You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1679 lines
56KB

  1. /*
  2. * Motion estimation
  3. * Copyright (c) 2000,2001 Fabrice Bellard.
  4. * Copyright (c) 2002-2003 Michael Niedermayer
  5. *
  6. *
  7. * This library is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2 of the License, or (at your option) any later version.
  11. *
  12. * This library is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with this library; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. *
  21. * new Motion Estimation (X1/EPZS) by Michael Niedermayer <michaelni@gmx.at>
  22. */
  23. #include <stdlib.h>
  24. #include <stdio.h>
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. //#undef NDEBUG
  29. //#include <assert.h>
  30. #define SQ(a) ((a)*(a))
  31. #define P_LEFT P[1]
  32. #define P_TOP P[2]
  33. #define P_TOPRIGHT P[3]
  34. #define P_MEDIAN P[4]
  35. #define P_MV1 P[9]
  36. static inline int sad_hpel_motion_search(MpegEncContext * s,
  37. int *mx_ptr, int *my_ptr, int dmin,
  38. int xmin, int ymin, int xmax, int ymax,
  39. int pred_x, int pred_y, Picture *picture,
  40. int n, int size, uint16_t * const mv_penalty);
  41. static inline int update_map_generation(MpegEncContext * s)
  42. {
  43. s->me.map_generation+= 1<<(ME_MAP_MV_BITS*2);
  44. if(s->me.map_generation==0){
  45. s->me.map_generation= 1<<(ME_MAP_MV_BITS*2);
  46. memset(s->me.map, 0, sizeof(uint32_t)*ME_MAP_SIZE);
  47. }
  48. return s->me.map_generation;
  49. }
  50. /* shape adaptive search stuff */
  51. typedef struct Minima{
  52. int height;
  53. int x, y;
  54. int checked;
  55. }Minima;
  56. static int minima_cmp(const void *a, const void *b){
  57. Minima *da = (Minima *) a;
  58. Minima *db = (Minima *) b;
  59. return da->height - db->height;
  60. }
  61. /* SIMPLE */
  62. #define RENAME(a) simple_ ## a
  63. #define CMP(d, x, y, size)\
  64. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);
  65. #define CMP_HPEL(d, dx, dy, x, y, size)\
  66. {\
  67. const int dxy= (dx) + 2*(dy);\
  68. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  69. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  70. }
  71. #define CMP_QPEL(d, dx, dy, x, y, size)\
  72. {\
  73. const int dxy= (dx) + 4*(dy);\
  74. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  75. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  76. }
  77. #include "motion_est_template.c"
  78. #undef RENAME
  79. #undef CMP
  80. #undef CMP_HPEL
  81. #undef CMP_QPEL
  82. #undef INIT
  83. /* SIMPLE CHROMA */
  84. #define RENAME(a) simple_chroma_ ## a
  85. #define CMP(d, x, y, size)\
  86. d = cmp(s, src_y, (ref_y) + (x) + (y)*(stride), stride);\
  87. if(chroma_cmp){\
  88. int dxy= ((x)&1) + 2*((y)&1);\
  89. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  90. \
  91. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  92. d += chroma_cmp(s, s->me.scratchpad, src_u, uvstride);\
  93. chroma_hpel_put[0][dxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  94. d += chroma_cmp(s, s->me.scratchpad, src_v, uvstride);\
  95. }
  96. #define CMP_HPEL(d, dx, dy, x, y, size)\
  97. {\
  98. const int dxy= (dx) + 2*(dy);\
  99. hpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride, (16>>size));\
  100. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  101. if(chroma_cmp_sub){\
  102. int cxy= (dxy) | ((x)&1) | (2*((y)&1));\
  103. int c= ((x)>>1) + ((y)>>1)*uvstride;\
  104. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  105. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  106. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  107. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  108. }\
  109. }
  110. #define CMP_QPEL(d, dx, dy, x, y, size)\
  111. {\
  112. const int dxy= (dx) + 4*(dy);\
  113. qpel_put[0][dxy](s->me.scratchpad, (ref_y) + (x) + (y)*(stride), stride);\
  114. d = cmp_sub(s, s->me.scratchpad, src_y, stride);\
  115. if(chroma_cmp_sub){\
  116. int cxy, c;\
  117. int cx= (4*(x) + (dx))/2;\
  118. int cy= (4*(y) + (dy))/2;\
  119. cx= (cx>>1)|(cx&1);\
  120. cy= (cy>>1)|(cy&1);\
  121. cxy= (cx&1) + 2*(cy&1);\
  122. c= ((cx)>>1) + ((cy)>>1)*uvstride;\
  123. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_u + c, uvstride, 8);\
  124. d += chroma_cmp_sub(s, s->me.scratchpad, src_u, uvstride);\
  125. chroma_hpel_put[0][cxy](s->me.scratchpad, ref_v + c, uvstride, 8);\
  126. d += chroma_cmp_sub(s, s->me.scratchpad, src_v, uvstride);\
  127. }\
  128. }
  129. #include "motion_est_template.c"
  130. #undef RENAME
  131. #undef CMP
  132. #undef CMP_HPEL
  133. #undef CMP_QPEL
  134. #undef INIT
  135. /* SIMPLE DIRECT HPEL */
  136. #define RENAME(a) simple_direct_hpel_ ## a
  137. //FIXME precalc divisions stuff
  138. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  139. if((x) >= xmin && 2*(x) + (dx) <= 2*xmax && (y) >= ymin && 2*(y) + (dy) <= 2*ymax){\
  140. const int hx= 2*(x) + (dx);\
  141. const int hy= 2*(y) + (dy);\
  142. if(s->mv_type==MV_TYPE_8X8){\
  143. int i;\
  144. for(i=0; i<4; i++){\
  145. int fx = s->me.direct_basis_mv[i][0] + hx;\
  146. int fy = s->me.direct_basis_mv[i][1] + hy;\
  147. int bx = hx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  148. int by = hy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  149. int fxy= (fx&1) + 2*(fy&1);\
  150. int bxy= (bx&1) + 2*(by&1);\
  151. \
  152. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  153. hpel_put[1][fxy](dst, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 8);\
  154. hpel_avg[1][bxy](dst, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 8);\
  155. }\
  156. }else{\
  157. int fx = s->me.direct_basis_mv[0][0] + hx;\
  158. int fy = s->me.direct_basis_mv[0][1] + hy;\
  159. int bx = hx ? fx - s->me.co_located_mv[0][0] : (s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp);\
  160. int by = hy ? fy - s->me.co_located_mv[0][1] : (s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp);\
  161. int fxy= (fx&1) + 2*(fy&1);\
  162. int bxy= (bx&1) + 2*(by&1);\
  163. \
  164. assert((fx>>1) + 16*s->mb_x >= -16);\
  165. assert((fy>>1) + 16*s->mb_y >= -16);\
  166. assert((fx>>1) + 16*s->mb_x <= s->width);\
  167. assert((fy>>1) + 16*s->mb_y <= s->height);\
  168. assert((bx>>1) + 16*s->mb_x >= -16);\
  169. assert((by>>1) + 16*s->mb_y >= -16);\
  170. assert((bx>>1) + 16*s->mb_x <= s->width);\
  171. assert((by>>1) + 16*s->mb_y <= s->height);\
  172. \
  173. hpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>1) + (fy>>1)*(stride), stride, 16);\
  174. hpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>1) + (by>>1)*(stride), stride, 16);\
  175. }\
  176. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  177. }else\
  178. d= 256*256*256*32;
  179. #define CMP_HPEL(d, dx, dy, x, y, size)\
