 1)
  1090. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1091. else
  1092. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1093. }
  1094. }
  1095. break;
  1096. case TT_8X4:
  1097. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  1098. for (j = 0; j < 2; j++) {
  1099. last = subblkpat & (1 << (1 - j));
  1100. i = 0;
  1101. off = j * 32;
  1102. while (!last) {
  1103. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1104. if (ret < 0)
  1105. return ret;
  1106. i += skip;
  1107. if (i > 31)
  1108. break;
  1109. if (!v->fcm)
  1110. idx = v->zz_8x4[i++] + off;
  1111. else
  1112. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  1113. block[idx] = value * scale;
  1114. if (!v->pquantizer)
  1115. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1116. }
  1117. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1118. if (i == 1)
  1119. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  1120. else
  1121. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  1122. }
  1123. }
  1124. break;
  1125. case TT_4X8:
  1126. pat = ~(subblkpat * 5) & 0xF;
  1127. for (j = 0; j < 2; j++) {
  1128. last = subblkpat & (1 << (1 - j));
  1129. i = 0;
  1130. off = j * 4;
  1131. while (!last) {
  1132. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1133. if (ret < 0)
  1134. return ret;
  1135. i += skip;
  1136. if (i > 31)
  1137. break;
  1138. if (!v->fcm)
  1139. idx = v->zz_4x8[i++] + off;
  1140. else
  1141. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  1142. block[idx] = value * scale;
  1143. if (!v->pquantizer)
  1144. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1145. }
  1146. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1147. if (i == 1)
  1148. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  1149. else
  1150. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1151. }
  1152. }
  1153. break;
  1154. }
  1155. if (ttmb_out)
  1156. *ttmb_out |= ttblk << (n * 4);
  1157. return pat;
  1158. }
  1159. /** @} */ // Macroblock group
  1160. static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
  1161. /** Decode one P-frame MB
  1162. */
  1163. static int vc1_decode_p_mb(VC1Context *v)
  1164. {
  1165. MpegEncContext *s = &v->s;
  1166. GetBitContext *gb = &s->gb;
  1167. int i, j;
  1168. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1169. int cbp; /* cbp decoding stuff */
  1170. int mqdiff, mquant; /* MB quantization */
  1171. int ttmb = v->ttfrm; /* MB Transform type */
  1172. int mb_has_coeffs = 1; /* last_flag */
  1173. int dmv_x, dmv_y; /* Differential MV components */
  1174. int index, index1; /* LUT indexes */
  1175. int val, sign; /* temp values */
  1176. int first_block = 1;
  1177. int dst_idx, off;
  1178. int skipped, fourmv;
  1179. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  1180. mquant = v->pq; /* lossy initialization */
  1181. if (v->mv_type_is_raw)
  1182. fourmv = get_bits1(gb);
  1183. else
  1184. fourmv = v->mv_type_mb_plane[mb_pos];
  1185. if (v->skip_is_raw)
  1186. skipped = get_bits1(gb);
  1187. else
  1188. skipped = v->s.mbskip_table[mb_pos];
  1189. if (!fourmv) { /* 1MV mode */
  1190. if (!skipped) {
  1191. GET_MVDATA(dmv_x, dmv_y);
  1192. if (s->mb_intra) {
  1193. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1194. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1195. }
  1196. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1197. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1198. /* FIXME Set DC val for inter block ? */
  1199. if (s->mb_intra && !mb_has_coeffs) {
  1200. GET_MQUANT();
  1201. s->ac_pred = get_bits1(gb);
  1202. cbp = 0;
  1203. } else if (mb_has_coeffs) {
  1204. if (s->mb_intra)
  1205. s->ac_pred = get_bits1(gb);
  1206. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1207. GET_MQUANT();
  1208. } else {
  1209. mquant = v->pq;
  1210. cbp = 0;
  1211. }
  1212. s->current_picture.qscale_table[mb_pos] = mquant;
  1213. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1214. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1215. VC1_TTMB_VLC_BITS, 2);
  1216. if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
  1217. dst_idx = 0;
  1218. for (i = 0; i < 6; i++) {
  1219. s->dc_val[0][s->block_index[i]] = 0;
  1220. dst_idx += i >> 2;
  1221. val = ((cbp >> (5 - i)) & 1);
  1222. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1223. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1224. if (s->mb_intra) {
  1225. /* check if prediction blocks A and C are available */
  1226. v->a_avail = v->c_avail = 0;
  1227. if (i == 2 || i == 3 || !s->first_slice_line)
  1228. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1229. if (i == 1 || i == 3 || s->mb_x)
  1230. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1231. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1232. (i & 4) ? v->codingset2 : v->codingset);
  1233. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1234. continue;
  1235. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1236. if (v->rangeredfrm)
  1237. for (j = 0; j < 64; j++)
  1238. s->block[i][j] <<= 1;
  1239. s->idsp.put_signed_pixels_clamped(s->block[i],
  1240. s->dest[dst_idx] + off,
  1241. i & 4 ? s->uvlinesize
  1242. : s->linesize);
  1243. if (v->pq >= 9 && v->overlap) {
  1244. if (v->c_avail)
  1245. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1246. if (v->a_avail)
  1247. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1248. }
  1249. block_cbp |= 0xF << (i << 2);
  1250. block_intra |= 1 << i;
  1251. } else if (val) {
  1252. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
  1253. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  1254. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1255. block_cbp |= pat << (i << 2);
  1256. if (!v->ttmbf && ttmb < 8)
  1257. ttmb = -1;
  1258. first_block = 0;
  1259. }
  1260. }
  1261. } else { // skipped
  1262. s->mb_intra = 0;
  1263. for (i = 0; i < 6; i++) {
  1264. v->mb_type[0][s->block_index[i]] = 0;
  1265. s->dc_val[0][s->block_index[i]] = 0;
  1266. }
  1267. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1268. s->current_picture.qscale_table[mb_pos] = 0;
  1269. ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1270. ff_vc1_mc_1mv(v, 0);
  1271. }
  1272. } else { // 4MV mode
  1273. if (!skipped /* unskipped MB */) {
  1274. int intra_count = 0, coded_inter = 0;
  1275. int is_intra[6], is_coded[6];
  1276. /* Get CBPCY */
  1277. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1278. for (i = 0; i < 6; i++) {
  1279. val = ((cbp >> (5 - i)) & 1);
  1280. s->dc_val[0][s->block_index[i]] = 0;
  1281. s->mb_intra = 0;
  1282. if (i < 4) {
  1283. dmv_x = dmv_y = 0;
  1284. s->mb_intra = 0;
  1285. mb_has_coeffs = 0;
  1286. if (val) {
  1287. GET_MVDATA(dmv_x, dmv_y);
  1288. }
  1289. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1290. if (!s->mb_intra)
  1291. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1292. intra_count += s->mb_intra;
  1293. is_intra[i] = s->mb_intra;
  1294. is_coded[i] = mb_has_coeffs;
  1295. }
  1296. if (i & 4) {
  1297. is_intra[i] = (intra_count >= 3);
  1298. is_coded[i] = val;
  1299. }
  1300. if (i == 4)
  1301. ff_vc1_mc_4mv_chroma(v, 0);
  1302. v->mb_type[0][s->block_index[i]] = is_intra[i];
  1303. if (!coded_inter)
  1304. coded_inter = !is_intra[i] & is_coded[i];
  1305. }
  1306. // if there are no coded blocks then don't do anything more
  1307. dst_idx = 0;
  1308. if (!intra_count && !coded_inter)
  1309. goto end;
  1310. GET_MQUANT();
  1311. s->current_picture.qscale_table[mb_pos] = mquant;
  1312. /* test if block is intra and has pred */
  1313. {
  1314. int intrapred = 0;
  1315. for (i = 0; i < 6; i++)
  1316. if (is_intra[i]) {
