You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3712 lines
143KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "libavutil/timecode.h"
  35. #include "bswapdsp.h"
  36. #include "bytestream.h"
  37. #include "cabac_functions.h"
  38. #include "golomb.h"
  39. #include "hevc.h"
  40. #include "hevc_data.h"
  41. #include "hevc_parse.h"
  42. #include "hevcdec.h"
  43. #include "hwconfig.h"
  44. #include "profiles.h"
  45. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  46. /**
  47. * NOTE: Each function hls_foo correspond to the function foo in the
  48. * specification (HLS stands for High Level Syntax).
  49. */
  50. /**
  51. * Section 5.7
  52. */
  53. /* free everything allocated by pic_arrays_init() */
  54. static void pic_arrays_free(HEVCContext *s)
  55. {
  56. av_freep(&s->sao);
  57. av_freep(&s->deblock);
  58. av_freep(&s->skip_flag);
  59. av_freep(&s->tab_ct_depth);
  60. av_freep(&s->tab_ipm);
  61. av_freep(&s->cbf_luma);
  62. av_freep(&s->is_pcm);
  63. av_freep(&s->qp_y_tab);
  64. av_freep(&s->tab_slice_address);
  65. av_freep(&s->filter_slice_edges);
  66. av_freep(&s->horizontal_bs);
  67. av_freep(&s->vertical_bs);
  68. av_freep(&s->sh.entry_point_offset);
  69. av_freep(&s->sh.size);
  70. av_freep(&s->sh.offset);
  71. av_buffer_pool_uninit(&s->tab_mvf_pool);
  72. av_buffer_pool_uninit(&s->rpl_tab_pool);
  73. }
  74. /* allocate arrays that depend on frame dimensions */
  75. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  76. {
  77. int log2_min_cb_size = sps->log2_min_cb_size;
  78. int width = sps->width;
  79. int height = sps->height;
  80. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  81. ((height >> log2_min_cb_size) + 1);
  82. int ctb_count = sps->ctb_width * sps->ctb_height;
  83. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  84. s->bs_width = (width >> 2) + 1;
  85. s->bs_height = (height >> 2) + 1;
  86. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  87. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  88. if (!s->sao || !s->deblock)
  89. goto fail;
  90. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  91. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  92. if (!s->skip_flag || !s->tab_ct_depth)
  93. goto fail;
  94. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  95. s->tab_ipm = av_mallocz(min_pu_size);
  96. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  97. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  98. goto fail;
  99. s->filter_slice_edges = av_mallocz(ctb_count);
  100. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->tab_slice_address));
  102. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  103. sizeof(*s->qp_y_tab));
  104. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  105. goto fail;
  106. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  107. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  108. if (!s->horizontal_bs || !s->vertical_bs)
  109. goto fail;
  110. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  111. av_buffer_allocz);
  112. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  113. av_buffer_allocz);
  114. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  115. goto fail;
  116. return 0;
  117. fail:
  118. pic_arrays_free(s);
  119. return AVERROR(ENOMEM);
  120. }
  121. static int pred_weight_table(HEVCContext *s, GetBitContext *gb)
  122. {
  123. int i = 0;
  124. int j = 0;
  125. uint8_t luma_weight_l0_flag[16];
  126. uint8_t chroma_weight_l0_flag[16];
  127. uint8_t luma_weight_l1_flag[16];
  128. uint8_t chroma_weight_l1_flag[16];
  129. int luma_log2_weight_denom;
  130. luma_log2_weight_denom = get_ue_golomb_long(gb);
  131. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7) {
  132. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  133. return AVERROR_INVALIDDATA;
  134. }
  135. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  136. if (s->ps.sps->chroma_format_idc != 0) {
  137. int64_t chroma_log2_weight_denom = luma_log2_weight_denom + (int64_t)get_se_golomb(gb);
  138. if (chroma_log2_weight_denom < 0 || chroma_log2_weight_denom > 7) {
  139. av_log(s->avctx, AV_LOG_ERROR, "chroma_log2_weight_denom %"PRId64" is invalid\n", chroma_log2_weight_denom);
  140. return AVERROR_INVALIDDATA;
  141. }
  142. s->sh.chroma_log2_weight_denom = chroma_log2_weight_denom;
  143. }
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  145. luma_weight_l0_flag[i] = get_bits1(gb);
  146. if (!luma_weight_l0_flag[i]) {
  147. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  148. s->sh.luma_offset_l0[i] = 0;
  149. }
  150. }
  151. if (s->ps.sps->chroma_format_idc != 0) {
  152. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  153. chroma_weight_l0_flag[i] = get_bits1(gb);
  154. } else {
  155. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  156. chroma_weight_l0_flag[i] = 0;
  157. }
  158. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  159. if (luma_weight_l0_flag[i]) {
  160. int delta_luma_weight_l0 = get_se_golomb(gb);
  161. if ((int8_t)delta_luma_weight_l0 != delta_luma_weight_l0)
  162. return AVERROR_INVALIDDATA;
  163. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  164. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  165. }
  166. if (chroma_weight_l0_flag[i]) {
  167. for (j = 0; j < 2; j++) {
  168. int delta_chroma_weight_l0 = get_se_golomb(gb);
  169. int delta_chroma_offset_l0 = get_se_golomb(gb);
  170. if ( (int8_t)delta_chroma_weight_l0 != delta_chroma_weight_l0
  171. || delta_chroma_offset_l0 < -(1<<17) || delta_chroma_offset_l0 > (1<<17)) {
  172. return AVERROR_INVALIDDATA;
  173. }
  174. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  175. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  176. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  177. }
  178. } else {
  179. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  180. s->sh.chroma_offset_l0[i][0] = 0;
  181. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  182. s->sh.chroma_offset_l0[i][1] = 0;
  183. }
  184. }
  185. if (s->sh.slice_type == HEVC_SLICE_B) {
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  187. luma_weight_l1_flag[i] = get_bits1(gb);
  188. if (!luma_weight_l1_flag[i]) {
  189. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  190. s->sh.luma_offset_l1[i] = 0;
  191. }
  192. }
  193. if (s->ps.sps->chroma_format_idc != 0) {
  194. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  195. chroma_weight_l1_flag[i] = get_bits1(gb);
  196. } else {
  197. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  198. chroma_weight_l1_flag[i] = 0;
  199. }
  200. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  201. if (luma_weight_l1_flag[i]) {
  202. int delta_luma_weight_l1 = get_se_golomb(gb);
  203. if ((int8_t)delta_luma_weight_l1 != delta_luma_weight_l1)
  204. return AVERROR_INVALIDDATA;
  205. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  206. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  207. }
  208. if (chroma_weight_l1_flag[i]) {
  209. for (j = 0; j < 2; j++) {
  210. int delta_chroma_weight_l1 = get_se_golomb(gb);
  211. int delta_chroma_offset_l1 = get_se_golomb(gb);
  212. if ( (int8_t)delta_chroma_weight_l1 != delta_chroma_weight_l1
  213. || delta_chroma_offset_l1 < -(1<<17) || delta_chroma_offset_l1 > (1<<17)) {
  214. return AVERROR_INVALIDDATA;
  215. }
  216. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  217. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  218. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  219. }
  220. } else {
  221. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  222. s->sh.chroma_offset_l1[i][0] = 0;
  223. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  224. s->sh.chroma_offset_l1[i][1] = 0;
