You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2128 lines
74KB

  1. /*
  2. * Copyright (C) 2007 Marco Gerards <marco@gnu.org>
  3. * Copyright (C) 2009 David Conrad
  4. * Copyright (C) 2011 Jordi Ortiz
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Dirac Decoder
  25. * @author Marco Gerards <marco@gnu.org>, David Conrad, Jordi Ortiz <nenjordi@gmail.com>
  26. */
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "bytestream.h"
  30. #include "internal.h"
  31. #include "golomb.h"
  32. #include "dirac_arith.h"
  33. #include "mpeg12data.h"
  34. #include "libavcodec/mpegvideo.h"
  35. #include "mpegvideoencdsp.h"
  36. #include "dirac_dwt.h"
  37. #include "dirac.h"
  38. #include "diracdsp.h"
  39. #include "videodsp.h"
  40. /**
  41. * The spec limits the number of wavelet decompositions to 4 for both
  42. * level 1 (VC-2) and 128 (long-gop default).
  43. * 5 decompositions is the maximum before >16-bit buffers are needed.
  44. * Schroedinger allows this for DD 9,7 and 13,7 wavelets only, limiting
  45. * the others to 4 decompositions (or 3 for the fidelity filter).
  46. *
  47. * We use this instead of MAX_DECOMPOSITIONS to save some memory.
  48. */
  49. #define MAX_DWT_LEVELS 5
  50. /**
  51. * The spec limits this to 3 for frame coding, but in practice can be as high as 6
  52. */
  53. #define MAX_REFERENCE_FRAMES 8
  54. #define MAX_DELAY 5 /* limit for main profile for frame coding (TODO: field coding) */
  55. #define MAX_FRAMES (MAX_REFERENCE_FRAMES + MAX_DELAY + 1)
  56. #define MAX_QUANT 255 /* max quant for VC-2 */
  57. #define MAX_BLOCKSIZE 32 /* maximum xblen/yblen we support */
  58. /**
  59. * DiracBlock->ref flags, if set then the block does MC from the given ref
  60. */
  61. #define DIRAC_REF_MASK_REF1 1
  62. #define DIRAC_REF_MASK_REF2 2
  63. #define DIRAC_REF_MASK_GLOBAL 4
  64. /**
  65. * Value of Picture.reference when Picture is not a reference picture, but
  66. * is held for delayed output.
  67. */
  68. #define DELAYED_PIC_REF 4
  69. #define CALC_PADDING(size, depth) \
  70. (((size + (1 << depth) - 1) >> depth) << depth)
  71. #define DIVRNDUP(a, b) (((a) + (b) - 1) / (b))
  72. typedef struct {
  73. AVFrame *avframe;
  74. int interpolated[3]; /* 1 if hpel[] is valid */
  75. uint8_t *hpel[3][4];
  76. uint8_t *hpel_base[3][4];
  77. int reference;
  78. } DiracFrame;
  79. typedef struct {
  80. union {
  81. int16_t mv[2][2];
  82. int16_t dc[3];
  83. } u; /* anonymous unions aren't in C99 :( */
  84. uint8_t ref;
  85. } DiracBlock;
  86. typedef struct SubBand {
  87. int level;
  88. int orientation;
  89. int stride; /* in bytes */
  90. int width;
  91. int height;
  92. int pshift;
  93. int quant;
  94. uint8_t *ibuf;
  95. struct SubBand *parent;
  96. /* for low delay */
  97. unsigned length;
  98. const uint8_t *coeff_data;
  99. } SubBand;
  100. typedef struct Plane {
  101. int width;
  102. int height;
  103. ptrdiff_t stride;
  104. int idwt_width;
  105. int idwt_height;
  106. int idwt_stride;
  107. uint8_t *idwt_buf;
  108. uint8_t *idwt_buf_base;
  109. uint8_t *idwt_tmp;
  110. /* block length */
  111. uint8_t xblen;
  112. uint8_t yblen;
  113. /* block separation (block n+1 starts after this many pixels in block n) */
  114. uint8_t xbsep;
  115. uint8_t ybsep;
  116. /* amount of overspill on each edge (half of the overlap between blocks) */
  117. uint8_t xoffset;
  118. uint8_t yoffset;
  119. SubBand band[MAX_DWT_LEVELS][4];
  120. } Plane;
  121. typedef struct DiracContext {
  122. AVCodecContext *avctx;
  123. MpegvideoEncDSPContext mpvencdsp;
  124. VideoDSPContext vdsp;
  125. DiracDSPContext diracdsp;
  126. DiracVersionInfo version;
  127. GetBitContext gb;
  128. dirac_source_params source;
  129. int seen_sequence_header;
  130. int frame_number; /* number of the next frame to display */
  131. Plane plane[3];
  132. int chroma_x_shift;
  133. int chroma_y_shift;
  134. int bit_depth; /* bit depth */
  135. int pshift; /* pixel shift = bit_depth > 8 */
  136. int zero_res; /* zero residue flag */
  137. int is_arith; /* whether coeffs use arith or golomb coding */
  138. int core_syntax; /* use core syntax only */
  139. int low_delay; /* use the low delay syntax */
  140. int hq_picture; /* high quality picture, enables low_delay */
  141. int ld_picture; /* use low delay picture, turns on low_delay */
  142. int dc_prediction; /* has dc prediction */
  143. int globalmc_flag; /* use global motion compensation */
  144. int num_refs; /* number of reference pictures */
  145. /* wavelet decoding */
  146. unsigned wavelet_depth; /* depth of the IDWT */
  147. unsigned wavelet_idx;
  148. /**
  149. * schroedinger older than 1.0.8 doesn't store
  150. * quant delta if only one codebook exists in a band
  151. */
  152. unsigned old_delta_quant;
  153. unsigned codeblock_mode;
  154. unsigned num_x; /* number of horizontal slices */
  155. unsigned num_y; /* number of vertical slices */
  156. struct {
  157. unsigned width;
  158. unsigned height;
  159. } codeblock[MAX_DWT_LEVELS+1];
  160. struct {
  161. AVRational bytes; /* average bytes per slice */
  162. uint8_t quant[MAX_DWT_LEVELS][4]; /* [DIRAC_STD] E.1 */
  163. } lowdelay;
  164. struct {
  165. int pan_tilt[2]; /* pan/tilt vector */
  166. int zrs[2][2]; /* zoom/rotate/shear matrix */
  167. int perspective[2]; /* perspective vector */
  168. unsigned zrs_exp;
  169. unsigned perspective_exp;
  170. } globalmc[2];
  171. /* motion compensation */
  172. uint8_t mv_precision; /* [DIRAC_STD] REFS_WT_PRECISION */
  173. int16_t weight[2]; /* [DIRAC_STD] REF1_WT and REF2_WT */
  174. unsigned weight_log2denom; /* [DIRAC_STD] REFS_WT_PRECISION */
  175. int blwidth; /* number of blocks (horizontally) */
  176. int blheight; /* number of blocks (vertically) */
  177. int sbwidth; /* number of superblocks (horizontally) */
  178. int sbheight; /* number of superblocks (vertically) */
  179. uint8_t *sbsplit;
  180. DiracBlock *blmotion;
  181. uint8_t *edge_emu_buffer[4];
  182. uint8_t *edge_emu_buffer_base;
  183. uint16_t *mctmp; /* buffer holding the MC data multiplied by OBMC weights */
  184. uint8_t *mcscratch;
  185. int buffer_stride;
  186. DECLARE_ALIGNED(16, uint8_t, obmc_weight)[3][MAX_BLOCKSIZE*MAX_BLOCKSIZE];
  187. void (*put_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  188. void (*avg_pixels_tab[4])(uint8_t *dst, const uint8_t *src[5], int stride, int h);
  189. void (*add_obmc)(uint16_t *dst, const uint8_t *src, int stride, const uint8_t *obmc_weight, int yblen);
  190. dirac_weight_func weight_func;
  191. dirac_biweight_func biweight_func;
  192. DiracFrame *current_picture;
  193. DiracFrame *ref_pics[2];
  194. DiracFrame *ref_frames[MAX_REFERENCE_FRAMES+1];
  195. DiracFrame *delay_frames[MAX_DELAY+1];
  196. DiracFrame all_frames[MAX_FRAMES];
  197. } DiracContext;
  198. enum dirac_subband {
  199. subband_ll = 0,
  200. subband_hl = 1,
  201. subband_lh = 2,
  202. subband_hh = 3,
  203. subband_nb,
  204. };
  205. static const uint8_t default_qmat[][4][4] = {
  206. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  207. { { 4, 2, 2, 0}, { 0, 4, 4, 2}, { 0, 5, 5, 3}, { 0, 7, 7, 5} },
  208. { { 5, 3, 3, 0}, { 0, 4, 4, 1}, { 0, 5, 5, 2}, { 0, 6, 6, 3} },
  209. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  210. { { 8, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0}, { 0, 4, 4, 0} },
  211. { { 0, 4, 4, 8}, { 0, 8, 8, 12}, { 0, 13, 13, 17}, { 0, 17, 17, 21} },
  212. { { 3, 1, 1, 0}, { 0, 4, 4, 2}, { 0, 6, 6, 5}, { 0, 9, 9, 7} },
  213. };
  214. static const int32_t qscale_tab[128] = {
  215. 4, 5, 6, 7, 8, 10, 11, 13,
  216. 16, 19, 23, 27, 32, 38, 45, 54,
  217. 64, 76, 91, 108, 128, 152, 181, 215,
  218. 256, 304, 362, 431, 512, 609, 724, 861,
  219. 1024, 1218, 1448, 1722, 2048, 2435, 2896, 3444,
  220. 4096, 4871, 5793, 6889, 8192, 9742, 11585, 13777,
  221. 16384, 19484, -13317, 27554, 32768, -1581, 9853, -10518,
  222. 65536, -3164, -16782, -21037, 131072, -6328, 2922, 23552,
  223. 262144, -12658, 5844, -18524, 524288, 15232, 11689, 28578,
  224. 1048576, -10085, -13110, -8471, 2097152, -20170, 10267, -16943,
  225. 4194304, 208, -15954, 31741, 8388608, 416, 4579, -2146,
  226. 16777216, 832, 9158, -4293, 33554432, 1663, -18172, -8587,
  227. 67108864, 3326, 143, -17175, 134217728, 6653, 285, 31276,
  228. 268435456, 13306, 570, -3075, 536870912, -13938, 1140, -6152,
  229. 1073741824, 12672, 2281, -12304, -2147483648, -15205, 4561, -24610,
  230. 0, 10138, 9122, 16407, 0, -20274, -18243, -32813,
  231. };
  232. static const int32_t qoffset_intra_tab[128] = {
  233. 1, 2, 3, 4, 4, 5, 6, 7,
  234. 8, 10, 12, 14, 16, 19, 23, 27,
  235. 32, 38, 46, 54, 64, 76, 91, 108,
  236. 128, 152, 181, 216, 256, 305, 362, 431,
  237. 512, 609, 724, 861, 1024, 1218, 1448, 1722,
  238. 2048, 2436, 2897, 3445, 4096, 4871, 5793, 6889,
  239. 8192, 9742, -6658, 13777, 16384, -790, 4927, -5258,
  240. 32768, -1581, -8390, -10518, 65536, -3163, 1461, 11776,
  241. 131072, -6328, 2922, -9261, 262144, 7616, 5845, 14289,
  242. 524288, -5042, -6554, -4235, 1048576, -10084, 5134, -8471,