  1317. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  1318. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  1319. intrapred = 1;
  1320. break;
  1321. }
  1322. }
  1323. if (intrapred)
  1324. s->ac_pred = get_bits1(gb);
  1325. else
  1326. s->ac_pred = 0;
  1327. }
  1328. if (!v->ttmbf && coded_inter)
  1329. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1330. for (i = 0; i < 6; i++) {
  1331. dst_idx += i >> 2;
  1332. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1333. s->mb_intra = is_intra[i];
  1334. if (is_intra[i]) {
  1335. /* check if prediction blocks A and C are available */
  1336. v->a_avail = v->c_avail = 0;
  1337. if (i == 2 || i == 3 || !s->first_slice_line)
  1338. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1339. if (i == 1 || i == 3 || s->mb_x)
  1340. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1341. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
  1342. (i & 4) ? v->codingset2 : v->codingset);
  1343. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1344. continue;
  1345. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1346. if (v->rangeredfrm)
  1347. for (j = 0; j < 64; j++)
  1348. s->block[i][j] <<= 1;
  1349. s->idsp.put_signed_pixels_clamped(s->block[i],
  1350. s->dest[dst_idx] + off,
  1351. (i & 4) ? s->uvlinesize
  1352. : s->linesize);
  1353. if (v->pq >= 9 && v->overlap) {
  1354. if (v->c_avail)
  1355. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1356. if (v->a_avail)
  1357. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  1358. }
  1359. block_cbp |= 0xF << (i << 2);
  1360. block_intra |= 1 << i;
  1361. } else if (is_coded[i]) {
  1362. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1363. first_block, s->dest[dst_idx] + off,
  1364. (i & 4) ? s->uvlinesize : s->linesize,
  1365. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1366. &block_tt);
  1367. block_cbp |= pat << (i << 2);
  1368. if (!v->ttmbf && ttmb < 8)
  1369. ttmb = -1;
  1370. first_block = 0;
  1371. }
  1372. }
  1373. } else { // skipped MB
  1374. s->mb_intra = 0;
  1375. s->current_picture.qscale_table[mb_pos] = 0;
  1376. for (i = 0; i < 6; i++) {
  1377. v->mb_type[0][s->block_index[i]] = 0;
  1378. s->dc_val[0][s->block_index[i]] = 0;
  1379. }
  1380. for (i = 0; i < 4; i++) {
  1381. ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1382. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1383. }
  1384. ff_vc1_mc_4mv_chroma(v, 0);
  1385. s->current_picture.qscale_table[mb_pos] = 0;
  1386. }
  1387. }
  1388. end:
  1389. v->cbp[s->mb_x] = block_cbp;
  1390. v->ttblk[s->mb_x] = block_tt;
  1391. v->is_intra[s->mb_x] = block_intra;
  1392. return 0;
  1393. }
  1394. /* Decode one macroblock in an interlaced frame p picture */
  1395. static int vc1_decode_p_mb_intfr(VC1Context *v)
  1396. {
  1397. MpegEncContext *s = &v->s;
  1398. GetBitContext *gb = &s->gb;
  1399. int i;
  1400. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1401. int cbp = 0; /* cbp decoding stuff */
  1402. int mqdiff, mquant; /* MB quantization */
  1403. int ttmb = v->ttfrm; /* MB Transform type */
  1404. int mb_has_coeffs = 1; /* last_flag */
  1405. int dmv_x, dmv_y; /* Differential MV components */
  1406. int val; /* temp value */
  1407. int first_block = 1;
  1408. int dst_idx, off;
  1409. int skipped, fourmv = 0, twomv = 0;
  1410. int block_cbp = 0, pat, block_tt = 0;
  1411. int idx_mbmode = 0, mvbp;
  1412. int stride_y, fieldtx;
  1413. mquant = v->pq; /* Lossy initialization */
  1414. if (v->skip_is_raw)
  1415. skipped = get_bits1(gb);
  1416. else
  1417. skipped = v->s.mbskip_table[mb_pos];
  1418. if (!skipped) {
  1419. if (v->fourmvswitch)
  1420. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  1421. else
  1422. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  1423. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  1424. /* store the motion vector type in a flag (useful later) */
  1425. case MV_PMODE_INTFR_4MV:
  1426. fourmv = 1;
  1427. v->blk_mv_type[s->block_index[0]] = 0;
  1428. v->blk_mv_type[s->block_index[1]] = 0;
  1429. v->blk_mv_type[s->block_index[2]] = 0;
  1430. v->blk_mv_type[s->block_index[3]] = 0;
  1431. break;
  1432. case MV_PMODE_INTFR_4MV_FIELD:
  1433. fourmv = 1;
  1434. v->blk_mv_type[s->block_index[0]] = 1;
  1435. v->blk_mv_type[s->block_index[1]] = 1;
  1436. v->blk_mv_type[s->block_index[2]] = 1;
  1437. v->blk_mv_type[s->block_index[3]] = 1;
  1438. break;
  1439. case MV_PMODE_INTFR_2MV_FIELD:
  1440. twomv = 1;
  1441. v->blk_mv_type[s->block_index[0]] = 1;
  1442. v->blk_mv_type[s->block_index[1]] = 1;
  1443. v->blk_mv_type[s->block_index[2]] = 1;
  1444. v->blk_mv_type[s->block_index[3]] = 1;
  1445. break;
  1446. case MV_PMODE_INTFR_1MV:
  1447. v->blk_mv_type[s->block_index[0]] = 0;
  1448. v->blk_mv_type[s->block_index[1]] = 0;
  1449. v->blk_mv_type[s->block_index[2]] = 0;
  1450. v->blk_mv_type[s->block_index[3]] = 0;
  1451. break;
  1452. }
  1453. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  1454. for (i = 0; i < 4; i++) {
  1455. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  1456. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  1457. }
  1458. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1459. s->mb_intra = 1;
  1460. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  1461. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  1462. mb_has_coeffs = get_bits1(gb);
  1463. if (mb_has_coeffs)
  1464. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1465. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1466. GET_MQUANT();
  1467. s->current_picture.qscale_table[mb_pos] = mquant;
  1468. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1469. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1470. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1471. dst_idx = 0;
  1472. for (i = 0; i < 6; i++) {
  1473. v->a_avail = v->c_avail = 0;
  1474. v->mb_type[0][s->block_index[i]] = 1;
  1475. s->dc_val[0][s->block_index[i]] = 0;
  1476. dst_idx += i >> 2;
  1477. val = ((cbp >> (5 - i)) & 1);
  1478. if (i == 2 || i == 3 || !s->first_slice_line)
  1479. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1480. if (i == 1 || i == 3 || s->mb_x)
  1481. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1482. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1483. (i & 4) ? v->codingset2 : v->codingset);
  1484. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1485. continue;
  1486. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1487. if (i < 4) {
  1488. stride_y = s->linesize << fieldtx;
  1489. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  1490. } else {
  1491. stride_y = s->uvlinesize;
  1492. off = 0;
  1493. }
  1494. s->idsp.put_signed_pixels_clamped(s->block[i],
  1495. s->dest[dst_idx] + off,
  1496. stride_y);
  1497. //TODO: loop filter
  1498. }
  1499. } else { // inter MB
  1500. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  1501. if (mb_has_coeffs)
  1502. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1503. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  1504. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  1505. } else {
  1506. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  1507. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  1508. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1509. }
  1510. }
  1511. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1512. for (i = 0; i < 6; i++)
  1513. v->mb_type[0][s->block_index[i]] = 0;
  1514. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  1515. /* for all motion vector read MVDATA and motion compensate each block */
  1516. dst_idx = 0;
  1517. if (fourmv) {
  1518. mvbp = v->fourmvbp;
  1519. for (i = 0; i < 4; i++) {