  225. }
  226. }
  227. }
  228. return 0;
  229. }
  230. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  231. {
  232. const HEVCSPS *sps = s->ps.sps;
  233. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  234. int prev_delta_msb = 0;
  235. unsigned int nb_sps = 0, nb_sh;
  236. int i;
  237. rps->nb_refs = 0;
  238. if (!sps->long_term_ref_pics_present_flag)
  239. return 0;
  240. if (sps->num_long_term_ref_pics_sps > 0)
  241. nb_sps = get_ue_golomb_long(gb);
  242. nb_sh = get_ue_golomb_long(gb);
  243. if (nb_sps > sps->num_long_term_ref_pics_sps)
  244. return AVERROR_INVALIDDATA;
  245. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  246. return AVERROR_INVALIDDATA;
  247. rps->nb_refs = nb_sh + nb_sps;
  248. for (i = 0; i < rps->nb_refs; i++) {
  249. if (i < nb_sps) {
  250. uint8_t lt_idx_sps = 0;
  251. if (sps->num_long_term_ref_pics_sps > 1)
  252. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  253. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  254. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  255. } else {
  256. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  257. rps->used[i] = get_bits1(gb);
  258. }
  259. rps->poc_msb_present[i] = get_bits1(gb);
  260. if (rps->poc_msb_present[i]) {
  261. int64_t delta = get_ue_golomb_long(gb);
  262. int64_t poc;
  263. if (i && i != nb_sps)
  264. delta += prev_delta_msb;
  265. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  266. if (poc != (int32_t)poc)
  267. return AVERROR_INVALIDDATA;
  268. rps->poc[i] = poc;
  269. prev_delta_msb = delta;
  270. }
  271. }
  272. return 0;
  273. }
  274. static void export_stream_params(HEVCContext *s, const HEVCSPS *sps)
  275. {
  276. AVCodecContext *avctx = s->avctx;
  277. const HEVCParamSets *ps = &s->ps;
  278. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  279. const HEVCWindow *ow = &sps->output_window;
  280. unsigned int num = 0, den = 0;
  281. avctx->pix_fmt = sps->pix_fmt;
  282. avctx->coded_width = sps->width;
  283. avctx->coded_height = sps->height;
  284. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  285. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  286. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  287. avctx->profile = sps->ptl.general_ptl.profile_idc;
  288. avctx->level = sps->ptl.general_ptl.level_idc;
  289. ff_set_sar(avctx, sps->vui.sar);
  290. if (sps->vui.video_signal_type_present_flag)
  291. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  292. : AVCOL_RANGE_MPEG;
  293. else
  294. avctx->color_range = AVCOL_RANGE_MPEG;
  295. if (sps->vui.colour_description_present_flag) {
  296. avctx->color_primaries = sps->vui.colour_primaries;
  297. avctx->color_trc = sps->vui.transfer_characteristic;
  298. avctx->colorspace = sps->vui.matrix_coeffs;
  299. } else {
  300. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  301. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  302. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  303. }
  304. avctx->chroma_sample_location = AVCHROMA_LOC_UNSPECIFIED;
  305. if (sps->chroma_format_idc == 1) {
  306. if (sps->vui.chroma_loc_info_present_flag) {
  307. if (sps->vui.chroma_sample_loc_type_top_field <= 5)
  308. avctx->chroma_sample_location = sps->vui.chroma_sample_loc_type_top_field + 1;
  309. } else
  310. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  311. }
  312. if (vps->vps_timing_info_present_flag) {
  313. num = vps->vps_num_units_in_tick;
  314. den = vps->vps_time_scale;
  315. } else if (sps->vui.vui_timing_info_present_flag) {
  316. num = sps->vui.vui_num_units_in_tick;
  317. den = sps->vui.vui_time_scale;
  318. }
  319. if (num != 0 && den != 0)
  320. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  321. num, den, 1 << 30);
  322. }
  323. static int export_stream_params_from_sei(HEVCContext *s)
  324. {
  325. AVCodecContext *avctx = s->avctx;
  326. if (s->sei.a53_caption.buf_ref)
  327. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  328. if (s->sei.alternative_transfer.present &&
  329. av_color_transfer_name(s->sei.alternative_transfer.preferred_transfer_characteristics) &&
  330. s->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
  331. avctx->color_trc = s->sei.alternative_transfer.preferred_transfer_characteristics;
  332. }
  333. return 0;
  334. }
  335. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  336. {
  337. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + \
  338. CONFIG_HEVC_D3D11VA_HWACCEL * 2 + \
  339. CONFIG_HEVC_NVDEC_HWACCEL + \
  340. CONFIG_HEVC_VAAPI_HWACCEL + \
  341. CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL + \
  342. CONFIG_HEVC_VDPAU_HWACCEL)
  343. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  344. switch (sps->pix_fmt) {
  345. case AV_PIX_FMT_YUV420P:
  346. case AV_PIX_FMT_YUVJ420P:
  347. #if CONFIG_HEVC_DXVA2_HWACCEL
  348. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  349. #endif
  350. #if CONFIG_HEVC_D3D11VA_HWACCEL
  351. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  352. *fmt++ = AV_PIX_FMT_D3D11;
  353. #endif
  354. #if CONFIG_HEVC_VAAPI_HWACCEL
  355. *fmt++ = AV_PIX_FMT_VAAPI;
  356. #endif
  357. #if CONFIG_HEVC_VDPAU_HWACCEL
  358. *fmt++ = AV_PIX_FMT_VDPAU;
  359. #endif
  360. #if CONFIG_HEVC_NVDEC_HWACCEL
  361. *fmt++ = AV_PIX_FMT_CUDA;
  362. #endif
  363. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  364. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  365. #endif
  366. break;
  367. case AV_PIX_FMT_YUV420P10:
  368. #if CONFIG_HEVC_DXVA2_HWACCEL
  369. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  370. #endif
  371. #if CONFIG_HEVC_D3D11VA_HWACCEL
  372. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  373. *fmt++ = AV_PIX_FMT_D3D11;
  374. #endif
  375. #if CONFIG_HEVC_VAAPI_HWACCEL
  376. *fmt++ = AV_PIX_FMT_VAAPI;
  377. #endif
  378. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  379. *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
  380. #endif
  381. #if CONFIG_HEVC_VDPAU_HWACCEL
  382. *fmt++ = AV_PIX_FMT_VDPAU;
  383. #endif
  384. #if CONFIG_HEVC_NVDEC_HWACCEL
  385. *fmt++ = AV_PIX_FMT_CUDA;
  386. #endif
  387. break;
  388. case AV_PIX_FMT_YUV444P:
  389. #if CONFIG_HEVC_VDPAU_HWACCEL
  390. *fmt++ = AV_PIX_FMT_VDPAU;
  391. #endif
  392. #if CONFIG_HEVC_NVDEC_HWACCEL
  393. *fmt++ = AV_PIX_FMT_CUDA;
  394. #endif
  395. break;
  396. case AV_PIX_FMT_YUV422P:
  397. case AV_PIX_FMT_YUV422P10LE:
  398. #if CONFIG_HEVC_VAAPI_HWACCEL
  399. *fmt++ = AV_PIX_FMT_VAAPI;
  400. #endif
  401. break;
  402. case AV_PIX_FMT_YUV420P12:
  403. case AV_PIX_FMT_YUV444P10:
  404. case AV_PIX_FMT_YUV444P12:
  405. #if CONFIG_HEVC_VDPAU_HWACCEL
  406. *fmt++ = AV_PIX_FMT_VDPAU;
  407. #endif
  408. #if CONFIG_HEVC_NVDEC_HWACCEL
  409. *fmt++ = AV_PIX_FMT_CUDA;
  410. #endif
  411. break;
  412. }
  413. *fmt++ = sps->pix_fmt;
  414. *fmt = AV_PIX_FMT_NONE;
  415. return ff_thread_get_format(s->avctx, pix_fmts);
  416. }
  417. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  418. enum AVPixelFormat pix_fmt)
  419. {
  420. int ret, i;
  421. pic_arrays_free(s);
  422. s->ps.sps = NULL;
  423. s->ps.vps = NULL;
  424. if (!sps)
  425. return 0;
  426. ret = pic_arrays_init(s, sps);
  427. if (ret < 0)
  428. goto fail;
  429. export_stream_params(s, sps);
  430. s->avctx->pix_fmt = pix_fmt;
  431. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  432. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  433. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  434. for (i = 0; i < 3; i++) {
  435. av_freep(&s->sao_pixel_buffer_h[i]);
  436. av_freep(&s->sao_pixel_buffer_v[i]);
  437. }
  438. if (sps->sao_enabled && !s->avctx->hwaccel) {