  180. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  181. #define CMP(d, x, y, size)\
  182. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  183. #include "motion_est_template.c"
  184. #undef RENAME
  185. #undef CMP
  186. #undef CMP_HPEL
  187. #undef CMP_QPEL
  188. #undef INIT
  189. #undef CMP_DIRECT
  190. /* SIMPLE DIRECT QPEL */
  191. #define RENAME(a) simple_direct_qpel_ ## a
  192. #define CMP_DIRECT(d, dx, dy, x, y, size, cmp_func)\
  193. if((x) >= xmin && 4*(x) + (dx) <= 4*xmax && (y) >= ymin && 4*(y) + (dy) <= 4*ymax){\
  194. const int qx= 4*(x) + (dx);\
  195. const int qy= 4*(y) + (dy);\
  196. if(s->mv_type==MV_TYPE_8X8){\
  197. int i;\
  198. for(i=0; i<4; i++){\
  199. int fx = s->me.direct_basis_mv[i][0] + qx;\
  200. int fy = s->me.direct_basis_mv[i][1] + qy;\
  201. int bx = qx ? fx - s->me.co_located_mv[i][0] : s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + (i &1)*16;\
  202. int by = qy ? fy - s->me.co_located_mv[i][1] : s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + (i>>1)*16;\
  203. int fxy= (fx&3) + 4*(fy&3);\
  204. int bxy= (bx&3) + 4*(by&3);\
  205. \
  206. uint8_t *dst= s->me.scratchpad + 8*(i&1) + 8*stride*(i>>1);\
  207. qpel_put[1][fxy](dst, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  208. qpel_avg[1][bxy](dst, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  209. }\
  210. }else{\
  211. int fx = s->me.direct_basis_mv[0][0] + qx;\
  212. int fy = s->me.direct_basis_mv[0][1] + qy;\
  213. int bx = qx ? fx - s->me.co_located_mv[0][0] : s->me.co_located_mv[0][0]*(time_pb - time_pp)/time_pp;\
  214. int by = qy ? fy - s->me.co_located_mv[0][1] : s->me.co_located_mv[0][1]*(time_pb - time_pp)/time_pp;\
  215. int fxy= (fx&3) + 4*(fy&3);\
  216. int bxy= (bx&3) + 4*(by&3);\
  217. \
  218. qpel_put[0][fxy](s->me.scratchpad, (ref_y ) + (fx>>2) + (fy>>2)*(stride), stride);\
  219. qpel_avg[0][bxy](s->me.scratchpad, (ref2_y) + (bx>>2) + (by>>2)*(stride), stride);\
  220. }\
  221. d = cmp_func(s, s->me.scratchpad, src_y, stride);\
  222. }else\
  223. d= 256*256*256*32;
  224. #define CMP_QPEL(d, dx, dy, x, y, size)\
  225. CMP_DIRECT(d, dx, dy, x, y, size, cmp_sub)
  226. #define CMP(d, x, y, size)\
  227. CMP_DIRECT(d, 0, 0, x, y, size, cmp)
  228. #include "motion_est_template.c"
  229. #undef RENAME
  230. #undef CMP
  231. #undef CMP_HPEL
  232. #undef CMP_QPEL
  233. #undef INIT
  234. #undef CMP__DIRECT
  235. static int zero_cmp(void *s, uint8_t *a, uint8_t *b, int stride){
  236. return 0;
  237. }
  238. static void set_cmp(MpegEncContext *s, me_cmp_func *cmp, int type){
  239. DSPContext* c= &s->dsp;
  240. int i;
  241. memset(cmp, 0, sizeof(void*)*11);
  242. switch(type&0xFF){
  243. case FF_CMP_SAD:
  244. cmp[0]= c->sad[0];
  245. cmp[1]= c->sad[1];
  246. break;
  247. case FF_CMP_SATD:
  248. cmp[0]= c->hadamard8_diff[0];
  249. cmp[1]= c->hadamard8_diff[1];
  250. break;
  251. case FF_CMP_SSE:
  252. cmp[0]= c->sse[0];
  253. cmp[1]= c->sse[1];
  254. break;
  255. case FF_CMP_DCT:
  256. cmp[0]= c->dct_sad[0];
  257. cmp[1]= c->dct_sad[1];
  258. break;
  259. case FF_CMP_PSNR:
  260. cmp[0]= c->quant_psnr[0];
  261. cmp[1]= c->quant_psnr[1];
  262. break;
  263. case FF_CMP_BIT:
  264. cmp[0]= c->bit[0];
  265. cmp[1]= c->bit[1];
  266. break;
  267. case FF_CMP_RD:
  268. cmp[0]= c->rd[0];
  269. cmp[1]= c->rd[1];
  270. break;
  271. case FF_CMP_ZERO:
  272. for(i=0; i<7; i++){
  273. cmp[i]= zero_cmp;
  274. }
  275. break;
  276. default:
  277. fprintf(stderr,"internal error in cmp function selection\n");
  278. }
  279. }
  280. static inline int get_penalty_factor(MpegEncContext *s, int type){
  281. switch(type&0xFF){
  282. default:
  283. case FF_CMP_SAD:
  284. return s->qscale*2;
  285. case FF_CMP_DCT:
  286. return s->qscale*3;
  287. case FF_CMP_SATD:
  288. return s->qscale*6;
  289. case FF_CMP_SSE:
  290. return s->qscale*s->qscale*2;
  291. case FF_CMP_BIT:
  292. return 1;
  293. case FF_CMP_RD:
  294. case FF_CMP_PSNR:
  295. return (s->qscale*s->qscale*185 + 64)>>7;
  296. }
  297. }
  298. void ff_init_me(MpegEncContext *s){
  299. set_cmp(s, s->dsp.me_pre_cmp, s->avctx->me_pre_cmp);
  300. set_cmp(s, s->dsp.me_cmp, s->avctx->me_cmp);
  301. set_cmp(s, s->dsp.me_sub_cmp, s->avctx->me_sub_cmp);
  302. set_cmp(s, s->dsp.mb_cmp, s->avctx->mb_cmp);
  303. if(s->flags&CODEC_FLAG_QPEL){
  304. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  305. s->me.sub_motion_search= simple_chroma_qpel_motion_search;
  306. else
  307. s->me.sub_motion_search= simple_qpel_motion_search;
  308. }else{
  309. if(s->avctx->me_sub_cmp&FF_CMP_CHROMA)
  310. s->me.sub_motion_search= simple_chroma_hpel_motion_search;
  311. else if( s->avctx->me_sub_cmp == FF_CMP_SAD
  312. && s->avctx-> me_cmp == FF_CMP_SAD
  313. && s->avctx-> mb_cmp == FF_CMP_SAD)
  314. s->me.sub_motion_search= sad_hpel_motion_search;
  315. else
  316. s->me.sub_motion_search= simple_hpel_motion_search;
  317. }
  318. if(s->avctx->me_cmp&FF_CMP_CHROMA){
  319. s->me.motion_search[0]= simple_chroma_epzs_motion_search;
  320. s->me.motion_search[1]= simple_chroma_epzs_motion_search4;
  321. }else{
  322. s->me.motion_search[0]= simple_epzs_motion_search;
  323. s->me.motion_search[1]= simple_epzs_motion_search4;
  324. }
  325. if(s->avctx->me_pre_cmp&FF_CMP_CHROMA){
  326. s->me.pre_motion_search= simple_chroma_epzs_motion_search;
  327. }else{
  328. s->me.pre_motion_search= simple_epzs_motion_search;
  329. }
  330. if(s->flags&CODEC_FLAG_QPEL){
  331. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  332. s->me.get_mb_score= simple_chroma_qpel_get_mb_score;
  333. else
  334. s->me.get_mb_score= simple_qpel_get_mb_score;
  335. }else{
  336. if(s->avctx->mb_cmp&FF_CMP_CHROMA)
  337. s->me.get_mb_score= simple_chroma_hpel_get_mb_score;
  338. else
  339. s->me.get_mb_score= simple_hpel_get_mb_score;
  340. }
  341. }
  342. static int pix_dev(UINT8 * pix, int line_size, int mean)
  343. {
  344. int s, i, j;
  345. s = 0;
  346. for (i = 0; i < 16; i++) {
  347. for (j = 0; j < 16; j += 8) {
  348. s += ABS(pix[0]-mean);
  349. s += ABS(pix[1]-mean);
  350. s += ABS(pix[2]-mean);
  351. s += ABS(pix[3]-mean);
  352. s += ABS(pix[4]-mean);
  353. s += ABS(pix[5]-mean);
  354. s += ABS(pix[6]-mean);
  355. s += ABS(pix[7]-mean);
  356. pix += 8;
  357. }
  358. pix += line_size - 16;
  359. }
  360. return s;
  361. }
  362. static inline void no_motion_search(MpegEncContext * s,
  363. int *mx_ptr, int *my_ptr)
  364. {
  365. *mx_ptr = 16 * s->mb_x;
  366. *my_ptr = 16 * s->mb_y;
  367. }
  368. static int full_motion_search(MpegEncContext * s,
  369. int *mx_ptr, int *my_ptr, int range,
  370. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  371. {