  1520. dmv_x = dmv_y = 0;
  1521. if (mvbp & (8 >> i))
  1522. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1523. ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  1524. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1525. }
  1526. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1527. } else if (twomv) {
  1528. mvbp = v->twomvbp;
  1529. dmv_x = dmv_y = 0;
  1530. if (mvbp & 2) {
  1531. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1532. }
  1533. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1534. ff_vc1_mc_4mv_luma(v, 0, 0, 0);
  1535. ff_vc1_mc_4mv_luma(v, 1, 0, 0);
  1536. dmv_x = dmv_y = 0;
  1537. if (mvbp & 1) {
  1538. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1539. }
  1540. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1541. ff_vc1_mc_4mv_luma(v, 2, 0, 0);
  1542. ff_vc1_mc_4mv_luma(v, 3, 0, 0);
  1543. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1544. } else {
  1545. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  1546. dmv_x = dmv_y = 0;
  1547. if (mvbp) {
  1548. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1549. }
  1550. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1551. ff_vc1_mc_1mv(v, 0);
  1552. }
  1553. if (cbp)
  1554. GET_MQUANT(); // p. 227
  1555. s->current_picture.qscale_table[mb_pos] = mquant;
  1556. if (!v->ttmbf && cbp)
  1557. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1558. for (i = 0; i < 6; i++) {
  1559. s->dc_val[0][s->block_index[i]] = 0;
  1560. dst_idx += i >> 2;
  1561. val = ((cbp >> (5 - i)) & 1);
  1562. if (!fieldtx)
  1563. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1564. else
  1565. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  1566. if (val) {
  1567. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1568. first_block, s->dest[dst_idx] + off,
  1569. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  1570. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1571. block_cbp |= pat << (i << 2);
  1572. if (!v->ttmbf && ttmb < 8)
  1573. ttmb = -1;
  1574. first_block = 0;
  1575. }
  1576. }
  1577. }
  1578. } else { // skipped
  1579. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1580. for (i = 0; i < 6; i++) {
  1581. v->mb_type[0][s->block_index[i]] = 0;
  1582. s->dc_val[0][s->block_index[i]] = 0;
  1583. }
  1584. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1585. s->current_picture.qscale_table[mb_pos] = 0;
  1586. v->blk_mv_type[s->block_index[0]] = 0;
  1587. v->blk_mv_type[s->block_index[1]] = 0;
  1588. v->blk_mv_type[s->block_index[2]] = 0;
  1589. v->blk_mv_type[s->block_index[3]] = 0;
  1590. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1591. ff_vc1_mc_1mv(v, 0);
  1592. }
  1593. if (s->mb_x == s->mb_width - 1)
  1594. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0])*s->mb_stride);
  1595. return 0;
  1596. }
  1597. static int vc1_decode_p_mb_intfi(VC1Context *v)
  1598. {
  1599. MpegEncContext *s = &v->s;
  1600. GetBitContext *gb = &s->gb;
  1601. int i;
  1602. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1603. int cbp = 0; /* cbp decoding stuff */
  1604. int mqdiff, mquant; /* MB quantization */
  1605. int ttmb = v->ttfrm; /* MB Transform type */
  1606. int mb_has_coeffs = 1; /* last_flag */
  1607. int dmv_x, dmv_y; /* Differential MV components */
  1608. int val; /* temp values */
  1609. int first_block = 1;
  1610. int dst_idx, off;
  1611. int pred_flag = 0;
  1612. int block_cbp = 0, pat, block_tt = 0;
  1613. int idx_mbmode = 0;
  1614. mquant = v->pq; /* Lossy initialization */
  1615. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1616. if (idx_mbmode <= 1) { // intra MB
  1617. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1618. s->mb_intra = 1;
  1619. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  1620. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  1621. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1622. GET_MQUANT();
  1623. s->current_picture.qscale_table[mb_pos] = mquant;
  1624. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1625. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1626. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1627. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1628. mb_has_coeffs = idx_mbmode & 1;
  1629. if (mb_has_coeffs)
  1630. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1631. dst_idx = 0;
  1632. for (i = 0; i < 6; i++) {
  1633. v->a_avail = v->c_avail = 0;
  1634. v->mb_type[0][s->block_index[i]] = 1;
  1635. s->dc_val[0][s->block_index[i]] = 0;
  1636. dst_idx += i >> 2;
  1637. val = ((cbp >> (5 - i)) & 1);
  1638. if (i == 2 || i == 3 || !s->first_slice_line)
  1639. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1640. if (i == 1 || i == 3 || s->mb_x)
  1641. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1642. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1643. (i & 4) ? v->codingset2 : v->codingset);
  1644. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1645. continue;
  1646. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1647. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1648. s->idsp.put_signed_pixels_clamped(s->block[i],
  1649. s->dest[dst_idx] + off,
  1650. (i & 4) ? s->uvlinesize
  1651. : s->linesize);
  1652. // TODO: loop filter
  1653. }
  1654. } else {
  1655. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1656. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1657. for (i = 0; i < 6; i++)
  1658. v->mb_type[0][s->block_index[i]] = 0;
  1659. if (idx_mbmode <= 5) { // 1-MV
  1660. dmv_x = dmv_y = pred_flag = 0;
  1661. if (idx_mbmode & 1) {
  1662. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1663. }
  1664. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1665. ff_vc1_mc_1mv(v, 0);
  1666. mb_has_coeffs = !(idx_mbmode & 2);
  1667. } else { // 4-MV
  1668. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1669. for (i = 0; i < 4; i++) {
  1670. dmv_x = dmv_y = pred_flag = 0;
  1671. if (v->fourmvbp & (8 >> i))
  1672. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1673. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1674. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1675. }
  1676. ff_vc1_mc_4mv_chroma(v, 0);
  1677. mb_has_coeffs = idx_mbmode & 1;
  1678. }
  1679. if (mb_has_coeffs)
  1680. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1681. if (cbp) {
  1682. GET_MQUANT();
  1683. }
  1684. s->current_picture.qscale_table[mb_pos] = mquant;
  1685. if (!v->ttmbf && cbp) {
  1686. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1687. }
  1688. dst_idx = 0;
  1689. for (i = 0; i < 6; i++) {
  1690. s->dc_val[0][s->block_index[i]] = 0;
  1691. dst_idx += i >> 2;
  1692. val = ((cbp >> (5 - i)) & 1);
  1693. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1694. if (val) {
  1695. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1696. first_block, s->dest[dst_idx] + off,
  1697. (i & 4) ? s->uvlinesize : s->linesize,
  1698. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1699. &block_tt);
  1700. block_cbp |= pat << (i << 2);
  1701. if (!v->ttmbf && ttmb < 8)
  1702. ttmb = -1;
  1703. first_block = 0;
  1704. }
  1705. }
  1706. }
  1707. if (s->mb_x == s->mb_width - 1)
  1708. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  1709. return 0;
  1710. }
  1711. /** Decode one B-frame MB (in Main profile)
  1712. */
  1713. static void vc1_decode_b_mb(VC1Context *v)
  1714. {
  1715. MpegEncContext *s = &v->s;
  1716. GetBitContext *gb = &s->gb;
  1717. int i, j;
  1718. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1719. int cbp = 0; /* cbp decoding stuff */
  1720. int mqdiff, mquant; /* MB quantization */
  1721. int ttmb = v->ttfrm; /* MB Transform type */
  1722. int mb_has_coeffs = 0; /* last_flag */