  439. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  440. int c_idx;
  441. for(c_idx = 0; c_idx < c_count; c_idx++) {
  442. int w = sps->width >> sps->hshift[c_idx];
  443. int h = sps->height >> sps->vshift[c_idx];
  444. s->sao_pixel_buffer_h[c_idx] =
  445. av_malloc((w * 2 * sps->ctb_height) <<
  446. sps->pixel_shift);
  447. s->sao_pixel_buffer_v[c_idx] =
  448. av_malloc((h * 2 * sps->ctb_width) <<
  449. sps->pixel_shift);
  450. if (!s->sao_pixel_buffer_h[c_idx] ||
  451. !s->sao_pixel_buffer_v[c_idx])
  452. goto fail;
  453. }
  454. }
  455. s->ps.sps = sps;
  456. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  457. return 0;
  458. fail:
  459. pic_arrays_free(s);
  460. for (i = 0; i < 3; i++) {
  461. av_freep(&s->sao_pixel_buffer_h[i]);
  462. av_freep(&s->sao_pixel_buffer_v[i]);
  463. }
  464. s->ps.sps = NULL;
  465. return ret;
  466. }
  467. static int hls_slice_header(HEVCContext *s)
  468. {
  469. GetBitContext *gb = &s->HEVClc->gb;
  470. SliceHeader *sh = &s->sh;
  471. int i, ret;
  472. // Coded parameters
  473. sh->first_slice_in_pic_flag = get_bits1(gb);
  474. if (s->ref && sh->first_slice_in_pic_flag) {
  475. av_log(s->avctx, AV_LOG_ERROR, "Two slices reporting being the first in the same frame.\n");
  476. return 1; // This slice will be skipped later, do not corrupt state
  477. }
  478. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  479. s->seq_decode = (s->seq_decode + 1) & 0xff;
  480. s->max_ra = INT_MAX;
  481. if (IS_IDR(s))
  482. ff_hevc_clear_refs(s);
  483. }
  484. sh->no_output_of_prior_pics_flag = 0;
  485. if (IS_IRAP(s))
  486. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  487. sh->pps_id = get_ue_golomb_long(gb);
  488. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  489. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  490. return AVERROR_INVALIDDATA;
  491. }
  492. if (!sh->first_slice_in_pic_flag &&
  493. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  494. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  495. return AVERROR_INVALIDDATA;
  496. }
  497. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  498. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  499. sh->no_output_of_prior_pics_flag = 1;
  500. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  501. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  502. const HEVCSPS *last_sps = s->ps.sps;
  503. enum AVPixelFormat pix_fmt;
  504. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  505. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  506. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  507. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  508. sh->no_output_of_prior_pics_flag = 0;
  509. }
  510. ff_hevc_clear_refs(s);
  511. ret = set_sps(s, sps, sps->pix_fmt);
  512. if (ret < 0)
  513. return ret;
  514. pix_fmt = get_format(s, sps);
  515. if (pix_fmt < 0)
  516. return pix_fmt;
  517. s->avctx->pix_fmt = pix_fmt;
  518. s->seq_decode = (s->seq_decode + 1) & 0xff;
  519. s->max_ra = INT_MAX;
  520. }
  521. ret = export_stream_params_from_sei(s);
  522. if (ret < 0)
  523. return ret;
  524. sh->dependent_slice_segment_flag = 0;
  525. if (!sh->first_slice_in_pic_flag) {
  526. int slice_address_length;
  527. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  528. sh->dependent_slice_segment_flag = get_bits1(gb);
  529. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  530. s->ps.sps->ctb_height);
  531. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  532. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  533. av_log(s->avctx, AV_LOG_ERROR,
  534. "Invalid slice segment address: %u.\n",
  535. sh->slice_segment_addr);
  536. return AVERROR_INVALIDDATA;
  537. }
  538. if (!sh->dependent_slice_segment_flag) {
  539. sh->slice_addr = sh->slice_segment_addr;
  540. s->slice_idx++;
  541. }
  542. } else {
  543. sh->slice_segment_addr = sh->slice_addr = 0;
  544. s->slice_idx = 0;
  545. s->slice_initialized = 0;
  546. }
  547. if (!sh->dependent_slice_segment_flag) {
  548. s->slice_initialized = 0;
  549. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  550. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  551. sh->slice_type = get_ue_golomb_long(gb);
  552. if (!(sh->slice_type == HEVC_SLICE_I ||
  553. sh->slice_type == HEVC_SLICE_P ||
  554. sh->slice_type == HEVC_SLICE_B)) {
  555. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  556. sh->slice_type);
  557. return AVERROR_INVALIDDATA;
  558. }
  559. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  560. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  561. return AVERROR_INVALIDDATA;
  562. }
  563. // when flag is not present, picture is inferred to be output
  564. sh->pic_output_flag = 1;
  565. if (s->ps.pps->output_flag_present_flag)
  566. sh->pic_output_flag = get_bits1(gb);
  567. if (s->ps.sps->separate_colour_plane_flag)
  568. sh->colour_plane_id = get_bits(gb, 2);
  569. if (!IS_IDR(s)) {
  570. int poc, pos;
  571. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  572. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  573. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  574. av_log(s->avctx, AV_LOG_WARNING,
  575. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  576. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  577. return AVERROR_INVALIDDATA;
  578. poc = s->poc;
  579. }
  580. s->poc = poc;
  581. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  582. pos = get_bits_left(gb);
  583. if (!sh->short_term_ref_pic_set_sps_flag) {
  584. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  585. if (ret < 0)
  586. return ret;
  587. sh->short_term_rps = &sh->slice_rps;
  588. } else {
  589. int numbits, rps_idx;
  590. if (!s->ps.sps->nb_st_rps) {
  591. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  592. return AVERROR_INVALIDDATA;
  593. }
  594. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  595. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  596. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  597. }
  598. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  599. pos = get_bits_left(gb);
  600. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  601. if (ret < 0) {
  602. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  603. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  604. return AVERROR_INVALIDDATA;
  605. }
  606. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  607. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  608. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  609. else
  610. sh->slice_temporal_mvp_enabled_flag = 0;
  611. } else {
  612. s->sh.short_term_rps = NULL;
  613. s->poc = 0;
  614. }
  615. /* 8.3.1 */
  616. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  617. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  618. s->nal_unit_type != HEVC_NAL_TSA_N &&
  619. s->nal_unit_type != HEVC_NAL_STSA_N &&
  620. s->nal_unit_type != HEVC_NAL_RADL_N &&
  621. s->nal_unit_type != HEVC_NAL_RADL_R &&
  622. s->nal_unit_type != HEVC_NAL_RASL_N &&
  623. s->nal_unit_type != HEVC_NAL_RASL_R)
  624. s->pocTid0 = s->poc;
  625. if (s->ps.sps->sao_enabled) {
  626. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  627. if (s->ps.sps->chroma_format_idc) {
  628. sh->slice_sample_adaptive_offset_flag[1] =
  629. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  630. }
  631. } else {
  632. sh->slice_sample_adaptive_offset_flag[0] = 0;
  633. sh->slice_sample_adaptive_offset_flag[1] = 0;
  634. sh->slice_sample_adaptive_offset_flag[2] = 0;
  635. }
  636. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  637. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  638. int nb_refs;
  639. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  640. if (sh->slice_type == HEVC_SLICE_B)