  243. 2097152, 104, -7976, 15871, 4194304, 208, 2290, -1072,
  244. 8388608, 416, 4579, -2146, 16777216, 832, -9085, -4293,
  245. 33554432, 1663, 72, -8587, 67108864, 3327, 143, 15638,
  246. 134217728, 6653, 285, -1537, 268435456, -6968, 570, -3075,
  247. 536870912, 6336, 1141, -6151, -1073741823, -7602, 2281, -12304,
  248. 0, 5069, 4561, 8204, 0, -10136, -9121, -16406,
  249. };
  250. static const int qoffset_inter_tab[MAX_QUANT+1] = {
  251. 1, 2, 2, 3, 3, 4, 4, 5,
  252. 6, 7, 9, 10, 12, 14, 17, 20,
  253. 24, 29, 34, 41, 48, 57, 68, 81,
  254. 96, 114, 136, 162, 192, 228, 272, 323,
  255. 384, 457, 543, 646, 768, 913, 1086, 1292,
  256. 1536, 1827, 2172, 2583, 3072, 3653, 4344, 5166,
  257. 6144, 7307, 8689, 10333, 12288, 14613, 17378, 20666,
  258. 24576, 29226
  259. };
  260. /* magic number division by 3 from schroedinger */
  261. static inline int divide3(int x)
  262. {
  263. return ((x+1)*21845 + 10922) >> 16;
  264. }
  265. static DiracFrame *remove_frame(DiracFrame *framelist[], int picnum)
  266. {
  267. DiracFrame *remove_pic = NULL;
  268. int i, remove_idx = -1;
  269. for (i = 0; framelist[i]; i++)
  270. if (framelist[i]->avframe->display_picture_number == picnum) {
  271. remove_pic = framelist[i];
  272. remove_idx = i;
  273. }
  274. if (remove_pic)
  275. for (i = remove_idx; framelist[i]; i++)
  276. framelist[i] = framelist[i+1];
  277. return remove_pic;
  278. }
  279. static int add_frame(DiracFrame *framelist[], int maxframes, DiracFrame *frame)
  280. {
  281. int i;
  282. for (i = 0; i < maxframes; i++)
  283. if (!framelist[i]) {
  284. framelist[i] = frame;
  285. return 0;
  286. }
  287. return -1;
  288. }
  289. static int alloc_sequence_buffers(DiracContext *s)
  290. {
  291. int sbwidth = DIVRNDUP(s->source.width, 4);
  292. int sbheight = DIVRNDUP(s->source.height, 4);
  293. int i, w, h, top_padding;
  294. /* todo: think more about this / use or set Plane here */
  295. for (i = 0; i < 3; i++) {
  296. int max_xblen = MAX_BLOCKSIZE >> (i ? s->chroma_x_shift : 0);
  297. int max_yblen = MAX_BLOCKSIZE >> (i ? s->chroma_y_shift : 0);
  298. w = s->source.width >> (i ? s->chroma_x_shift : 0);
  299. h = s->source.height >> (i ? s->chroma_y_shift : 0);
  300. /* we allocate the max we support here since num decompositions can
  301. * change from frame to frame. Stride is aligned to 16 for SIMD, and
  302. * 1<<MAX_DWT_LEVELS top padding to avoid if(y>0) in arith decoding
  303. * MAX_BLOCKSIZE padding for MC: blocks can spill up to half of that
  304. * on each side */
  305. top_padding = FFMAX(1<<MAX_DWT_LEVELS, max_yblen/2);
  306. w = FFALIGN(CALC_PADDING(w, MAX_DWT_LEVELS), 8); /* FIXME: Should this be 16 for SSE??? */
  307. h = top_padding + CALC_PADDING(h, MAX_DWT_LEVELS) + max_yblen/2;
  308. s->plane[i].idwt_buf_base = av_mallocz_array((w+max_xblen), h * (2 << s->pshift));
  309. s->plane[i].idwt_tmp = av_malloc_array((w+16), 2 << s->pshift);
  310. s->plane[i].idwt_buf = s->plane[i].idwt_buf_base + (top_padding*w)*(2 << s->pshift);
  311. if (!s->plane[i].idwt_buf_base || !s->plane[i].idwt_tmp)
  312. return AVERROR(ENOMEM);
  313. }
  314. /* fixme: allocate using real stride here */
  315. s->sbsplit = av_malloc_array(sbwidth, sbheight);
  316. s->blmotion = av_malloc_array(sbwidth, sbheight * 16 * sizeof(*s->blmotion));
  317. if (!s->sbsplit || !s->blmotion)
  318. return AVERROR(ENOMEM);
  319. return 0;
  320. }
  321. static int alloc_buffers(DiracContext *s, int stride)
  322. {
  323. int w = s->source.width;
  324. int h = s->source.height;
  325. av_assert0(stride >= w);
  326. stride += 64;
  327. if (s->buffer_stride >= stride)
  328. return 0;
  329. s->buffer_stride = 0;
  330. av_freep(&s->edge_emu_buffer_base);
  331. memset(s->edge_emu_buffer, 0, sizeof(s->edge_emu_buffer));
  332. av_freep(&s->mctmp);
  333. av_freep(&s->mcscratch);
  334. s->edge_emu_buffer_base = av_malloc_array(stride, MAX_BLOCKSIZE);
  335. s->mctmp = av_malloc_array((stride+MAX_BLOCKSIZE), (h+MAX_BLOCKSIZE) * sizeof(*s->mctmp));
  336. s->mcscratch = av_malloc_array(stride, MAX_BLOCKSIZE);
  337. if (!s->edge_emu_buffer_base || !s->mctmp || !s->mcscratch)
  338. return AVERROR(ENOMEM);
  339. s->buffer_stride = stride;
  340. return 0;
  341. }
  342. static void free_sequence_buffers(DiracContext *s)
  343. {
  344. int i, j, k;
  345. for (i = 0; i < MAX_FRAMES; i++) {
  346. if (s->all_frames[i].avframe->data[0]) {
  347. av_frame_unref(s->all_frames[i].avframe);
  348. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  349. }
  350. for (j = 0; j < 3; j++)
  351. for (k = 1; k < 4; k++)
  352. av_freep(&s->all_frames[i].hpel_base[j][k]);
  353. }
  354. memset(s->ref_frames, 0, sizeof(s->ref_frames));
  355. memset(s->delay_frames, 0, sizeof(s->delay_frames));
  356. for (i = 0; i < 3; i++) {
  357. av_freep(&s->plane[i].idwt_buf_base);
  358. av_freep(&s->plane[i].idwt_tmp);
  359. }
  360. s->buffer_stride = 0;
  361. av_freep(&s->sbsplit);
  362. av_freep(&s->blmotion);
  363. av_freep(&s->edge_emu_buffer_base);
  364. av_freep(&s->mctmp);
  365. av_freep(&s->mcscratch);
  366. }
  367. static av_cold int dirac_decode_init(AVCodecContext *avctx)
  368. {
  369. DiracContext *s = avctx->priv_data;
  370. int i;
  371. s->avctx = avctx;
  372. s->frame_number = -1;
  373. ff_diracdsp_init(&s->diracdsp);
  374. ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
  375. ff_videodsp_init(&s->vdsp, 8);
  376. for (i = 0; i < MAX_FRAMES; i++) {
  377. s->all_frames[i].avframe = av_frame_alloc();
  378. if (!s->all_frames[i].avframe) {
  379. while (i > 0)
  380. av_frame_free(&s->all_frames[--i].avframe);
  381. return AVERROR(ENOMEM);
  382. }
  383. }
  384. return 0;
  385. }
  386. static void dirac_decode_flush(AVCodecContext *avctx)
  387. {
  388. DiracContext *s = avctx->priv_data;
  389. free_sequence_buffers(s);
  390. s->seen_sequence_header = 0;
  391. s->frame_number = -1;
  392. }
  393. static av_cold int dirac_decode_end(AVCodecContext *avctx)
  394. {
  395. DiracContext *s = avctx->priv_data;
  396. int i;
  397. dirac_decode_flush(avctx);
  398. for (i = 0; i < MAX_FRAMES; i++)
  399. av_frame_free(&s->all_frames[i].avframe);
  400. return 0;
  401. }
  402. #define SIGN_CTX(x) (CTX_SIGN_ZERO + ((x) > 0) - ((x) < 0))
  403. static inline int coeff_unpack_golomb(GetBitContext *gb, int qfactor, int qoffset)
  404. {
  405. int sign, coeff;
  406. coeff = svq3_get_ue_golomb(gb);
  407. if (coeff) {
  408. coeff = (coeff * qfactor + qoffset + 2) >> 2;
  409. sign = get_bits1(gb);
  410. coeff = (coeff ^ -sign) + sign;
  411. }
  412. return coeff;
  413. }
  414. #define UNPACK_ARITH(n, type) \
  415. static inline void coeff_unpack_arith_##n(DiracArith *c, int qfactor, int qoffset, \
  416. SubBand *b, type *buf, int x, int y) \
  417. { \
  418. int coeff, sign, sign_pred = 0, pred_ctx = CTX_ZPZN_F1; \
  419. const int mstride = -(b->stride >> (1+b->pshift)); \
  420. if (b->parent) { \
  421. const type *pbuf = (type *)b->parent->ibuf; \
  422. const int stride = b->parent->stride >> (1+b->parent->pshift); \
  423. pred_ctx += !!pbuf[stride * (y>>1) + (x>>1)] << 1; \
  424. } \
  425. if (b->orientation == subband_hl) \
  426. sign_pred = buf[mstride]; \
  427. if (x) { \
  428. pred_ctx += !(buf[-1] | buf[mstride] | buf[-1 + mstride]); \
  429. if (b->orientation == subband_lh) \
  430. sign_pred = buf[-1]; \
  431. } else { \
  432. pred_ctx += !buf[mstride]; \
  433. } \
  434. coeff = dirac_get_arith_uint(c, pred_ctx, CTX_COEFF_DATA); \
  435. if (coeff) { \
  436. coeff = (coeff * qfactor + qoffset + 2) >> 2; \
  437. sign = dirac_get_arith_bit(c, SIGN_CTX(sign_pred)); \
  438. coeff = (coeff ^ -sign) + sign; \
  439. } \
  440. *buf = coeff; \
  441. } \
  442. UNPACK_ARITH(8, int16_t)
  443. UNPACK_ARITH(10, int32_t)
  444. /**
  445. * Decode the coeffs in the rectangle defined by left, right, top, bottom
  446. * [DIRAC_STD] 13.4.3.2 Codeblock unpacking loop. codeblock()
  447. */
  448. static inline void codeblock(DiracContext *s, SubBand *b,
  449. GetBitContext *gb, DiracArith *c,
  450. int left, int right, int top, int bottom,
  451. int blockcnt_one, int is_arith)
  452. {
  453. int x, y, zero_block;
  454. int qoffset, qfactor;
  455. uint8_t *buf;
  456. /* check for any coded coefficients in this codeblock */
  457. if (!blockcnt_one) {
  458. if (is_arith)
  459. zero_block = dirac_get_arith_bit(c, CTX_ZERO_BLOCK);
  460. else
  461. zero_block = get_bits1(gb);
  462. if (zero_block)
  463. return;
  464. }
  465. if (s->codeblock_mode && !(s->old_delta_quant && blockcnt_one)) {
  466. int quant = b->quant;
  467. if (is_arith)
  468. quant += dirac_get_arith_int(c, CTX_DELTA_Q_F, CTX_DELTA_Q_DATA);
  469. else
  470. quant += dirac_get_se_golomb(gb);
  471. if (quant < 0) {
  472. av_log(s->avctx, AV_LOG_ERROR, "Invalid quant\n");
  473. return;
  474. }
  475. b->quant = quant;
  476. }
  477. b->quant = FFMIN(b->quant, MAX_QUANT);
  478. qfactor = qscale_tab[b->quant];
  479. /* TODO: context pointer? */
  480. if (!s->num_refs)
  481. qoffset = qoffset_intra_tab[b->quant];
