You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2999 lines
98KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED = 3 //XXX: ??
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** The VC1 Context
  192. * @fixme Change size wherever another size is more efficient
  193. * Many members are only used for Advanced Profile
  194. */
  195. typedef struct VC1Context{
  196. MpegEncContext s;
  197. int bits;
  198. /** Simple/Main Profile sequence header */
  199. //@{
  200. int res_sm; ///< reserved, 2b
  201. int res_x8; ///< reserved
  202. int multires; ///< frame-level RESPIC syntax element present
  203. int res_fasttx; ///< reserved, always 1
  204. int res_transtab; ///< reserved, always 0
  205. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  206. ///< at frame level
  207. int res_rtm_flag; ///< reserved, set to 1
  208. int reserved; ///< reserved
  209. //@}
  210. /** Advanced Profile */
  211. //@{
  212. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  213. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  214. int postprocflag; ///< Per-frame processing suggestion flag present
  215. int broadcast; ///< TFF/RFF present
  216. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  217. int tfcntrflag; ///< TFCNTR present
  218. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  219. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  220. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  221. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  222. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  223. int hrd_param_flag; ///< Presence of Hypothetical Reference
  224. ///< Decoder parameters
  225. //@}
  226. /** Sequence header data for all Profiles
  227. * TODO: choose between ints, uint8_ts and monobit flags
  228. */
  229. //@{
  230. int profile; ///< 2bits, Profile
  231. int frmrtq_postproc; ///< 3bits,
  232. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  233. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  234. int extended_mv; ///< Ext MV in P/B (not in Simple)
  235. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  236. int vstransform; ///< variable-size [48]x[48] transform type + info
  237. int overlap; ///< overlapped transforms in use
  238. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  239. int finterpflag; ///< INTERPFRM present
  240. //@}
  241. /** Frame decoding info for all profiles */
  242. //@{
  243. uint8_t mv_mode; ///< MV coding monde
  244. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  245. int k_x; ///< Number of bits for MVs (depends on MV range)
  246. int k_y; ///< Number of bits for MVs (depends on MV range)
  247. int range_x, range_y; ///< MV range
  248. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  249. /** pquant parameters */
  250. //@{
  251. uint8_t dquantfrm;
  252. uint8_t dqprofile;
  253. uint8_t dqsbedge;
  254. uint8_t dqbilevel;
  255. //@}
  256. /** AC coding set indexes
  257. * @see 8.1.1.10, p(1)10
  258. */
  259. //@{
  260. int c_ac_table_index; ///< Chroma index from ACFRM element
  261. int y_ac_table_index; ///< Luma index from AC2FRM element
  262. //@}
  263. int ttfrm; ///< Transform type info present at frame level
  264. uint8_t ttmbf; ///< Transform type flag
  265. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  266. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  267. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  268. int pqindex; ///< raw pqindex used in coding set selection
  269. int a_avail, c_avail;
  270. uint8_t *mb_type_base, *mb_type[3];
  271. /** Luma compensation parameters */
  272. //@{
  273. uint8_t lumscale;
  274. uint8_t lumshift;
  275. //@}
  276. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  277. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  278. uint8_t respic; ///< Frame-level flag for resized images
  279. int buffer_fullness; ///< HRD info
  280. /** Ranges:
  281. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  282. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  283. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  284. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  285. */
  286. uint8_t mvrange;
  287. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  288. VLC *cbpcy_vlc; ///< CBPCY VLC table
  289. int tt_index; ///< Index for Transform Type tables
  290. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  291. // BitPlane direct_mb_plane; ///< bitplane for "direct" MBs
  292. int mv_type_is_raw; ///< mv type mb plane is not coded
  293. int skip_is_raw; ///< skip mb plane is not coded
  294. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  295. int rnd; ///< rounding control
  296. /** Frame decoding info for S/M profiles only */
  297. //@{
  298. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  299. uint8_t interpfrm;
  300. //@}
  301. /** Frame decoding info for Advanced profile */
  302. //@{
  303. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  304. uint8_t numpanscanwin;
  305. uint8_t tfcntr;
  306. uint8_t rptfrm, tff, rff;
  307. uint16_t topleftx;
  308. uint16_t toplefty;
  309. uint16_t bottomrightx;
  310. uint16_t bottomrighty;
  311. uint8_t uvsamp;
  312. uint8_t postproc;
  313. int hrd_num_leaky_buckets;
  314. uint8_t bit_rate_exponent;
  315. uint8_t buffer_size_exponent;
  316. // BitPlane ac_pred_plane; ///< AC prediction flags bitplane
  317. // BitPlane over_flags_plane; ///< Overflags bitplane
  318. uint8_t condover;
  319. uint16_t *hrd_rate, *hrd_buffer;
  320. uint8_t *hrd_fullness;
  321. uint8_t range_mapy_flag;
  322. uint8_t range_mapuv_flag;
  323. uint8_t range_mapy;
  324. uint8_t range_mapuv;
  325. //@}
  326. } VC1Context;
  327. /**
  328. * Get unary code of limited length
  329. * @fixme FIXME Slow and ugly
  330. * @param gb GetBitContext
  331. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  332. * @param[in] len Maximum length
  333. * @return Unary length/index
  334. */
  335. static int get_prefix(GetBitContext *gb, int stop, int len)
  336. {
  337. #if 1
  338. int i;
  339. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  340. return i;
  341. /* int i = 0, tmp = !stop;
  342. while (i != len && tmp != stop)
  343. {
  344. tmp = get_bits(gb, 1);
  345. i++;
  346. }
  347. if (i == len && tmp != stop) return len+1;
  348. return i;*/
  349. #else
  350. unsigned int buf;
  351. int log;
  352. OPEN_READER(re, gb);
  353. UPDATE_CACHE(re, gb);
  354. buf=GET_CACHE(re, gb); //Still not sure
  355. if (stop) buf = ~buf;
  356. log= av_log2(-buf); //FIXME: -?
  357. if (log < limit){
  358. LAST_SKIP_BITS(re, gb, log+1);
  359. CLOSE_READER(re, gb);
  360. return log;
  361. }
  362. LAST_SKIP_BITS(re, gb, limit);
  363. CLOSE_READER(re, gb);
  364. return limit;
  365. #endif
  366. }
  367. static inline int decode210(GetBitContext *gb){
  368. int n;
  369. n = get_bits1(gb);
  370. if (n == 1)
  371. return 0;
  372. else
  373. return 2 - get_bits1(gb);
  374. }
  375. /**
  376. * Init VC-1 specific tables and VC1Context members
  377. * @param v The VC1Context to initialize
  378. * @return Status
  379. */
  380. static int vc1_init_common(VC1Context *v)
  381. {
  382. static int done = 0;
  383. int i = 0;
  384. v->hrd_rate = v->hrd_buffer = NULL;
  385. /* VLC tables */
  386. if(!done)
  387. {
  388. done = 1;
  389. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  390. vc1_bfraction_bits, 1, 1,
  391. vc1_bfraction_codes, 1, 1, 1);
  392. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  393. vc1_norm2_bits, 1, 1,
  394. vc1_norm2_codes, 1, 1, 1);
  395. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  396. vc1_norm6_bits, 1, 1,
  397. vc1_norm6_codes, 2, 2, 1);
  398. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  399. vc1_imode_bits, 1, 1,
  400. vc1_imode_codes, 1, 1, 1);
  401. for (i=0; i<3; i++)
  402. {
  403. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  404. vc1_ttmb_bits[i], 1, 1,
  405. vc1_ttmb_codes[i], 2, 2, 1);
  406. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  407. vc1_ttblk_bits[i], 1, 1,
  408. vc1_ttblk_codes[i], 1, 1, 1);
  409. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  410. vc1_subblkpat_bits[i], 1, 1,
  411. vc1_subblkpat_codes[i], 1, 1, 1);
  412. }
  413. for(i=0; i<4; i++)
  414. {
  415. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  416. vc1_4mv_block_pattern_bits[i], 1, 1,
  417. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  418. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  419. vc1_cbpcy_p_bits[i], 1, 1,
  420. vc1_cbpcy_p_codes[i], 2, 2, 1);
  421. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  422. vc1_mv_diff_bits[i], 1, 1,
  423. vc1_mv_diff_codes[i], 2, 2, 1);
  424. }
  425. for(i=0; i<8; i++)
  426. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  427. &vc1_ac_tables[i][0][1], 8, 4,
  428. &vc1_ac_tables[i][0][0], 8, 4, 1);
  429. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  430. &ff_msmp4_mb_i_table[0][1], 4, 2,
  431. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  432. }
  433. /* Other defaults */
  434. v->pq = -1;
  435. v->mvrange = 0; /* 7.1.1.18, p80 */
  436. return 0;
  437. }
  438. /***********************************************************************/
  439. /**
  440. * @defgroup bitplane VC9 Bitplane decoding
  441. * @see 8.7, p56
  442. * @{
  443. */
  444. /** @addtogroup bitplane
  445. * Imode types
  446. * @{
  447. */
  448. enum Imode {
  449. IMODE_RAW,
  450. IMODE_NORM2,
  451. IMODE_DIFF2,
  452. IMODE_NORM6,
  453. IMODE_DIFF6,
  454. IMODE_ROWSKIP,
  455. IMODE_COLSKIP
  456. };
  457. /** @} */ //imode defines
  458. /** Decode rows by checking if they are skipped
  459. * @param plane Buffer to store decoded bits
  460. * @param[in] width Width of this buffer
  461. * @param[in] height Height of this buffer
  462. * @param[in] stride of this buffer
  463. */
  464. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  465. int x, y;
  466. for (y=0; y<height; y++){
  467. if (!get_bits(gb, 1)) //rowskip
  468. memset(plane, 0, width);
  469. else
  470. for (x=0; x<width; x++)
  471. plane[x] = get_bits(gb, 1);
  472. plane += stride;
  473. }
  474. }
  475. /** Decode columns by checking if they are skipped
  476. * @param plane Buffer to store decoded bits
  477. * @param[in] width Width of this buffer
  478. * @param[in] height Height of this buffer
  479. * @param[in] stride of this buffer
  480. * @fixme FIXME: Optimize
  481. */
  482. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  483. int x, y;
  484. for (x=0; x<width; x++){
  485. if (!get_bits(gb, 1)) //colskip