  641. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  642. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  643. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  644. if (sh->slice_type == HEVC_SLICE_B)
  645. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  646. }
  647. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  648. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  649. sh->nb_refs[L0], sh->nb_refs[L1]);
  650. return AVERROR_INVALIDDATA;
  651. }
  652. sh->rpl_modification_flag[0] = 0;
  653. sh->rpl_modification_flag[1] = 0;
  654. nb_refs = ff_hevc_frame_nb_refs(s);
  655. if (!nb_refs) {
  656. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  657. return AVERROR_INVALIDDATA;
  658. }
  659. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  660. sh->rpl_modification_flag[0] = get_bits1(gb);
  661. if (sh->rpl_modification_flag[0]) {
  662. for (i = 0; i < sh->nb_refs[L0]; i++)
  663. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  664. }
  665. if (sh->slice_type == HEVC_SLICE_B) {
  666. sh->rpl_modification_flag[1] = get_bits1(gb);
  667. if (sh->rpl_modification_flag[1] == 1)
  668. for (i = 0; i < sh->nb_refs[L1]; i++)
  669. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  670. }
  671. }
  672. if (sh->slice_type == HEVC_SLICE_B)
  673. sh->mvd_l1_zero_flag = get_bits1(gb);
  674. if (s->ps.pps->cabac_init_present_flag)
  675. sh->cabac_init_flag = get_bits1(gb);
  676. else
  677. sh->cabac_init_flag = 0;
  678. sh->collocated_ref_idx = 0;
  679. if (sh->slice_temporal_mvp_enabled_flag) {
  680. sh->collocated_list = L0;
  681. if (sh->slice_type == HEVC_SLICE_B)
  682. sh->collocated_list = !get_bits1(gb);
  683. if (sh->nb_refs[sh->collocated_list] > 1) {
  684. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  685. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  686. av_log(s->avctx, AV_LOG_ERROR,
  687. "Invalid collocated_ref_idx: %d.\n",
  688. sh->collocated_ref_idx);
  689. return AVERROR_INVALIDDATA;
  690. }
  691. }
  692. }
  693. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  694. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  695. int ret = pred_weight_table(s, gb);
  696. if (ret < 0)
  697. return ret;
  698. }
  699. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  700. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  701. av_log(s->avctx, AV_LOG_ERROR,
  702. "Invalid number of merging MVP candidates: %d.\n",
  703. sh->max_num_merge_cand);
  704. return AVERROR_INVALIDDATA;
  705. }
  706. }
  707. sh->slice_qp_delta = get_se_golomb(gb);
  708. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  709. sh->slice_cb_qp_offset = get_se_golomb(gb);
  710. sh->slice_cr_qp_offset = get_se_golomb(gb);
  711. if (sh->slice_cb_qp_offset < -12 || sh->slice_cb_qp_offset > 12 ||
  712. sh->slice_cr_qp_offset < -12 || sh->slice_cr_qp_offset > 12) {
  713. av_log(s->avctx, AV_LOG_ERROR, "Invalid slice cx qp offset.\n");
  714. return AVERROR_INVALIDDATA;
  715. }
  716. } else {
  717. sh->slice_cb_qp_offset = 0;
  718. sh->slice_cr_qp_offset = 0;
  719. }
  720. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  721. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  722. else
  723. sh->cu_chroma_qp_offset_enabled_flag = 0;
  724. if (s->ps.pps->deblocking_filter_control_present_flag) {
  725. int deblocking_filter_override_flag = 0;
  726. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  727. deblocking_filter_override_flag = get_bits1(gb);
  728. if (deblocking_filter_override_flag) {
  729. sh->disable_deblocking_filter_flag = get_bits1(gb);
  730. if (!sh->disable_deblocking_filter_flag) {
  731. int beta_offset_div2 = get_se_golomb(gb);
  732. int tc_offset_div2 = get_se_golomb(gb) ;
  733. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  734. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  735. av_log(s->avctx, AV_LOG_ERROR,
  736. "Invalid deblock filter offsets: %d, %d\n",
  737. beta_offset_div2, tc_offset_div2);
  738. return AVERROR_INVALIDDATA;
  739. }
  740. sh->beta_offset = beta_offset_div2 * 2;
  741. sh->tc_offset = tc_offset_div2 * 2;
  742. }
  743. } else {
  744. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  745. sh->beta_offset = s->ps.pps->beta_offset;
  746. sh->tc_offset = s->ps.pps->tc_offset;
  747. }
  748. } else {
  749. sh->disable_deblocking_filter_flag = 0;
  750. sh->beta_offset = 0;
  751. sh->tc_offset = 0;
  752. }
  753. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  754. (sh->slice_sample_adaptive_offset_flag[0] ||
  755. sh->slice_sample_adaptive_offset_flag[1] ||
  756. !sh->disable_deblocking_filter_flag)) {
  757. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  758. } else {
  759. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  760. }
  761. } else if (!s->slice_initialized) {
  762. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  763. return AVERROR_INVALIDDATA;
  764. }
  765. sh->num_entry_point_offsets = 0;
  766. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  767. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  768. // It would be possible to bound this tighter but this here is simpler
  769. if (num_entry_point_offsets > get_bits_left(gb)) {
  770. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  771. return AVERROR_INVALIDDATA;
  772. }
  773. sh->num_entry_point_offsets = num_entry_point_offsets;
  774. if (sh->num_entry_point_offsets > 0) {
  775. int offset_len = get_ue_golomb_long(gb) + 1;
  776. if (offset_len < 1 || offset_len > 32) {
  777. sh->num_entry_point_offsets = 0;
  778. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  779. return AVERROR_INVALIDDATA;
  780. }
  781. av_freep(&sh->entry_point_offset);
  782. av_freep(&sh->offset);
  783. av_freep(&sh->size);
  784. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  785. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  786. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  787. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  788. sh->num_entry_point_offsets = 0;
  789. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  790. return AVERROR(ENOMEM);
  791. }
  792. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  793. unsigned val = get_bits_long(gb, offset_len);
  794. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  795. }
  796. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  797. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  798. s->threads_number = 1;
  799. } else
  800. s->enable_parallel_tiles = 0;
  801. } else
  802. s->enable_parallel_tiles = 0;
  803. }
  804. if (s->ps.pps->slice_header_extension_present_flag) {
  805. unsigned int length = get_ue_golomb_long(gb);
  806. if (length*8LL > get_bits_left(gb)) {
  807. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  808. return AVERROR_INVALIDDATA;
  809. }
  810. for (i = 0; i < length; i++)
  811. skip_bits(gb, 8); // slice_header_extension_data_byte
  812. }
  813. // Inferred parameters
  814. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  815. if (sh->slice_qp > 51 ||
  816. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  817. av_log(s->avctx, AV_LOG_ERROR,
  818. "The slice_qp %d is outside the valid range "
  819. "[%d, 51].\n",
  820. sh->slice_qp,
  821. -s->ps.sps->qp_bd_offset);
  822. return AVERROR_INVALIDDATA;
  823. }
  824. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  825. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  826. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  827. return AVERROR_INVALIDDATA;
  828. }
  829. if (get_bits_left(gb) < 0) {
  830. av_log(s->avctx, AV_LOG_ERROR,
  831. "Overread slice header by %d bits\n", -get_bits_left(gb));