  482. else
  483. qoffset = qoffset_inter_tab[b->quant];
  484. buf = b->ibuf + top * b->stride;
  485. if (is_arith) {
  486. for (y = top; y < bottom; y++) {
  487. for (x = left; x < right; x++) {
  488. if (b->pshift) {
  489. coeff_unpack_arith_10(c, qfactor, qoffset, b, (int32_t*)(buf)+x, x, y);
  490. } else {
  491. coeff_unpack_arith_8(c, qfactor, qoffset, b, (int16_t*)(buf)+x, x, y);
  492. }
  493. }
  494. buf += b->stride;
  495. }
  496. } else {
  497. for (y = top; y < bottom; y++) {
  498. for (x = left; x < right; x++) {
  499. int val = coeff_unpack_golomb(gb, qfactor, qoffset);
  500. if (b->pshift) {
  501. AV_WN32(&buf[4*x], val);
  502. } else {
  503. AV_WN16(&buf[2*x], val);
  504. }
  505. }
  506. buf += b->stride;
  507. }
  508. }
  509. }
  510. /**
  511. * Dirac Specification ->
  512. * 13.3 intra_dc_prediction(band)
  513. */
  514. #define INTRA_DC_PRED(n, type) \
  515. static inline void intra_dc_prediction_##n(SubBand *b) \
  516. { \
  517. type *buf = (type*)b->ibuf; \
  518. int x, y; \
  519. \
  520. for (x = 1; x < b->width; x++) \
  521. buf[x] += buf[x-1]; \
  522. buf += (b->stride >> (1+b->pshift)); \
  523. \
  524. for (y = 1; y < b->height; y++) { \
  525. buf[0] += buf[-(b->stride >> (1+b->pshift))]; \
  526. \
  527. for (x = 1; x < b->width; x++) { \
  528. int pred = buf[x - 1] + buf[x - (b->stride >> (1+b->pshift))] + buf[x - (b->stride >> (1+b->pshift))-1]; \
  529. buf[x] += divide3(pred); \
  530. } \
  531. buf += (b->stride >> (1+b->pshift)); \
  532. } \
  533. } \
  534. INTRA_DC_PRED(8, int16_t)
  535. INTRA_DC_PRED(10, int32_t)
  536. /**
  537. * Dirac Specification ->
  538. * 13.4.2 Non-skipped subbands. subband_coeffs()
  539. */
  540. static av_always_inline void decode_subband_internal(DiracContext *s, SubBand *b, int is_arith)
  541. {
  542. int cb_x, cb_y, left, right, top, bottom;
  543. DiracArith c;
  544. GetBitContext gb;
  545. int cb_width = s->codeblock[b->level + (b->orientation != subband_ll)].width;
  546. int cb_height = s->codeblock[b->level + (b->orientation != subband_ll)].height;
  547. int blockcnt_one = (cb_width + cb_height) == 2;
  548. if (!b->length)
  549. return;
  550. init_get_bits8(&gb, b->coeff_data, b->length);
  551. if (is_arith)
  552. ff_dirac_init_arith_decoder(&c, &gb, b->length);
  553. top = 0;
  554. for (cb_y = 0; cb_y < cb_height; cb_y++) {
  555. bottom = (b->height * (cb_y+1LL)) / cb_height;
  556. left = 0;
  557. for (cb_x = 0; cb_x < cb_width; cb_x++) {
  558. right = (b->width * (cb_x+1LL)) / cb_width;
  559. codeblock(s, b, &gb, &c, left, right, top, bottom, blockcnt_one, is_arith);
  560. left = right;
  561. }
  562. top = bottom;
  563. }
  564. if (b->orientation == subband_ll && s->num_refs == 0) {
  565. if (s->pshift) {
  566. intra_dc_prediction_10(b);
  567. } else {
  568. intra_dc_prediction_8(b);
  569. }
  570. }
  571. }
  572. static int decode_subband_arith(AVCodecContext *avctx, void *b)
  573. {
  574. DiracContext *s = avctx->priv_data;
  575. decode_subband_internal(s, b, 1);
  576. return 0;
  577. }
  578. static int decode_subband_golomb(AVCodecContext *avctx, void *arg)
  579. {
  580. DiracContext *s = avctx->priv_data;
  581. SubBand **b = arg;
  582. decode_subband_internal(s, *b, 0);
  583. return 0;
  584. }
  585. /**
  586. * Dirac Specification ->
  587. * [DIRAC_STD] 13.4.1 core_transform_data()
  588. */
  589. static void decode_component(DiracContext *s, int comp)
  590. {
  591. AVCodecContext *avctx = s->avctx;
  592. SubBand *bands[3*MAX_DWT_LEVELS+1];
  593. enum dirac_subband orientation;
  594. int level, num_bands = 0;
  595. /* Unpack all subbands at all levels. */
  596. for (level = 0; level < s->wavelet_depth; level++) {
  597. for (orientation = !!level; orientation < 4; orientation++) {
  598. SubBand *b = &s->plane[comp].band[level][orientation];
  599. bands[num_bands++] = b;
  600. align_get_bits(&s->gb);
  601. /* [DIRAC_STD] 13.4.2 subband() */
  602. b->length = svq3_get_ue_golomb(&s->gb);
  603. if (b->length) {
  604. b->quant = svq3_get_ue_golomb(&s->gb);
  605. align_get_bits(&s->gb);
  606. b->coeff_data = s->gb.buffer + get_bits_count(&s->gb)/8;
  607. b->length = FFMIN(b->length, FFMAX(get_bits_left(&s->gb)/8, 0));
  608. skip_bits_long(&s->gb, b->length*8);
  609. }
  610. }
  611. /* arithmetic coding has inter-level dependencies, so we can only execute one level at a time */
  612. if (s->is_arith)
  613. avctx->execute(avctx, decode_subband_arith, &s->plane[comp].band[level][!!level],
  614. NULL, 4-!!level, sizeof(SubBand));
  615. }
  616. /* golomb coding has no inter-level dependencies, so we can execute all subbands in parallel */
  617. if (!s->is_arith)
  618. avctx->execute(avctx, decode_subband_golomb, bands, NULL, num_bands, sizeof(SubBand*));
  619. }
  620. #define PARSE_VALUES(type, x, gb, ebits, buf1, buf2) \
  621. type *buf = (type *)buf1; \
  622. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  623. if (get_bits_count(gb) >= ebits) \
  624. return; \
  625. if (buf2) { \
  626. buf = (type *)buf2; \
  627. buf[x] = coeff_unpack_golomb(gb, qfactor, qoffset); \
  628. if (get_bits_count(gb) >= ebits) \
  629. return; \
  630. } \
  631. static void decode_subband(DiracContext *s, GetBitContext *gb, int quant,
  632. int slice_x, int slice_y, int bits_end,
  633. SubBand *b1, SubBand *b2)
  634. {
  635. int left = b1->width * slice_x / s->num_x;
  636. int right = b1->width *(slice_x+1) / s->num_x;
  637. int top = b1->height * slice_y / s->num_y;
  638. int bottom = b1->height *(slice_y+1) / s->num_y;
  639. int qfactor = qscale_tab[quant & 0x7f];
  640. int qoffset = qoffset_intra_tab[quant & 0x7f];
  641. uint8_t *buf1 = b1->ibuf + top * b1->stride;
  642. uint8_t *buf2 = b2 ? b2->ibuf + top * b2->stride: NULL;
  643. int x, y;
  644. /* we have to constantly check for overread since the spec explicitly
  645. requires this, with the meaning that all remaining coeffs are set to 0 */
  646. if (get_bits_count(gb) >= bits_end)
  647. return;
  648. if (s->pshift) {
  649. for (y = top; y < bottom; y++) {
  650. for (x = left; x < right; x++) {
  651. PARSE_VALUES(int32_t, x, gb, bits_end, buf1, buf2);
  652. }
  653. buf1 += b1->stride;
  654. if (buf2)
  655. buf2 += b2->stride;
  656. }
  657. }
  658. else {
  659. for (y = top; y < bottom; y++) {
  660. for (x = left; x < right; x++) {
  661. PARSE_VALUES(int16_t, x, gb, bits_end, buf1, buf2);
  662. }
  663. buf1 += b1->stride;
  664. if (buf2)
  665. buf2 += b2->stride;
  666. }
  667. }
  668. }
  669. /* Used by Low Delay and High Quality profiles */
  670. typedef struct DiracSlice {
  671. GetBitContext gb;
  672. int slice_x;
  673. int slice_y;
  674. int bytes;
  675. } DiracSlice;
  676. /**
  677. * Dirac Specification ->
  678. * 13.5.2 Slices. slice(sx,sy)
  679. */
  680. static int decode_lowdelay_slice(AVCodecContext *avctx, void *arg)
  681. {
  682. DiracContext *s = avctx->priv_data;
  683. DiracSlice *slice = arg;
  684. GetBitContext *gb = &slice->gb;
  685. enum dirac_subband orientation;
  686. int level, quant, chroma_bits, chroma_end;
  687. int quant_base = get_bits(gb, 7); /*[DIRAC_STD] qindex */
  688. int length_bits = av_log2(8 * slice->bytes)+1;
  689. int luma_bits = get_bits_long(gb, length_bits);
  690. int luma_end = get_bits_count(gb) + FFMIN(luma_bits, get_bits_left(gb));
  691. /* [DIRAC_STD] 13.5.5.2 luma_slice_band */
  692. for (level = 0; level < s->wavelet_depth; level++)
  693. for (orientation = !!level; orientation < 4; orientation++) {
  694. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  695. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, luma_end,
  696. &s->plane[0].band[level][orientation], NULL);
  697. }
  698. /* consume any unused bits from luma */
  699. skip_bits_long(gb, get_bits_count(gb) - luma_end);
  700. chroma_bits = 8*slice->bytes - 7 - length_bits - luma_bits;
  701. chroma_end = get_bits_count(gb) + FFMIN(chroma_bits, get_bits_left(gb));
  702. /* [DIRAC_STD] 13.5.5.3 chroma_slice_band */
  703. for (level = 0; level < s->wavelet_depth; level++)
  704. for (orientation = !!level; orientation < 4; orientation++) {
  705. quant = FFMAX(quant_base - s->lowdelay.quant[level][orientation], 0);
  706. decode_subband(s, gb, quant, slice->slice_x, slice->slice_y, chroma_end,
  707. &s->plane[1].band[level][orientation],
  708. &s->plane[2].band[level][orientation]);
  709. }
  710. return 0;
  711. }
  712. /**
  713. * Dirac Specification ->
  714. * 13.5.1 low_delay_transform_data()
  715. */
  716. static int decode_lowdelay(DiracContext *s)
  717. {
  718. AVCodecContext *avctx = s->avctx;
  719. int slice_x, slice_y, bytes, bufsize;
  720. const uint8_t *buf;
  721. DiracSlice *slices;
  722. int slice_num = 0;
  723. slices = av_mallocz_array(s->num_x, s->num_y * sizeof(DiracSlice));
  724. if (!slices)
  725. return AVERROR(ENOMEM);
  726. align_get_bits(&s->gb);
  727. /*[DIRAC_STD] 13.5.2 Slices. slice(sx,sy) */
  728. buf = s->gb.buffer + get_bits_count(&s->gb)/8;
  729. bufsize = get_bits_left(&s->gb);