  486. for (y=0; y<height; y++)
  487. plane[y*stride] = 0;
  488. else
  489. for (y=0; y<height; y++)
  490. plane[y*stride] = get_bits(gb, 1);
  491. plane ++;
  492. }
  493. }
  494. /** Decode a bitplane's bits
  495. * @param bp Bitplane where to store the decode bits
  496. * @param v VC-1 context for bit reading and logging
  497. * @return Status
  498. * @fixme FIXME: Optimize
  499. * @todo TODO: Decide if a struct is needed
  500. */
  501. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  502. {
  503. GetBitContext *gb = &v->s.gb;
  504. int imode, x, y, code, offset;
  505. uint8_t invert, *planep = data;
  506. int width, height, stride;
  507. width = v->s.mb_width;
  508. height = v->s.mb_height;
  509. stride = v->s.mb_stride;
  510. invert = get_bits(gb, 1);
  511. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  512. *raw_flag = 0;
  513. switch (imode)
  514. {
  515. case IMODE_RAW:
  516. //Data is actually read in the MB layer (same for all tests == "raw")
  517. *raw_flag = 1; //invert ignored
  518. return invert;
  519. case IMODE_DIFF2:
  520. case IMODE_NORM2:
  521. if ((height * width) & 1)
  522. {
  523. *planep++ = get_bits(gb, 1);
  524. offset = 1;
  525. }
  526. else offset = 0;
  527. // decode bitplane as one long line
  528. for (y = offset; y < height * width; y += 2) {
  529. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  530. *planep++ = code & 1;
  531. offset++;
  532. if(offset == width) {
  533. offset = 0;
  534. planep += stride - width;
  535. }
  536. *planep++ = code >> 1;
  537. offset++;
  538. if(offset == width) {
  539. offset = 0;
  540. planep += stride - width;
  541. }
  542. }
  543. break;
  544. case IMODE_DIFF6:
  545. case IMODE_NORM6:
  546. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  547. for(y = 0; y < height; y+= 3) {
  548. for(x = width & 1; x < width; x += 2) {
  549. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  550. if(code < 0){
  551. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  552. return -1;
  553. }
  554. planep[x + 0] = (code >> 0) & 1;
  555. planep[x + 1] = (code >> 1) & 1;
  556. planep[x + 0 + stride] = (code >> 2) & 1;
  557. planep[x + 1 + stride] = (code >> 3) & 1;
  558. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  559. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  560. }
  561. planep += stride * 3;
  562. }
  563. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  564. } else { // 3x2
  565. planep += (height & 1) * stride;
  566. for(y = height & 1; y < height; y += 2) {
  567. for(x = width % 3; x < width; x += 3) {
  568. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  569. if(code < 0){
  570. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  571. return -1;
  572. }
  573. planep[x + 0] = (code >> 0) & 1;
  574. planep[x + 1] = (code >> 1) & 1;
  575. planep[x + 2] = (code >> 2) & 1;
  576. planep[x + 0 + stride] = (code >> 3) & 1;
  577. planep[x + 1 + stride] = (code >> 4) & 1;
  578. planep[x + 2 + stride] = (code >> 5) & 1;
  579. }
  580. planep += stride * 2;
  581. }
  582. x = width % 3;
  583. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  584. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  585. }
  586. break;
  587. case IMODE_ROWSKIP:
  588. decode_rowskip(data, width, height, stride, &v->s.gb);
  589. break;
  590. case IMODE_COLSKIP:
  591. decode_colskip(data, width, height, stride, &v->s.gb);
  592. break;
  593. default: break;
  594. }
  595. /* Applying diff operator */
  596. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  597. {
  598. planep = data;
  599. planep[0] ^= invert;
  600. for (x=1; x<width; x++)
  601. planep[x] ^= planep[x-1];
  602. for (y=1; y<height; y++)
  603. {
  604. planep += stride;
  605. planep[0] ^= planep[-stride];
  606. for (x=1; x<width; x++)
  607. {
  608. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  609. else planep[x] ^= planep[x-1];
  610. }
  611. }
  612. }
  613. else if (invert)
  614. {
  615. planep = data;
  616. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  617. }
  618. return (imode<<1) + invert;
  619. }
  620. /** @} */ //Bitplane group
  621. /***********************************************************************/
  622. /** VOP Dquant decoding
  623. * @param v VC-1 Context
  624. */
  625. static int vop_dquant_decoding(VC1Context *v)
  626. {
  627. GetBitContext *gb = &v->s.gb;
  628. int pqdiff;
  629. //variable size
  630. if (v->dquant == 2)
  631. {
  632. pqdiff = get_bits(gb, 3);
  633. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  634. else v->altpq = v->pq + pqdiff + 1;
  635. }
  636. else
  637. {
  638. v->dquantfrm = get_bits(gb, 1);
  639. if ( v->dquantfrm )
  640. {
  641. v->dqprofile = get_bits(gb, 2);
  642. switch (v->dqprofile)
  643. {
  644. case DQPROFILE_SINGLE_EDGE:
  645. case DQPROFILE_DOUBLE_EDGES:
  646. v->dqsbedge = get_bits(gb, 2);
  647. break;
  648. case DQPROFILE_ALL_MBS:
  649. v->dqbilevel = get_bits(gb, 1);
  650. default: break; //Forbidden ?
  651. }
  652. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  653. {
  654. pqdiff = get_bits(gb, 3);
  655. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  656. else v->altpq = v->pq + pqdiff + 1;
  657. }
  658. }
  659. }
  660. return 0;
  661. }
  662. /** Do inverse transform
  663. */
  664. static void vc1_inv_trans(DCTELEM block[64], int M, int N)
  665. {
  666. int i;
  667. register int t1,t2,t3,t4,t5,t6,t7,t8;
  668. DCTELEM *src, *dst;
  669. src = block;
  670. dst = block;
  671. if(M==4){
  672. for(i = 0; i < N; i++){
  673. t1 = 17 * (src[0] + src[2]);
  674. t2 = 17 * (src[0] - src[2]);
  675. t3 = 22 * src[1];
  676. t4 = 22 * src[3];
  677. t5 = 10 * src[1];
  678. t6 = 10 * src[3];
  679. dst[0] = (t1 + t3 + t6 + 4) >> 3;
  680. dst[1] = (t2 - t4 + t5 + 4) >> 3;
  681. dst[2] = (t2 + t4 - t5 + 4) >> 3;
  682. dst[3] = (t1 - t3 - t6 + 4) >> 3;
  683. src += 8;
  684. dst += 8;
  685. }
  686. }else{
  687. for(i = 0; i < N; i++){
  688. t1 = 12 * (src[0] + src[4]);
  689. t2 = 12 * (src[0] - src[4]);
  690. t3 = 16 * src[2] + 6 * src[6];
  691. t4 = 6 * src[2] - 16 * src[6];
  692. t5 = t1 + t3;
  693. t6 = t2 + t4;
  694. t7 = t2 - t4;
  695. t8 = t1 - t3;
  696. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  697. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  698. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  699. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  700. dst[0] = (t5 + t1 + 4) >> 3;
  701. dst[1] = (t6 + t2 + 4) >> 3;
  702. dst[2] = (t7 + t3 + 4) >> 3;
  703. dst[3] = (t8 + t4 + 4) >> 3;
  704. dst[4] = (t8 - t4 + 4) >> 3;
  705. dst[5] = (t7 - t3 + 4) >> 3;
  706. dst[6] = (t6 - t2 + 4) >> 3;
  707. dst[7] = (t5 - t1 + 4) >> 3;
  708. src += 8;
  709. dst += 8;
  710. }
  711. }
  712. src = block;
  713. dst = block;
  714. if(N==4){
  715. for(i = 0; i < M; i++){
  716. t1 = 17 * (src[ 0] + src[16]);
  717. t2 = 17 * (src[ 0] - src[16]);
  718. t3 = 22 * src[ 8];
  719. t4 = 22 * src[24];
  720. t5 = 10 * src[ 8];
  721. t6 = 10 * src[24];
  722. dst[ 0] = (t1 + t3 + t6 + 64) >> 7;
  723. dst[ 8] = (t2 - t4 + t5 + 64) >> 7;
  724. dst[16] = (t2 + t4 - t5 + 64) >> 7;
  725. dst[24] = (t1 - t3 - t6 + 64) >> 7;
  726. src ++;
  727. dst ++;
  728. }
  729. }else{
  730. for(i = 0; i < M; i++){
  731. t1 = 12 * (src[ 0] + src[32]);
  732. t2 = 12 * (src[ 0] - src[32]);
  733. t3 = 16 * src[16] + 6 * src[48];
  734. t4 = 6 * src[16] - 16 * src[48];
  735. t5 = t1 + t3;
  736. t6 = t2 + t4;
  737. t7 = t2 - t4;
  738. t8 = t1 - t3;
  739. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  740. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  741. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  742. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  743. dst[ 0] = (t5 + t1 + 64) >> 7;
  744. dst[ 8] = (t6 + t2 + 64) >> 7;
  745. dst[16] = (t7 + t3 + 64) >> 7;
  746. dst[24] = (t8 + t4 + 64) >> 7;
  747. dst[32] = (t8 - t4 + 64 + 1) >> 7;
  748. dst[40] = (t7 - t3 + 64 + 1) >> 7;
  749. dst[48] = (t6 - t2 + 64 + 1) >> 7;
  750. dst[56] = (t5 - t1 + 64 + 1) >> 7;
  751. src++;
  752. dst++;
  753. }
  754. }
  755. }
  756. /** Apply overlap transform to vertical edge
  757. * @todo optimize
  758. * @todo move to DSPContext
  759. */
  760. static void vc1_v_overlap(uint8_t* src, int stride)
  761. {
  762. int i;
  763. int a, b, c, d;
  764. for(i = 0; i < 8; i++) {
  765. a = src[-2*stride];
  766. b = src[-stride];
  767. c = src[0];
  768. d = src[stride];
  769. src[-2*stride] = clip_uint8((7*a + d + 3) >> 3);
  770. src[-stride] = clip_uint8((-a + 7*b + c + d + 3) >> 3);
  771. src[0] = clip_uint8((a + b + 7*c - d + 3) >> 3);
  772. src[stride] = clip_uint8((a + 7*d + 3) >> 3);
  773. src++;
  774. }
  775. }
  776. /** Apply overlap transform to horizontal edge
  777. * @todo optimize
  778. * @todo move to DSPContext
  779. */
  780. static void vc1_h_overlap(uint8_t* src, int stride)
  781. {
  782. int i;
  783. int a, b, c, d;
  784. for(i = 0; i < 8; i++) {
  785. a = src[-2];
  786. b = src[-1];
  787. c = src[0];
  788. d = src[1];
  789. src[-2] = clip_uint8((7*a + d + 3) >> 3);
  790. src[-1] = clip_uint8((-a + 7*b + c + d + 3) >> 3);
  791. src[0] = clip_uint8((a + b + 7*c - d + 3) >> 3);
  792. src[1] = clip_uint8((a + 7*d + 3) >> 3);
  793. src += stride;
  794. }
  795. }
  796. /** Put block onto picture
  797. * @todo move to DSPContext
  798. */
  799. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  800. {
  801. uint8_t *Y;
  802. int ys, us, vs;
  803. DSPContext *dsp = &v->s.dsp;
  804. ys = v->s.current_picture.linesize[0];
  805. us = v->s.current_picture.linesize[1];
  806. vs = v->s.current_picture.linesize[2];
  807. Y = v->s.dest[0];
  808. dsp->put_pixels_clamped(block[0], Y, ys);
  809. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  810. Y += ys * 8;
  811. dsp->put_pixels_clamped(block[2], Y, ys);
  812. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  813. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  814. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  815. }
  816. /** Do motion compensation over 1 macroblock
  817. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  818. */
  819. static void vc1_mc_1mv(VC1Context *v)
  820. {
  821. MpegEncContext *s = &v->s;
  822. DSPContext *dsp = &v->s.dsp;
  823. uint8_t *srcY, *srcU, *srcV;
  824. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  825. if(!v->s.last_picture.data[0])return;
  826. mx = s->mv[0][0][0];
  827. my = s->mv[0][0][1];
  828. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  829. uvmy = (my + ((my & 3) == 3)) >> 1;