  1723. int index, index1; /* LUT indexes */
  1724. int val, sign; /* temp values */
  1725. int first_block = 1;
  1726. int dst_idx, off;
  1727. int skipped, direct;
  1728. int dmv_x[2], dmv_y[2];
  1729. int bmvtype = BMV_TYPE_BACKWARD;
  1730. mquant = v->pq; /* lossy initialization */
  1731. s->mb_intra = 0;
  1732. if (v->dmb_is_raw)
  1733. direct = get_bits1(gb);
  1734. else
  1735. direct = v->direct_mb_plane[mb_pos];
  1736. if (v->skip_is_raw)
  1737. skipped = get_bits1(gb);
  1738. else
  1739. skipped = v->s.mbskip_table[mb_pos];
  1740. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1741. for (i = 0; i < 6; i++) {
  1742. v->mb_type[0][s->block_index[i]] = 0;
  1743. s->dc_val[0][s->block_index[i]] = 0;
  1744. }
  1745. s->current_picture.qscale_table[mb_pos] = 0;
  1746. if (!direct) {
  1747. if (!skipped) {
  1748. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1749. dmv_x[1] = dmv_x[0];
  1750. dmv_y[1] = dmv_y[0];
  1751. }
  1752. if (skipped || !s->mb_intra) {
  1753. bmvtype = decode012(gb);
  1754. switch (bmvtype) {
  1755. case 0:
  1756. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  1757. break;
  1758. case 1:
  1759. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  1760. break;
  1761. case 2:
  1762. bmvtype = BMV_TYPE_INTERPOLATED;
  1763. dmv_x[0] = dmv_y[0] = 0;
  1764. }
  1765. }
  1766. }
  1767. for (i = 0; i < 6; i++)
  1768. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1769. if (skipped) {
  1770. if (direct)
  1771. bmvtype = BMV_TYPE_INTERPOLATED;
  1772. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1773. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1774. return;
  1775. }
  1776. if (direct) {
  1777. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1778. GET_MQUANT();
  1779. s->mb_intra = 0;
  1780. s->current_picture.qscale_table[mb_pos] = mquant;
  1781. if (!v->ttmbf)
  1782. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1783. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  1784. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1785. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1786. } else {
  1787. if (!mb_has_coeffs && !s->mb_intra) {
  1788. /* no coded blocks - effectively skipped */
  1789. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1790. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1791. return;
  1792. }
  1793. if (s->mb_intra && !mb_has_coeffs) {
  1794. GET_MQUANT();
  1795. s->current_picture.qscale_table[mb_pos] = mquant;
  1796. s->ac_pred = get_bits1(gb);
  1797. cbp = 0;
  1798. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1799. } else {
  1800. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  1801. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1802. if (!mb_has_coeffs) {
  1803. /* interpolated skipped block */
  1804. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1805. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1806. return;
  1807. }
  1808. }
  1809. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1810. if (!s->mb_intra) {
  1811. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1812. }
  1813. if (s->mb_intra)
  1814. s->ac_pred = get_bits1(gb);
  1815. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1816. GET_MQUANT();
  1817. s->current_picture.qscale_table[mb_pos] = mquant;
  1818. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1819. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1820. }
  1821. }
  1822. dst_idx = 0;
  1823. for (i = 0; i < 6; i++) {
  1824. s->dc_val[0][s->block_index[i]] = 0;
  1825. dst_idx += i >> 2;
  1826. val = ((cbp >> (5 - i)) & 1);
  1827. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1828. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1829. if (s->mb_intra) {
  1830. /* check if prediction blocks A and C are available */
  1831. v->a_avail = v->c_avail = 0;
  1832. if (i == 2 || i == 3 || !s->first_slice_line)
  1833. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1834. if (i == 1 || i == 3 || s->mb_x)
  1835. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1836. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1837. (i & 4) ? v->codingset2 : v->codingset);
  1838. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1839. continue;
  1840. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1841. if (v->rangeredfrm)
  1842. for (j = 0; j < 64; j++)
  1843. s->block[i][j] *= 2;
  1844. s->idsp.put_signed_pixels_clamped(s->block[i],
  1845. s->dest[dst_idx] + off,
  1846. i & 4 ? s->uvlinesize
  1847. : s->linesize);
  1848. } else if (val) {
  1849. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1850. first_block, s->dest[dst_idx] + off,
  1851. (i & 4) ? s->uvlinesize : s->linesize,
  1852. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  1853. if (!v->ttmbf && ttmb < 8)
  1854. ttmb = -1;
  1855. first_block = 0;
  1856. }
  1857. }
  1858. }
  1859. /** Decode one B-frame MB (in interlaced field B picture)
  1860. */
  1861. static void vc1_decode_b_mb_intfi(VC1Context *v)
  1862. {
  1863. MpegEncContext *s = &v->s;
  1864. GetBitContext *gb = &s->gb;
  1865. int i, j;
  1866. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1867. int cbp = 0; /* cbp decoding stuff */
  1868. int mqdiff, mquant; /* MB quantization */
  1869. int ttmb = v->ttfrm; /* MB Transform type */
  1870. int mb_has_coeffs = 0; /* last_flag */
  1871. int val; /* temp value */
  1872. int first_block = 1;
  1873. int dst_idx, off;
  1874. int fwd;
  1875. int dmv_x[2], dmv_y[2], pred_flag[2];
  1876. int bmvtype = BMV_TYPE_BACKWARD;
  1877. int idx_mbmode;
  1878. mquant = v->pq; /* Lossy initialization */
  1879. s->mb_intra = 0;
  1880. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1881. if (idx_mbmode <= 1) { // intra MB
  1882. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1883. s->mb_intra = 1;
  1884. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1885. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1886. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1887. GET_MQUANT();
  1888. s->current_picture.qscale_table[mb_pos] = mquant;
  1889. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1890. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1891. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1892. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1893. mb_has_coeffs = idx_mbmode & 1;
  1894. if (mb_has_coeffs)
  1895. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1896. dst_idx = 0;
  1897. for (i = 0; i < 6; i++) {
  1898. v->a_avail = v->c_avail = 0;
  1899. v->mb_type[0][s->block_index[i]] = 1;
  1900. s->dc_val[0][s->block_index[i]] = 0;
  1901. dst_idx += i >> 2;
  1902. val = ((cbp >> (5 - i)) & 1);
  1903. if (i == 2 || i == 3 || !s->first_slice_line)
  1904. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1905. if (i == 1 || i == 3 || s->mb_x)
  1906. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1907. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1908. (i & 4) ? v->codingset2 : v->codingset);
  1909. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1910. continue;
  1911. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1912. if (v->rangeredfrm)
  1913. for (j = 0; j < 64; j++)
  1914. s->block[i][j] <<= 1;
  1915. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1916. s->idsp.put_signed_pixels_clamped(s->block[i],
  1917. s->dest[dst_idx] + off,
  1918. (i & 4) ? s->uvlinesize
  1919. : s->linesize);
  1920. // TODO: yet to perform loop filter
  1921. }
  1922. } else {
  1923. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1924. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1925. for (i = 0; i < 6; i++)
  1926. v->mb_type[0][s->block_index[i]] = 0;
  1927. if (v->fmb_is_raw)