  372. int x1, y1, x2, y2, xx, yy, x, y;
  373. int mx, my, dmin, d;
  374. UINT8 *pix;
  375. xx = 16 * s->mb_x;
  376. yy = 16 * s->mb_y;
  377. x1 = xx - range + 1; /* we loose one pixel to avoid boundary pb with half pixel pred */
  378. if (x1 < xmin)
  379. x1 = xmin;
  380. x2 = xx + range - 1;
  381. if (x2 > xmax)
  382. x2 = xmax;
  383. y1 = yy - range + 1;
  384. if (y1 < ymin)
  385. y1 = ymin;
  386. y2 = yy + range - 1;
  387. if (y2 > ymax)
  388. y2 = ymax;
  389. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  390. dmin = 0x7fffffff;
  391. mx = 0;
  392. my = 0;
  393. for (y = y1; y <= y2; y++) {
  394. for (x = x1; x <= x2; x++) {
  395. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x,
  396. s->linesize);
  397. if (d < dmin ||
  398. (d == dmin &&
  399. (abs(x - xx) + abs(y - yy)) <
  400. (abs(mx - xx) + abs(my - yy)))) {
  401. dmin = d;
  402. mx = x;
  403. my = y;
  404. }
  405. }
  406. }
  407. *mx_ptr = mx;
  408. *my_ptr = my;
  409. #if 0
  410. if (*mx_ptr < -(2 * range) || *mx_ptr >= (2 * range) ||
  411. *my_ptr < -(2 * range) || *my_ptr >= (2 * range)) {
  412. fprintf(stderr, "error %d %d\n", *mx_ptr, *my_ptr);
  413. }
  414. #endif
  415. return dmin;
  416. }
  417. static int log_motion_search(MpegEncContext * s,
  418. int *mx_ptr, int *my_ptr, int range,
  419. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  420. {
  421. int x1, y1, x2, y2, xx, yy, x, y;
  422. int mx, my, dmin, d;
  423. UINT8 *pix;
  424. xx = s->mb_x << 4;
  425. yy = s->mb_y << 4;
  426. /* Left limit */
  427. x1 = xx - range;
  428. if (x1 < xmin)
  429. x1 = xmin;
  430. /* Right limit */
  431. x2 = xx + range;
  432. if (x2 > xmax)
  433. x2 = xmax;
  434. /* Upper limit */
  435. y1 = yy - range;
  436. if (y1 < ymin)
  437. y1 = ymin;
  438. /* Lower limit */
  439. y2 = yy + range;
  440. if (y2 > ymax)
  441. y2 = ymax;
  442. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  443. dmin = 0x7fffffff;
  444. mx = 0;
  445. my = 0;
  446. do {
  447. for (y = y1; y <= y2; y += range) {
  448. for (x = x1; x <= x2; x += range) {
  449. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  450. if (d < dmin || (d == dmin && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  451. dmin = d;
  452. mx = x;
  453. my = y;
  454. }
  455. }
  456. }
  457. range = range >> 1;
  458. x1 = mx - range;
  459. if (x1 < xmin)
  460. x1 = xmin;
  461. x2 = mx + range;
  462. if (x2 > xmax)
  463. x2 = xmax;
  464. y1 = my - range;
  465. if (y1 < ymin)
  466. y1 = ymin;
  467. y2 = my + range;
  468. if (y2 > ymax)
  469. y2 = ymax;
  470. } while (range >= 1);
  471. #ifdef DEBUG
  472. fprintf(stderr, "log - MX: %d\tMY: %d\n", mx, my);
  473. #endif
  474. *mx_ptr = mx;
  475. *my_ptr = my;
  476. return dmin;
  477. }
  478. static int phods_motion_search(MpegEncContext * s,
  479. int *mx_ptr, int *my_ptr, int range,
  480. int xmin, int ymin, int xmax, int ymax, uint8_t *ref_picture)
  481. {
  482. int x1, y1, x2, y2, xx, yy, x, y, lastx, d;
  483. int mx, my, dminx, dminy;
  484. UINT8 *pix;
  485. xx = s->mb_x << 4;
  486. yy = s->mb_y << 4;
  487. /* Left limit */
  488. x1 = xx - range;
  489. if (x1 < xmin)
  490. x1 = xmin;
  491. /* Right limit */
  492. x2 = xx + range;
  493. if (x2 > xmax)
  494. x2 = xmax;
  495. /* Upper limit */
  496. y1 = yy - range;
  497. if (y1 < ymin)
  498. y1 = ymin;
  499. /* Lower limit */
  500. y2 = yy + range;
  501. if (y2 > ymax)
  502. y2 = ymax;
  503. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  504. mx = 0;
  505. my = 0;
  506. x = xx;
  507. y = yy;
  508. do {
  509. dminx = 0x7fffffff;
  510. dminy = 0x7fffffff;
  511. lastx = x;
  512. for (x = x1; x <= x2; x += range) {
  513. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  514. if (d < dminx || (d == dminx && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  515. dminx = d;
  516. mx = x;
  517. }
  518. }
  519. x = lastx;
  520. for (y = y1; y <= y2; y += range) {
  521. d = s->dsp.pix_abs16x16(pix, ref_picture + (y * s->linesize) + x, s->linesize);
  522. if (d < dminy || (d == dminy && (abs(x - xx) + abs(y - yy)) < (abs(mx - xx) + abs(my - yy)))) {
  523. dminy = d;
  524. my = y;
  525. }
  526. }
  527. range = range >> 1;
  528. x = mx;
  529. y = my;
  530. x1 = mx - range;
  531. if (x1 < xmin)
  532. x1 = xmin;
  533. x2 = mx + range;
  534. if (x2 > xmax)
  535. x2 = xmax;
  536. y1 = my - range;
  537. if (y1 < ymin)
  538. y1 = ymin;
  539. y2 = my + range;
  540. if (y2 > ymax)
  541. y2 = ymax;
  542. } while (range >= 1);
  543. #ifdef DEBUG
  544. fprintf(stderr, "phods - MX: %d\tMY: %d\n", mx, my);
  545. #endif
  546. /* half pixel search */
  547. *mx_ptr = mx;
  548. *my_ptr = my;
  549. return dminy;
  550. }
  551. #define Z_THRESHOLD 256
  552. #define CHECK_SAD_HALF_MV(suffix, x, y) \
  553. {\
  554. d= pix_abs_ ## suffix(pix, ptr+((x)>>1), s->linesize);\
  555. d += (mv_penalty[pen_x + x] + mv_penalty[pen_y + y])*penalty_factor;\
  556. COPY3_IF_LT(dminh, d, dx, x, dy, y)\
  557. }
  558. static inline int sad_hpel_motion_search(MpegEncContext * s,
  559. int *mx_ptr, int *my_ptr, int dmin,
  560. int xmin, int ymin, int xmax, int ymax,
  561. int pred_x, int pred_y, Picture *picture,
  562. int n, int size, uint16_t * const mv_penalty)
  563. {
  564. uint8_t *ref_picture= picture->data[0];
  565. uint32_t *score_map= s->me.score_map;
  566. const int penalty_factor= s->me.sub_penalty_factor;
  567. int mx, my, xx, yy, dminh;
  568. UINT8 *pix, *ptr;
  569. op_pixels_abs_func pix_abs_x2;
  570. op_pixels_abs_func pix_abs_y2;
  571. op_pixels_abs_func pix_abs_xy2;
  572. if(size==0){
  573. pix_abs_x2 = s->dsp.pix_abs16x16_x2;
  574. pix_abs_y2 = s->dsp.pix_abs16x16_y2;
  575. pix_abs_xy2= s->dsp.pix_abs16x16_xy2;
  576. }else{
  577. pix_abs_x2 = s->dsp.pix_abs8x8_x2;
  578. pix_abs_y2 = s->dsp.pix_abs8x8_y2;
  579. pix_abs_xy2= s->dsp.pix_abs8x8_xy2;
  580. }
  581. if(s->me.skip){
  582. // printf("S");
  583. *mx_ptr = 0;
  584. *my_ptr = 0;
  585. return dmin;
  586. }
  587. // printf("N");
  588. xx = 16 * s->mb_x + 8*(n&1);
  589. yy = 16 * s->mb_y + 8*(n>>1);
  590. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  591. mx = *mx_ptr;
  592. my = *my_ptr;
  593. ptr = ref_picture + ((yy + my) * s->linesize) + (xx + mx);
  594. dminh = dmin;
  595. if (mx > xmin && mx < xmax &&
  596. my > ymin && my < ymax) {
  597. int dx=0, dy=0;
  598. int d, pen_x, pen_y;
  599. const int index= (my<<ME_MAP_SHIFT) + mx;
  600. const int t= score_map[(index-(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  601. const int l= score_map[(index- 1 )&(ME_MAP_SIZE-1)];
  602. const int r= score_map[(index+ 1 )&(ME_MAP_SIZE-1)];
  603. const int b= score_map[(index+(1<<ME_MAP_SHIFT))&(ME_MAP_SIZE-1)];