  830. srcY = s->last_picture.data[0];
  831. srcU = s->last_picture.data[1];
  832. srcV = s->last_picture.data[2];
  833. src_x = s->mb_x * 16 + (mx >> 2);
  834. src_y = s->mb_y * 16 + (my >> 2);
  835. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  836. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  837. src_x = clip( src_x, -16, s->mb_width * 16);
  838. src_y = clip( src_y, -16, s->mb_height * 16);
  839. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  840. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  841. srcY += src_y * s->linesize + src_x;
  842. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  843. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  844. if((v->mv_mode == MV_PMODE_INTENSITY_COMP)
  845. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  846. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  847. uint8_t *uvbuf= s->edge_emu_buffer + 18 * s->linesize;
  848. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  849. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  850. srcY = s->edge_emu_buffer;
  851. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  852. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  853. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  854. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  855. srcU = uvbuf;
  856. srcV = uvbuf + 16;
  857. /* if we deal with intensity compensation we need to scale source blocks */
  858. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  859. int i, j;
  860. uint8_t *src, *src2;
  861. src = srcY;
  862. for(j = 0; j < 17; j++) {
  863. for(i = 0; i < 17; i++) src[i] = v->luty[src[i]];
  864. src += s->linesize;
  865. }
  866. src = srcU; src2 = srcV;
  867. for(j = 0; j < 9; j++) {
  868. for(i = 0; i < 9; i++) {
  869. src[i] = v->lutuv[src[i]];
  870. src2[i] = v->lutuv[src2[i]];
  871. }
  872. src += s->uvlinesize;
  873. src2 += s->uvlinesize;
  874. }
  875. }
  876. }
  877. if(v->fastuvmc) {
  878. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  879. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  880. }
  881. if(!s->quarter_sample) { // hpel mc
  882. mx >>= 1;
  883. my >>= 1;
  884. dxy = ((my & 1) << 1) | (mx & 1);
  885. if(!v->rnd)
  886. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  887. else
  888. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  889. } else {
  890. dxy = ((my & 3) << 2) | (mx & 3);
  891. if(!v->rnd)
  892. dsp->put_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  893. else
  894. dsp->put_no_rnd_qpel_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize);
  895. }
  896. /* Chroma MC always uses qpel blilinear */
  897. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  898. if(!v->rnd){
  899. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  900. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  901. }else{
  902. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  903. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  904. }
  905. }
  906. /** Do motion compensation for 4-MV macroblock - luminance block
  907. */
  908. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  909. {
  910. MpegEncContext *s = &v->s;
  911. DSPContext *dsp = &v->s.dsp;
  912. uint8_t *srcY;
  913. int dxy, mx, my, src_x, src_y;
  914. int off;
  915. if(!v->s.last_picture.data[0])return;
  916. mx = s->mv[0][n][0];
  917. my = s->mv[0][n][1];
  918. srcY = s->last_picture.data[0];
  919. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  920. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  921. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  922. src_x = clip( src_x, -16, s->mb_width * 16);
  923. src_y = clip( src_y, -16, s->mb_height * 16);
  924. srcY += src_y * s->linesize + src_x;
  925. if((unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  926. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  927. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 16+1, 16+1,
  928. src_x, src_y, s->h_edge_pos, s->v_edge_pos);
  929. srcY = s->edge_emu_buffer;
  930. }
  931. if(!s->quarter_sample) { // hpel mc
  932. mx >>= 1;
  933. my >>= 1;
  934. dxy = ((my & 1) << 1) | (mx & 1);
  935. if(!v->rnd)
  936. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  937. else
  938. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  939. } else {
  940. dxy = ((my & 3) << 2) | (mx & 3);
  941. if(!v->rnd)
  942. dsp->put_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  943. else
  944. dsp->put_no_rnd_qpel_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize);
  945. }
  946. }
  947. static inline int median4(int a, int b, int c, int d)
  948. {
  949. if(a < b) {
  950. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  951. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  952. } else {
  953. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  954. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  955. }
  956. }
  957. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  958. */
  959. static void vc1_mc_4mv_chroma(VC1Context *v)
  960. {
  961. MpegEncContext *s = &v->s;
  962. DSPContext *dsp = &v->s.dsp;
  963. uint8_t *srcU, *srcV;
  964. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  965. int i, idx, tx = 0, ty = 0;
  966. int mvx[4], mvy[4], intra[4];
  967. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  968. if(!v->s.last_picture.data[0])return;
  969. for(i = 0; i < 4; i++) {
  970. mvx[i] = s->mv[0][i][0];
  971. mvy[i] = s->mv[0][i][1];
  972. intra[i] = v->mb_type[0][s->block_index[i]];
  973. }
  974. /* calculate chroma MV vector from four luma MVs */
  975. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  976. if(!idx) { // all blocks are inter
  977. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  978. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  979. } else if(count[idx] == 1) { // 3 inter blocks
  980. switch(idx) {
  981. case 0x1:
  982. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  983. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  984. break;
  985. case 0x2:
  986. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  987. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  988. break;
  989. case 0x4:
  990. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  991. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  992. break;
  993. case 0x8:
  994. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  995. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  996. break;
  997. }
  998. } else if(count[idx] == 2) {
  999. int t1 = 0, t2 = 0;
  1000. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  1001. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  1002. tx = (mvx[t1] + mvx[t2]) / 2;
  1003. ty = (mvy[t1] + mvy[t2]) / 2;
  1004. } else
  1005. return; //no need to do MC for inter blocks
  1006. uvmx = (tx + ((tx&3) == 3)) >> 1;
  1007. uvmy = (ty + ((ty&3) == 3)) >> 1;
  1008. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1009. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1010. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1011. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1012. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1013. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1014. if((unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  1015. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  1016. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1017. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1018. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1019. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1020. srcU = s->edge_emu_buffer;
  1021. srcV = s->edge_emu_buffer + 16;
  1022. }
  1023. if(v->fastuvmc) {
  1024. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1025. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1026. }
  1027. /* Chroma MC always uses qpel blilinear */
  1028. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1029. if(!v->rnd){
  1030. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1031. dsp->put_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1032. }else{
  1033. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[1], srcU, s->uvlinesize);
  1034. dsp->put_no_rnd_qpel_pixels_tab[1][uvdxy](s->dest[2], srcV, s->uvlinesize);
  1035. }
  1036. }
  1037. /**
  1038. * Decode Simple/Main Profiles sequence header
  1039. * @see Figure 7-8, p16-17
  1040. * @param avctx Codec context
  1041. * @param gb GetBit context initialized from Codec context extra_data
  1042. * @return Status
  1043. */
  1044. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1045. {
  1046. VC1Context *v = avctx->priv_data;
  1047. av_log(avctx, AV_LOG_INFO, "Header: %0X\n", show_bits(gb, 32));
  1048. v->profile = get_bits(gb, 2);
  1049. if (v->profile == 2)
  1050. {
  1051. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1052. return -1;
  1053. }
  1054. if (v->profile == PROFILE_ADVANCED)
  1055. {
  1056. v->level = get_bits(gb, 3);
  1057. if(v->level >= 5)
  1058. {
  1059. av_log(avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1060. }
  1061. v->chromaformat = get_bits(gb, 2);
  1062. if (v->chromaformat != 1)
  1063. {
  1064. av_log(avctx, AV_LOG_ERROR,
  1065. "Only 4:2:0 chroma format supported\n");
  1066. return -1;
  1067. }
  1068. }
  1069. else
  1070. {
  1071. v->res_sm = get_bits(gb, 2); //reserved
  1072. if (v->res_sm)
  1073. {
  1074. av_log(avctx, AV_LOG_ERROR,
  1075. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1076. return -1;
  1077. }
  1078. }
  1079. // (fps-2)/4 (->30)
  1080. v->frmrtq_postproc = get_bits(gb, 3); //common
  1081. // (bitrate-32kbps)/64kbps
  1082. v->bitrtq_postproc = get_bits(gb, 5); //common
  1083. v->s.loop_filter = get_bits(gb, 1); //common
  1084. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1085. {
  1086. av_log(avctx, AV_LOG_ERROR,
  1087. "LOOPFILTER shell not be enabled in simple profile\n");
  1088. }
  1089. if (v->profile < PROFILE_ADVANCED)
  1090. {
  1091. v->res_x8 = get_bits(gb, 1); //reserved
  1092. if (v->res_x8)
  1093. {
  1094. av_log(avctx, AV_LOG_ERROR,
  1095. "1 for reserved RES_X8 is forbidden\n");
  1096. //return -1;
  1097. }
  1098. v->multires = get_bits(gb, 1);
  1099. v->res_fasttx = get_bits(gb, 1);
  1100. if (!v->res_fasttx)
  1101. {
  1102. av_log(avctx, AV_LOG_ERROR,
  1103. "0 for reserved RES_FASTTX is forbidden\n");
  1104. //return -1;
  1105. }
  1106. }
  1107. v->fastuvmc = get_bits(gb, 1); //common
  1108. if (!v->profile && !v->fastuvmc)
  1109. {
  1110. av_log(avctx, AV_LOG_ERROR,
  1111. "FASTUVMC unavailable in Simple Profile\n");