  832. return AVERROR_INVALIDDATA;
  833. }
  834. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  835. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  836. s->HEVClc->qp_y = s->sh.slice_qp;
  837. s->slice_initialized = 1;
  838. s->HEVClc->tu.cu_qp_offset_cb = 0;
  839. s->HEVClc->tu.cu_qp_offset_cr = 0;
  840. return 0;
  841. }
  842. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  843. #define SET_SAO(elem, value) \
  844. do { \
  845. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  846. sao->elem = value; \
  847. else if (sao_merge_left_flag) \
  848. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  849. else if (sao_merge_up_flag) \
  850. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  851. else \
  852. sao->elem = 0; \
  853. } while (0)
  854. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  855. {
  856. HEVCLocalContext *lc = s->HEVClc;
  857. int sao_merge_left_flag = 0;
  858. int sao_merge_up_flag = 0;
  859. SAOParams *sao = &CTB(s->sao, rx, ry);
  860. int c_idx, i;
  861. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  862. s->sh.slice_sample_adaptive_offset_flag[1]) {
  863. if (rx > 0) {
  864. if (lc->ctb_left_flag)
  865. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  866. }
  867. if (ry > 0 && !sao_merge_left_flag) {
  868. if (lc->ctb_up_flag)
  869. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  870. }
  871. }
  872. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  873. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  874. s->ps.pps->log2_sao_offset_scale_chroma;
  875. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  876. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  877. continue;
  878. }
  879. if (c_idx == 2) {
  880. sao->type_idx[2] = sao->type_idx[1];
  881. sao->eo_class[2] = sao->eo_class[1];
  882. } else {
  883. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  884. }
  885. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  886. continue;
  887. for (i = 0; i < 4; i++)
  888. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  889. if (sao->type_idx[c_idx] == SAO_BAND) {
  890. for (i = 0; i < 4; i++) {
  891. if (sao->offset_abs[c_idx][i]) {
  892. SET_SAO(offset_sign[c_idx][i],
  893. ff_hevc_sao_offset_sign_decode(s));
  894. } else {
  895. sao->offset_sign[c_idx][i] = 0;
  896. }
  897. }
  898. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  899. } else if (c_idx != 2) {
  900. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  901. }
  902. // Inferred parameters
  903. sao->offset_val[c_idx][0] = 0;
  904. for (i = 0; i < 4; i++) {
  905. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  906. if (sao->type_idx[c_idx] == SAO_EDGE) {
  907. if (i > 1)
  908. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  909. } else if (sao->offset_sign[c_idx][i]) {
  910. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  911. }
  912. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  913. }
  914. }
  915. }
  916. #undef SET_SAO
  917. #undef CTB
  918. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  919. HEVCLocalContext *lc = s->HEVClc;
  920. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  921. if (log2_res_scale_abs_plus1 != 0) {
  922. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  923. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  924. (1 - 2 * res_scale_sign_flag);
  925. } else {
  926. lc->tu.res_scale_val = 0;
  927. }
  928. return 0;
  929. }
  930. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  931. int xBase, int yBase, int cb_xBase, int cb_yBase,
  932. int log2_cb_size, int log2_trafo_size,
  933. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  934. {
  935. HEVCLocalContext *lc = s->HEVClc;
  936. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  937. int i;
  938. if (lc->cu.pred_mode == MODE_INTRA) {
  939. int trafo_size = 1 << log2_trafo_size;
  940. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  941. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  942. }
  943. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  944. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  945. int scan_idx = SCAN_DIAG;
  946. int scan_idx_c = SCAN_DIAG;
  947. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  948. (s->ps.sps->chroma_format_idc == 2 &&
  949. (cbf_cb[1] || cbf_cr[1]));
  950. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  951. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  952. if (lc->tu.cu_qp_delta != 0)
  953. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  954. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  955. lc->tu.is_cu_qp_delta_coded = 1;
  956. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  957. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  958. av_log(s->avctx, AV_LOG_ERROR,
  959. "The cu_qp_delta %d is outside the valid range "
  960. "[%d, %d].\n",
  961. lc->tu.cu_qp_delta,
  962. -(26 + s->ps.sps->qp_bd_offset / 2),
  963. (25 + s->ps.sps->qp_bd_offset / 2));
  964. return AVERROR_INVALIDDATA;
  965. }
  966. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  967. }
  968. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  969. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  970. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  971. if (cu_chroma_qp_offset_flag) {
  972. int cu_chroma_qp_offset_idx = 0;
  973. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  974. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  975. av_log(s->avctx, AV_LOG_ERROR,
  976. "cu_chroma_qp_offset_idx not yet tested.\n");
  977. }
  978. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  979. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  980. } else {
  981. lc->tu.cu_qp_offset_cb = 0;
  982. lc->tu.cu_qp_offset_cr = 0;
  983. }
  984. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  985. }
  986. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  987. if (lc->tu.intra_pred_mode >= 6 &&
  988. lc->tu.intra_pred_mode <= 14) {
  989. scan_idx = SCAN_VERT;
  990. } else if (lc->tu.intra_pred_mode >= 22 &&
  991. lc->tu.intra_pred_mode <= 30) {
  992. scan_idx = SCAN_HORIZ;
  993. }
  994. if (lc->tu.intra_pred_mode_c >= 6 &&
  995. lc->tu.intra_pred_mode_c <= 14) {
  996. scan_idx_c = SCAN_VERT;
  997. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  998. lc->tu.intra_pred_mode_c <= 30) {
  999. scan_idx_c = SCAN_HORIZ;
  1000. }
  1001. }
  1002. lc->tu.cross_pf = 0;
  1003. if (cbf_luma)
  1004. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  1005. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1006. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  1007. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  1008. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  1009. (lc->cu.pred_mode == MODE_INTER ||
  1010. (lc->tu.chroma_mode_c == 4)));
  1011. if (lc->tu.cross_pf) {
  1012. hls_cross_component_pred(s, 0);
  1013. }
  1014. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1015. if (lc->cu.pred_mode == MODE_INTRA) {
  1016. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  1017. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  1018. }
  1019. if (cbf_cb[i])
  1020. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  1021. log2_trafo_size_c, scan_idx_c, 1);
  1022. else
  1023. if (lc->tu.cross_pf) {
  1024. ptrdiff_t stride = s->frame->linesize[1];
  1025. int hshift = s->ps.sps->hshift[1];
  1026. int vshift = s->ps.sps->vshift[1];
  1027. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  1028. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  1029. int size = 1 << log2_trafo_size_c;
  1030. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  1031. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  1032. for (i = 0; i < (size * size); i++) {