  604. mx<<=1;
  605. my<<=1;
  606. pen_x= pred_x + mx;
  607. pen_y= pred_y + my;
  608. ptr-= s->linesize;
  609. if(t<=b){
  610. CHECK_SAD_HALF_MV(y2 , 0, -1)
  611. if(l<=r){
  612. CHECK_SAD_HALF_MV(xy2, -1, -1)
  613. if(t+r<=b+l){
  614. CHECK_SAD_HALF_MV(xy2, +1, -1)
  615. ptr+= s->linesize;
  616. }else{
  617. ptr+= s->linesize;
  618. CHECK_SAD_HALF_MV(xy2, -1, +1)
  619. }
  620. CHECK_SAD_HALF_MV(x2 , -1, 0)
  621. }else{
  622. CHECK_SAD_HALF_MV(xy2, +1, -1)
  623. if(t+l<=b+r){
  624. CHECK_SAD_HALF_MV(xy2, -1, -1)
  625. ptr+= s->linesize;
  626. }else{
  627. ptr+= s->linesize;
  628. CHECK_SAD_HALF_MV(xy2, +1, +1)
  629. }
  630. CHECK_SAD_HALF_MV(x2 , +1, 0)
  631. }
  632. }else{
  633. if(l<=r){
  634. if(t+l<=b+r){
  635. CHECK_SAD_HALF_MV(xy2, -1, -1)
  636. ptr+= s->linesize;
  637. }else{
  638. ptr+= s->linesize;
  639. CHECK_SAD_HALF_MV(xy2, +1, +1)
  640. }
  641. CHECK_SAD_HALF_MV(x2 , -1, 0)
  642. CHECK_SAD_HALF_MV(xy2, -1, +1)
  643. }else{
  644. if(t+r<=b+l){
  645. CHECK_SAD_HALF_MV(xy2, +1, -1)
  646. ptr+= s->linesize;
  647. }else{
  648. ptr+= s->linesize;
  649. CHECK_SAD_HALF_MV(xy2, -1, +1)
  650. }
  651. CHECK_SAD_HALF_MV(x2 , +1, 0)
  652. CHECK_SAD_HALF_MV(xy2, +1, +1)
  653. }
  654. CHECK_SAD_HALF_MV(y2 , 0, +1)
  655. }
  656. mx+=dx;
  657. my+=dy;
  658. }else{
  659. mx<<=1;
  660. my<<=1;
  661. }
  662. *mx_ptr = mx;
  663. *my_ptr = my;
  664. return dminh;
  665. }
  666. static inline void set_p_mv_tables(MpegEncContext * s, int mx, int my, int mv4)
  667. {
  668. const int xy= s->mb_x + 1 + (s->mb_y + 1)*(s->mb_width + 2);
  669. s->p_mv_table[xy][0] = mx;
  670. s->p_mv_table[xy][1] = my;
  671. /* has allready been set to the 4 MV if 4MV is done */
  672. if(mv4){
  673. int mot_xy= s->block_index[0];
  674. s->motion_val[mot_xy ][0]= mx;
  675. s->motion_val[mot_xy ][1]= my;
  676. s->motion_val[mot_xy+1][0]= mx;
  677. s->motion_val[mot_xy+1][1]= my;
  678. mot_xy += s->block_wrap[0];
  679. s->motion_val[mot_xy ][0]= mx;
  680. s->motion_val[mot_xy ][1]= my;
  681. s->motion_val[mot_xy+1][0]= mx;
  682. s->motion_val[mot_xy+1][1]= my;
  683. }
  684. }
  685. static inline void get_limits(MpegEncContext *s, int *range, int *xmin, int *ymin, int *xmax, int *ymax, int f_code)
  686. {
  687. *range = 8 * (1 << (f_code - 1));
  688. /* XXX: temporary kludge to avoid overflow for msmpeg4 */
  689. if (s->out_format == FMT_H263 && !s->h263_msmpeg4)
  690. *range *= 2;
  691. if (s->unrestricted_mv) {
  692. *xmin = -16;
  693. *ymin = -16;
  694. if (s->h263_plus)
  695. *range *= 2;
  696. if(s->avctx->codec->id!=CODEC_ID_MPEG4){
  697. *xmax = s->mb_width*16;
  698. *ymax = s->mb_height*16;
  699. }else {
  700. *xmax = s->width;
  701. *ymax = s->height;
  702. }
  703. } else {
  704. *xmin = 0;
  705. *ymin = 0;
  706. *xmax = s->mb_width*16 - 16;
  707. *ymax = s->mb_height*16 - 16;
  708. }
  709. }
  710. static inline int h263_mv4_search(MpegEncContext *s, int xmin, int ymin, int xmax, int ymax, int mx, int my, int shift)
  711. {
  712. int block;
  713. int P[10][2];
  714. int dmin_sum=0, mx4_sum=0, my4_sum=0;
  715. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  716. for(block=0; block<4; block++){
  717. int mx4, my4;
  718. int pred_x4, pred_y4;
  719. int dmin4;
  720. static const int off[4]= {2, 1, 1, -1};
  721. const int mot_stride = s->block_wrap[0];
  722. const int mot_xy = s->block_index[block];
  723. // const int block_x= (block&1);
  724. // const int block_y= (block>>1);
  725. #if 1 // this saves us a bit of cliping work and shouldnt affect compression in a negative way
  726. const int rel_xmin4= xmin;
  727. const int rel_xmax4= xmax;
  728. const int rel_ymin4= ymin;
  729. const int rel_ymax4= ymax;
  730. #else
  731. const int rel_xmin4= xmin - block_x*8;
  732. const int rel_xmax4= xmax - block_x*8 + 8;
  733. const int rel_ymin4= ymin - block_y*8;
  734. const int rel_ymax4= ymax - block_y*8 + 8;
  735. #endif
  736. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  737. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  738. if(P_LEFT[0] > (rel_xmax4<<shift)) P_LEFT[0] = (rel_xmax4<<shift);
  739. /* special case for first line */
  740. if (s->mb_y == 0 && block<2) {
  741. pred_x4= P_LEFT[0];
  742. pred_y4= P_LEFT[1];
  743. } else {
  744. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  745. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  746. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + off[block]][0];
  747. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + off[block]][1];
  748. if(P_TOP[1] > (rel_ymax4<<shift)) P_TOP[1] = (rel_ymax4<<shift);
  749. if(P_TOPRIGHT[0] < (rel_xmin4<<shift)) P_TOPRIGHT[0]= (rel_xmin4<<shift);
  750. if(P_TOPRIGHT[0] > (rel_xmax4<<shift)) P_TOPRIGHT[0]= (rel_xmax4<<shift);
  751. if(P_TOPRIGHT[1] > (rel_ymax4<<shift)) P_TOPRIGHT[1]= (rel_ymax4<<shift);
  752. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  753. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  754. // if(s->out_format == FMT_H263){
  755. pred_x4 = P_MEDIAN[0];
  756. pred_y4 = P_MEDIAN[1];
  757. #if 0
  758. }else { /* mpeg1 at least */
  759. pred_x4= P_LEFT[0];
  760. pred_y4= P_LEFT[1];
  761. }
  762. #endif
  763. }
  764. P_MV1[0]= mx;
  765. P_MV1[1]= my;
  766. dmin4 = s->me.motion_search[1](s, block, &mx4, &my4, P, pred_x4, pred_y4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  767. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  768. dmin4= s->me.sub_motion_search(s, &mx4, &my4, dmin4, rel_xmin4, rel_ymin4, rel_xmax4, rel_ymax4,
  769. pred_x4, pred_y4, &s->last_picture, block, 1, mv_penalty);
  770. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  771. int dxy;
  772. const int offset= ((block&1) + (block>>1)*s->linesize)*8;
  773. uint8_t *dest_y = s->me.scratchpad + offset;
  774. if(s->quarter_sample){
  775. uint8_t *ref= s->last_picture.data[0] + (s->mb_x*16 + (mx4>>2)) + (s->mb_y*16 + (my4>>2))*s->linesize + offset;
  776. dxy = ((my4 & 3) << 2) | (mx4 & 3);
  777. if(s->no_rounding)
  778. s->dsp.put_no_rnd_qpel_pixels_tab[1][dxy](dest_y , ref , s->linesize);
  779. else
  780. s->dsp.put_qpel_pixels_tab [1][dxy](dest_y , ref , s->linesize);
  781. }else{
  782. uint8_t *ref= s->last_picture.data[0] + (s->mb_x*16 + (mx4>>1)) + (s->mb_y*16 + (my4>>1))*s->linesize + offset;
  783. dxy = ((my4 & 1) << 1) | (mx4 & 1);
  784. if(s->no_rounding)
  785. s->dsp.put_no_rnd_pixels_tab[1][dxy](dest_y , ref , s->linesize, 8);
  786. else
  787. s->dsp.put_pixels_tab [1][dxy](dest_y , ref , s->linesize, 8);
  788. }
  789. dmin_sum+= (mv_penalty[mx4-pred_x4] + mv_penalty[my4-pred_y4])*s->me.mb_penalty_factor;
  790. }else
  791. dmin_sum+= dmin4;
  792. if(s->quarter_sample){