  1112. return -1;
  1113. }
  1114. v->extended_mv = get_bits(gb, 1); //common
  1115. if (!v->profile && v->extended_mv)
  1116. {
  1117. av_log(avctx, AV_LOG_ERROR,
  1118. "Extended MVs unavailable in Simple Profile\n");
  1119. return -1;
  1120. }
  1121. v->dquant = get_bits(gb, 2); //common
  1122. v->vstransform = get_bits(gb, 1); //common
  1123. if (v->profile < PROFILE_ADVANCED)
  1124. {
  1125. v->res_transtab = get_bits(gb, 1);
  1126. if (v->res_transtab)
  1127. {
  1128. av_log(avctx, AV_LOG_ERROR,
  1129. "1 for reserved RES_TRANSTAB is forbidden\n");
  1130. return -1;
  1131. }
  1132. }
  1133. v->overlap = get_bits(gb, 1); //common
  1134. if (v->profile < PROFILE_ADVANCED)
  1135. {
  1136. v->s.resync_marker = get_bits(gb, 1);
  1137. v->rangered = get_bits(gb, 1);
  1138. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1139. {
  1140. av_log(avctx, AV_LOG_INFO,
  1141. "RANGERED should be set to 0 in simple profile\n");
  1142. }
  1143. }
  1144. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1145. v->quantizer_mode = get_bits(gb, 2); //common
  1146. if (v->profile < PROFILE_ADVANCED)
  1147. {
  1148. v->finterpflag = get_bits(gb, 1); //common
  1149. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1150. if (!v->res_rtm_flag)
  1151. {
  1152. av_log(avctx, AV_LOG_ERROR,
  1153. "0 for reserved RES_RTM_FLAG is forbidden\n");
  1154. //return -1;
  1155. }
  1156. av_log(avctx, AV_LOG_DEBUG,
  1157. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1158. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1159. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1160. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1161. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1162. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1163. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1164. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1165. );
  1166. return 0;
  1167. }
  1168. return -1;
  1169. }
  1170. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1171. {
  1172. int pqindex, lowquant, status;
  1173. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1174. skip_bits(gb, 2); //framecnt unused
  1175. v->rangeredfrm = 0;
  1176. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1177. v->s.pict_type = get_bits(gb, 1);
  1178. if (v->s.avctx->max_b_frames) {
  1179. if (!v->s.pict_type) {
  1180. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1181. else v->s.pict_type = B_TYPE;
  1182. } else v->s.pict_type = P_TYPE;
  1183. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1184. if(v->s.pict_type == I_TYPE)
  1185. get_bits(gb, 7); // skip buffer fullness
  1186. /* calculate RND */
  1187. if(v->s.pict_type == I_TYPE)
  1188. v->rnd = 1;
  1189. if(v->s.pict_type == P_TYPE)
  1190. v->rnd ^= 1;
  1191. /* Quantizer stuff */
  1192. pqindex = get_bits(gb, 5);
  1193. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1194. v->pq = pquant_table[0][pqindex];
  1195. else
  1196. v->pq = pquant_table[1][pqindex];
  1197. v->pquantizer = 1;
  1198. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1199. v->pquantizer = pqindex < 9;
  1200. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1201. v->pquantizer = 0;
  1202. v->pqindex = pqindex;
  1203. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1204. else v->halfpq = 0;
  1205. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1206. v->pquantizer = get_bits(gb, 1);
  1207. v->dquantfrm = 0;
  1208. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1209. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1210. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1211. v->range_x = 1 << (v->k_x - 1);
  1212. v->range_y = 1 << (v->k_y - 1);
  1213. if (v->profile == PROFILE_ADVANCED)
  1214. {
  1215. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1216. }
  1217. else
  1218. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1219. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1220. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1221. //TODO: complete parsing for P/B/BI frames
  1222. switch(v->s.pict_type) {
  1223. case P_TYPE:
  1224. if (v->pq < 5) v->tt_index = 0;
  1225. else if(v->pq < 13) v->tt_index = 1;
  1226. else v->tt_index = 2;
  1227. lowquant = (v->pq > 12) ? 0 : 1;
  1228. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1229. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1230. {
  1231. int scale, shift, i;
  1232. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1233. v->lumscale = get_bits(gb, 6);
  1234. v->lumshift = get_bits(gb, 6);
  1235. /* fill lookup tables for intensity compensation */
  1236. if(!v->lumscale) {
  1237. scale = -64;
  1238. shift = (255 - v->lumshift * 2) << 6;
  1239. if(v->lumshift > 31)
  1240. shift += 128 << 6;
  1241. } else {
  1242. scale = v->lumscale + 32;
  1243. if(v->lumshift > 31)
  1244. shift = (v->lumshift - 64) << 6;
  1245. else
  1246. shift = v->lumshift << 6;
  1247. }
  1248. for(i = 0; i < 256; i++) {
  1249. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1250. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1251. }
  1252. }
  1253. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1254. v->s.quarter_sample = 0;
  1255. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1256. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1257. v->s.quarter_sample = 0;
  1258. else
  1259. v->s.quarter_sample = 1;
  1260. } else
  1261. v->s.quarter_sample = 1;
  1262. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1263. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1264. || v->mv_mode == MV_PMODE_MIXED_MV)
  1265. {
  1266. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1267. if (status < 0) return -1;
  1268. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1269. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1270. } else {
  1271. v->mv_type_is_raw = 0;
  1272. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1273. }
  1274. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1275. if (status < 0) return -1;
  1276. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1277. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1278. /* Hopefully this is correct for P frames */
  1279. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1280. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1281. if (v->dquant)
  1282. {
  1283. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1284. vop_dquant_decoding(v);
  1285. }
  1286. v->ttfrm = 0; //FIXME Is that so ?
  1287. if (v->vstransform)
  1288. {
  1289. v->ttmbf = get_bits(gb, 1);
  1290. if (v->ttmbf)
  1291. {
  1292. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1293. }
  1294. } else {
  1295. v->ttmbf = 1;
  1296. v->ttfrm = TT_8X8;
  1297. }
  1298. break;
  1299. case B_TYPE:
  1300. break;
  1301. }
  1302. /* AC Syntax */
  1303. v->c_ac_table_index = decode012(gb);
  1304. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1305. {
  1306. v->y_ac_table_index = decode012(gb);
  1307. }
  1308. /* DC Syntax */
  1309. v->s.dc_table_index = get_bits(gb, 1);
  1310. return 0;
  1311. }
  1312. /***********************************************************************/
  1313. /**
  1314. * @defgroup block VC-1 Block-level functions
  1315. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1316. * @todo TODO: Integrate to MpegEncContext facilities
  1317. * @{
  1318. */
  1319. /**
  1320. * @def GET_MQUANT
  1321. * @brief Get macroblock-level quantizer scale
  1322. * @warning XXX: qdiff to the frame quant, not previous quant ?
  1323. * @fixme XXX: Don't know how to initialize mquant otherwise in last case
  1324. */
  1325. #define GET_MQUANT() \
  1326. if (v->dquantfrm) \
  1327. { \
  1328. int edges = 0; \
  1329. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1330. { \
  1331. if (v->dqbilevel) \
  1332. { \
  1333. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1334. } \
  1335. else \
  1336. { \
  1337. mqdiff = get_bits(gb, 3); \
  1338. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1339. else mquant = get_bits(gb, 5); \
  1340. } \
  1341. } \
  1342. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1343. edges = 1 << v->dqsbedge; \
  1344. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1345. edges = (3 << v->dqsbedge) % 15; \
  1346. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1347. edges = 15; \
  1348. if((edges&1) && !s->mb_x) \
  1349. mquant = v->altpq; \
  1350. if((edges&2) && s->first_slice_line) \
  1351. mquant = v->altpq; \
  1352. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1353. mquant = v->altpq; \
  1354. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1355. mquant = v->altpq; \
  1356. }
  1357. /**
  1358. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1359. * @brief Get MV differentials
  1360. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1361. * @param _dmv_x Horizontal differential for decoded MV
  1362. * @param _dmv_y Vertical differential for decoded MV
  1363. * @todo TODO: Use MpegEncContext arrays to store them
  1364. */
  1365. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1366. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1367. VC1_MV_DIFF_VLC_BITS, 2); \
  1368. if (index > 36) \
  1369. { \
  1370. mb_has_coeffs = 1; \
  1371. index -= 37; \
  1372. } \
  1373. else mb_has_coeffs = 0; \
  1374. s->mb_intra = 0; \
  1375. if (!index) { _dmv_x = _dmv_y = 0; } \
  1376. else if (index == 35) \
  1377. { \
  1378. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1379. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1380. } \
  1381. else if (index == 36) \
  1382. { \
  1383. _dmv_x = 0; \
  1384. _dmv_y = 0; \
  1385. s->mb_intra = 1; \
  1386. } \
  1387. else \
  1388. { \
  1389. index1 = index%6; \
  1390. if (!s->quarter_sample && index1 == 5) val = 1; \
  1391. else val = 0; \
  1392. if(size_table[index1] - val > 0) \
  1393. val = get_bits(gb, size_table[index1] - val); \
  1394. else val = 0; \
  1395. sign = 0 - (val&1); \
  1396. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1397. \
  1398. index1 = index/6; \
  1399. if (!s->quarter_sample && index1 == 5) val = 1; \
  1400. else val = 0; \
  1401. if(size_table[index1] - val > 0) \
  1402. val = get_bits(gb, size_table[index1] - val); \
  1403. else val = 0; \
  1404. sign = 0 - (val&1); \
  1405. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1406. }
  1407. /** Predict and set motion vector
  1408. */
  1409. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1410. {
  1411. int xy, wrap, off = 0;
  1412. int16_t *A, *B, *C;
  1413. int px, py;
  1414. int sum;
  1415. /* scale MV difference to be quad-pel */