  730. for (slice_y = 0; bufsize > 0 && slice_y < s->num_y; slice_y++) {
  731. for (slice_x = 0; bufsize > 0 && slice_x < s->num_x; slice_x++) {
  732. bytes = (slice_num+1) * s->lowdelay.bytes.num / s->lowdelay.bytes.den
  733. - slice_num * s->lowdelay.bytes.num / s->lowdelay.bytes.den;
  734. slices[slice_num].bytes = bytes;
  735. slices[slice_num].slice_x = slice_x;
  736. slices[slice_num].slice_y = slice_y;
  737. init_get_bits(&slices[slice_num].gb, buf, bufsize);
  738. slice_num++;
  739. buf += bytes;
  740. if (bufsize/8 >= bytes)
  741. bufsize -= bytes*8;
  742. else
  743. bufsize = 0;
  744. }
  745. }
  746. avctx->execute(avctx, decode_lowdelay_slice, slices, NULL, slice_num,
  747. sizeof(struct DiracSlice)); /* [DIRAC_STD] 13.5.2 Slices */
  748. if (s->dc_prediction) {
  749. if (s->pshift) {
  750. intra_dc_prediction_10(&s->plane[0].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  751. intra_dc_prediction_10(&s->plane[1].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  752. intra_dc_prediction_10(&s->plane[2].band[0][0]); /* [DIRAC_STD] 13.3 intra_dc_prediction() */
  753. } else {
  754. intra_dc_prediction_8(&s->plane[0].band[0][0]);
  755. intra_dc_prediction_8(&s->plane[1].band[0][0]);
  756. intra_dc_prediction_8(&s->plane[2].band[0][0]);
  757. }
  758. }
  759. av_free(slices);
  760. return 0;
  761. }
  762. static void init_planes(DiracContext *s)
  763. {
  764. int i, w, h, level, orientation;
  765. for (i = 0; i < 3; i++) {
  766. Plane *p = &s->plane[i];
  767. p->width = s->source.width >> (i ? s->chroma_x_shift : 0);
  768. p->height = s->source.height >> (i ? s->chroma_y_shift : 0);
  769. p->idwt_width = w = CALC_PADDING(p->width , s->wavelet_depth);
  770. p->idwt_height = h = CALC_PADDING(p->height, s->wavelet_depth);
  771. p->idwt_stride = FFALIGN(p->idwt_width << (1 + s->pshift), 8);
  772. for (level = s->wavelet_depth-1; level >= 0; level--) {
  773. w = w>>1;
  774. h = h>>1;
  775. for (orientation = !!level; orientation < 4; orientation++) {
  776. SubBand *b = &p->band[level][orientation];
  777. b->pshift = s->pshift;
  778. b->ibuf = p->idwt_buf;
  779. b->level = level;
  780. b->stride = p->idwt_stride << (s->wavelet_depth - level);
  781. b->width = w;
  782. b->height = h;
  783. b->orientation = orientation;
  784. if (orientation & 1)
  785. b->ibuf += w << (1+b->pshift);
  786. if (orientation > 1)
  787. b->ibuf += (b->stride>>1);
  788. if (level)
  789. b->parent = &p->band[level-1][orientation];
  790. }
  791. }
  792. if (i > 0) {
  793. p->xblen = s->plane[0].xblen >> s->chroma_x_shift;
  794. p->yblen = s->plane[0].yblen >> s->chroma_y_shift;
  795. p->xbsep = s->plane[0].xbsep >> s->chroma_x_shift;
  796. p->ybsep = s->plane[0].ybsep >> s->chroma_y_shift;
  797. }
  798. p->xoffset = (p->xblen - p->xbsep)/2;
  799. p->yoffset = (p->yblen - p->ybsep)/2;
  800. }
  801. }
  802. /**
  803. * Unpack the motion compensation parameters
  804. * Dirac Specification ->
  805. * 11.2 Picture prediction data. picture_prediction()
  806. */
  807. static int dirac_unpack_prediction_parameters(DiracContext *s)
  808. {
  809. static const uint8_t default_blen[] = { 4, 12, 16, 24 };
  810. GetBitContext *gb = &s->gb;
  811. unsigned idx, ref;
  812. align_get_bits(gb);
  813. /* [DIRAC_STD] 11.2.2 Block parameters. block_parameters() */
  814. /* Luma and Chroma are equal. 11.2.3 */
  815. idx = svq3_get_ue_golomb(gb); /* [DIRAC_STD] index */
  816. if (idx > 4) {
  817. av_log(s->avctx, AV_LOG_ERROR, "Block prediction index too high\n");
  818. return AVERROR_INVALIDDATA;
  819. }
  820. if (idx == 0) {
  821. s->plane[0].xblen = svq3_get_ue_golomb(gb);
  822. s->plane[0].yblen = svq3_get_ue_golomb(gb);
  823. s->plane[0].xbsep = svq3_get_ue_golomb(gb);
  824. s->plane[0].ybsep = svq3_get_ue_golomb(gb);
  825. } else {
  826. /*[DIRAC_STD] preset_block_params(index). Table 11.1 */
  827. s->plane[0].xblen = default_blen[idx-1];
  828. s->plane[0].yblen = default_blen[idx-1];
  829. s->plane[0].xbsep = 4 * idx;
  830. s->plane[0].ybsep = 4 * idx;
  831. }
  832. /*[DIRAC_STD] 11.2.4 motion_data_dimensions()
  833. Calculated in function dirac_unpack_block_motion_data */
  834. if (s->plane[0].xblen % (1 << s->chroma_x_shift) != 0 ||
  835. s->plane[0].yblen % (1 << s->chroma_y_shift) != 0 ||
  836. !s->plane[0].xblen || !s->plane[0].yblen) {
  837. av_log(s->avctx, AV_LOG_ERROR,
  838. "invalid x/y block length (%d/%d) for x/y chroma shift (%d/%d)\n",
  839. s->plane[0].xblen, s->plane[0].yblen, s->chroma_x_shift, s->chroma_y_shift);
  840. return AVERROR_INVALIDDATA;
  841. }
  842. if (!s->plane[0].xbsep || !s->plane[0].ybsep || s->plane[0].xbsep < s->plane[0].xblen/2 || s->plane[0].ybsep < s->plane[0].yblen/2) {
  843. av_log(s->avctx, AV_LOG_ERROR, "Block separation too small\n");
  844. return AVERROR_INVALIDDATA;
  845. }
  846. if (s->plane[0].xbsep > s->plane[0].xblen || s->plane[0].ybsep > s->plane[0].yblen) {
  847. av_log(s->avctx, AV_LOG_ERROR, "Block separation greater than size\n");
  848. return AVERROR_INVALIDDATA;
  849. }
  850. if (FFMAX(s->plane[0].xblen, s->plane[0].yblen) > MAX_BLOCKSIZE) {
  851. av_log(s->avctx, AV_LOG_ERROR, "Unsupported large block size\n");
  852. return AVERROR_PATCHWELCOME;
  853. }
  854. /*[DIRAC_STD] 11.2.5 Motion vector precision. motion_vector_precision()
  855. Read motion vector precision */
  856. s->mv_precision = svq3_get_ue_golomb(gb);
  857. if (s->mv_precision > 3) {
  858. av_log(s->avctx, AV_LOG_ERROR, "MV precision finer than eighth-pel\n");
  859. return AVERROR_INVALIDDATA;
  860. }
  861. /*[DIRAC_STD] 11.2.6 Global motion. global_motion()
  862. Read the global motion compensation parameters */
  863. s->globalmc_flag = get_bits1(gb);
  864. if (s->globalmc_flag) {
  865. memset(s->globalmc, 0, sizeof(s->globalmc));
  866. /* [DIRAC_STD] pan_tilt(gparams) */
  867. for (ref = 0; ref < s->num_refs; ref++) {
  868. if (get_bits1(gb)) {
  869. s->globalmc[ref].pan_tilt[0] = dirac_get_se_golomb(gb);
  870. s->globalmc[ref].pan_tilt[1] = dirac_get_se_golomb(gb);
  871. }
  872. /* [DIRAC_STD] zoom_rotate_shear(gparams)
  873. zoom/rotation/shear parameters */
  874. if (get_bits1(gb)) {
  875. s->globalmc[ref].zrs_exp = svq3_get_ue_golomb(gb);
  876. s->globalmc[ref].zrs[0][0] = dirac_get_se_golomb(gb);
  877. s->globalmc[ref].zrs[0][1] = dirac_get_se_golomb(gb);
  878. s->globalmc[ref].zrs[1][0] = dirac_get_se_golomb(gb);
  879. s->globalmc[ref].zrs[1][1] = dirac_get_se_golomb(gb);
  880. } else {
  881. s->globalmc[ref].zrs[0][0] = 1;
  882. s->globalmc[ref].zrs[1][1] = 1;
  883. }
  884. /* [DIRAC_STD] perspective(gparams) */
  885. if (get_bits1(gb)) {
  886. s->globalmc[ref].perspective_exp = svq3_get_ue_golomb(gb);
  887. s->globalmc[ref].perspective[0] = dirac_get_se_golomb(gb);
  888. s->globalmc[ref].perspective[1] = dirac_get_se_golomb(gb);
  889. }
  890. }
  891. }
  892. /*[DIRAC_STD] 11.2.7 Picture prediction mode. prediction_mode()
  893. Picture prediction mode, not currently used. */
  894. if (svq3_get_ue_golomb(gb)) {
  895. av_log(s->avctx, AV_LOG_ERROR, "Unknown picture prediction mode\n");
  896. return AVERROR_INVALIDDATA;
  897. }
  898. /* [DIRAC_STD] 11.2.8 Reference picture weight. reference_picture_weights()
  899. just data read, weight calculation will be done later on. */
  900. s->weight_log2denom = 1;
  901. s->weight[0] = 1;
  902. s->weight[1] = 1;
  903. if (get_bits1(gb)) {
  904. s->weight_log2denom = svq3_get_ue_golomb(gb);
  905. s->weight[0] = dirac_get_se_golomb(gb);
  906. if (s->num_refs == 2)
  907. s->weight[1] = dirac_get_se_golomb(gb);
  908. }
  909. return 0;
  910. }
  911. /**
  912. * Dirac Specification ->
  913. * 11.3 Wavelet transform data. wavelet_transform()
  914. */
  915. static int dirac_unpack_idwt_params(DiracContext *s)
  916. {
  917. GetBitContext *gb = &s->gb;
  918. int i, level;
  919. unsigned tmp;
  920. #define CHECKEDREAD(dst, cond, errmsg) \
  921. tmp = svq3_get_ue_golomb(gb); \
  922. if (cond) { \
  923. av_log(s->avctx, AV_LOG_ERROR, errmsg); \
  924. return AVERROR_INVALIDDATA; \
  925. }\
  926. dst = tmp;
  927. align_get_bits(gb);
  928. s->zero_res = s->num_refs ? get_bits1(gb) : 0;
  929. if (s->zero_res)
  930. return 0;
  931. /*[DIRAC_STD] 11.3.1 Transform parameters. transform_parameters() */
  932. CHECKEDREAD(s->wavelet_idx, tmp > 6, "wavelet_idx is too big\n")
  933. CHECKEDREAD(s->wavelet_depth, tmp > MAX_DWT_LEVELS || tmp < 1, "invalid number of DWT decompositions\n")
  934. if (!s->low_delay) {
  935. /* Codeblock parameters (core syntax only) */
  936. if (get_bits1(gb)) {
  937. for (i = 0; i <= s->wavelet_depth; i++) {
  938. CHECKEDREAD(s->codeblock[i].width , tmp < 1 || tmp > (s->avctx->width >>s->wavelet_depth-i), "codeblock width invalid\n")
  939. CHECKEDREAD(s->codeblock[i].height, tmp < 1 || tmp > (s->avctx->height>>s->wavelet_depth-i), "codeblock height invalid\n")
  940. }
  941. CHECKEDREAD(s->codeblock_mode, tmp > 1, "unknown codeblock mode\n")
  942. } else
  943. for (i = 0; i <= s->wavelet_depth; i++)
  944. s->codeblock[i].width = s->codeblock[i].height = 1;