  793. mx4_sum+= mx4/2;
  794. my4_sum+= my4/2;
  795. }else{
  796. mx4_sum+= mx4;
  797. my4_sum+= my4;
  798. }
  799. s->motion_val[ s->block_index[block] ][0]= mx4;
  800. s->motion_val[ s->block_index[block] ][1]= my4;
  801. }
  802. if(s->dsp.me_sub_cmp[0] != s->dsp.mb_cmp[0]){
  803. dmin_sum += s->dsp.mb_cmp[0](s, s->new_picture.data[0] + s->mb_x*16 + s->mb_y*16*s->linesize, s->me.scratchpad, s->linesize);
  804. }
  805. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  806. int dxy;
  807. int mx, my;
  808. int offset;
  809. mx= ff_h263_round_chroma(mx4_sum);
  810. my= ff_h263_round_chroma(my4_sum);
  811. dxy = ((my & 1) << 1) | (mx & 1);
  812. offset= (s->mb_x*8 + (mx>>1)) + (s->mb_y*8 + (my>>1))*s->uvlinesize;
  813. if(s->no_rounding){
  814. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  815. s->dsp.put_no_rnd_pixels_tab[1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  816. }else{
  817. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad , s->last_picture.data[1] + offset, s->uvlinesize, 8);
  818. s->dsp.put_pixels_tab [1][dxy](s->me.scratchpad+8 , s->last_picture.data[2] + offset, s->uvlinesize, 8);
  819. }
  820. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[1] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad , s->uvlinesize);
  821. dmin_sum += s->dsp.mb_cmp[1](s, s->new_picture.data[2] + s->mb_x*8 + s->mb_y*8*s->uvlinesize, s->me.scratchpad+8, s->uvlinesize);
  822. }
  823. switch(s->avctx->mb_cmp&0xFF){
  824. /*case FF_CMP_SSE:
  825. return dmin_sum+ 32*s->qscale*s->qscale;*/
  826. case FF_CMP_RD:
  827. return dmin_sum;
  828. default:
  829. return dmin_sum+ 11*s->me.mb_penalty_factor;
  830. }
  831. }
  832. void ff_estimate_p_frame_motion(MpegEncContext * s,
  833. int mb_x, int mb_y)
  834. {
  835. UINT8 *pix, *ppix;
  836. int sum, varc, vard, mx, my, range, dmin, xx, yy;
  837. int xmin, ymin, xmax, ymax;
  838. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  839. int pred_x=0, pred_y=0;
  840. int P[10][2];
  841. const int shift= 1+s->quarter_sample;
  842. int mb_type=0;
  843. uint8_t *ref_picture= s->last_picture.data[0];
  844. Picture * const pic= &s->current_picture;
  845. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  846. assert(s->quarter_sample==0 || s->quarter_sample==1);
  847. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  848. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  849. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  850. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  851. rel_xmin= xmin - mb_x*16;
  852. rel_xmax= xmax - mb_x*16;
  853. rel_ymin= ymin - mb_y*16;
  854. rel_ymax= ymax - mb_y*16;
  855. s->me.skip=0;
  856. switch(s->me_method) {
  857. case ME_ZERO:
  858. default:
  859. no_motion_search(s, &mx, &my);
  860. mx-= mb_x*16;
  861. my-= mb_y*16;
  862. dmin = 0;
  863. break;
  864. case ME_FULL:
  865. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  866. mx-= mb_x*16;
  867. my-= mb_y*16;
  868. break;
  869. case ME_LOG:
  870. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  871. mx-= mb_x*16;
  872. my-= mb_y*16;
  873. break;
  874. case ME_PHODS:
  875. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  876. mx-= mb_x*16;
  877. my-= mb_y*16;
  878. break;
  879. case ME_X1:
  880. case ME_EPZS:
  881. {
  882. const int mot_stride = s->block_wrap[0];
  883. const int mot_xy = s->block_index[0];
  884. P_LEFT[0] = s->motion_val[mot_xy - 1][0];
  885. P_LEFT[1] = s->motion_val[mot_xy - 1][1];
  886. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  887. if(mb_y) {
  888. P_TOP[0] = s->motion_val[mot_xy - mot_stride ][0];
  889. P_TOP[1] = s->motion_val[mot_xy - mot_stride ][1];
  890. P_TOPRIGHT[0] = s->motion_val[mot_xy - mot_stride + 2][0];
  891. P_TOPRIGHT[1] = s->motion_val[mot_xy - mot_stride + 2][1];
  892. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1] = (rel_ymax<<shift);
  893. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  894. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  895. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  896. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  897. if(s->out_format == FMT_H263){
  898. pred_x = P_MEDIAN[0];
  899. pred_y = P_MEDIAN[1];
  900. }else { /* mpeg1 at least */
  901. pred_x= P_LEFT[0];
  902. pred_y= P_LEFT[1];
  903. }
  904. }else{
  905. pred_x= P_LEFT[0];
  906. pred_y= P_LEFT[1];
  907. }
  908. }
  909. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  910. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  911. break;
  912. }
  913. /* intra / predictive decision */
  914. xx = mb_x * 16;
  915. yy = mb_y * 16;
  916. pix = s->new_picture.data[0] + (yy * s->linesize) + xx;
  917. /* At this point (mx,my) are full-pell and the relative displacement */
  918. ppix = ref_picture + ((yy+my) * s->linesize) + (xx+mx);
  919. sum = s->dsp.pix_sum(pix, s->linesize);
  920. varc = (s->dsp.pix_norm1(pix, s->linesize) - (((unsigned)(sum*sum))>>8) + 500 + 128)>>8;
  921. vard = (s->dsp.sse[0](NULL, pix, ppix, s->linesize)+128)>>8;
  922. //printf("%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  923. pic->mb_var [s->mb_width * mb_y + mb_x] = varc;
  924. pic->mc_mb_var[s->mb_width * mb_y + mb_x] = vard;
  925. pic->mb_mean [s->mb_width * mb_y + mb_x] = (sum+128)>>8;
  926. // pic->mb_cmp_score[s->mb_width * mb_y + mb_x] = dmin;
  927. pic->mb_var_sum += varc;
  928. pic->mc_mb_var_sum += vard;
  929. //printf("E%d %d %d %X %X %X\n", s->mb_width, mb_x, mb_y,(int)s, (int)s->mb_var, (int)s->mc_mb_var); fflush(stdout);
  930. #if 0
  931. printf("varc=%4d avg_var=%4d (sum=%4d) vard=%4d mx=%2d my=%2d\n",
  932. varc, s->avg_mb_var, sum, vard, mx - xx, my - yy);
  933. #endif
  934. if(s->flags&CODEC_FLAG_HQ){
  935. if (vard <= 64 || vard < varc)
  936. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  937. else
  938. s->scene_change_score+= s->qscale;
  939. if (vard*2 + 200 > varc)
  940. mb_type|= MB_TYPE_INTRA;
  941. if (varc*2 + 200 > vard){
  942. mb_type|= MB_TYPE_INTER;
  943. s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  944. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  945. }else{
  946. mx <<=shift;
  947. my <<=shift;
  948. }
  949. if((s->flags&CODEC_FLAG_4MV)
  950. && !s->me.skip && varc>50 && vard>10){
  951. h263_mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  952. mb_type|=MB_TYPE_INTER4V;
  953. set_p_mv_tables(s, mx, my, 0);
  954. }else
  955. set_p_mv_tables(s, mx, my, 1);
  956. }else{
  957. mb_type= MB_TYPE_INTER;
  958. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  959. pred_x, pred_y, &s->last_picture, 0, 0, mv_penalty);
  960. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  961. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, &s->last_picture, mv_penalty);