  1416. dmv_x <<= 1 - s->quarter_sample;
  1417. dmv_y <<= 1 - s->quarter_sample;
  1418. wrap = s->b8_stride;
  1419. xy = s->block_index[n];
  1420. if(s->mb_intra){
  1421. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1422. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1423. if(mv1) { /* duplicate motion data for 1-MV block */
  1424. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1425. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1426. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1427. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1428. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1429. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1430. }
  1431. return;
  1432. }
  1433. C = s->current_picture.motion_val[0][xy - 1];
  1434. A = s->current_picture.motion_val[0][xy - wrap];
  1435. if(mv1)
  1436. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1437. else {
  1438. //in 4-MV mode different blocks have different B predictor position
  1439. switch(n){
  1440. case 0:
  1441. off = (s->mb_x > 0) ? -1 : 1;
  1442. break;
  1443. case 1:
  1444. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1445. break;
  1446. case 2:
  1447. off = 1;
  1448. break;
  1449. case 3:
  1450. off = -1;
  1451. }
  1452. }
  1453. B = s->current_picture.motion_val[0][xy - wrap + off];
  1454. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1455. if(s->mb_width == 1) {
  1456. px = A[0];
  1457. py = A[1];
  1458. } else {
  1459. px = mid_pred(A[0], B[0], C[0]);
  1460. py = mid_pred(A[1], B[1], C[1]);
  1461. }
  1462. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1463. px = C[0];
  1464. py = C[1];
  1465. } else {
  1466. px = py = 0;
  1467. }
  1468. /* Pullback MV as specified in 8.3.5.3.4 */
  1469. {
  1470. int qx, qy, X, Y;
  1471. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1472. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1473. X = (s->mb_width << 6) - 4;
  1474. Y = (s->mb_height << 6) - 4;
  1475. if(mv1) {
  1476. if(qx + px < -60) px = -60 - qx;
  1477. if(qy + py < -60) py = -60 - qy;
  1478. } else {
  1479. if(qx + px < -28) px = -28 - qx;
  1480. if(qy + py < -28) py = -28 - qy;
  1481. }
  1482. if(qx + px > X) px = X - qx;
  1483. if(qy + py > Y) py = Y - qy;
  1484. }
  1485. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1486. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1487. if(is_intra[xy - wrap])
  1488. sum = ABS(px) + ABS(py);
  1489. else
  1490. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1491. if(sum > 32) {
  1492. if(get_bits1(&s->gb)) {
  1493. px = A[0];
  1494. py = A[1];
  1495. } else {
  1496. px = C[0];
  1497. py = C[1];
  1498. }
  1499. } else {
  1500. if(is_intra[xy - 1])
  1501. sum = ABS(px) + ABS(py);
  1502. else
  1503. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1504. if(sum > 32) {
  1505. if(get_bits1(&s->gb)) {
  1506. px = A[0];
  1507. py = A[1];
  1508. } else {
  1509. px = C[0];
  1510. py = C[1];
  1511. }
  1512. }
  1513. }
  1514. }
  1515. /* store MV using signed modulus of MV range defined in 4.11 */
  1516. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1517. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1518. if(mv1) { /* duplicate motion data for 1-MV block */
  1519. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1520. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1521. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1522. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1523. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1524. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1525. }
  1526. }
  1527. /** Get predicted DC value for I-frames only
  1528. * prediction dir: left=0, top=1
  1529. * @param s MpegEncContext
  1530. * @param[in] n block index in the current MB
  1531. * @param dc_val_ptr Pointer to DC predictor
  1532. * @param dir_ptr Prediction direction for use in AC prediction
  1533. */
  1534. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1535. int16_t **dc_val_ptr, int *dir_ptr)
  1536. {
  1537. int a, b, c, wrap, pred, scale;
  1538. int16_t *dc_val;
  1539. static const uint16_t dcpred[32] = {
  1540. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1541. 114, 102, 93, 85, 79, 73, 68, 64,
  1542. 60, 57, 54, 51, 49, 47, 45, 43,
  1543. 41, 39, 38, 37, 35, 34, 33
  1544. };
  1545. /* find prediction - wmv3_dc_scale always used here in fact */
  1546. if (n < 4) scale = s->y_dc_scale;
  1547. else scale = s->c_dc_scale;
  1548. wrap = s->block_wrap[n];
  1549. dc_val= s->dc_val[0] + s->block_index[n];
  1550. /* B A
  1551. * C X
  1552. */
  1553. c = dc_val[ - 1];
  1554. b = dc_val[ - 1 - wrap];
  1555. a = dc_val[ - wrap];
  1556. if (pq < 9 || !overlap)
  1557. {
  1558. /* Set outer values */
  1559. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1560. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1561. }
  1562. else
  1563. {
  1564. /* Set outer values */
  1565. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1566. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1567. }
  1568. if (abs(a - b) <= abs(b - c)) {
  1569. pred = c;
  1570. *dir_ptr = 1;//left
  1571. } else {
  1572. pred = a;
  1573. *dir_ptr = 0;//top
  1574. }
  1575. /* update predictor */
  1576. *dc_val_ptr = &dc_val[0];
  1577. return pred;
  1578. }
  1579. /** Get predicted DC value
  1580. * prediction dir: left=0, top=1
  1581. * @param s MpegEncContext
  1582. * @param[in] n block index in the current MB
  1583. * @param dc_val_ptr Pointer to DC predictor
  1584. * @param dir_ptr Prediction direction for use in AC prediction
  1585. */
  1586. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1587. int a_avail, int c_avail,
  1588. int16_t **dc_val_ptr, int *dir_ptr)
  1589. {
  1590. int a, b, c, wrap, pred, scale;
  1591. int16_t *dc_val;
  1592. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1593. int q1, q2 = 0;
  1594. /* find prediction - wmv3_dc_scale always used here in fact */
  1595. if (n < 4) scale = s->y_dc_scale;
  1596. else scale = s->c_dc_scale;
  1597. wrap = s->block_wrap[n];
  1598. dc_val= s->dc_val[0] + s->block_index[n];
  1599. /* B A
  1600. * C X
  1601. */
  1602. c = dc_val[ - 1];
  1603. b = dc_val[ - 1 - wrap];
  1604. a = dc_val[ - wrap];
  1605. /* scale predictors if needed */
  1606. q1 = s->current_picture.qscale_table[mb_pos];
  1607. if(c_avail && (n!= 1 && n!=3)) {
  1608. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1609. if(q2 && q2 != q1)
  1610. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1611. }
  1612. if(a_avail && (n!= 2 && n!=3)) {
  1613. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1614. if(q2 && q2 != q1)
  1615. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1616. }
  1617. if(a_avail && c_avail && (n!=3)) {
  1618. int off = mb_pos;
  1619. if(n != 1) off--;
  1620. if(n != 2) off -= s->mb_stride;
  1621. q2 = s->current_picture.qscale_table[off];
  1622. if(q2 && q2 != q1)
  1623. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1624. }
  1625. if(a_avail && c_avail) {
  1626. if(abs(a - b) <= abs(b - c)) {
  1627. pred = c;
  1628. *dir_ptr = 1;//left
  1629. } else {
  1630. pred = a;
  1631. *dir_ptr = 0;//top
  1632. }
  1633. } else if(a_avail) {
  1634. pred = a;
  1635. *dir_ptr = 0;//top
  1636. } else if(c_avail) {
  1637. pred = c;
  1638. *dir_ptr = 1;//left
  1639. } else {
  1640. pred = 0;
  1641. *dir_ptr = 1;//left
  1642. }
  1643. /* update predictor */
  1644. *dc_val_ptr = &dc_val[0];
  1645. return pred;
  1646. }
  1647. /**
  1648. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1649. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1650. * @todo TODO: Integrate to MpegEncContext facilities
  1651. * @{
  1652. */
  1653. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1654. {
  1655. int xy, wrap, pred, a, b, c;
  1656. xy = s->block_index[n];
  1657. wrap = s->b8_stride;
  1658. /* B C
  1659. * A X
  1660. */
  1661. a = s->coded_block[xy - 1 ];
  1662. b = s->coded_block[xy - 1 - wrap];
  1663. c = s->coded_block[xy - wrap];
  1664. if (b == c) {
  1665. pred = a;
  1666. } else {
  1667. pred = c;
  1668. }
  1669. /* store value */
  1670. *coded_block_ptr = &s->coded_block[xy];
  1671. return pred;
  1672. }
  1673. /**
  1674. * Decode one AC coefficient
  1675. * @param v The VC1 context
  1676. * @param last Last coefficient
  1677. * @param skip How much zero coefficients to skip
  1678. * @param value Decoded AC coefficient value
  1679. * @see 8.1.3.4
  1680. */
  1681. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1682. {
  1683. GetBitContext *gb = &v->s.gb;
  1684. int index, escape, run = 0, level = 0, lst = 0;
  1685. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1686. if (index != vc1_ac_sizes[codingset] - 1) {
  1687. run = vc1_index_decode_table[codingset][index][0];
  1688. level = vc1_index_decode_table[codingset][index][1];
  1689. lst = index >= vc1_last_decode_table[codingset];
  1690. if(get_bits(gb, 1))
  1691. level = -level;
  1692. } else {
  1693. escape = decode210(gb);
  1694. if (escape != 2) {
  1695. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1696. run = vc1_index_decode_table[codingset][index][0];
  1697. level = vc1_index_decode_table[codingset][index][1];
  1698. lst = index >= vc1_last_decode_table[codingset];
  1699. if(escape == 0) {
  1700. if(lst)
  1701. level += vc1_last_delta_level_table[codingset][run];
  1702. else
  1703. level += vc1_delta_level_table[codingset][run];
  1704. } else {
  1705. if(lst)
  1706. run += vc1_last_delta_run_table[codingset][level] + 1;
  1707. else
  1708. run += vc1_delta_run_table[codingset][level] + 1;
  1709. }
  1710. if(get_bits(gb, 1))
  1711. level = -level;
  1712. } else {
  1713. int sign;
  1714. lst = get_bits(gb, 1);
  1715. if(v->s.esc3_level_length == 0) {
  1716. if(v->pq < 8 || v->dquantfrm) { // table 59
  1717. v->s.esc3_level_length = get_bits(gb, 3);
  1718. if(!v->s.esc3_level_length)
  1719. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1720. } else { //table 60
  1721. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  1722. }
  1723. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1724. }
  1725. run = get_bits(gb, v->s.esc3_run_length);
  1726. sign = get_bits(gb, 1);
  1727. level = get_bits(gb, v->s.esc3_level_length);
  1728. if(sign)
  1729. level = -level;
  1730. }
  1731. }
  1732. *last = lst;
  1733. *skip = run;
  1734. *value = level;
  1735. }
  1736. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1737. * @param v VC1Context
  1738. * @param block block to decode