  1033. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  1034. }
  1035. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  1036. }
  1037. }
  1038. if (lc->tu.cross_pf) {
  1039. hls_cross_component_pred(s, 1);
  1040. }
  1041. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1042. if (lc->cu.pred_mode == MODE_INTRA) {
  1043. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  1044. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  1045. }
  1046. if (cbf_cr[i])
  1047. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  1048. log2_trafo_size_c, scan_idx_c, 2);
  1049. else
  1050. if (lc->tu.cross_pf) {
  1051. ptrdiff_t stride = s->frame->linesize[2];
  1052. int hshift = s->ps.sps->hshift[2];
  1053. int vshift = s->ps.sps->vshift[2];
  1054. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  1055. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  1056. int size = 1 << log2_trafo_size_c;
  1057. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  1058. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  1059. for (i = 0; i < (size * size); i++) {
  1060. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  1061. }
  1062. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  1063. }
  1064. }
  1065. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  1066. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1067. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1068. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1069. if (lc->cu.pred_mode == MODE_INTRA) {
  1070. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1071. trafo_size_h, trafo_size_v);
  1072. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  1073. }
  1074. if (cbf_cb[i])
  1075. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1076. log2_trafo_size, scan_idx_c, 1);
  1077. }
  1078. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  1079. if (lc->cu.pred_mode == MODE_INTRA) {
  1080. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  1081. trafo_size_h, trafo_size_v);
  1082. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  1083. }
  1084. if (cbf_cr[i])
  1085. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  1086. log2_trafo_size, scan_idx_c, 2);
  1087. }
  1088. }
  1089. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  1090. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  1091. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  1092. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  1093. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  1094. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  1095. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  1096. if (s->ps.sps->chroma_format_idc == 2) {
  1097. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  1098. trafo_size_h, trafo_size_v);
  1099. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  1100. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  1101. }
  1102. } else if (blk_idx == 3) {
  1103. int trafo_size_h = 1 << (log2_trafo_size + 1);
  1104. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  1105. ff_hevc_set_neighbour_available(s, xBase, yBase,
  1106. trafo_size_h, trafo_size_v);
  1107. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  1108. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1109. if (s->ps.sps->chroma_format_idc == 2) {
  1110. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1111. trafo_size_h, trafo_size_v);
  1112. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1113. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1114. }
  1115. }
  1116. }
  1117. return 0;
  1118. }
  1119. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1120. {
  1121. int cb_size = 1 << log2_cb_size;
  1122. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1123. int min_pu_width = s->ps.sps->min_pu_width;
  1124. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1125. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1126. int i, j;
  1127. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1128. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1129. s->is_pcm[i + j * min_pu_width] = 2;
  1130. }
  1131. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1132. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1133. int log2_cb_size, int log2_trafo_size,
  1134. int trafo_depth, int blk_idx,
  1135. const int *base_cbf_cb, const int *base_cbf_cr)
  1136. {
  1137. HEVCLocalContext *lc = s->HEVClc;
  1138. uint8_t split_transform_flag;
  1139. int cbf_cb[2];
  1140. int cbf_cr[2];
  1141. int ret;
  1142. cbf_cb[0] = base_cbf_cb[0];
  1143. cbf_cb[1] = base_cbf_cb[1];
  1144. cbf_cr[0] = base_cbf_cr[0];
  1145. cbf_cr[1] = base_cbf_cr[1];
  1146. if (lc->cu.intra_split_flag) {
  1147. if (trafo_depth == 1) {
  1148. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1149. if (s->ps.sps->chroma_format_idc == 3) {
  1150. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1151. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1152. } else {
  1153. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1154. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1155. }
  1156. }
  1157. } else {
  1158. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1159. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1160. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1161. }
  1162. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1163. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1164. trafo_depth < lc->cu.max_trafo_depth &&
  1165. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1166. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1167. } else {
  1168. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1169. lc->cu.pred_mode == MODE_INTER &&
  1170. lc->cu.part_mode != PART_2Nx2N &&
  1171. trafo_depth == 0;
  1172. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1173. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1174. inter_split;
  1175. }
  1176. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1177. if (trafo_depth == 0 || cbf_cb[0]) {
  1178. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1179. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1180. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1181. }
  1182. }
  1183. if (trafo_depth == 0 || cbf_cr[0]) {
  1184. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1185. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1186. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1187. }
  1188. }
  1189. }
  1190. if (split_transform_flag) {
  1191. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1192. const int x1 = x0 + trafo_size_split;
  1193. const int y1 = y0 + trafo_size_split;
  1194. #define SUBDIVIDE(x, y, idx) \
  1195. do { \
  1196. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1197. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1198. cbf_cb, cbf_cr); \
  1199. if (ret < 0) \
  1200. return ret; \
  1201. } while (0)
  1202. SUBDIVIDE(x0, y0, 0);
  1203. SUBDIVIDE(x1, y0, 1);
  1204. SUBDIVIDE(x0, y1, 2);
  1205. SUBDIVIDE(x1, y1, 3);
  1206. #undef SUBDIVIDE
  1207. } else {
  1208. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1209. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1210. int min_tu_width = s->ps.sps->min_tb_width;
  1211. int cbf_luma = 1;
  1212. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1213. cbf_cb[0] || cbf_cr[0] ||
  1214. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1215. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1216. }
  1217. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1218. log2_cb_size, log2_trafo_size,
  1219. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1220. if (ret < 0)
  1221. return ret;