  962. if((s->flags&CODEC_FLAG_4MV)
  963. && !s->me.skip && varc>50 && vard>10){
  964. int dmin4= h263_mv4_search(s, rel_xmin, rel_ymin, rel_xmax, rel_ymax, mx, my, shift);
  965. if(dmin4 < dmin){
  966. mb_type= MB_TYPE_INTER4V;
  967. dmin=dmin4;
  968. }
  969. }
  970. pic->mb_cmp_score[s->mb_width * mb_y + mb_x] = dmin;
  971. set_p_mv_tables(s, mx, my, mb_type!=MB_TYPE_INTER4V);
  972. if (vard <= 64 || vard < varc) {
  973. s->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
  974. }else{
  975. s->scene_change_score+= s->qscale;
  976. }
  977. }
  978. s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  979. }
  980. int ff_pre_estimate_p_frame_motion(MpegEncContext * s,
  981. int mb_x, int mb_y)
  982. {
  983. int mx, my, range, dmin;
  984. int xmin, ymin, xmax, ymax;
  985. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  986. int pred_x=0, pred_y=0;
  987. int P[10][2];
  988. const int shift= 1+s->quarter_sample;
  989. uint16_t * const mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV;
  990. const int mv_stride= s->mb_width + 2;
  991. const int xy= mb_x + 1 + (mb_y + 1)*mv_stride;
  992. assert(s->quarter_sample==0 || s->quarter_sample==1);
  993. s->me.pre_penalty_factor = get_penalty_factor(s, s->avctx->me_pre_cmp);
  994. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, s->f_code);
  995. rel_xmin= xmin - mb_x*16;
  996. rel_xmax= xmax - mb_x*16;
  997. rel_ymin= ymin - mb_y*16;
  998. rel_ymax= ymax - mb_y*16;
  999. s->me.skip=0;
  1000. P_LEFT[0] = s->p_mv_table[xy + 1][0];
  1001. P_LEFT[1] = s->p_mv_table[xy + 1][1];
  1002. if(P_LEFT[0] < (rel_xmin<<shift)) P_LEFT[0] = (rel_xmin<<shift);
  1003. /* special case for first line */
  1004. if (mb_y == s->mb_height-1) {
  1005. pred_x= P_LEFT[0];
  1006. pred_y= P_LEFT[1];
  1007. P_TOP[0]= P_TOPRIGHT[0]= P_MEDIAN[0]=
  1008. P_TOP[1]= P_TOPRIGHT[1]= P_MEDIAN[1]= 0; //FIXME
  1009. } else {
  1010. P_TOP[0] = s->p_mv_table[xy + mv_stride ][0];
  1011. P_TOP[1] = s->p_mv_table[xy + mv_stride ][1];
  1012. P_TOPRIGHT[0] = s->p_mv_table[xy + mv_stride - 1][0];
  1013. P_TOPRIGHT[1] = s->p_mv_table[xy + mv_stride - 1][1];
  1014. if(P_TOP[1] < (rel_ymin<<shift)) P_TOP[1] = (rel_ymin<<shift);
  1015. if(P_TOPRIGHT[0] > (rel_xmax<<shift)) P_TOPRIGHT[0]= (rel_xmax<<shift);
  1016. if(P_TOPRIGHT[1] < (rel_ymin<<shift)) P_TOPRIGHT[1]= (rel_ymin<<shift);
  1017. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1018. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1019. pred_x = P_MEDIAN[0];
  1020. pred_y = P_MEDIAN[1];
  1021. }
  1022. dmin = s->me.pre_motion_search(s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1023. &s->last_picture, s->p_mv_table, (1<<16)>>shift, mv_penalty);
  1024. s->p_mv_table[xy][0] = mx<<shift;
  1025. s->p_mv_table[xy][1] = my<<shift;
  1026. return dmin;
  1027. }
  1028. int ff_estimate_motion_b(MpegEncContext * s,
  1029. int mb_x, int mb_y, int16_t (*mv_table)[2], Picture *picture, int f_code)
  1030. {
  1031. int mx, my, range, dmin;
  1032. int xmin, ymin, xmax, ymax;
  1033. int rel_xmin, rel_ymin, rel_xmax, rel_ymax;
  1034. int pred_x=0, pred_y=0;
  1035. int P[10][2];
  1036. const int shift= 1+s->quarter_sample;
  1037. const int mot_stride = s->mb_width + 2;
  1038. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1039. uint8_t * const ref_picture= picture->data[0];
  1040. uint16_t * const mv_penalty= s->me.mv_penalty[f_code] + MAX_MV;
  1041. int mv_scale;
  1042. s->me.penalty_factor = get_penalty_factor(s, s->avctx->me_cmp);
  1043. s->me.sub_penalty_factor= get_penalty_factor(s, s->avctx->me_sub_cmp);
  1044. s->me.mb_penalty_factor = get_penalty_factor(s, s->avctx->mb_cmp);
  1045. get_limits(s, &range, &xmin, &ymin, &xmax, &ymax, f_code);
  1046. rel_xmin= xmin - mb_x*16;
  1047. rel_xmax= xmax - mb_x*16;
  1048. rel_ymin= ymin - mb_y*16;
  1049. rel_ymax= ymax - mb_y*16;
  1050. switch(s->me_method) {
  1051. case ME_ZERO:
  1052. default:
  1053. no_motion_search(s, &mx, &my);
  1054. dmin = 0;
  1055. mx-= mb_x*16;
  1056. my-= mb_y*16;
  1057. break;
  1058. case ME_FULL:
  1059. dmin = full_motion_search(s, &mx, &my, range, xmin, ymin, xmax, ymax, ref_picture);
  1060. mx-= mb_x*16;
  1061. my-= mb_y*16;
  1062. break;
  1063. case ME_LOG:
  1064. dmin = log_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  1065. mx-= mb_x*16;
  1066. my-= mb_y*16;
  1067. break;
  1068. case ME_PHODS:
  1069. dmin = phods_motion_search(s, &mx, &my, range / 2, xmin, ymin, xmax, ymax, ref_picture);
  1070. mx-= mb_x*16;
  1071. my-= mb_y*16;
  1072. break;
  1073. case ME_X1:
  1074. case ME_EPZS:
  1075. {
  1076. P_LEFT[0] = mv_table[mot_xy - 1][0];
  1077. P_LEFT[1] = mv_table[mot_xy - 1][1];
  1078. if(P_LEFT[0] > (rel_xmax<<shift)) P_LEFT[0] = (rel_xmax<<shift);
  1079. /* special case for first line */
  1080. if (mb_y) {
  1081. P_TOP[0] = mv_table[mot_xy - mot_stride ][0];
  1082. P_TOP[1] = mv_table[mot_xy - mot_stride ][1];
  1083. P_TOPRIGHT[0] = mv_table[mot_xy - mot_stride + 1 ][0];
  1084. P_TOPRIGHT[1] = mv_table[mot_xy - mot_stride + 1 ][1];
  1085. if(P_TOP[1] > (rel_ymax<<shift)) P_TOP[1]= (rel_ymax<<shift);
  1086. if(P_TOPRIGHT[0] < (rel_xmin<<shift)) P_TOPRIGHT[0]= (rel_xmin<<shift);
  1087. if(P_TOPRIGHT[1] > (rel_ymax<<shift)) P_TOPRIGHT[1]= (rel_ymax<<shift);
  1088. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1089. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1090. }
  1091. pred_x= P_LEFT[0];
  1092. pred_y= P_LEFT[1];
  1093. }
  1094. if(mv_table == s->b_forw_mv_table){
  1095. mv_scale= (s->pb_time<<16) / (s->pp_time<<shift);
  1096. }else{
  1097. mv_scale= ((s->pb_time - s->pp_time)<<16) / (s->pp_time<<shift);
  1098. }
  1099. dmin = s->me.motion_search[0](s, 0, &mx, &my, P, pred_x, pred_y, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1100. picture, s->p_mv_table, mv_scale, mv_penalty);
  1101. break;
  1102. }
  1103. dmin= s->me.sub_motion_search(s, &mx, &my, dmin, rel_xmin, rel_ymin, rel_xmax, rel_ymax,
  1104. pred_x, pred_y, picture, 0, 0, mv_penalty);
  1105. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1106. dmin= s->me.get_mb_score(s, mx, my, pred_x, pred_y, picture, mv_penalty);
  1107. //printf("%d %d %d %d//", s->mb_x, s->mb_y, mx, my);
  1108. // s->mb_type[mb_y*s->mb_width + mb_x]= mb_type;
  1109. mv_table[mot_xy][0]= mx;
  1110. mv_table[mot_xy][1]= my;
  1111. return dmin;
  1112. }
  1113. static inline int check_bidir_mv(MpegEncContext * s,
  1114. int mb_x, int mb_y,
  1115. int motion_fx, int motion_fy,
  1116. int motion_bx, int motion_by,
  1117. int pred_fx, int pred_fy,
  1118. int pred_bx, int pred_by)
  1119. {
  1120. //FIXME optimize?
  1121. //FIXME move into template?