  1928. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  1929. else
  1930. fwd = v->forward_mb_plane[mb_pos];
  1931. if (idx_mbmode <= 5) { // 1-MV
  1932. int interpmvp = 0;
  1933. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1934. pred_flag[0] = pred_flag[1] = 0;
  1935. if (fwd)
  1936. bmvtype = BMV_TYPE_FORWARD;
  1937. else {
  1938. bmvtype = decode012(gb);
  1939. switch (bmvtype) {
  1940. case 0:
  1941. bmvtype = BMV_TYPE_BACKWARD;
  1942. break;
  1943. case 1:
  1944. bmvtype = BMV_TYPE_DIRECT;
  1945. break;
  1946. case 2:
  1947. bmvtype = BMV_TYPE_INTERPOLATED;
  1948. interpmvp = get_bits1(gb);
  1949. }
  1950. }
  1951. v->bmvtype = bmvtype;
  1952. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  1953. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1954. }
  1955. if (interpmvp) {
  1956. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  1957. }
  1958. if (bmvtype == BMV_TYPE_DIRECT) {
  1959. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1960. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  1961. if (!s->next_picture_ptr->field_picture) {
  1962. av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
  1963. return;
  1964. }
  1965. }
  1966. ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  1967. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  1968. mb_has_coeffs = !(idx_mbmode & 2);
  1969. } else { // 4-MV
  1970. if (fwd)
  1971. bmvtype = BMV_TYPE_FORWARD;
  1972. v->bmvtype = bmvtype;
  1973. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1974. for (i = 0; i < 4; i++) {
  1975. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1976. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  1977. if (v->fourmvbp & (8 >> i)) {
  1978. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  1979. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  1980. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1981. }
  1982. ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  1983. ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  1984. }
  1985. ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  1986. mb_has_coeffs = idx_mbmode & 1;
  1987. }
  1988. if (mb_has_coeffs)
  1989. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1990. if (cbp) {
  1991. GET_MQUANT();
  1992. }
  1993. s->current_picture.qscale_table[mb_pos] = mquant;
  1994. if (!v->ttmbf && cbp) {
  1995. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1996. }
  1997. dst_idx = 0;
  1998. for (i = 0; i < 6; i++) {
  1999. s->dc_val[0][s->block_index[i]] = 0;
  2000. dst_idx += i >> 2;
  2001. val = ((cbp >> (5 - i)) & 1);
  2002. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  2003. if (val) {
  2004. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2005. first_block, s->dest[dst_idx] + off,
  2006. (i & 4) ? s->uvlinesize : s->linesize,
  2007. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  2008. if (!v->ttmbf && ttmb < 8)
  2009. ttmb = -1;
  2010. first_block = 0;
  2011. }
  2012. }
  2013. }
  2014. }
  2015. /** Decode one B-frame MB (in interlaced frame B picture)
  2016. */
  2017. static int vc1_decode_b_mb_intfr(VC1Context *v)
  2018. {
  2019. MpegEncContext *s = &v->s;
  2020. GetBitContext *gb = &s->gb;
  2021. int i, j;
  2022. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2023. int cbp = 0; /* cbp decoding stuff */
  2024. int mqdiff, mquant; /* MB quantization */
  2025. int ttmb = v->ttfrm; /* MB Transform type */
  2026. int mvsw = 0; /* motion vector switch */
  2027. int mb_has_coeffs = 1; /* last_flag */
  2028. int dmv_x, dmv_y; /* Differential MV components */
  2029. int val; /* temp value */
  2030. int first_block = 1;
  2031. int dst_idx, off;
  2032. int skipped, direct, twomv = 0;
  2033. int block_cbp = 0, pat, block_tt = 0;
  2034. int idx_mbmode = 0, mvbp;
  2035. int stride_y, fieldtx;
  2036. int bmvtype = BMV_TYPE_BACKWARD;
  2037. int dir, dir2;
  2038. mquant = v->pq; /* Lossy initialization */
  2039. s->mb_intra = 0;
  2040. if (v->skip_is_raw)
  2041. skipped = get_bits1(gb);
  2042. else
  2043. skipped = v->s.mbskip_table[mb_pos];
  2044. if (!skipped) {
  2045. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  2046. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  2047. twomv = 1;
  2048. v->blk_mv_type[s->block_index[0]] = 1;
  2049. v->blk_mv_type[s->block_index[1]] = 1;
  2050. v->blk_mv_type[s->block_index[2]] = 1;
  2051. v->blk_mv_type[s->block_index[3]] = 1;
  2052. } else {
  2053. v->blk_mv_type[s->block_index[0]] = 0;
  2054. v->blk_mv_type[s->block_index[1]] = 0;
  2055. v->blk_mv_type[s->block_index[2]] = 0;
  2056. v->blk_mv_type[s->block_index[3]] = 0;
  2057. }
  2058. }
  2059. if (v->dmb_is_raw)
  2060. direct = get_bits1(gb);
  2061. else
  2062. direct = v->direct_mb_plane[mb_pos];
  2063. if (direct) {
  2064. if (s->next_picture_ptr->field_picture)
  2065. av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
  2066. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  2067. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  2068. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  2069. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  2070. if (twomv) {
  2071. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  2072. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  2073. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  2074. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  2075. for (i = 1; i < 4; i += 2) {
  2076. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  2077. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  2078. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  2079. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  2080. }
  2081. } else {
  2082. for (i = 1; i < 4; i++) {
  2083. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  2084. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  2085. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  2086. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  2087. }
  2088. }
  2089. }
  2090. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  2091. for (i = 0; i < 4; i++) {
  2092. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  2093. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  2094. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2095. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2096. }
  2097. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  2098. s->mb_intra = 1;
  2099. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2100. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  2101. mb_has_coeffs = get_bits1(gb);
  2102. if (mb_has_coeffs)
  2103. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2104. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  2105. GET_MQUANT();
  2106. s->current_picture.qscale_table[mb_pos] = mquant;
  2107. /* Set DC scale - y and c use the same (not sure if necessary here) */
  2108. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2109. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2110. dst_idx = 0;
  2111. for (i = 0; i < 6; i++) {
  2112. v->a_avail = v->c_avail = 0;
  2113. v->mb_type[0][s->block_index[i]] = 1;
  2114. s->dc_val[0][s->block_index[i]] = 0;
  2115. dst_idx += i >> 2;
  2116. val = ((cbp >> (5 - i)) & 1);
  2117. if (i == 2 || i == 3 || !s->first_slice_line)
  2118. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2119. if (i == 1 || i == 3 || s->mb_x)
  2120. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2121. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  2122. (i & 4) ? v->codingset2 : v->codingset);
  2123. if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2124. continue;
  2125. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2126. if (i < 4) {