  945. } else {
  946. /* Slice parameters + quantization matrix*/
  947. /*[DIRAC_STD] 11.3.4 Slice coding Parameters (low delay syntax only). slice_parameters() */
  948. s->num_x = svq3_get_ue_golomb(gb);
  949. s->num_y = svq3_get_ue_golomb(gb);
  950. s->lowdelay.bytes.num = svq3_get_ue_golomb(gb);
  951. s->lowdelay.bytes.den = svq3_get_ue_golomb(gb);
  952. if (s->lowdelay.bytes.den <= 0) {
  953. av_log(s->avctx,AV_LOG_ERROR,"Invalid lowdelay.bytes.den\n");
  954. return AVERROR_INVALIDDATA;
  955. }
  956. /* [DIRAC_STD] 11.3.5 Quantisation matrices (low-delay syntax). quant_matrix() */
  957. if (get_bits1(gb)) {
  958. av_log(s->avctx,AV_LOG_DEBUG,"Low Delay: Has Custom Quantization Matrix!\n");
  959. /* custom quantization matrix */
  960. s->lowdelay.quant[0][0] = svq3_get_ue_golomb(gb);
  961. for (level = 0; level < s->wavelet_depth; level++) {
  962. s->lowdelay.quant[level][1] = svq3_get_ue_golomb(gb);
  963. s->lowdelay.quant[level][2] = svq3_get_ue_golomb(gb);
  964. s->lowdelay.quant[level][3] = svq3_get_ue_golomb(gb);
  965. }
  966. } else {
  967. if (s->wavelet_depth > 4) {
  968. av_log(s->avctx,AV_LOG_ERROR,"Mandatory custom low delay matrix missing for depth %d\n", s->wavelet_depth);
  969. return AVERROR_INVALIDDATA;
  970. }
  971. /* default quantization matrix */
  972. for (level = 0; level < s->wavelet_depth; level++)
  973. for (i = 0; i < 4; i++) {
  974. s->lowdelay.quant[level][i] = default_qmat[s->wavelet_idx][level][i];
  975. /* haar with no shift differs for different depths */
  976. if (s->wavelet_idx == 3)
  977. s->lowdelay.quant[level][i] += 4*(s->wavelet_depth-1 - level);
  978. }
  979. }
  980. }
  981. return 0;
  982. }
  983. static inline int pred_sbsplit(uint8_t *sbsplit, int stride, int x, int y)
  984. {
  985. static const uint8_t avgsplit[7] = { 0, 0, 1, 1, 1, 2, 2 };
  986. if (!(x|y))
  987. return 0;
  988. else if (!y)
  989. return sbsplit[-1];
  990. else if (!x)
  991. return sbsplit[-stride];
  992. return avgsplit[sbsplit[-1] + sbsplit[-stride] + sbsplit[-stride-1]];
  993. }
  994. static inline int pred_block_mode(DiracBlock *block, int stride, int x, int y, int refmask)
  995. {
  996. int pred;
  997. if (!(x|y))
  998. return 0;
  999. else if (!y)
  1000. return block[-1].ref & refmask;
  1001. else if (!x)
  1002. return block[-stride].ref & refmask;
  1003. /* return the majority */
  1004. pred = (block[-1].ref & refmask) + (block[-stride].ref & refmask) + (block[-stride-1].ref & refmask);
  1005. return (pred >> 1) & refmask;
  1006. }
  1007. static inline void pred_block_dc(DiracBlock *block, int stride, int x, int y)
  1008. {
  1009. int i, n = 0;
  1010. memset(block->u.dc, 0, sizeof(block->u.dc));
  1011. if (x && !(block[-1].ref & 3)) {
  1012. for (i = 0; i < 3; i++)
  1013. block->u.dc[i] += block[-1].u.dc[i];
  1014. n++;
  1015. }
  1016. if (y && !(block[-stride].ref & 3)) {
  1017. for (i = 0; i < 3; i++)
  1018. block->u.dc[i] += block[-stride].u.dc[i];
  1019. n++;
  1020. }
  1021. if (x && y && !(block[-1-stride].ref & 3)) {
  1022. for (i = 0; i < 3; i++)
  1023. block->u.dc[i] += block[-1-stride].u.dc[i];
  1024. n++;
  1025. }
  1026. if (n == 2) {
  1027. for (i = 0; i < 3; i++)
  1028. block->u.dc[i] = (block->u.dc[i]+1)>>1;
  1029. } else if (n == 3) {
  1030. for (i = 0; i < 3; i++)
  1031. block->u.dc[i] = divide3(block->u.dc[i]);
  1032. }
  1033. }
  1034. static inline void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
  1035. {
  1036. int16_t *pred[3];
  1037. int refmask = ref+1;
  1038. int mask = refmask | DIRAC_REF_MASK_GLOBAL; /* exclude gmc blocks */
  1039. int n = 0;
  1040. if (x && (block[-1].ref & mask) == refmask)
  1041. pred[n++] = block[-1].u.mv[ref];
  1042. if (y && (block[-stride].ref & mask) == refmask)
  1043. pred[n++] = block[-stride].u.mv[ref];
  1044. if (x && y && (block[-stride-1].ref & mask) == refmask)
  1045. pred[n++] = block[-stride-1].u.mv[ref];
  1046. switch (n) {
  1047. case 0:
  1048. block->u.mv[ref][0] = 0;
  1049. block->u.mv[ref][1] = 0;
  1050. break;
  1051. case 1:
  1052. block->u.mv[ref][0] = pred[0][0];
  1053. block->u.mv[ref][1] = pred[0][1];
  1054. break;
  1055. case 2:
  1056. block->u.mv[ref][0] = (pred[0][0] + pred[1][0] + 1) >> 1;
  1057. block->u.mv[ref][1] = (pred[0][1] + pred[1][1] + 1) >> 1;
  1058. break;
  1059. case 3:
  1060. block->u.mv[ref][0] = mid_pred(pred[0][0], pred[1][0], pred[2][0]);
  1061. block->u.mv[ref][1] = mid_pred(pred[0][1], pred[1][1], pred[2][1]);
  1062. break;
  1063. }
  1064. }
  1065. static void global_mv(DiracContext *s, DiracBlock *block, int x, int y, int ref)
  1066. {
  1067. int ez = s->globalmc[ref].zrs_exp;
  1068. int ep = s->globalmc[ref].perspective_exp;
  1069. int (*A)[2] = s->globalmc[ref].zrs;
  1070. int *b = s->globalmc[ref].pan_tilt;
  1071. int *c = s->globalmc[ref].perspective;
  1072. int m = (1<<ep) - (c[0]*x + c[1]*y);
  1073. int mx = m * ((A[0][0] * x + A[0][1]*y) + (1<<ez) * b[0]);
  1074. int my = m * ((A[1][0] * x + A[1][1]*y) + (1<<ez) * b[1]);
  1075. block->u.mv[ref][0] = (mx + (1<<(ez+ep))) >> (ez+ep);
  1076. block->u.mv[ref][1] = (my + (1<<(ez+ep))) >> (ez+ep);
  1077. }
  1078. static void decode_block_params(DiracContext *s, DiracArith arith[8], DiracBlock *block,
  1079. int stride, int x, int y)
  1080. {
  1081. int i;
  1082. block->ref = pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF1);
  1083. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF1);
  1084. if (s->num_refs == 2) {
  1085. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_REF2);
  1086. block->ref ^= dirac_get_arith_bit(arith, CTX_PMODE_REF2) << 1;
  1087. }
  1088. if (!block->ref) {
  1089. pred_block_dc(block, stride, x, y);
  1090. for (i = 0; i < 3; i++)
  1091. block->u.dc[i] += dirac_get_arith_int(arith+1+i, CTX_DC_F1, CTX_DC_DATA);
  1092. return;
  1093. }
  1094. if (s->globalmc_flag) {
  1095. block->ref |= pred_block_mode(block, stride, x, y, DIRAC_REF_MASK_GLOBAL);
  1096. block->ref ^= dirac_get_arith_bit(arith, CTX_GLOBAL_BLOCK) << 2;
  1097. }
  1098. for (i = 0; i < s->num_refs; i++)
  1099. if (block->ref & (i+1)) {
  1100. if (block->ref & DIRAC_REF_MASK_GLOBAL) {
  1101. global_mv(s, block, x, y, i);
  1102. } else {
  1103. pred_mv(block, stride, x, y, i);
  1104. block->u.mv[i][0] += dirac_get_arith_int(arith + 4 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1105. block->u.mv[i][1] += dirac_get_arith_int(arith + 5 + 2 * i, CTX_MV_F1, CTX_MV_DATA);
  1106. }
  1107. }
  1108. }
  1109. /**
  1110. * Copies the current block to the other blocks covered by the current superblock split mode
  1111. */
  1112. static void propagate_block_data(DiracBlock *block, int stride, int size)
  1113. {
  1114. int x, y;
  1115. DiracBlock *dst = block;
  1116. for (x = 1; x < size; x++)
  1117. dst[x] = *block;
  1118. for (y = 1; y < size; y++) {
  1119. dst += stride;
  1120. for (x = 0; x < size; x++)
  1121. dst[x] = *block;
  1122. }
  1123. }
  1124. /**
  1125. * Dirac Specification ->
  1126. * 12. Block motion data syntax
  1127. */
  1128. static int dirac_unpack_block_motion_data(DiracContext *s)
  1129. {
  1130. GetBitContext *gb = &s->gb;
  1131. uint8_t *sbsplit = s->sbsplit;
  1132. int i, x, y, q, p;
  1133. DiracArith arith[8];
  1134. align_get_bits(gb);
  1135. /* [DIRAC_STD] 11.2.4 and 12.2.1 Number of blocks and superblocks */
  1136. s->sbwidth = DIVRNDUP(s->source.width, 4*s->plane[0].xbsep);
  1137. s->sbheight = DIVRNDUP(s->source.height, 4*s->plane[0].ybsep);
  1138. s->blwidth = 4 * s->sbwidth;
  1139. s->blheight = 4 * s->sbheight;
  1140. /* [DIRAC_STD] 12.3.1 Superblock splitting modes. superblock_split_modes()
  1141. decode superblock split modes */
  1142. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb)); /* svq3_get_ue_golomb(gb) is the length */
  1143. for (y = 0; y < s->sbheight; y++) {
  1144. for (x = 0; x < s->sbwidth; x++) {
  1145. unsigned int split = dirac_get_arith_uint(arith, CTX_SB_F1, CTX_SB_DATA);
  1146. if (split > 2)
  1147. return AVERROR_INVALIDDATA;
  1148. sbsplit[x] = (split + pred_sbsplit(sbsplit+x, s->sbwidth, x, y)) % 3;
  1149. }
  1150. sbsplit += s->sbwidth;
  1151. }
  1152. /* setup arith decoding */
  1153. ff_dirac_init_arith_decoder(arith, gb, svq3_get_ue_golomb(gb));
  1154. for (i = 0; i < s->num_refs; i++) {
  1155. ff_dirac_init_arith_decoder(arith + 4 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1156. ff_dirac_init_arith_decoder(arith + 5 + 2 * i, gb, svq3_get_ue_golomb(gb));
  1157. }
  1158. for (i = 0; i < 3; i++)
  1159. ff_dirac_init_arith_decoder(arith+1+i, gb, svq3_get_ue_golomb(gb));
  1160. for (y = 0; y < s->sbheight; y++)
  1161. for (x = 0; x < s->sbwidth; x++) {
  1162. int blkcnt = 1 << s->sbsplit[y * s->sbwidth + x];
  1163. int step = 4 >> s->sbsplit[y * s->sbwidth + x];
  1164. for (q = 0; q < blkcnt; q++)
  1165. for (p = 0; p < blkcnt; p++) {
  1166. int bx = 4 * x + p*step;
  1167. int by = 4 * y + q*step;
  1168. DiracBlock *block = &s->blmotion[by*s->blwidth + bx];
  1169. decode_block_params(s, arith, block, s->blwidth, bx, by);