  1739. * @param coded are AC coeffs present or not
  1740. * @param codingset set of VLC to decode data
  1741. */
  1742. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1743. {
  1744. GetBitContext *gb = &v->s.gb;
  1745. MpegEncContext *s = &v->s;
  1746. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1747. int run_diff, i;
  1748. int16_t *dc_val;
  1749. int16_t *ac_val, *ac_val2;
  1750. int dcdiff;
  1751. /* Get DC differential */
  1752. if (n < 4) {
  1753. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1754. } else {
  1755. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1756. }
  1757. if (dcdiff < 0){
  1758. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1759. return -1;
  1760. }
  1761. if (dcdiff)
  1762. {
  1763. if (dcdiff == 119 /* ESC index value */)
  1764. {
  1765. /* TODO: Optimize */
  1766. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1767. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1768. else dcdiff = get_bits(gb, 8);
  1769. }
  1770. else
  1771. {
  1772. if (v->pq == 1)
  1773. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1774. else if (v->pq == 2)
  1775. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1776. }
  1777. if (get_bits(gb, 1))
  1778. dcdiff = -dcdiff;
  1779. }
  1780. /* Prediction */
  1781. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1782. *dc_val = dcdiff;
  1783. /* Store the quantized DC coeff, used for prediction */
  1784. if (n < 4) {
  1785. block[0] = dcdiff * s->y_dc_scale;
  1786. } else {
  1787. block[0] = dcdiff * s->c_dc_scale;
  1788. }
  1789. /* Skip ? */
  1790. run_diff = 0;
  1791. i = 0;
  1792. if (!coded) {
  1793. goto not_coded;
  1794. }
  1795. //AC Decoding
  1796. i = 1;
  1797. {
  1798. int last = 0, skip, value;
  1799. const int8_t *zz_table;
  1800. int scale;
  1801. int k;
  1802. scale = v->pq * 2 + v->halfpq;
  1803. if(v->s.ac_pred) {
  1804. if(!dc_pred_dir)
  1805. zz_table = vc1_horizontal_zz;
  1806. else
  1807. zz_table = vc1_vertical_zz;
  1808. } else
  1809. zz_table = vc1_normal_zz;
  1810. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1811. ac_val2 = ac_val;
  1812. if(dc_pred_dir) //left
  1813. ac_val -= 16;
  1814. else //top
  1815. ac_val -= 16 * s->block_wrap[n];
  1816. while (!last) {
  1817. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1818. i += skip;
  1819. if(i > 63)
  1820. break;
  1821. block[zz_table[i++]] = value;
  1822. }
  1823. /* apply AC prediction if needed */
  1824. if(s->ac_pred) {
  1825. if(dc_pred_dir) { //left
  1826. for(k = 1; k < 8; k++)
  1827. block[k << 3] += ac_val[k];
  1828. } else { //top
  1829. for(k = 1; k < 8; k++)
  1830. block[k] += ac_val[k + 8];
  1831. }
  1832. }
  1833. /* save AC coeffs for further prediction */
  1834. for(k = 1; k < 8; k++) {
  1835. ac_val2[k] = block[k << 3];
  1836. ac_val2[k + 8] = block[k];
  1837. }
  1838. /* scale AC coeffs */
  1839. for(k = 1; k < 64; k++)
  1840. if(block[k]) {
  1841. block[k] *= scale;
  1842. if(!v->pquantizer)
  1843. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1844. }
  1845. if(s->ac_pred) i = 63;
  1846. }
  1847. not_coded:
  1848. if(!coded) {
  1849. int k, scale;
  1850. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1851. ac_val2 = ac_val;
  1852. scale = v->pq * 2 + v->halfpq;
  1853. memset(ac_val2, 0, 16 * 2);
  1854. if(dc_pred_dir) {//left
  1855. ac_val -= 16;
  1856. if(s->ac_pred)
  1857. memcpy(ac_val2, ac_val, 8 * 2);
  1858. } else {//top
  1859. ac_val -= 16 * s->block_wrap[n];
  1860. if(s->ac_pred)
  1861. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1862. }
  1863. /* apply AC prediction if needed */
  1864. if(s->ac_pred) {
  1865. if(dc_pred_dir) { //left
  1866. for(k = 1; k < 8; k++) {
  1867. block[k << 3] = ac_val[k] * scale;
  1868. if(!v->pquantizer && block[k << 3])
  1869. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1870. }
  1871. } else { //top
  1872. for(k = 1; k < 8; k++) {
  1873. block[k] = ac_val[k + 8] * scale;
  1874. if(!v->pquantizer && block[k])
  1875. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1876. }
  1877. }
  1878. i = 63;
  1879. }
  1880. }
  1881. s->block_last_index[n] = i;
  1882. return 0;
  1883. }
  1884. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1885. * @param v VC1Context
  1886. * @param block block to decode
  1887. * @param coded are AC coeffs present or not
  1888. * @param mquant block quantizer
  1889. * @param codingset set of VLC to decode data
  1890. */
  1891. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1892. {
  1893. GetBitContext *gb = &v->s.gb;
  1894. MpegEncContext *s = &v->s;
  1895. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1896. int run_diff, i;
  1897. int16_t *dc_val;
  1898. int16_t *ac_val, *ac_val2;
  1899. int dcdiff;
  1900. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1901. int a_avail = v->a_avail, c_avail = v->c_avail;
  1902. int use_pred = s->ac_pred;
  1903. int scale;
  1904. int q1, q2 = 0;
  1905. /* XXX: Guard against dumb values of mquant */
  1906. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1907. /* Set DC scale - y and c use the same */
  1908. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1909. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1910. /* Get DC differential */
  1911. if (n < 4) {
  1912. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1913. } else {
  1914. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1915. }
  1916. if (dcdiff < 0){
  1917. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1918. return -1;
  1919. }
  1920. if (dcdiff)
  1921. {
  1922. if (dcdiff == 119 /* ESC index value */)
  1923. {
  1924. /* TODO: Optimize */
  1925. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1926. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1927. else dcdiff = get_bits(gb, 8);
  1928. }
  1929. else
  1930. {
  1931. if (mquant == 1)
  1932. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1933. else if (mquant == 2)
  1934. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  1935. }
  1936. if (get_bits(gb, 1))
  1937. dcdiff = -dcdiff;
  1938. }
  1939. /* Prediction */
  1940. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1941. *dc_val = dcdiff;
  1942. /* Store the quantized DC coeff, used for prediction */
  1943. if (n < 4) {
  1944. block[0] = dcdiff * s->y_dc_scale;
  1945. } else {
  1946. block[0] = dcdiff * s->c_dc_scale;
  1947. }
  1948. /* Skip ? */
  1949. run_diff = 0;
  1950. i = 0;
  1951. //AC Decoding
  1952. i = 1;
  1953. /* check if AC is needed at all and adjust direction if needed */
  1954. if(!a_avail) dc_pred_dir = 1;
  1955. if(!c_avail) dc_pred_dir = 0;
  1956. if(!a_avail && !c_avail) use_pred = 0;
  1957. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1958. ac_val2 = ac_val;
  1959. scale = mquant * 2 + v->halfpq;
  1960. if(dc_pred_dir) //left
  1961. ac_val -= 16;
  1962. else //top
  1963. ac_val -= 16 * s->block_wrap[n];
  1964. q1 = s->current_picture.qscale_table[mb_pos];
  1965. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1966. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1967. if(n && n<4) q2 = q1;
  1968. if(coded) {
  1969. int last = 0, skip, value;
  1970. const int8_t *zz_table;
  1971. int k;
  1972. zz_table = vc1_simple_progressive_8x8_zz;
  1973. while (!last) {
  1974. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1975. i += skip;
  1976. if(i > 63)
  1977. break;
  1978. block[zz_table[i++]] = value;
  1979. }
  1980. /* apply AC prediction if needed */
  1981. if(use_pred) {
  1982. /* scale predictors if needed*/
  1983. if(q2 && q1!=q2) {
  1984. q1 = q1 * 2 - 1;
  1985. q2 = q2 * 2 - 1;
  1986. if(dc_pred_dir) { //left
  1987. for(k = 1; k < 8; k++)
  1988. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1989. } else { //top
  1990. for(k = 1; k < 8; k++)
  1991. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1992. }
  1993. } else {
  1994. if(dc_pred_dir) { //left
  1995. for(k = 1; k < 8; k++)
  1996. block[k << 3] += ac_val[k];
  1997. } else { //top
  1998. for(k = 1; k < 8; k++)
  1999. block[k] += ac_val[k + 8];
  2000. }
  2001. }
  2002. }
  2003. /* save AC coeffs for further prediction */
  2004. for(k = 1; k < 8; k++) {
  2005. ac_val2[k] = block[k << 3];
  2006. ac_val2[k + 8] = block[k];
  2007. }
  2008. /* scale AC coeffs */
  2009. for(k = 1; k < 64; k++)
  2010. if(block[k]) {
  2011. block[k] *= scale;
  2012. if(!v->pquantizer)
  2013. block[k] += (block[k] < 0) ? -mquant : mquant;
  2014. }
  2015. if(use_pred) i = 63;
  2016. } else { // no AC coeffs
  2017. int k;
  2018. memset(ac_val2, 0, 16 * 2);
  2019. if(dc_pred_dir) {//left
  2020. if(use_pred) {
  2021. memcpy(ac_val2, ac_val, 8 * 2);
  2022. if(q2 && q1!=q2) {
  2023. q1 = q1 * 2 - 1;
  2024. q2 = q2 * 2 - 1;
  2025. for(k = 1; k < 8; k++)
  2026. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2027. }
  2028. }
  2029. } else {//top
  2030. if(use_pred) {
  2031. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2032. if(q2 && q1!=q2) {
  2033. q1 = q1 * 2 - 1;
  2034. q2 = q2 * 2 - 1;
  2035. for(k = 1; k < 8; k++)
  2036. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2037. }
  2038. }
  2039. }
  2040. /* apply AC prediction if needed */
  2041. if(use_pred) {
  2042. if(dc_pred_dir) { //left
  2043. for(k = 1; k < 8; k++) {
  2044. block[k << 3] = ac_val2[k] * scale;
  2045. if(!v->pquantizer && block[k << 3])
  2046. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2047. }
  2048. } else { //top
  2049. for(k = 1; k < 8; k++) {
  2050. block[k] = ac_val2[k + 8] * scale;
  2051. if(!v->pquantizer && block[k])
  2052. block[k] += (block[k] < 0) ? -mquant : mquant;
  2053. }
  2054. }
  2055. i = 63;
  2056. }
  2057. }
  2058. s->block_last_index[n] = i;
  2059. return 0;
  2060. }
  2061. /** Decode P block
  2062. */
  2063. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2064. {
  2065. MpegEncContext *s = &v->s;
  2066. GetBitContext *gb = &s->gb;
  2067. int i, j;
  2068. int subblkpat = 0;
  2069. int scale, off, idx, last, skip, value;
  2070. int ttblk = ttmb & 7;
  2071. if(ttmb == -1) {
  2072. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2073. }
  2074. if(ttblk == TT_4X4) {
  2075. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2076. }
  2077. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2078. subblkpat = decode012(gb);
  2079. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2080. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2081. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2082. }
  2083. scale = 2 * mquant + v->halfpq;