  2127. stride_y = s->linesize << fieldtx;
  2128. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  2129. } else {
  2130. stride_y = s->uvlinesize;
  2131. off = 0;
  2132. }
  2133. s->idsp.put_signed_pixels_clamped(s->block[i],
  2134. s->dest[dst_idx] + off,
  2135. stride_y);
  2136. }
  2137. } else {
  2138. s->mb_intra = v->is_intra[s->mb_x] = 0;
  2139. if (!direct) {
  2140. if (skipped || !s->mb_intra) {
  2141. bmvtype = decode012(gb);
  2142. switch (bmvtype) {
  2143. case 0:
  2144. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2145. break;
  2146. case 1:
  2147. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2148. break;
  2149. case 2:
  2150. bmvtype = BMV_TYPE_INTERPOLATED;
  2151. }
  2152. }
  2153. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  2154. mvsw = get_bits1(gb);
  2155. }
  2156. if (!skipped) { // inter MB
  2157. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  2158. if (mb_has_coeffs)
  2159. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2160. if (!direct) {
  2161. if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
  2162. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  2163. } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
  2164. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  2165. }
  2166. }
  2167. for (i = 0; i < 6; i++)
  2168. v->mb_type[0][s->block_index[i]] = 0;
  2169. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  2170. /* for all motion vector read MVDATA and motion compensate each block */
  2171. dst_idx = 0;
  2172. if (direct) {
  2173. if (twomv) {
  2174. for (i = 0; i < 4; i++) {
  2175. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  2176. ff_vc1_mc_4mv_luma(v, i, 1, 1);
  2177. }
  2178. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2179. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2180. } else {
  2181. ff_vc1_mc_1mv(v, 0);
  2182. ff_vc1_interp_mc(v);
  2183. }
  2184. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  2185. mvbp = v->fourmvbp;
  2186. for (i = 0; i < 4; i++) {
  2187. dir = i==1 || i==3;
  2188. dmv_x = dmv_y = 0;
  2189. val = ((mvbp >> (3 - i)) & 1);
  2190. if (val)
  2191. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2192. j = i > 1 ? 2 : 0;
  2193. ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2194. ff_vc1_mc_4mv_luma(v, j, dir, dir);
  2195. ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
  2196. }
  2197. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2198. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2199. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2200. mvbp = v->twomvbp;
  2201. dmv_x = dmv_y = 0;
  2202. if (mvbp & 2)
  2203. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2204. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2205. ff_vc1_mc_1mv(v, 0);
  2206. dmv_x = dmv_y = 0;
  2207. if (mvbp & 1)
  2208. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2209. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2210. ff_vc1_interp_mc(v);
  2211. } else if (twomv) {
  2212. dir = bmvtype == BMV_TYPE_BACKWARD;
  2213. dir2 = dir;
  2214. if (mvsw)
  2215. dir2 = !dir;
  2216. mvbp = v->twomvbp;
  2217. dmv_x = dmv_y = 0;
  2218. if (mvbp & 2)
  2219. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2220. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2221. dmv_x = dmv_y = 0;
  2222. if (mvbp & 1)
  2223. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2224. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  2225. if (mvsw) {
  2226. for (i = 0; i < 2; i++) {
  2227. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2228. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2229. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2230. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2231. }
  2232. } else {
  2233. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2234. ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2235. }
  2236. ff_vc1_mc_4mv_luma(v, 0, dir, 0);
  2237. ff_vc1_mc_4mv_luma(v, 1, dir, 0);
  2238. ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
  2239. ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
  2240. ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  2241. } else {
  2242. dir = bmvtype == BMV_TYPE_BACKWARD;
  2243. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  2244. dmv_x = dmv_y = 0;
  2245. if (mvbp)
  2246. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2247. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2248. v->blk_mv_type[s->block_index[0]] = 1;
  2249. v->blk_mv_type[s->block_index[1]] = 1;
  2250. v->blk_mv_type[s->block_index[2]] = 1;
  2251. v->blk_mv_type[s->block_index[3]] = 1;
  2252. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2253. for (i = 0; i < 2; i++) {
  2254. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2255. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2256. }
  2257. ff_vc1_mc_1mv(v, dir);
  2258. }
  2259. if (cbp)
  2260. GET_MQUANT(); // p. 227
  2261. s->current_picture.qscale_table[mb_pos] = mquant;
  2262. if (!v->ttmbf && cbp)
  2263. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2264. for (i = 0; i < 6; i++) {
  2265. s->dc_val[0][s->block_index[i]] = 0;
  2266. dst_idx += i >> 2;
  2267. val = ((cbp >> (5 - i)) & 1);
  2268. if (!fieldtx)
  2269. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2270. else
  2271. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  2272. if (val) {
  2273. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2274. first_block, s->dest[dst_idx] + off,
  2275. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  2276. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2277. block_cbp |= pat << (i << 2);
  2278. if (!v->ttmbf && ttmb < 8)
  2279. ttmb = -1;
  2280. first_block = 0;
  2281. }
  2282. }
  2283. } else { // skipped
  2284. dir = 0;
  2285. for (i = 0; i < 6; i++) {
  2286. v->mb_type[0][s->block_index[i]] = 0;
  2287. s->dc_val[0][s->block_index[i]] = 0;
  2288. }
  2289. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2290. s->current_picture.qscale_table[mb_pos] = 0;
  2291. v->blk_mv_type[s->block_index[0]] = 0;
  2292. v->blk_mv_type[s->block_index[1]] = 0;
  2293. v->blk_mv_type[s->block_index[2]] = 0;
  2294. v->blk_mv_type[s->block_index[3]] = 0;
  2295. if (!direct) {
  2296. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2297. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2298. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2299. } else {
  2300. dir = bmvtype == BMV_TYPE_BACKWARD;
  2301. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2302. if (mvsw) {
  2303. int dir2 = dir;
  2304. if (mvsw)
  2305. dir2 = !dir;
  2306. for (i = 0; i < 2; i++) {
  2307. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2308. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2309. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2310. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2311. }
  2312. } else {
  2313. v->blk_mv_type[s->block_index[0]] = 1;
  2314. v->blk_mv_type[s->block_index[1]] = 1;
  2315. v->blk_mv_type[s->block_index[2]] = 1;
  2316. v->blk_mv_type[s->block_index[3]] = 1;
  2317. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2318. for (i = 0; i < 2; i++) {
  2319. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2320. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2321. }
  2322. }
  2323. }
  2324. }
  2325. ff_vc1_mc_1mv(v, dir);
  2326. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  2327. ff_vc1_interp_mc(v);
  2328. }
  2329. }
  2330. }
  2331. if (s->mb_x == s->mb_width - 1)
  2332. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  2333. v->cbp[s->mb_x] = block_cbp;
  2334. v->ttblk[s->mb_x] = block_tt;
  2335. return 0;
  2336. }