  1170. propagate_block_data(block, s->blwidth, step);
  1171. }
  1172. }
  1173. return 0;
  1174. }
  1175. static int weight(int i, int blen, int offset)
  1176. {
  1177. #define ROLLOFF(i) offset == 1 ? ((i) ? 5 : 3) : \
  1178. (1 + (6*(i) + offset - 1) / (2*offset - 1))
  1179. if (i < 2*offset)
  1180. return ROLLOFF(i);
  1181. else if (i > blen-1 - 2*offset)
  1182. return ROLLOFF(blen-1 - i);
  1183. return 8;
  1184. }
  1185. static void init_obmc_weight_row(Plane *p, uint8_t *obmc_weight, int stride,
  1186. int left, int right, int wy)
  1187. {
  1188. int x;
  1189. for (x = 0; left && x < p->xblen >> 1; x++)
  1190. obmc_weight[x] = wy*8;
  1191. for (; x < p->xblen >> right; x++)
  1192. obmc_weight[x] = wy*weight(x, p->xblen, p->xoffset);
  1193. for (; x < p->xblen; x++)
  1194. obmc_weight[x] = wy*8;
  1195. for (; x < stride; x++)
  1196. obmc_weight[x] = 0;
  1197. }
  1198. static void init_obmc_weight(Plane *p, uint8_t *obmc_weight, int stride,
  1199. int left, int right, int top, int bottom)
  1200. {
  1201. int y;
  1202. for (y = 0; top && y < p->yblen >> 1; y++) {
  1203. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1204. obmc_weight += stride;
  1205. }
  1206. for (; y < p->yblen >> bottom; y++) {
  1207. int wy = weight(y, p->yblen, p->yoffset);
  1208. init_obmc_weight_row(p, obmc_weight, stride, left, right, wy);
  1209. obmc_weight += stride;
  1210. }
  1211. for (; y < p->yblen; y++) {
  1212. init_obmc_weight_row(p, obmc_weight, stride, left, right, 8);
  1213. obmc_weight += stride;
  1214. }
  1215. }
  1216. static void init_obmc_weights(DiracContext *s, Plane *p, int by)
  1217. {
  1218. int top = !by;
  1219. int bottom = by == s->blheight-1;
  1220. /* don't bother re-initing for rows 2 to blheight-2, the weights don't change */
  1221. if (top || bottom || by == 1) {
  1222. init_obmc_weight(p, s->obmc_weight[0], MAX_BLOCKSIZE, 1, 0, top, bottom);
  1223. init_obmc_weight(p, s->obmc_weight[1], MAX_BLOCKSIZE, 0, 0, top, bottom);
  1224. init_obmc_weight(p, s->obmc_weight[2], MAX_BLOCKSIZE, 0, 1, top, bottom);
  1225. }
  1226. }
  1227. static const uint8_t epel_weights[4][4][4] = {
  1228. {{ 16, 0, 0, 0 },
  1229. { 12, 4, 0, 0 },
  1230. { 8, 8, 0, 0 },
  1231. { 4, 12, 0, 0 }},
  1232. {{ 12, 0, 4, 0 },
  1233. { 9, 3, 3, 1 },
  1234. { 6, 6, 2, 2 },
  1235. { 3, 9, 1, 3 }},
  1236. {{ 8, 0, 8, 0 },
  1237. { 6, 2, 6, 2 },
  1238. { 4, 4, 4, 4 },
  1239. { 2, 6, 2, 6 }},
  1240. {{ 4, 0, 12, 0 },
  1241. { 3, 1, 9, 3 },
  1242. { 2, 2, 6, 6 },
  1243. { 1, 3, 3, 9 }}
  1244. };
  1245. /**
  1246. * For block x,y, determine which of the hpel planes to do bilinear
  1247. * interpolation from and set src[] to the location in each hpel plane
  1248. * to MC from.
  1249. *
  1250. * @return the index of the put_dirac_pixels_tab function to use
  1251. * 0 for 1 plane (fpel,hpel), 1 for 2 planes (qpel), 2 for 4 planes (qpel), and 3 for epel
  1252. */
  1253. static int mc_subpel(DiracContext *s, DiracBlock *block, const uint8_t *src[5],
  1254. int x, int y, int ref, int plane)
  1255. {
  1256. Plane *p = &s->plane[plane];
  1257. uint8_t **ref_hpel = s->ref_pics[ref]->hpel[plane];
  1258. int motion_x = block->u.mv[ref][0];
  1259. int motion_y = block->u.mv[ref][1];
  1260. int mx, my, i, epel, nplanes = 0;
  1261. if (plane) {
  1262. motion_x >>= s->chroma_x_shift;
  1263. motion_y >>= s->chroma_y_shift;
  1264. }
  1265. mx = motion_x & ~(-1U << s->mv_precision);
  1266. my = motion_y & ~(-1U << s->mv_precision);
  1267. motion_x >>= s->mv_precision;
  1268. motion_y >>= s->mv_precision;
  1269. /* normalize subpel coordinates to epel */
  1270. /* TODO: template this function? */
  1271. mx <<= 3 - s->mv_precision;
  1272. my <<= 3 - s->mv_precision;
  1273. x += motion_x;
  1274. y += motion_y;
  1275. epel = (mx|my)&1;
  1276. /* hpel position */
  1277. if (!((mx|my)&3)) {
  1278. nplanes = 1;
  1279. src[0] = ref_hpel[(my>>1)+(mx>>2)] + y*p->stride + x;
  1280. } else {
  1281. /* qpel or epel */
  1282. nplanes = 4;
  1283. for (i = 0; i < 4; i++)
  1284. src[i] = ref_hpel[i] + y*p->stride + x;
  1285. /* if we're interpolating in the right/bottom halves, adjust the planes as needed
  1286. we increment x/y because the edge changes for half of the pixels */
  1287. if (mx > 4) {
  1288. src[0] += 1;
  1289. src[2] += 1;
  1290. x++;
  1291. }
  1292. if (my > 4) {
  1293. src[0] += p->stride;
  1294. src[1] += p->stride;
  1295. y++;
  1296. }
  1297. /* hpel planes are:
  1298. [0]: F [1]: H
  1299. [2]: V [3]: C */
  1300. if (!epel) {
  1301. /* check if we really only need 2 planes since either mx or my is
  1302. a hpel position. (epel weights of 0 handle this there) */
  1303. if (!(mx&3)) {
  1304. /* mx == 0: average [0] and [2]
  1305. mx == 4: average [1] and [3] */
  1306. src[!mx] = src[2 + !!mx];
  1307. nplanes = 2;
  1308. } else if (!(my&3)) {
  1309. src[0] = src[(my>>1) ];
  1310. src[1] = src[(my>>1)+1];
  1311. nplanes = 2;
  1312. }
  1313. } else {
  1314. /* adjust the ordering if needed so the weights work */
  1315. if (mx > 4) {
  1316. FFSWAP(const uint8_t *, src[0], src[1]);
  1317. FFSWAP(const uint8_t *, src[2], src[3]);
  1318. }
  1319. if (my > 4) {
  1320. FFSWAP(const uint8_t *, src[0], src[2]);
  1321. FFSWAP(const uint8_t *, src[1], src[3]);
  1322. }
  1323. src[4] = epel_weights[my&3][mx&3];
  1324. }
  1325. }
  1326. /* fixme: v/h _edge_pos */
  1327. if (x + p->xblen > p->width +EDGE_WIDTH/2 ||
  1328. y + p->yblen > p->height+EDGE_WIDTH/2 ||
  1329. x < 0 || y < 0) {
  1330. for (i = 0; i < nplanes; i++) {
  1331. s->vdsp.emulated_edge_mc(s->edge_emu_buffer[i], src[i],
  1332. p->stride, p->stride,
  1333. p->xblen, p->yblen, x, y,
  1334. p->width+EDGE_WIDTH/2, p->height+EDGE_WIDTH/2);
  1335. src[i] = s->edge_emu_buffer[i];
  1336. }
  1337. }
  1338. return (nplanes>>1) + epel;
  1339. }
  1340. static void add_dc(uint16_t *dst, int dc, int stride,
  1341. uint8_t *obmc_weight, int xblen, int yblen)
  1342. {
  1343. int x, y;
  1344. dc += 128;
  1345. for (y = 0; y < yblen; y++) {
  1346. for (x = 0; x < xblen; x += 2) {
  1347. dst[x ] += dc * obmc_weight[x ];
  1348. dst[x+1] += dc * obmc_weight[x+1];
  1349. }
  1350. dst += stride;
  1351. obmc_weight += MAX_BLOCKSIZE;
  1352. }
  1353. }
  1354. static void block_mc(DiracContext *s, DiracBlock *block,
  1355. uint16_t *mctmp, uint8_t *obmc_weight,
  1356. int plane, int dstx, int dsty)
  1357. {
  1358. Plane *p = &s->plane[plane];
  1359. const uint8_t *src[5];
  1360. int idx;
  1361. switch (block->ref&3) {
  1362. case 0: /* DC */
  1363. add_dc(mctmp, block->u.dc[plane], p->stride, obmc_weight, p->xblen, p->yblen);
  1364. return;
  1365. case 1:
  1366. case 2:
  1367. idx = mc_subpel(s, block, src, dstx, dsty, (block->ref&3)-1, plane);
  1368. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1369. if (s->weight_func)
  1370. s->weight_func(s->mcscratch, p->stride, s->weight_log2denom,
  1371. s->weight[0] + s->weight[1], p->yblen);
  1372. break;
  1373. case 3:
  1374. idx = mc_subpel(s, block, src, dstx, dsty, 0, plane);
  1375. s->put_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1376. idx = mc_subpel(s, block, src, dstx, dsty, 1, plane);
  1377. if (s->biweight_func) {
  1378. /* fixme: +32 is a quick hack */
  1379. s->put_pixels_tab[idx](s->mcscratch + 32, src, p->stride, p->yblen);
  1380. s->biweight_func(s->mcscratch, s->mcscratch+32, p->stride, s->weight_log2denom,
  1381. s->weight[0], s->weight[1], p->yblen);
  1382. } else
  1383. s->avg_pixels_tab[idx](s->mcscratch, src, p->stride, p->yblen);
  1384. break;
  1385. }
  1386. s->add_obmc(mctmp, s->mcscratch, p->stride, obmc_weight, p->yblen);
  1387. }
  1388. static void mc_row(DiracContext *s, DiracBlock *block, uint16_t *mctmp, int plane, int dsty)
  1389. {
  1390. Plane *p = &s->plane[plane];
  1391. int x, dstx = p->xbsep - p->xoffset;
  1392. block_mc(s, block, mctmp, s->obmc_weight[0], plane, -p->xoffset, dsty);
  1393. mctmp += p->xbsep;
  1394. for (x = 1; x < s->blwidth-1; x++) {
  1395. block_mc(s, block+x, mctmp, s->obmc_weight[1], plane, dstx, dsty);
  1396. dstx += p->xbsep;
  1397. mctmp += p->xbsep;
  1398. }
  1399. block_mc(s, block+x, mctmp, s->obmc_weight[2], plane, dstx, dsty);
  1400. }
  1401. static void select_dsp_funcs(DiracContext *s, int width, int height, int xblen, int yblen)
  1402. {
  1403. int idx = 0;
  1404. if (xblen > 8)
  1405. idx = 1;
  1406. if (xblen > 16)
  1407. idx = 2;
  1408. memcpy(s->put_pixels_tab, s->diracdsp.put_dirac_pixels_tab[idx], sizeof(s->put_pixels_tab));
  1409. memcpy(s->avg_pixels_tab, s->diracdsp.avg_dirac_pixels_tab[idx], sizeof(s->avg_pixels_tab));
  1410. s->add_obmc = s->diracdsp.add_dirac_obmc[idx];
  1411. if (s->weight_log2denom > 1 || s->weight[0] != 1 || s->weight[1] != 1) {
  1412. s->weight_func = s->diracdsp.weight_dirac_pixels_tab[idx];
  1413. s->biweight_func = s->diracdsp.biweight_dirac_pixels_tab[idx];
  1414. } else {
  1415. s->weight_func = NULL;
  1416. s->biweight_func = NULL;
  1417. }
  1418. }