  1122. //FIXME better f_code prediction (max mv & distance)
  1123. UINT16 *mv_penalty= s->me.mv_penalty[s->f_code] + MAX_MV; // f_code of the prev frame
  1124. uint8_t *dest_y = s->me.scratchpad;
  1125. uint8_t *ptr;
  1126. int dxy;
  1127. int src_x, src_y;
  1128. int fbmin;
  1129. if(s->quarter_sample){
  1130. dxy = ((motion_fy & 3) << 2) | (motion_fx & 3);
  1131. src_x = mb_x * 16 + (motion_fx >> 2);
  1132. src_y = mb_y * 16 + (motion_fy >> 2);
  1133. assert(src_x >=-16 && src_x<=s->width);
  1134. assert(src_y >=-16 && src_y<=s->height);
  1135. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1136. s->dsp.put_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1137. dxy = ((motion_by & 3) << 2) | (motion_bx & 3);
  1138. src_x = mb_x * 16 + (motion_bx >> 2);
  1139. src_y = mb_y * 16 + (motion_by >> 2);
  1140. assert(src_x >=-16 && src_x<=s->width);
  1141. assert(src_y >=-16 && src_y<=s->height);
  1142. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1143. s->dsp.avg_qpel_pixels_tab[0][dxy](dest_y , ptr , s->linesize);
  1144. }else{
  1145. dxy = ((motion_fy & 1) << 1) | (motion_fx & 1);
  1146. src_x = mb_x * 16 + (motion_fx >> 1);
  1147. src_y = mb_y * 16 + (motion_fy >> 1);
  1148. assert(src_x >=-16 && src_x<=s->width);
  1149. assert(src_y >=-16 && src_y<=s->height);
  1150. ptr = s->last_picture.data[0] + (src_y * s->linesize) + src_x;
  1151. s->dsp.put_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1152. dxy = ((motion_by & 1) << 1) | (motion_bx & 1);
  1153. src_x = mb_x * 16 + (motion_bx >> 1);
  1154. src_y = mb_y * 16 + (motion_by >> 1);
  1155. assert(src_x >=-16 && src_x<=s->width);
  1156. assert(src_y >=-16 && src_y<=s->height);
  1157. ptr = s->next_picture.data[0] + (src_y * s->linesize) + src_x;
  1158. s->dsp.avg_pixels_tab[0][dxy](dest_y , ptr , s->linesize, 16);
  1159. }
  1160. fbmin = (mv_penalty[motion_fx-pred_fx] + mv_penalty[motion_fy-pred_fy])*s->me.mb_penalty_factor
  1161. +(mv_penalty[motion_bx-pred_bx] + mv_penalty[motion_by-pred_by])*s->me.mb_penalty_factor
  1162. + s->dsp.mb_cmp[0](s, s->new_picture.data[0] + mb_x*16 + mb_y*16*s->linesize, dest_y, s->linesize);
  1163. if(s->avctx->mb_cmp&FF_CMP_CHROMA){
  1164. }
  1165. //FIXME CHROMA !!!
  1166. return fbmin;
  1167. }
  1168. /* refine the bidir vectors in hq mode and return the score in both lq & hq mode*/
  1169. static inline int bidir_refine(MpegEncContext * s,
  1170. int mb_x, int mb_y)
  1171. {
  1172. const int mot_stride = s->mb_width + 2;
  1173. const int xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1174. int fbmin;
  1175. int pred_fx= s->b_bidir_forw_mv_table[xy-1][0];
  1176. int pred_fy= s->b_bidir_forw_mv_table[xy-1][1];
  1177. int pred_bx= s->b_bidir_back_mv_table[xy-1][0];
  1178. int pred_by= s->b_bidir_back_mv_table[xy-1][1];
  1179. int motion_fx= s->b_bidir_forw_mv_table[xy][0]= s->b_forw_mv_table[xy][0];
  1180. int motion_fy= s->b_bidir_forw_mv_table[xy][1]= s->b_forw_mv_table[xy][1];
  1181. int motion_bx= s->b_bidir_back_mv_table[xy][0]= s->b_back_mv_table[xy][0];
  1182. int motion_by= s->b_bidir_back_mv_table[xy][1]= s->b_back_mv_table[xy][1];
  1183. //FIXME do refinement and add flag
  1184. fbmin= check_bidir_mv(s, mb_x, mb_y,
  1185. motion_fx, motion_fy,
  1186. motion_bx, motion_by,
  1187. pred_fx, pred_fy,
  1188. pred_bx, pred_by);
  1189. return fbmin;
  1190. }
  1191. static inline int direct_search(MpegEncContext * s,
  1192. int mb_x, int mb_y)
  1193. {
  1194. int P[10][2];
  1195. const int mot_stride = s->mb_width + 2;
  1196. const int mot_xy = (mb_y + 1)*mot_stride + mb_x + 1;
  1197. const int shift= 1+s->quarter_sample;
  1198. int dmin, i;
  1199. const int time_pp= s->pp_time;
  1200. const int time_pb= s->pb_time;
  1201. int mx, my, xmin, xmax, ymin, ymax;
  1202. int16_t (*mv_table)[2]= s->b_direct_mv_table;
  1203. uint16_t * const mv_penalty= s->me.mv_penalty[1] + MAX_MV;
  1204. ymin= xmin=(-32)>>shift;
  1205. ymax= xmax= 31>>shift;
  1206. if(s->co_located_type_table[mb_x + mb_y*s->mb_width]==CO_LOCATED_TYPE_4MV){
  1207. s->mv_type= MV_TYPE_8X8;
  1208. }else{
  1209. s->mv_type= MV_TYPE_16X16;
  1210. }
  1211. for(i=0; i<4; i++){
  1212. int index= s->block_index[i];
  1213. int min, max;
  1214. s->me.co_located_mv[i][0]= s->motion_val[index][0];
  1215. s->me.co_located_mv[i][1]= s->motion_val[index][1];
  1216. s->me.direct_basis_mv[i][0]= s->me.co_located_mv[i][0]*time_pb/time_pp + ((i& 1)<<(shift+3));
  1217. s->me.direct_basis_mv[i][1]= s->me.co_located_mv[i][1]*time_pb/time_pp + ((i>>1)<<(shift+3));
  1218. // s->me.direct_basis_mv[1][i][0]= s->me.co_located_mv[i][0]*(time_pb - time_pp)/time_pp + ((i &1)<<(shift+3);
  1219. // s->me.direct_basis_mv[1][i][1]= s->me.co_located_mv[i][1]*(time_pb - time_pp)/time_pp + ((i>>1)<<(shift+3);
  1220. max= FFMAX(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1221. min= FFMIN(s->me.direct_basis_mv[i][0], s->me.direct_basis_mv[i][0] - s->me.co_located_mv[i][0])>>shift;
  1222. max+= (2*mb_x + (i& 1))*8 + 1; // +-1 is for the simpler rounding
  1223. min+= (2*mb_x + (i& 1))*8 - 1;
  1224. xmax= FFMIN(xmax, s->width - max);
  1225. xmin= FFMAX(xmin, - 16 - min);
  1226. max= FFMAX(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1227. min= FFMIN(s->me.direct_basis_mv[i][1], s->me.direct_basis_mv[i][1] - s->me.co_located_mv[i][1])>>shift;
  1228. max+= (2*mb_y + (i>>1))*8 + 1; // +-1 is for the simpler rounding
  1229. min+= (2*mb_y + (i>>1))*8 - 1;
  1230. ymax= FFMIN(ymax, s->height - max);
  1231. ymin= FFMAX(ymin, - 16 - min);
  1232. if(s->mv_type == MV_TYPE_16X16) break;
  1233. }
  1234. assert(xmax <= 15 && ymax <= 15 && xmin >= -16 && ymin >= -16);
  1235. if(xmax < 0 || xmin >0 || ymax < 0 || ymin > 0){
  1236. s->b_direct_mv_table[mot_xy][0]= 0;
  1237. s->b_direct_mv_table[mot_xy][1]= 0;
  1238. return 256*256*256*64;
  1239. }
  1240. P_LEFT[0] = clip(mv_table[mot_xy - 1][0], xmin<<shift, xmax<<shift);
  1241. P_LEFT[1] = clip(mv_table[mot_xy - 1][1], ymin<<shift, ymax<<shift);
  1242. /* special case for first line */
  1243. if (mb_y) {
  1244. P_TOP[0] = clip(mv_table[mot_xy - mot_stride ][0], xmin<<shift, xmax<<shift);
  1245. P_TOP[1] = clip(mv_table[mot_xy - mot_stride ][1], ymin<<shift, ymax<<shift);
  1246. P_TOPRIGHT[0] = clip(mv_table[mot_xy - mot_stride + 1 ][0], xmin<<shift, xmax<<shift);
  1247. P_TOPRIGHT[1] = clip(mv_table[mot_xy - mot_stride + 1 ][1], ymin<<shift, ymax<<shift);
  1248. P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
  1249. P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
  1250. }
  1251. //FIXME direct_search ptr in context!!! (needed for chroma anyway or this will get messy)
  1252. if(s->flags&CODEC_FLAG_QPEL){
  1253. dmin = simple_direct_qpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1254. &s->last_picture, mv_table, 1<<14, mv_penalty);