  2337. /** Decode blocks of I-frame
  2338. */
  2339. static void vc1_decode_i_blocks(VC1Context *v)
  2340. {
  2341. int k, j;
  2342. MpegEncContext *s = &v->s;
  2343. int cbp, val;
  2344. uint8_t *coded_val;
  2345. int mb_pos;
  2346. /* select codingmode used for VLC tables selection */
  2347. switch (v->y_ac_table_index) {
  2348. case 0:
  2349. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2350. break;
  2351. case 1:
  2352. v->codingset = CS_HIGH_MOT_INTRA;
  2353. break;
  2354. case 2:
  2355. v->codingset = CS_MID_RATE_INTRA;
  2356. break;
  2357. }
  2358. switch (v->c_ac_table_index) {
  2359. case 0:
  2360. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2361. break;
  2362. case 1:
  2363. v->codingset2 = CS_HIGH_MOT_INTER;
  2364. break;
  2365. case 2:
  2366. v->codingset2 = CS_MID_RATE_INTER;
  2367. break;
  2368. }
  2369. /* Set DC scale - y and c use the same */
  2370. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2371. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2372. //do frame decode
  2373. s->mb_x = s->mb_y = 0;
  2374. s->mb_intra = 1;
  2375. s->first_slice_line = 1;
  2376. for (s->mb_y = 0; s->mb_y < s->end_mb_y; s->mb_y++) {
  2377. s->mb_x = 0;
  2378. init_block_index(v);
  2379. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  2380. uint8_t *dst[6];
  2381. ff_update_block_index(s);
  2382. dst[0] = s->dest[0];
  2383. dst[1] = dst[0] + 8;
  2384. dst[2] = s->dest[0] + s->linesize * 8;
  2385. dst[3] = dst[2] + 8;
  2386. dst[4] = s->dest[1];
  2387. dst[5] = s->dest[2];
  2388. s->bdsp.clear_blocks(s->block[0]);
  2389. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2390. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2391. s->current_picture.qscale_table[mb_pos] = v->pq;
  2392. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2393. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2394. // do actual MB decoding and displaying
  2395. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2396. v->s.ac_pred = get_bits1(&v->s.gb);
  2397. for (k = 0; k < 6; k++) {
  2398. val = ((cbp >> (5 - k)) & 1);
  2399. if (k < 4) {
  2400. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2401. val = val ^ pred;
  2402. *coded_val = val;
  2403. }
  2404. cbp |= val << (5 - k);
  2405. vc1_decode_i_block(v, s->block[k], k, val, (k < 4) ? v->codingset : v->codingset2);
  2406. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2407. continue;
  2408. v->vc1dsp.vc1_inv_trans_8x8(s->block[k]);
  2409. if (v->pq >= 9 && v->overlap) {
  2410. if (v->rangeredfrm)
  2411. for (j = 0; j < 64; j++)
  2412. s->block[k][j] <<= 1;
  2413. s->idsp.put_signed_pixels_clamped(s->block[k], dst[k],
  2414. k & 4 ? s->uvlinesize
  2415. : s->linesize);
  2416. } else {
  2417. if (v->rangeredfrm)
  2418. for (j = 0; j < 64; j++)
  2419. s->block[k][j] = (s->block[k][j] - 64) << 1;
  2420. s->idsp.put_pixels_clamped(s->block[k], dst[k],
  2421. k & 4 ? s->uvlinesize
  2422. : s->linesize);
  2423. }
  2424. }
  2425. if (v->pq >= 9 && v->overlap) {
  2426. if (s->mb_x) {
  2427. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2428. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2429. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  2430. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2431. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2432. }
  2433. }
  2434. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2435. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2436. if (!s->first_slice_line) {
  2437. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2438. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2439. if (!CONFIG_GRAY || !(s->avctx->flags & AV_CODEC_FLAG_GRAY)) {
  2440. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2441. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2442. }
  2443. }
  2444. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2445. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2446. }
  2447. if (v->s.loop_filter)
  2448. ff_vc1_loop_filter_iblk(v, v->pq);
  2449. if (get_bits_count(&s->gb) > v->bits) {
  2450. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  2451. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2452. get_bits_count(&s->gb), v->bits);
  2453. return;
  2454. }
  2455. }
  2456. if (!v->s.loop_filter)
  2457. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2458. else if (s->mb_y)
  2459. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2460. s->first_slice_line = 0;
  2461. }
  2462. if (v->s.loop_filter)
  2463. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2464. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  2465. * profile, these only differ are when decoding MSS2 rectangles. */
  2466. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  2467. }
  2468. /** Decode blocks of I-frame for advanced profile
  2469. */
  2470. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2471. {
  2472. int k;
  2473. MpegEncContext *s = &v->s;
  2474. int cbp, val;
  2475. uint8_t *coded_val;
  2476. int mb_pos;
  2477. int mquant = v->pq;
  2478. int mqdiff;
  2479. GetBitContext *gb = &s->gb;
  2480. /* select codingmode used for VLC tables selection */
  2481. switch (v->y_ac_table_index) {
  2482. case 0:
  2483. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2484. break;
  2485. case 1:
  2486. v->codingset = CS_HIGH_MOT_INTRA;
  2487. break;
  2488. case 2:
  2489. v->codingset = CS_MID_RATE_INTRA;
  2490. break;
  2491. }
  2492. switch (v->c_ac_table_index) {
  2493. case 0:
  2494. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2495. break;
  2496. case 1:
  2497. v->codingset2 = CS_HIGH_MOT_INTER;
  2498. break;
  2499. case 2:
  2500. v->codingset2 = CS_MID_RATE_INTER;
  2501. break;
  2502. }
  2503. // do frame decode
  2504. s->mb_x = s->mb_y = 0;
  2505. s->mb_intra = 1;
  2506. s->first_slice_line = 1;
  2507. s->mb_y = s->start_mb_y;
  2508. if (s->start_mb_y) {
  2509. s->mb_x = 0;
  2510. init_block_index(v);
  2511. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  2512. (1 + s->b8_stride) * sizeof(*s->coded_block));
  2513. }
  2514. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  2515. s->mb_x = 0;
  2516. init_block_index(v);
  2517. for (;s->mb_x < s->mb_width; s->mb_x++) {
  2518. int16_t (*block)[64] = v->block[v->cur_blk_idx];
  2519. ff_update_block_index(s);
  2520. s->bdsp.clear_blocks(block[0]);
  2521. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2522. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  2523. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  2524. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  2525. // do actual MB decoding and displaying
  2526. if (v->fieldtx_is_raw)
  2527. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  2528. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2529. if (v->acpred_is_raw)
  2530. v->s.ac_pred = get_bits1(&v->s.gb);
  2531. else
  2532. v->s.ac_pred = v->acpred_plane[mb_pos];
  2533. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2534. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2535. GET_MQUANT();
  2536. s->current_picture.qscale_table[mb_pos] = mquant;
  2537. /* Set DC scale - y and c use the same */
  2538. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2539. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2540. for (k = 0; k < 6; k++) {
  2541. val = ((cbp >> (5 - k)) & 1);
  2542. if (k < 4) {
  2543. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2544. val = val ^ pred;
  2545. *coded_val = val;
  2546. }
  2547. cbp |= val << (5 - k);
  2548. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  2549. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  2550. vc1_decode_i_block_adv(v, block[k], k, val,