  2084. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2085. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2086. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2087. ttblk = TT_8X4;
  2088. }
  2089. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2090. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2091. ttblk = TT_4X8;
  2092. }
  2093. switch(ttblk) {
  2094. case TT_8X8:
  2095. i = 0;
  2096. last = 0;
  2097. while (!last) {
  2098. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2099. i += skip;
  2100. if(i > 63)
  2101. break;
  2102. idx = vc1_simple_progressive_8x8_zz[i++];
  2103. block[idx] = value * scale;
  2104. if(!v->pquantizer)
  2105. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2106. }
  2107. vc1_inv_trans(block, 8, 8);
  2108. break;
  2109. case TT_4X4:
  2110. for(j = 0; j < 4; j++) {
  2111. last = subblkpat & (1 << (3 - j));
  2112. i = 0;
  2113. off = (j & 1) * 4 + (j & 2) * 16;
  2114. while (!last) {
  2115. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2116. i += skip;
  2117. if(i > 15)
  2118. break;
  2119. idx = vc1_simple_progressive_4x4_zz[i++];
  2120. block[idx + off] = value * scale;
  2121. if(!v->pquantizer)
  2122. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2123. }
  2124. if(!(subblkpat & (1 << (3 - j))))
  2125. vc1_inv_trans(block + off, 4, 4);
  2126. }
  2127. break;
  2128. case TT_8X4:
  2129. for(j = 0; j < 2; j++) {
  2130. last = subblkpat & (1 << (1 - j));
  2131. i = 0;
  2132. off = j * 32;
  2133. while (!last) {
  2134. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2135. i += skip;
  2136. if(i > 31)
  2137. break;
  2138. idx = vc1_simple_progressive_8x4_zz[i++];
  2139. block[idx + off] = value * scale;
  2140. if(!v->pquantizer)
  2141. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2142. }
  2143. if(!(subblkpat & (1 << (1 - j))))
  2144. vc1_inv_trans(block + off, 8, 4);
  2145. }
  2146. break;
  2147. case TT_4X8:
  2148. for(j = 0; j < 2; j++) {
  2149. last = subblkpat & (1 << (1 - j));
  2150. i = 0;
  2151. off = j * 4;
  2152. while (!last) {
  2153. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2154. i += skip;
  2155. if(i > 31)
  2156. break;
  2157. idx = vc1_simple_progressive_4x8_zz[i++];
  2158. block[idx + off] = value * scale;
  2159. if(!v->pquantizer)
  2160. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2161. }
  2162. if(!(subblkpat & (1 << (1 - j))))
  2163. vc1_inv_trans(block + off, 4, 8);
  2164. }
  2165. break;
  2166. }
  2167. return 0;
  2168. }
  2169. /** Decode one P-frame MB (in Simple/Main profile)
  2170. * @todo TODO: Extend to AP
  2171. * @fixme FIXME: DC value for inter blocks not set
  2172. */
  2173. static int vc1_decode_p_mb(VC1Context *v)
  2174. {
  2175. MpegEncContext *s = &v->s;
  2176. GetBitContext *gb = &s->gb;
  2177. int i, j;
  2178. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2179. int cbp; /* cbp decoding stuff */
  2180. int mqdiff, mquant; /* MB quantization */
  2181. int ttmb = v->ttfrm; /* MB Transform type */
  2182. int status;
  2183. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2184. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2185. int mb_has_coeffs = 1; /* last_flag */
  2186. int dmv_x, dmv_y; /* Differential MV components */
  2187. int index, index1; /* LUT indices */
  2188. int val, sign; /* temp values */
  2189. int first_block = 1;
  2190. int dst_idx, off;
  2191. int skipped, fourmv;
  2192. mquant = v->pq; /* Loosy initialization */
  2193. if (v->mv_type_is_raw)
  2194. fourmv = get_bits1(gb);
  2195. else
  2196. fourmv = v->mv_type_mb_plane[mb_pos];
  2197. if (v->skip_is_raw)
  2198. skipped = get_bits1(gb);
  2199. else
  2200. skipped = v->s.mbskip_table[mb_pos];
  2201. s->dsp.clear_blocks(s->block[0]);
  2202. if (!fourmv) /* 1MV mode */
  2203. {
  2204. if (!skipped)
  2205. {
  2206. GET_MVDATA(dmv_x, dmv_y);
  2207. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2208. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2209. /* FIXME Set DC val for inter block ? */
  2210. if (s->mb_intra && !mb_has_coeffs)
  2211. {
  2212. GET_MQUANT();
  2213. s->ac_pred = get_bits(gb, 1);
  2214. cbp = 0;
  2215. }
  2216. else if (mb_has_coeffs)
  2217. {
  2218. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2219. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2220. GET_MQUANT();
  2221. }
  2222. else
  2223. {
  2224. mquant = v->pq;
  2225. cbp = 0;
  2226. }
  2227. s->current_picture.qscale_table[mb_pos] = mquant;
  2228. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2229. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2230. VC1_TTMB_VLC_BITS, 2);
  2231. if(!s->mb_intra) vc1_mc_1mv(v);
  2232. dst_idx = 0;
  2233. for (i=0; i<6; i++)
  2234. {
  2235. s->dc_val[0][s->block_index[i]] = 0;
  2236. dst_idx += i >> 2;
  2237. val = ((cbp >> (5 - i)) & 1);
  2238. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2239. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2240. if(s->mb_intra) {
  2241. /* check if prediction blocks A and C are available */
  2242. v->a_avail = v->c_avail = 0;
  2243. if(i == 2 || i == 3 || !s->first_slice_line)
  2244. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2245. if(i == 1 || i == 3 || s->mb_x)
  2246. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2247. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2248. vc1_inv_trans(s->block[i], 8, 8);
  2249. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2250. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2251. /* TODO: proper loop filtering */
  2252. if(v->pq >= 9 && v->overlap) {
  2253. if(v->a_avail)
  2254. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2255. if(v->c_avail)
  2256. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2257. }
  2258. } else if(val) {
  2259. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2260. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2261. first_block = 0;
  2262. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2263. }
  2264. }
  2265. }
  2266. else //Skipped
  2267. {
  2268. s->mb_intra = 0;
  2269. for(i = 0; i < 6; i++) {
  2270. v->mb_type[0][s->block_index[i]] = 0;
  2271. s->dc_val[0][s->block_index[i]] = 0;
  2272. }
  2273. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2274. s->current_picture.qscale_table[mb_pos] = 0;
  2275. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2276. vc1_mc_1mv(v);
  2277. return 0;
  2278. }
  2279. } //1MV mode
  2280. else //4MV mode
  2281. {
  2282. if (!skipped /* unskipped MB */)
  2283. {
  2284. int intra_count = 0, coded_inter = 0;
  2285. int is_intra[6], is_coded[6];
  2286. /* Get CBPCY */
  2287. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2288. for (i=0; i<6; i++)
  2289. {
  2290. val = ((cbp >> (5 - i)) & 1);
  2291. s->dc_val[0][s->block_index[i]] = 0;
  2292. s->mb_intra = 0;
  2293. if(i < 4) {
  2294. dmv_x = dmv_y = 0;
  2295. s->mb_intra = 0;
  2296. mb_has_coeffs = 0;
  2297. if(val) {
  2298. GET_MVDATA(dmv_x, dmv_y);
  2299. }
  2300. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2301. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2302. intra_count += s->mb_intra;
  2303. is_intra[i] = s->mb_intra;
  2304. is_coded[i] = mb_has_coeffs;
  2305. }
  2306. if(i&4){
  2307. is_intra[i] = (intra_count >= 3);
  2308. is_coded[i] = val;
  2309. }
  2310. if(i == 4) vc1_mc_4mv_chroma(v);
  2311. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2312. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2313. }
  2314. // if there are no coded blocks then don't do anything more
  2315. if(!intra_count && !coded_inter) return;
  2316. dst_idx = 0;
  2317. GET_MQUANT();
  2318. s->current_picture.qscale_table[mb_pos] = mquant;
  2319. /* test if block is intra and has pred */
  2320. {
  2321. int intrapred = 0;
  2322. for(i=0; i<6; i++)
  2323. if(is_intra[i]) {
  2324. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2325. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2326. intrapred = 1;
  2327. break;
  2328. }
  2329. }
  2330. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2331. else s->ac_pred = 0;
  2332. }
  2333. if (!v->ttmbf && coded_inter)
  2334. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 12);
  2335. for (i=0; i<6; i++)
  2336. {
  2337. dst_idx += i >> 2;
  2338. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2339. s->mb_intra = is_intra[i];
  2340. if (is_intra[i]) {
  2341. /* check if prediction blocks A and C are available */
  2342. v->a_avail = v->c_avail = 0;
  2343. if(i == 2 || i == 3 || !s->first_slice_line)
  2344. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2345. if(i == 1 || i == 3 || s->mb_x)
  2346. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2347. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2348. vc1_inv_trans(s->block[i], 8, 8);
  2349. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2350. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2351. /* TODO: proper loop filtering */
  2352. if(v->pq >= 9 && v->overlap) {
  2353. if(v->a_avail)
  2354. vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2355. if(v->c_avail)
  2356. vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2357. }
  2358. } else if(is_coded[i]) {
  2359. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2360. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2361. first_block = 0;
  2362. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2363. }
  2364. }
  2365. return status;
  2366. }
  2367. else //Skipped MB
  2368. {
  2369. s->mb_intra = 0;
  2370. for (i=0; i<6; i++) {
  2371. v->mb_type[0][s->block_index[i]] = 0;
  2372. s->dc_val[0][s->block_index[i]] = 0;
  2373. }
  2374. for (i=0; i<4; i++)
  2375. {
  2376. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2377. vc1_mc_4mv_luma(v, i);
  2378. }
  2379. vc1_mc_4mv_chroma(v);
  2380. s->current_picture.qscale_table[mb_pos] = 0;
  2381. return 0;
  2382. }
  2383. }
  2384. /* Should never happen */
  2385. return -1;
  2386. }
  2387. /** Decode blocks of I-frame
  2388. */
  2389. static void vc1_decode_i_blocks(VC1Context *v)
  2390. {
  2391. int k, j;
  2392. MpegEncContext *s = &v->s;
  2393. int cbp, val;
  2394. uint8_t *coded_val;
  2395. int mb_pos;
  2396. /* select codingmode used for VLC tables selection */
  2397. switch(v->y_ac_table_index){
  2398. case 0:
  2399. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2400. break;
  2401. case 1:
  2402. v->codingset = CS_HIGH_MOT_INTRA;
  2403. break;
  2404. case 2:
  2405. v->codingset = CS_MID_RATE_INTRA;
  2406. break;
  2407. }
  2408. switch(v->c_ac_table_index){
  2409. case 0:
  2410. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2411. break;