  1419. static int interpolate_refplane(DiracContext *s, DiracFrame *ref, int plane, int width, int height)
  1420. {
  1421. /* chroma allocates an edge of 8 when subsampled
  1422. which for 4:2:2 means an h edge of 16 and v edge of 8
  1423. just use 8 for everything for the moment */
  1424. int i, edge = EDGE_WIDTH/2;
  1425. ref->hpel[plane][0] = ref->avframe->data[plane];
  1426. s->mpvencdsp.draw_edges(ref->hpel[plane][0], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM); /* EDGE_TOP | EDGE_BOTTOM values just copied to make it build, this needs to be ensured */
  1427. /* no need for hpel if we only have fpel vectors */
  1428. if (!s->mv_precision)
  1429. return 0;
  1430. for (i = 1; i < 4; i++) {
  1431. if (!ref->hpel_base[plane][i])
  1432. ref->hpel_base[plane][i] = av_malloc((height+2*edge) * ref->avframe->linesize[plane] + 32);
  1433. if (!ref->hpel_base[plane][i]) {
  1434. return AVERROR(ENOMEM);
  1435. }
  1436. /* we need to be 16-byte aligned even for chroma */
  1437. ref->hpel[plane][i] = ref->hpel_base[plane][i] + edge*ref->avframe->linesize[plane] + 16;
  1438. }
  1439. if (!ref->interpolated[plane]) {
  1440. s->diracdsp.dirac_hpel_filter(ref->hpel[plane][1], ref->hpel[plane][2],
  1441. ref->hpel[plane][3], ref->hpel[plane][0],
  1442. ref->avframe->linesize[plane], width, height);
  1443. s->mpvencdsp.draw_edges(ref->hpel[plane][1], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1444. s->mpvencdsp.draw_edges(ref->hpel[plane][2], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1445. s->mpvencdsp.draw_edges(ref->hpel[plane][3], ref->avframe->linesize[plane], width, height, edge, edge, EDGE_TOP | EDGE_BOTTOM);
  1446. }
  1447. ref->interpolated[plane] = 1;
  1448. return 0;
  1449. }
  1450. /**
  1451. * Dirac Specification ->
  1452. * 13.0 Transform data syntax. transform_data()
  1453. */
  1454. static int dirac_decode_frame_internal(DiracContext *s)
  1455. {
  1456. DWTContext d;
  1457. int y, i, comp, dsty;
  1458. int ret;
  1459. if (s->low_delay) {
  1460. /* [DIRAC_STD] 13.5.1 low_delay_transform_data() */
  1461. for (comp = 0; comp < 3; comp++) {
  1462. Plane *p = &s->plane[comp];
  1463. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1464. }
  1465. if (!s->zero_res) {
  1466. if ((ret = decode_lowdelay(s)) < 0)
  1467. return ret;
  1468. }
  1469. }
  1470. for (comp = 0; comp < 3; comp++) {
  1471. Plane *p = &s->plane[comp];
  1472. uint8_t *frame = s->current_picture->avframe->data[comp];
  1473. /* FIXME: small resolutions */
  1474. for (i = 0; i < 4; i++)
  1475. s->edge_emu_buffer[i] = s->edge_emu_buffer_base + i*FFALIGN(p->width, 16);
  1476. if (!s->zero_res && !s->low_delay)
  1477. {
  1478. memset(p->idwt_buf, 0, p->idwt_stride * p->idwt_height);
  1479. decode_component(s, comp); /* [DIRAC_STD] 13.4.1 core_transform_data() */
  1480. }
  1481. ret = ff_spatial_idwt_init2(&d, p->idwt_buf, p->idwt_width, p->idwt_height, p->idwt_stride,
  1482. s->wavelet_idx+2, s->wavelet_depth, p->idwt_tmp, s->bit_depth);
  1483. if (ret < 0)
  1484. return ret;
  1485. if (!s->num_refs) { /* intra */
  1486. for (y = 0; y < p->height; y += 16) {
  1487. ff_spatial_idwt_slice2(&d, y+16); /* decode */
  1488. s->diracdsp.put_signed_rect_clamped[s->pshift](frame + y*p->stride, p->stride,
  1489. p->idwt_buf + y*p->idwt_stride, p->idwt_stride, p->width, 16);
  1490. }
  1491. } else { /* inter */
  1492. int rowheight = p->ybsep*p->stride;
  1493. select_dsp_funcs(s, p->width, p->height, p->xblen, p->yblen);
  1494. for (i = 0; i < s->num_refs; i++) {
  1495. int ret = interpolate_refplane(s, s->ref_pics[i], comp, p->width, p->height);
  1496. if (ret < 0)
  1497. return ret;
  1498. }
  1499. memset(s->mctmp, 0, 4*p->yoffset*p->stride);
  1500. dsty = -p->yoffset;
  1501. for (y = 0; y < s->blheight; y++) {
  1502. int h = 0,
  1503. start = FFMAX(dsty, 0);
  1504. uint16_t *mctmp = s->mctmp + y*rowheight;
  1505. DiracBlock *blocks = s->blmotion + y*s->blwidth;
  1506. init_obmc_weights(s, p, y);
  1507. if (y == s->blheight-1 || start+p->ybsep > p->height)
  1508. h = p->height - start;
  1509. else
  1510. h = p->ybsep - (start - dsty);
  1511. if (h < 0)
  1512. break;
  1513. memset(mctmp+2*p->yoffset*p->stride, 0, 2*rowheight);
  1514. mc_row(s, blocks, mctmp, comp, dsty);
  1515. mctmp += (start - dsty)*p->stride + p->xoffset;
  1516. ff_spatial_idwt_slice2(&d, start + h); /* decode */
  1517. /* NOTE: add_rect_clamped hasn't been templated hence the shifts.
  1518. * idwt_stride is passed as pixels, not in bytes as in the rest of the decoder */
  1519. s->diracdsp.add_rect_clamped(frame + start*p->stride, mctmp, p->stride,
  1520. (int16_t*)(p->idwt_buf) + start*(p->idwt_stride >> 1), (p->idwt_stride >> 1), p->width, h);
  1521. dsty += p->ybsep;
  1522. }
  1523. }
  1524. }
  1525. return 0;
  1526. }
  1527. static int get_buffer_with_edge(AVCodecContext *avctx, AVFrame *f, int flags)
  1528. {
  1529. int ret, i;
  1530. int chroma_x_shift, chroma_y_shift;
  1531. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &chroma_x_shift, &chroma_y_shift);
  1532. f->width = avctx->width + 2 * EDGE_WIDTH;
  1533. f->height = avctx->height + 2 * EDGE_WIDTH + 2;
  1534. ret = ff_get_buffer(avctx, f, flags);
  1535. if (ret < 0)
  1536. return ret;
  1537. for (i = 0; f->data[i]; i++) {
  1538. int offset = (EDGE_WIDTH >> (i && i<3 ? chroma_y_shift : 0)) *
  1539. f->linesize[i] + 32;
  1540. f->data[i] += offset;
  1541. }
  1542. f->width = avctx->width;
  1543. f->height = avctx->height;
  1544. return 0;
  1545. }
  1546. /**
  1547. * Dirac Specification ->
  1548. * 11.1.1 Picture Header. picture_header()
  1549. */
  1550. static int dirac_decode_picture_header(DiracContext *s)
  1551. {
  1552. unsigned retire, picnum;
  1553. int i, j, ret;
  1554. int64_t refdist, refnum;
  1555. GetBitContext *gb = &s->gb;
  1556. /* [DIRAC_STD] 11.1.1 Picture Header. picture_header() PICTURE_NUM */
  1557. picnum = s->current_picture->avframe->display_picture_number = get_bits_long(gb, 32);
  1558. av_log(s->avctx,AV_LOG_DEBUG,"PICTURE_NUM: %d\n",picnum);
  1559. /* if this is the first keyframe after a sequence header, start our
  1560. reordering from here */
  1561. if (s->frame_number < 0)
  1562. s->frame_number = picnum;
  1563. s->ref_pics[0] = s->ref_pics[1] = NULL;
  1564. for (i = 0; i < s->num_refs; i++) {
  1565. refnum = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1566. refdist = INT64_MAX;
  1567. /* find the closest reference to the one we want */
  1568. /* Jordi: this is needed if the referenced picture hasn't yet arrived */
  1569. for (j = 0; j < MAX_REFERENCE_FRAMES && refdist; j++)
  1570. if (s->ref_frames[j]
  1571. && FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum) < refdist) {
  1572. s->ref_pics[i] = s->ref_frames[j];
  1573. refdist = FFABS(s->ref_frames[j]->avframe->display_picture_number - refnum);
  1574. }
  1575. if (!s->ref_pics[i] || refdist)
  1576. av_log(s->avctx, AV_LOG_DEBUG, "Reference not found\n");
  1577. /* if there were no references at all, allocate one */
  1578. if (!s->ref_pics[i])
  1579. for (j = 0; j < MAX_FRAMES; j++)
  1580. if (!s->all_frames[j].avframe->data[0]) {
  1581. s->ref_pics[i] = &s->all_frames[j];
  1582. get_buffer_with_edge(s->avctx, s->ref_pics[i]->avframe, AV_GET_BUFFER_FLAG_REF);
  1583. break;
  1584. }
  1585. if (!s->ref_pics[i]) {
  1586. av_log(s->avctx, AV_LOG_ERROR, "Reference could not be allocated\n");
  1587. return AVERROR_INVALIDDATA;
  1588. }
  1589. }
  1590. /* retire the reference frames that are not used anymore */
  1591. if (s->current_picture->reference) {
  1592. retire = (picnum + dirac_get_se_golomb(gb)) & 0xFFFFFFFF;
  1593. if (retire != picnum) {
  1594. DiracFrame *retire_pic = remove_frame(s->ref_frames, retire);
  1595. if (retire_pic)
  1596. retire_pic->reference &= DELAYED_PIC_REF;
  1597. else
  1598. av_log(s->avctx, AV_LOG_DEBUG, "Frame to retire not found\n");
  1599. }
  1600. /* if reference array is full, remove the oldest as per the spec */
  1601. while (add_frame(s->ref_frames, MAX_REFERENCE_FRAMES, s->current_picture)) {
  1602. av_log(s->avctx, AV_LOG_ERROR, "Reference frame overflow\n");
  1603. remove_frame(s->ref_frames, s->ref_frames[0]->avframe->display_picture_number)->reference &= DELAYED_PIC_REF;
  1604. }
  1605. }
  1606. if (s->num_refs) {
  1607. ret = dirac_unpack_prediction_parameters(s); /* [DIRAC_STD] 11.2 Picture Prediction Data. picture_prediction() */
  1608. if (ret < 0)
  1609. return ret;
  1610. ret = dirac_unpack_block_motion_data(s); /* [DIRAC_STD] 12. Block motion data syntax */
  1611. if (ret < 0)
  1612. return ret;
  1613. }
  1614. ret = dirac_unpack_idwt_params(s); /* [DIRAC_STD] 11.3 Wavelet transform data */
  1615. if (ret < 0)
  1616. return ret;
  1617. init_planes(s);
  1618. return 0;
  1619. }
  1620. static int get_delayed_pic(DiracContext *s, AVFrame *picture, int *got_frame)
  1621. {
  1622. DiracFrame *out = s->delay_frames[0];
  1623. int i, out_idx = 0;
  1624. int ret;
  1625. /* find frame with lowest picture number */
  1626. for (i = 1; s->delay_frames[i]; i++)