  2551. (k < 4) ? v->codingset : v->codingset2, mquant);
  2552. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2553. continue;
  2554. v->vc1dsp.vc1_inv_trans_8x8(block[k]);
  2555. }
  2556. ff_vc1_smooth_overlap_filter_iblk(v);
  2557. vc1_put_signed_blocks_clamped(v);
  2558. if (v->s.loop_filter)
  2559. ff_vc1_loop_filter_iblk_delayed(v, v->pq);
  2560. if (get_bits_count(&s->gb) > v->bits) {
  2561. // TODO: may need modification to handle slice coding
  2562. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2563. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2564. get_bits_count(&s->gb), v->bits);
  2565. return;
  2566. }
  2567. }
  2568. if (!v->s.loop_filter)
  2569. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2570. else if (s->mb_y)
  2571. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2572. s->first_slice_line = 0;
  2573. }
  2574. /* raw bottom MB row */
  2575. s->mb_x = 0;
  2576. init_block_index(v);
  2577. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2578. ff_update_block_index(s);
  2579. vc1_put_signed_blocks_clamped(v);
  2580. if (v->s.loop_filter)
  2581. ff_vc1_loop_filter_iblk_delayed(v, v->pq);
  2582. }
  2583. if (v->s.loop_filter)
  2584. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2585. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2586. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2587. }
  2588. static void vc1_decode_p_blocks(VC1Context *v)
  2589. {
  2590. MpegEncContext *s = &v->s;
  2591. int apply_loop_filter;
  2592. /* select codingmode used for VLC tables selection */
  2593. switch (v->c_ac_table_index) {
  2594. case 0:
  2595. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2596. break;
  2597. case 1:
  2598. v->codingset = CS_HIGH_MOT_INTRA;
  2599. break;
  2600. case 2:
  2601. v->codingset = CS_MID_RATE_INTRA;
  2602. break;
  2603. }
  2604. switch (v->c_ac_table_index) {
  2605. case 0:
  2606. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2607. break;
  2608. case 1:
  2609. v->codingset2 = CS_HIGH_MOT_INTER;
  2610. break;
  2611. case 2:
  2612. v->codingset2 = CS_MID_RATE_INTER;
  2613. break;
  2614. }
  2615. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY) &&
  2616. v->fcm == PROGRESSIVE;
  2617. s->first_slice_line = 1;
  2618. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2619. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2620. s->mb_x = 0;
  2621. init_block_index(v);
  2622. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2623. ff_update_block_index(s);
  2624. if (v->fcm == ILACE_FIELD)
  2625. vc1_decode_p_mb_intfi(v);
  2626. else if (v->fcm == ILACE_FRAME)
  2627. vc1_decode_p_mb_intfr(v);
  2628. else vc1_decode_p_mb(v);
  2629. if (s->mb_y != s->start_mb_y && apply_loop_filter)
  2630. ff_vc1_apply_p_loop_filter(v);
  2631. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2632. // TODO: may need modification to handle slice coding
  2633. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2634. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2635. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2636. return;
  2637. }
  2638. }
  2639. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0]) * s->mb_stride);
  2640. memmove(v->ttblk_base, v->ttblk, sizeof(v->ttblk_base[0]) * s->mb_stride);
  2641. memmove(v->is_intra_base, v->is_intra, sizeof(v->is_intra_base[0]) * s->mb_stride);
  2642. memmove(v->luma_mv_base, v->luma_mv, sizeof(v->luma_mv_base[0]) * s->mb_stride);
  2643. if (s->mb_y != s->start_mb_y)
  2644. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2645. s->first_slice_line = 0;
  2646. }
  2647. if (apply_loop_filter) {
  2648. s->mb_x = 0;
  2649. init_block_index(v);
  2650. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2651. ff_update_block_index(s);
  2652. ff_vc1_apply_p_loop_filter(v);
  2653. }
  2654. }
  2655. if (s->end_mb_y >= s->start_mb_y)
  2656. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2657. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2658. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2659. }
  2660. static void vc1_decode_b_blocks(VC1Context *v)
  2661. {
  2662. MpegEncContext *s = &v->s;
  2663. /* select codingmode used for VLC tables selection */
  2664. switch (v->c_ac_table_index) {
  2665. case 0:
  2666. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2667. break;
  2668. case 1:
  2669. v->codingset = CS_HIGH_MOT_INTRA;
  2670. break;
  2671. case 2:
  2672. v->codingset = CS_MID_RATE_INTRA;
  2673. break;
  2674. }
  2675. switch (v->c_ac_table_index) {
  2676. case 0:
  2677. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2678. break;
  2679. case 1:
  2680. v->codingset2 = CS_HIGH_MOT_INTER;
  2681. break;
  2682. case 2:
  2683. v->codingset2 = CS_MID_RATE_INTER;
  2684. break;
  2685. }
  2686. s->first_slice_line = 1;
  2687. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2688. s->mb_x = 0;
  2689. init_block_index(v);
  2690. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2691. ff_update_block_index(s);
  2692. if (v->fcm == ILACE_FIELD)
  2693. vc1_decode_b_mb_intfi(v);
  2694. else if (v->fcm == ILACE_FRAME)
  2695. vc1_decode_b_mb_intfr(v);
  2696. else
  2697. vc1_decode_b_mb(v);
  2698. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2699. // TODO: may need modification to handle slice coding
  2700. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2701. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2702. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2703. return;
  2704. }
  2705. if (v->s.loop_filter)
  2706. ff_vc1_loop_filter_iblk(v, v->pq);
  2707. }
  2708. if (!v->s.loop_filter)
  2709. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2710. else if (s->mb_y)
  2711. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2712. s->first_slice_line = 0;
  2713. }
  2714. if (v->s.loop_filter)
  2715. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2716. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2717. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2718. }
  2719. static void vc1_decode_skip_blocks(VC1Context *v)
  2720. {
  2721. MpegEncContext *s = &v->s;
  2722. if (!v->s.last_picture.f->data[0])
  2723. return;
  2724. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  2725. s->first_slice_line = 1;
  2726. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2727. s->mb_x = 0;
  2728. init_block_index(v);
  2729. ff_update_block_index(s);
  2730. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2731. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2732. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2733. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2734. s->first_slice_line = 0;
  2735. }
  2736. s->pict_type = AV_PICTURE_TYPE_P;
  2737. }
  2738. void ff_vc1_decode_blocks(VC1Context *v)
  2739. {
  2740. v->s.esc3_level_length = 0;
  2741. if (v->x8_type) {
  2742. ff_intrax8_decode_picture(&v->x8, 2*v->pq + v->halfpq, v->pq * !v->pquantizer);
  2743. } else {
  2744. v->cur_blk_idx = 0;
  2745. v->left_blk_idx = -1;
  2746. v->topleft_blk_idx = 1;
  2747. v->top_blk_idx = 2;
  2748. switch (v->s.pict_type) {
  2749. case AV_PICTURE_TYPE_I:
  2750. if (v->profile == PROFILE_ADVANCED)
  2751. vc1_decode_i_blocks_adv(v);
  2752. else
  2753. vc1_decode_i_blocks(v);
  2754. break;
  2755. case AV_PICTURE_TYPE_P:
  2756. if (v->p_frame_skipped)
  2757. vc1_decode_skip_blocks(v);
  2758. else
  2759. vc1_decode_p_blocks(v);
  2760. break;
  2761. case AV_PICTURE_TYPE_B:
  2762. if (v->bi_type) {
  2763. if (v->profile == PROFILE_ADVANCED)
  2764. vc1_decode_i_blocks_adv(v);
  2765. else
  2766. vc1_decode_i_blocks(v);
  2767. } else
  2768. vc1_decode_b_blocks(v);
  2769. break;
  2770. }
  2771. }
  2772. }