  1255. dmin = simple_direct_qpel_qpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1256. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1257. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1258. dmin= simple_direct_qpel_qpel_get_mb_score(s, mx, my, 0, 0, &s->last_picture, mv_penalty);
  1259. }else{
  1260. dmin = simple_direct_hpel_epzs_motion_search(s, 0, &mx, &my, P, 0, 0, xmin, ymin, xmax, ymax,
  1261. &s->last_picture, mv_table, 1<<15, mv_penalty);
  1262. dmin = simple_direct_hpel_hpel_motion_search(s, &mx, &my, dmin, xmin, ymin, xmax, ymax,
  1263. 0, 0, &s->last_picture, 0, 0, mv_penalty);
  1264. if(s->avctx->me_sub_cmp != s->avctx->mb_cmp && !s->me.skip)
  1265. dmin= simple_direct_hpel_hpel_get_mb_score(s, mx, my, 0, 0, &s->last_picture, mv_penalty);
  1266. }
  1267. s->b_direct_mv_table[mot_xy][0]= mx;
  1268. s->b_direct_mv_table[mot_xy][1]= my;
  1269. return dmin;
  1270. }
  1271. void ff_estimate_b_frame_motion(MpegEncContext * s,
  1272. int mb_x, int mb_y)
  1273. {
  1274. const int penalty_factor= s->me.mb_penalty_factor;
  1275. int fmin, bmin, dmin, fbmin;
  1276. int type=0;
  1277. dmin= direct_search(s, mb_x, mb_y);
  1278. fmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_forw_mv_table, &s->last_picture, s->f_code) + 3*penalty_factor;
  1279. bmin= ff_estimate_motion_b(s, mb_x, mb_y, s->b_back_mv_table, &s->next_picture, s->b_code) + 2*penalty_factor;
  1280. //printf(" %d %d ", s->b_forw_mv_table[xy][0], s->b_forw_mv_table[xy][1]);
  1281. fbmin= bidir_refine(s, mb_x, mb_y) + penalty_factor;
  1282. //printf("%d %d %d %d\n", dmin, fmin, bmin, fbmin);
  1283. {
  1284. int score= fmin;
  1285. type = MB_TYPE_FORWARD;
  1286. // RAL: No MB_TYPE_DIRECT in MPEG-1 video (only MPEG-4)
  1287. if (s->codec_id != CODEC_ID_MPEG1VIDEO && dmin <= score){
  1288. score = dmin;
  1289. type = MB_TYPE_DIRECT;
  1290. }
  1291. if(bmin<score){
  1292. score=bmin;
  1293. type= MB_TYPE_BACKWARD;
  1294. }
  1295. if(fbmin<score){
  1296. score=fbmin;
  1297. type= MB_TYPE_BIDIR;
  1298. }
  1299. score= ((unsigned)(score*score + 128*256))>>16;
  1300. s->current_picture.mc_mb_var_sum += score;
  1301. s->current_picture.mc_mb_var[mb_y*s->mb_width + mb_x] = score; //FIXME use SSE
  1302. }
  1303. if(s->flags&CODEC_FLAG_HQ){
  1304. type= MB_TYPE_FORWARD | MB_TYPE_BACKWARD | MB_TYPE_BIDIR | MB_TYPE_DIRECT; //FIXME something smarter
  1305. if(dmin>256*256*16) type&= ~MB_TYPE_DIRECT; //dont try direct mode if its invalid for this MB
  1306. }
  1307. s->mb_type[mb_y*s->mb_width + mb_x]= type;
  1308. }
  1309. /* find best f_code for ME which do unlimited searches */
  1310. int ff_get_best_fcode(MpegEncContext * s, int16_t (*mv_table)[2], int type)
  1311. {
  1312. if(s->me_method>=ME_EPZS){
  1313. int score[8];
  1314. int i, y;
  1315. UINT8 * fcode_tab= s->fcode_tab;
  1316. int best_fcode=-1;
  1317. int best_score=-10000000;
  1318. for(i=0; i<8; i++) score[i]= s->mb_num*(8-i);
  1319. for(y=0; y<s->mb_height; y++){
  1320. int x;
  1321. int xy= (y+1)* (s->mb_width+2) + 1;
  1322. i= y*s->mb_width;
  1323. for(x=0; x<s->mb_width; x++){
  1324. if(s->mb_type[i] & type){
  1325. int fcode= FFMAX(fcode_tab[mv_table[xy][0] + MAX_MV],
  1326. fcode_tab[mv_table[xy][1] + MAX_MV]);
  1327. int j;
  1328. for(j=0; j<fcode && j<8; j++){
  1329. if(s->pict_type==B_TYPE || s->current_picture.mc_mb_var[i] < s->current_picture.mb_var[i])
  1330. score[j]-= 170;
  1331. }
  1332. }
  1333. i++;
  1334. xy++;
  1335. }
  1336. }
  1337. for(i=1; i<8; i++){
  1338. if(score[i] > best_score){
  1339. best_score= score[i];
  1340. best_fcode= i;
  1341. }
  1342. // printf("%d %d\n", i, score[i]);
  1343. }
  1344. // printf("fcode: %d type: %d\n", i, s->pict_type);
  1345. return best_fcode;
  1346. /* for(i=0; i<=MAX_FCODE; i++){
  1347. printf("%d ", mv_num[i]);
  1348. }
  1349. printf("\n");*/
  1350. }else{
  1351. return 1;
  1352. }
  1353. }
  1354. void ff_fix_long_p_mvs(MpegEncContext * s)
  1355. {
  1356. const int f_code= s->f_code;
  1357. int y;
  1358. UINT8 * fcode_tab= s->fcode_tab;
  1359. //int clip=0;
  1360. //int noclip=0;
  1361. /* clip / convert to intra 16x16 type MVs */
  1362. for(y=0; y<s->mb_height; y++){
  1363. int x;
  1364. int xy= (y+1)* (s->mb_width+2)+1;
  1365. int i= y*s->mb_width;
  1366. for(x=0; x<s->mb_width; x++){
  1367. if(s->mb_type[i]&MB_TYPE_INTER){
  1368. if( fcode_tab[s->p_mv_table[xy][0] + MAX_MV] > f_code
  1369. || fcode_tab[s->p_mv_table[xy][0] + MAX_MV] == 0
  1370. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] > f_code
  1371. || fcode_tab[s->p_mv_table[xy][1] + MAX_MV] == 0 ){
  1372. s->mb_type[i] &= ~MB_TYPE_INTER;
  1373. s->mb_type[i] |= MB_TYPE_INTRA;
  1374. s->p_mv_table[xy][0] = 0;
  1375. s->p_mv_table[xy][1] = 0;
  1376. //clip++;
  1377. }
  1378. //else
  1379. // noclip++;
  1380. }
  1381. xy++;
  1382. i++;
  1383. }
  1384. }
  1385. //printf("%d no:%d %d//\n", clip, noclip, f_code);
  1386. if(s->flags&CODEC_FLAG_4MV){
  1387. const int wrap= 2+ s->mb_width*2;
  1388. /* clip / convert to intra 8x8 type MVs */
  1389. for(y=0; y<s->mb_height; y++){
  1390. int xy= (y*2 + 1)*wrap + 1;
  1391. int i= y*s->mb_width;
  1392. int x;
  1393. for(x=0; x<s->mb_width; x++){
  1394. if(s->mb_type[i]&MB_TYPE_INTER4V){
  1395. int block;
  1396. for(block=0; block<4; block++){
  1397. int off= (block& 1) + (block>>1)*wrap;
  1398. int mx= s->motion_val[ xy + off ][0];
  1399. int my= s->motion_val[ xy + off ][1];
  1400. if( fcode_tab[mx + MAX_MV] > f_code
  1401. || fcode_tab[mx + MAX_MV] == 0
  1402. || fcode_tab[my + MAX_MV] > f_code
  1403. || fcode_tab[my + MAX_MV] == 0 ){
  1404. s->mb_type[i] &= ~MB_TYPE_INTER4V;
  1405. s->mb_type[i] |= MB_TYPE_INTRA;
  1406. }
  1407. }
  1408. }
  1409. xy+=2;
  1410. i++;
  1411. }
  1412. }
  1413. }
  1414. }
  1415. void ff_fix_long_b_mvs(MpegEncContext * s, int16_t (*mv_table)[2], int f_code, int type)
  1416. {
  1417. int y;
  1418. UINT8 * fcode_tab= s->fcode_tab;
  1419. // RAL: 8 in MPEG-1, 16 in MPEG-4
  1420. int range = (((s->codec_id == CODEC_ID_MPEG1VIDEO) ? 8 : 16) << f_code);
  1421. /* clip / convert to intra 16x16 type MVs */
  1422. for(y=0; y<s->mb_height; y++){
  1423. int x;
  1424. int xy= (y+1)* (s->mb_width+2)+1;
  1425. int i= y*s->mb_width;
  1426. for(x=0; x<s->mb_width; x++)
  1427. {
  1428. if (s->mb_type[i] & type) // RAL: "type" test added...
  1429. {
  1430. if (fcode_tab[mv_table[xy][0] + MAX_MV] > f_code || fcode_tab[mv_table[xy][0] + MAX_MV] == 0)
  1431. {
  1432. if(mv_table[xy][0]>0)
  1433. mv_table[xy][0]= range-1;
  1434. else
  1435. mv_table[xy][0]= -range;
  1436. }
  1437. if (fcode_tab[mv_table[xy][1] + MAX_MV] > f_code || fcode_tab[mv_table[xy][1] + MAX_MV] == 0)
  1438. {
  1439. if(mv_table[xy][1]>0)
  1440. mv_table[xy][1]= range-1;
  1441. else
  1442. mv_table[xy][1]= -range;
  1443. }
  1444. }
  1445. xy++;
  1446. i++;
  1447. }
  1448. }
  1449. }