  1627. if (s->delay_frames[i]->avframe->display_picture_number < out->avframe->display_picture_number) {
  1628. out = s->delay_frames[i];
  1629. out_idx = i;
  1630. }
  1631. for (i = out_idx; s->delay_frames[i]; i++)
  1632. s->delay_frames[i] = s->delay_frames[i+1];
  1633. if (out) {
  1634. out->reference ^= DELAYED_PIC_REF;
  1635. *got_frame = 1;
  1636. if((ret = av_frame_ref(picture, out->avframe)) < 0)
  1637. return ret;
  1638. }
  1639. return 0;
  1640. }
  1641. /**
  1642. * Dirac Specification ->
  1643. * 9.6 Parse Info Header Syntax. parse_info()
  1644. * 4 byte start code + byte parse code + 4 byte size + 4 byte previous size
  1645. */
  1646. #define DATA_UNIT_HEADER_SIZE 13
  1647. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3
  1648. inside the function parse_sequence() */
  1649. static int dirac_decode_data_unit(AVCodecContext *avctx, const uint8_t *buf, int size)
  1650. {
  1651. DiracContext *s = avctx->priv_data;
  1652. DiracFrame *pic = NULL;
  1653. int ret, i;
  1654. uint8_t parse_code;
  1655. unsigned tmp;
  1656. if (size < DATA_UNIT_HEADER_SIZE)
  1657. return AVERROR_INVALIDDATA;
  1658. parse_code = buf[4];
  1659. init_get_bits(&s->gb, &buf[13], 8*(size - DATA_UNIT_HEADER_SIZE));
  1660. if (parse_code == DIRAC_PCODE_SEQ_HEADER) {
  1661. if (s->seen_sequence_header)
  1662. return 0;
  1663. /* [DIRAC_STD] 10. Sequence header */
  1664. ret = avpriv_dirac_parse_sequence_header(avctx, &s->gb, &s->source,
  1665. &s->version, &s->bit_depth);
  1666. if (ret < 0)
  1667. return ret;
  1668. s->pshift = s->bit_depth > 8;
  1669. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_x_shift, &s->chroma_y_shift);
  1670. ret = alloc_sequence_buffers(s);
  1671. if (ret < 0)
  1672. return ret;
  1673. s->seen_sequence_header = 1;
  1674. } else if (parse_code == DIRAC_PCODE_END_SEQ) { /* [DIRAC_STD] End of Sequence */
  1675. free_sequence_buffers(s);
  1676. s->seen_sequence_header = 0;
  1677. } else if (parse_code == DIRAC_PCODE_AUX) {
  1678. if (buf[13] == 1) { /* encoder implementation/version */
  1679. int ver[3];
  1680. /* versions older than 1.0.8 don't store quant delta for
  1681. subbands with only one codeblock */
  1682. if (sscanf(buf+14, "Schroedinger %d.%d.%d", ver, ver+1, ver+2) == 3)
  1683. if (ver[0] == 1 && ver[1] == 0 && ver[2] <= 7)
  1684. s->old_delta_quant = 1;
  1685. }
  1686. } else if (parse_code & 0x8) { /* picture data unit */
  1687. if (!s->seen_sequence_header) {
  1688. av_log(avctx, AV_LOG_DEBUG, "Dropping frame without sequence header\n");
  1689. return AVERROR_INVALIDDATA;
  1690. }
  1691. /* find an unused frame */
  1692. for (i = 0; i < MAX_FRAMES; i++)
  1693. if (s->all_frames[i].avframe->data[0] == NULL)
  1694. pic = &s->all_frames[i];
  1695. if (!pic) {
  1696. av_log(avctx, AV_LOG_ERROR, "framelist full\n");
  1697. return AVERROR_INVALIDDATA;
  1698. }
  1699. av_frame_unref(pic->avframe);
  1700. /* [DIRAC_STD] Defined in 9.6.1 ... */
  1701. tmp = parse_code & 0x03; /* [DIRAC_STD] num_refs() */
  1702. if (tmp > 2) {
  1703. av_log(avctx, AV_LOG_ERROR, "num_refs of 3\n");
  1704. return AVERROR_INVALIDDATA;
  1705. }
  1706. s->num_refs = tmp;
  1707. s->is_arith = (parse_code & 0x48) == 0x08; /* [DIRAC_STD] using_ac() */
  1708. s->low_delay = (parse_code & 0x88) == 0x88; /* [DIRAC_STD] is_low_delay() */
  1709. s->core_syntax = (parse_code & 0x88) == 0x08; /* [DIRAC_STD] is_core_syntax() */
  1710. s->ld_picture = (parse_code & 0xF8) == 0xC8; /* [DIRAC_STD] is_ld_picture() */
  1711. s->hq_picture = (parse_code & 0xF8) == 0xE8; /* [DIRAC_STD] is_hq_picture() */
  1712. s->dc_prediction = (parse_code & 0x28) == 0x08; /* [DIRAC_STD] using_dc_prediction() */
  1713. pic->reference = (parse_code & 0x0C) == 0x0C; /* [DIRAC_STD] is_reference() */
  1714. pic->avframe->key_frame = s->num_refs == 0; /* [DIRAC_STD] is_intra() */
  1715. pic->avframe->pict_type = s->num_refs + 1; /* Definition of AVPictureType in avutil.h */
  1716. if (s->version.minor == 2 && parse_code == 0x88)
  1717. s->ld_picture = 1;
  1718. if (s->low_delay && !(s->ld_picture || s->hq_picture) ) {
  1719. av_log(avctx, AV_LOG_ERROR, "Invalid low delay flag\n");
  1720. return AVERROR_INVALIDDATA;
  1721. }
  1722. if ((ret = get_buffer_with_edge(avctx, pic->avframe, (parse_code & 0x0C) == 0x0C ? AV_GET_BUFFER_FLAG_REF : 0)) < 0)
  1723. return ret;
  1724. s->current_picture = pic;
  1725. s->plane[0].stride = pic->avframe->linesize[0];
  1726. s->plane[1].stride = pic->avframe->linesize[1];
  1727. s->plane[2].stride = pic->avframe->linesize[2];
  1728. if (alloc_buffers(s, FFMAX3(FFABS(s->plane[0].stride), FFABS(s->plane[1].stride), FFABS(s->plane[2].stride))) < 0)
  1729. return AVERROR(ENOMEM);
  1730. /* [DIRAC_STD] 11.1 Picture parse. picture_parse() */
  1731. ret = dirac_decode_picture_header(s);
  1732. if (ret < 0)
  1733. return ret;
  1734. /* [DIRAC_STD] 13.0 Transform data syntax. transform_data() */
  1735. ret = dirac_decode_frame_internal(s);
  1736. if (ret < 0)
  1737. return ret;
  1738. }
  1739. return 0;
  1740. }
  1741. static int dirac_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *pkt)
  1742. {
  1743. DiracContext *s = avctx->priv_data;
  1744. AVFrame *picture = data;
  1745. uint8_t *buf = pkt->data;
  1746. int buf_size = pkt->size;
  1747. int i, buf_idx = 0;
  1748. int ret;
  1749. unsigned data_unit_size;
  1750. /* release unused frames */
  1751. for (i = 0; i < MAX_FRAMES; i++)
  1752. if (s->all_frames[i].avframe->data[0] && !s->all_frames[i].reference) {
  1753. av_frame_unref(s->all_frames[i].avframe);
  1754. memset(s->all_frames[i].interpolated, 0, sizeof(s->all_frames[i].interpolated));
  1755. }
  1756. s->current_picture = NULL;
  1757. *got_frame = 0;
  1758. /* end of stream, so flush delayed pics */
  1759. if (buf_size == 0)
  1760. return get_delayed_pic(s, (AVFrame *)data, got_frame);
  1761. for (;;) {
  1762. /*[DIRAC_STD] Here starts the code from parse_info() defined in 9.6
  1763. [DIRAC_STD] PARSE_INFO_PREFIX = "BBCD" as defined in ISO/IEC 646
  1764. BBCD start code search */
  1765. for (; buf_idx + DATA_UNIT_HEADER_SIZE < buf_size; buf_idx++) {
  1766. if (buf[buf_idx ] == 'B' && buf[buf_idx+1] == 'B' &&
  1767. buf[buf_idx+2] == 'C' && buf[buf_idx+3] == 'D')
  1768. break;
  1769. }
  1770. /* BBCD found or end of data */
  1771. if (buf_idx + DATA_UNIT_HEADER_SIZE >= buf_size)
  1772. break;
  1773. data_unit_size = AV_RB32(buf+buf_idx+5);
  1774. if (data_unit_size > buf_size - buf_idx || !data_unit_size) {
  1775. if(data_unit_size > buf_size - buf_idx)
  1776. av_log(s->avctx, AV_LOG_ERROR,
  1777. "Data unit with size %d is larger than input buffer, discarding\n",
  1778. data_unit_size);
  1779. buf_idx += 4;
  1780. continue;
  1781. }
  1782. /* [DIRAC_STD] dirac_decode_data_unit makes reference to the while defined in 9.3 inside the function parse_sequence() */
  1783. ret = dirac_decode_data_unit(avctx, buf+buf_idx, data_unit_size);
  1784. if (ret < 0)
  1785. {
  1786. av_log(s->avctx, AV_LOG_ERROR,"Error in dirac_decode_data_unit\n");
  1787. return ret;
  1788. }
  1789. buf_idx += data_unit_size;
  1790. }
  1791. if (!s->current_picture)
  1792. return buf_size;
  1793. if (s->current_picture->avframe->display_picture_number > s->frame_number) {
  1794. DiracFrame *delayed_frame = remove_frame(s->delay_frames, s->frame_number);
  1795. s->current_picture->reference |= DELAYED_PIC_REF;
  1796. if (add_frame(s->delay_frames, MAX_DELAY, s->current_picture)) {
  1797. int min_num = s->delay_frames[0]->avframe->display_picture_number;
  1798. /* Too many delayed frames, so we display the frame with the lowest pts */
  1799. av_log(avctx, AV_LOG_ERROR, "Delay frame overflow\n");
  1800. for (i = 1; s->delay_frames[i]; i++)
  1801. if (s->delay_frames[i]->avframe->display_picture_number < min_num)
  1802. min_num = s->delay_frames[i]->avframe->display_picture_number;
  1803. delayed_frame = remove_frame(s->delay_frames, min_num);
  1804. add_frame(s->delay_frames, MAX_DELAY, s->current_picture);
  1805. }
  1806. if (delayed_frame) {
  1807. delayed_frame->reference ^= DELAYED_PIC_REF;
  1808. if((ret=av_frame_ref(data, delayed_frame->avframe)) < 0)
  1809. return ret;
  1810. *got_frame = 1;
  1811. }
  1812. } else if (s->current_picture->avframe->display_picture_number == s->frame_number) {
  1813. /* The right frame at the right time :-) */
  1814. if((ret=av_frame_ref(data, s->current_picture->avframe)) < 0)
  1815. return ret;
  1816. *got_frame = 1;
  1817. }
  1818. if (*got_frame)
  1819. s->frame_number = picture->display_picture_number + 1;
  1820. return buf_idx;
  1821. }
  1822. AVCodec ff_dirac_decoder = {
  1823. .name = "dirac",
  1824. .long_name = NULL_IF_CONFIG_SMALL("BBC Dirac VC-2"),
  1825. .type = AVMEDIA_TYPE_VIDEO,
  1826. .id = AV_CODEC_ID_DIRAC,
  1827. .priv_data_size = sizeof(DiracContext),
  1828. .init = dirac_decode_init,
  1829. .close = dirac_decode_end,
  1830. .decode = dirac_decode_frame,
  1831. .capabilities = AV_CODEC_CAP_DELAY,
  1832. .flush = dirac_decode_flush,
  1833. };