  1222. // TODO: store cbf_luma somewhere else
  1223. if (cbf_luma) {
  1224. int i, j;
  1225. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1226. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1227. int x_tu = (x0 + j) >> log2_min_tu_size;
  1228. int y_tu = (y0 + i) >> log2_min_tu_size;
  1229. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1230. }
  1231. }
  1232. if (!s->sh.disable_deblocking_filter_flag) {
  1233. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1234. if (s->ps.pps->transquant_bypass_enable_flag &&
  1235. lc->cu.cu_transquant_bypass_flag)
  1236. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1237. }
  1238. }
  1239. return 0;
  1240. }
  1241. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1242. {
  1243. HEVCLocalContext *lc = s->HEVClc;
  1244. GetBitContext gb;
  1245. int cb_size = 1 << log2_cb_size;
  1246. ptrdiff_t stride0 = s->frame->linesize[0];
  1247. ptrdiff_t stride1 = s->frame->linesize[1];
  1248. ptrdiff_t stride2 = s->frame->linesize[2];
  1249. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1250. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1251. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1252. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1253. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1254. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1255. s->ps.sps->pcm.bit_depth_chroma;
  1256. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1257. int ret;
  1258. if (!s->sh.disable_deblocking_filter_flag)
  1259. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1260. ret = init_get_bits(&gb, pcm, length);
  1261. if (ret < 0)
  1262. return ret;
  1263. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1264. if (s->ps.sps->chroma_format_idc) {
  1265. s->hevcdsp.put_pcm(dst1, stride1,
  1266. cb_size >> s->ps.sps->hshift[1],
  1267. cb_size >> s->ps.sps->vshift[1],
  1268. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1269. s->hevcdsp.put_pcm(dst2, stride2,
  1270. cb_size >> s->ps.sps->hshift[2],
  1271. cb_size >> s->ps.sps->vshift[2],
  1272. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1273. }
  1274. return 0;
  1275. }
  1276. /**
  1277. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1278. *
  1279. * @param s HEVC decoding context
  1280. * @param dst target buffer for block data at block position
  1281. * @param dststride stride of the dst buffer
  1282. * @param ref reference picture buffer at origin (0, 0)
  1283. * @param mv motion vector (relative to block position) to get pixel data from
  1284. * @param x_off horizontal position of block from origin (0, 0)
  1285. * @param y_off vertical position of block from origin (0, 0)
  1286. * @param block_w width of block
  1287. * @param block_h height of block
  1288. * @param luma_weight weighting factor applied to the luma prediction
  1289. * @param luma_offset additive offset applied to the luma prediction value
  1290. */
  1291. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1292. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1293. int block_w, int block_h, int luma_weight, int luma_offset)
  1294. {
  1295. HEVCLocalContext *lc = s->HEVClc;
  1296. uint8_t *src = ref->data[0];
  1297. ptrdiff_t srcstride = ref->linesize[0];
  1298. int pic_width = s->ps.sps->width;
  1299. int pic_height = s->ps.sps->height;
  1300. int mx = mv->x & 3;
  1301. int my = mv->y & 3;
  1302. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1303. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1304. int idx = ff_hevc_pel_weight[block_w];
  1305. x_off += mv->x >> 2;
  1306. y_off += mv->y >> 2;
  1307. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1308. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1309. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1310. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1311. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1312. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1313. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1314. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1315. edge_emu_stride, srcstride,
  1316. block_w + QPEL_EXTRA,
  1317. block_h + QPEL_EXTRA,
  1318. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1319. pic_width, pic_height);
  1320. src = lc->edge_emu_buffer + buf_offset;
  1321. srcstride = edge_emu_stride;
  1322. }
  1323. if (!weight_flag)
  1324. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1325. block_h, mx, my, block_w);
  1326. else
  1327. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1328. block_h, s->sh.luma_log2_weight_denom,
  1329. luma_weight, luma_offset, mx, my, block_w);
  1330. }
  1331. /**
  1332. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1333. *
  1334. * @param s HEVC decoding context
  1335. * @param dst target buffer for block data at block position
  1336. * @param dststride stride of the dst buffer
  1337. * @param ref0 reference picture0 buffer at origin (0, 0)
  1338. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1339. * @param x_off horizontal position of block from origin (0, 0)
  1340. * @param y_off vertical position of block from origin (0, 0)
  1341. * @param block_w width of block
  1342. * @param block_h height of block
  1343. * @param ref1 reference picture1 buffer at origin (0, 0)
  1344. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1345. * @param current_mv current motion vector structure
  1346. */
  1347. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1348. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1349. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1350. {
  1351. HEVCLocalContext *lc = s->HEVClc;
  1352. ptrdiff_t src0stride = ref0->linesize[0];
  1353. ptrdiff_t src1stride = ref1->linesize[0];
  1354. int pic_width = s->ps.sps->width;
  1355. int pic_height = s->ps.sps->height;
  1356. int mx0 = mv0->x & 3;
  1357. int my0 = mv0->y & 3;
  1358. int mx1 = mv1->x & 3;
  1359. int my1 = mv1->y & 3;
  1360. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1361. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1362. int x_off0 = x_off + (mv0->x >> 2);
  1363. int y_off0 = y_off + (mv0->y >> 2);
  1364. int x_off1 = x_off + (mv1->x >> 2);
  1365. int y_off1 = y_off + (mv1->y >> 2);
  1366. int idx = ff_hevc_pel_weight[block_w];
  1367. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1368. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1369. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1370. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1371. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1372. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1373. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1374. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1375. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1376. edge_emu_stride, src0stride,
  1377. block_w + QPEL_EXTRA,
  1378. block_h + QPEL_EXTRA,
  1379. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1380. pic_width, pic_height);
  1381. src0 = lc->edge_emu_buffer + buf_offset;
  1382. src0stride = edge_emu_stride;
  1383. }
  1384. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1385. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1386. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1387. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1388. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1389. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1390. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1391. edge_emu_stride, src1stride,
  1392. block_w + QPEL_EXTRA,
  1393. block_h + QPEL_EXTRA,
  1394. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1395. pic_width, pic_height);
  1396. src1 = lc->edge_emu_buffer2 + buf_offset;