  2412. case 1:
  2413. v->codingset2 = CS_HIGH_MOT_INTER;
  2414. break;
  2415. case 2:
  2416. v->codingset2 = CS_MID_RATE_INTER;
  2417. break;
  2418. }
  2419. /* Set DC scale - y and c use the same */
  2420. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2421. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2422. //do frame decode
  2423. s->mb_x = s->mb_y = 0;
  2424. s->mb_intra = 1;
  2425. s->first_slice_line = 1;
  2426. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2427. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2428. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2429. ff_init_block_index(s);
  2430. ff_update_block_index(s);
  2431. s->dsp.clear_blocks(s->block[0]);
  2432. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2433. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2434. s->current_picture.qscale_table[mb_pos] = v->pq;
  2435. // do actual MB decoding and displaying
  2436. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2437. v->s.ac_pred = get_bits(&v->s.gb, 1);
  2438. for(k = 0; k < 6; k++) {
  2439. val = ((cbp >> (5 - k)) & 1);
  2440. if (k < 4) {
  2441. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2442. val = val ^ pred;
  2443. *coded_val = val;
  2444. }
  2445. cbp |= val << (5 - k);
  2446. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2447. vc1_inv_trans(s->block[k], 8, 8);
  2448. if(v->pq >= 9 && v->overlap) {
  2449. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  2450. }
  2451. }
  2452. vc1_put_block(v, s->block);
  2453. if(v->pq >= 9 && v->overlap) { /* XXX: do proper overlapping insted of loop filter */
  2454. if(!s->first_slice_line) {
  2455. vc1_v_overlap(s->dest[0], s->linesize);
  2456. vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2457. vc1_v_overlap(s->dest[1], s->uvlinesize);
  2458. vc1_v_overlap(s->dest[2], s->uvlinesize);
  2459. }
  2460. vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2461. vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2462. if(s->mb_x) {
  2463. vc1_h_overlap(s->dest[0], s->linesize);
  2464. vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2465. vc1_h_overlap(s->dest[1], s->uvlinesize);
  2466. vc1_h_overlap(s->dest[2], s->uvlinesize);
  2467. }
  2468. vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2469. vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2470. }
  2471. if(get_bits_count(&s->gb) > v->bits) {
  2472. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2473. return;
  2474. }
  2475. }
  2476. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2477. s->first_slice_line = 0;
  2478. }
  2479. }
  2480. static void vc1_decode_p_blocks(VC1Context *v)
  2481. {
  2482. MpegEncContext *s = &v->s;
  2483. /* select codingmode used for VLC tables selection */
  2484. switch(v->c_ac_table_index){
  2485. case 0:
  2486. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2487. break;
  2488. case 1:
  2489. v->codingset = CS_HIGH_MOT_INTRA;
  2490. break;
  2491. case 2:
  2492. v->codingset = CS_MID_RATE_INTRA;
  2493. break;
  2494. }
  2495. switch(v->c_ac_table_index){
  2496. case 0:
  2497. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2498. break;
  2499. case 1:
  2500. v->codingset2 = CS_HIGH_MOT_INTER;
  2501. break;
  2502. case 2:
  2503. v->codingset2 = CS_MID_RATE_INTER;
  2504. break;
  2505. }
  2506. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2507. s->first_slice_line = 1;
  2508. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2509. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  2510. ff_init_block_index(s);
  2511. ff_update_block_index(s);
  2512. s->dsp.clear_blocks(s->block[0]);
  2513. vc1_decode_p_mb(v);
  2514. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2515. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2516. return;
  2517. }
  2518. }
  2519. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2520. s->first_slice_line = 0;
  2521. }
  2522. }
  2523. static void vc1_decode_blocks(VC1Context *v)
  2524. {
  2525. v->s.esc3_level_length = 0;
  2526. switch(v->s.pict_type) {
  2527. case I_TYPE:
  2528. vc1_decode_i_blocks(v);
  2529. break;
  2530. case P_TYPE:
  2531. vc1_decode_p_blocks(v);
  2532. break;
  2533. }
  2534. }
  2535. /** Initialize a VC1/WMV3 decoder
  2536. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2537. * @todo TODO: Decypher remaining bits in extra_data
  2538. */
  2539. static int vc1_decode_init(AVCodecContext *avctx)
  2540. {
  2541. VC1Context *v = avctx->priv_data;
  2542. MpegEncContext *s = &v->s;
  2543. GetBitContext gb;
  2544. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2545. avctx->pix_fmt = PIX_FMT_YUV420P;
  2546. v->s.avctx = avctx;
  2547. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2548. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2549. if(ff_h263_decode_init(avctx) < 0)
  2550. return -1;
  2551. if (vc1_init_common(v) < 0) return -1;
  2552. avctx->coded_width = avctx->width;
  2553. avctx->coded_height = avctx->height;
  2554. if (avctx->codec_id == CODEC_ID_WMV3)
  2555. {
  2556. int count = 0;
  2557. // looks like WMV3 has a sequence header stored in the extradata
  2558. // advanced sequence header may be before the first frame
  2559. // the last byte of the extradata is a version number, 1 for the
  2560. // samples we can decode
  2561. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2562. if (decode_sequence_header(avctx, &gb) < 0)
  2563. return -1;
  2564. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2565. if (count>0)
  2566. {
  2567. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2568. count, get_bits(&gb, count));
  2569. }
  2570. else if (count < 0)
  2571. {
  2572. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2573. }
  2574. }
  2575. avctx->has_b_frames= !!(avctx->max_b_frames);
  2576. s->mb_width = (avctx->coded_width+15)>>4;
  2577. s->mb_height = (avctx->coded_height+15)>>4;
  2578. /* Allocate mb bitplanes */
  2579. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2580. /* allocate block type info in that way so it could be used with s->block_index[] */
  2581. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2582. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2583. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2584. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2585. /* Init coded blocks info */
  2586. if (v->profile == PROFILE_ADVANCED)
  2587. {
  2588. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2589. // return -1;
  2590. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2591. // return -1;
  2592. }
  2593. return 0;
  2594. }
  2595. /** Decode a VC1/WMV3 frame
  2596. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2597. * @warning Initial try at using MpegEncContext stuff
  2598. */
  2599. static int vc1_decode_frame(AVCodecContext *avctx,
  2600. void *data, int *data_size,
  2601. uint8_t *buf, int buf_size)
  2602. {
  2603. VC1Context *v = avctx->priv_data;
  2604. MpegEncContext *s = &v->s;
  2605. AVFrame *pict = data;
  2606. /* no supplementary picture */
  2607. if (buf_size == 0) {
  2608. /* special case for last picture */
  2609. if (s->low_delay==0 && s->next_picture_ptr) {
  2610. *pict= *(AVFrame*)s->next_picture_ptr;
  2611. s->next_picture_ptr= NULL;
  2612. *data_size = sizeof(AVFrame);
  2613. }
  2614. return 0;
  2615. }
  2616. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  2617. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2618. int i= ff_find_unused_picture(s, 0);
  2619. s->current_picture_ptr= &s->picture[i];
  2620. }
  2621. avctx->has_b_frames= !s->low_delay;
  2622. init_get_bits(&s->gb, buf, buf_size*8);
  2623. // do parse frame header
  2624. if(vc1_parse_frame_header(v, &s->gb) == -1)
  2625. return -1;
  2626. if(s->pict_type != I_TYPE && s->pict_type != P_TYPE)return -1;
  2627. // for hurry_up==5
  2628. s->current_picture.pict_type= s->pict_type;
  2629. s->current_picture.key_frame= s->pict_type == I_TYPE;
  2630. /* skip B-frames if we don't have reference frames */
  2631. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)) return -1;//buf_size;
  2632. /* skip b frames if we are in a hurry */
  2633. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  2634. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  2635. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  2636. || avctx->skip_frame >= AVDISCARD_ALL)
  2637. return buf_size;
  2638. /* skip everything if we are in a hurry>=5 */
  2639. if(avctx->hurry_up>=5) return -1;//buf_size;
  2640. if(s->next_p_frame_damaged){
  2641. if(s->pict_type==B_TYPE)
  2642. return buf_size;
  2643. else
  2644. s->next_p_frame_damaged=0;
  2645. }
  2646. if(MPV_frame_start(s, avctx) < 0)
  2647. return -1;
  2648. ff_er_frame_start(s);
  2649. v->bits = buf_size * 8;
  2650. vc1_decode_blocks(v);
  2651. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  2652. // if(get_bits_count(&s->gb) > buf_size * 8)
  2653. // return -1;
  2654. ff_er_frame_end(s);
  2655. MPV_frame_end(s);
  2656. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  2657. assert(s->current_picture.pict_type == s->pict_type);
  2658. if (s->pict_type == B_TYPE || s->low_delay) {
  2659. *pict= *(AVFrame*)s->current_picture_ptr;
  2660. } else if (s->last_picture_ptr != NULL) {
  2661. *pict= *(AVFrame*)s->last_picture_ptr;
  2662. }
  2663. if(s->last_picture_ptr || s->low_delay){
  2664. *data_size = sizeof(AVFrame);
  2665. ff_print_debug_info(s, pict);
  2666. }
  2667. /* Return the Picture timestamp as the frame number */
  2668. /* we substract 1 because it is added on utils.c */
  2669. avctx->frame_number = s->picture_number - 1;
  2670. return buf_size;
  2671. }
  2672. /** Close a VC1/WMV3 decoder
  2673. * @warning Initial try at using MpegEncContext stuff
  2674. */
  2675. static int vc1_decode_end(AVCodecContext *avctx)
  2676. {
  2677. VC1Context *v = avctx->priv_data;
  2678. av_freep(&v->hrd_rate);
  2679. av_freep(&v->hrd_buffer);
  2680. MPV_common_end(&v->s);
  2681. av_freep(&v->mv_type_mb_plane);
  2682. av_freep(&v->mb_type_base);
  2683. return 0;
  2684. }
  2685. AVCodec vc1_decoder = {
  2686. "vc1",
  2687. CODEC_TYPE_VIDEO,
  2688. CODEC_ID_VC1,
  2689. sizeof(VC1Context),
  2690. vc1_decode_init,
  2691. NULL,
  2692. vc1_decode_end,
  2693. vc1_decode_frame,
  2694. CODEC_CAP_DELAY,
  2695. NULL
  2696. };
  2697. AVCodec wmv3_decoder = {
  2698. "wmv3",
  2699. CODEC_TYPE_VIDEO,
  2700. CODEC_ID_WMV3,
  2701. sizeof(VC1Context),
  2702. vc1_decode_init,
  2703. NULL,
  2704. vc1_decode_end,
  2705. vc1_decode_frame,
  2706. CODEC_CAP_DELAY,
  2707. NULL
  2708. };