  1397. src1stride = edge_emu_stride;
  1398. }
  1399. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1400. block_h, mx0, my0, block_w);
  1401. if (!weight_flag)
  1402. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1403. block_h, mx1, my1, block_w);
  1404. else
  1405. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1406. block_h, s->sh.luma_log2_weight_denom,
  1407. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1408. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1409. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1410. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1411. mx1, my1, block_w);
  1412. }
  1413. /**
  1414. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1415. *
  1416. * @param s HEVC decoding context
  1417. * @param dst1 target buffer for block data at block position (U plane)
  1418. * @param dst2 target buffer for block data at block position (V plane)
  1419. * @param dststride stride of the dst1 and dst2 buffers
  1420. * @param ref reference picture buffer at origin (0, 0)
  1421. * @param mv motion vector (relative to block position) to get pixel data from
  1422. * @param x_off horizontal position of block from origin (0, 0)
  1423. * @param y_off vertical position of block from origin (0, 0)
  1424. * @param block_w width of block
  1425. * @param block_h height of block
  1426. * @param chroma_weight weighting factor applied to the chroma prediction
  1427. * @param chroma_offset additive offset applied to the chroma prediction value
  1428. */
  1429. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1430. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1431. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1432. {
  1433. HEVCLocalContext *lc = s->HEVClc;
  1434. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1435. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1436. const Mv *mv = &current_mv->mv[reflist];
  1437. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1438. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1439. int idx = ff_hevc_pel_weight[block_w];
  1440. int hshift = s->ps.sps->hshift[1];
  1441. int vshift = s->ps.sps->vshift[1];
  1442. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1443. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1444. intptr_t _mx = mx << (1 - hshift);
  1445. intptr_t _my = my << (1 - vshift);
  1446. x_off += mv->x >> (2 + hshift);
  1447. y_off += mv->y >> (2 + vshift);
  1448. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1449. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1450. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1451. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1452. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1453. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1454. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1455. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1456. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1457. edge_emu_stride, srcstride,
  1458. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1459. x_off - EPEL_EXTRA_BEFORE,
  1460. y_off - EPEL_EXTRA_BEFORE,
  1461. pic_width, pic_height);
  1462. src0 = lc->edge_emu_buffer + buf_offset0;
  1463. srcstride = edge_emu_stride;
  1464. }
  1465. if (!weight_flag)
  1466. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1467. block_h, _mx, _my, block_w);
  1468. else
  1469. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1470. block_h, s->sh.chroma_log2_weight_denom,
  1471. chroma_weight, chroma_offset, _mx, _my, block_w);
  1472. }
  1473. /**
  1474. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1475. *
  1476. * @param s HEVC decoding context
  1477. * @param dst target buffer for block data at block position
  1478. * @param dststride stride of the dst buffer
  1479. * @param ref0 reference picture0 buffer at origin (0, 0)
  1480. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1481. * @param x_off horizontal position of block from origin (0, 0)
  1482. * @param y_off vertical position of block from origin (0, 0)
  1483. * @param block_w width of block
  1484. * @param block_h height of block
  1485. * @param ref1 reference picture1 buffer at origin (0, 0)
  1486. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1487. * @param current_mv current motion vector structure
  1488. * @param cidx chroma component(cb, cr)
  1489. */
  1490. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1491. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1492. {
  1493. HEVCLocalContext *lc = s->HEVClc;
  1494. uint8_t *src1 = ref0->data[cidx+1];
  1495. uint8_t *src2 = ref1->data[cidx+1];
  1496. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1497. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1498. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1499. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1500. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1501. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1502. Mv *mv0 = &current_mv->mv[0];
  1503. Mv *mv1 = &current_mv->mv[1];
  1504. int hshift = s->ps.sps->hshift[1];
  1505. int vshift = s->ps.sps->vshift[1];
  1506. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1507. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1508. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1509. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1510. intptr_t _mx0 = mx0 << (1 - hshift);
  1511. intptr_t _my0 = my0 << (1 - vshift);
  1512. intptr_t _mx1 = mx1 << (1 - hshift);
  1513. intptr_t _my1 = my1 << (1 - vshift);
  1514. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1515. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1516. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1517. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1518. int idx = ff_hevc_pel_weight[block_w];
  1519. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1520. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1521. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1522. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1523. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1524. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1525. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1526. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1527. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1528. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1529. edge_emu_stride, src1stride,
  1530. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1531. x_off0 - EPEL_EXTRA_BEFORE,
  1532. y_off0 - EPEL_EXTRA_BEFORE,
  1533. pic_width, pic_height);
  1534. src1 = lc->edge_emu_buffer + buf_offset1;
  1535. src1stride = edge_emu_stride;
  1536. }
  1537. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1538. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1539. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1540. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1541. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1542. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1543. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1544. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1545. edge_emu_stride, src2stride,
  1546. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1547. x_off1 - EPEL_EXTRA_BEFORE,
  1548. y_off1 - EPEL_EXTRA_BEFORE,
  1549. pic_width, pic_height);
  1550. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1551. src2stride = edge_emu_stride;
  1552. }
  1553. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1554. block_h, _mx0, _my0, block_w);
  1555. if (!weight_flag)
  1556. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1557. src2, src2stride, lc->tmp,
  1558. block_h, _mx1, _my1, block_w);
  1559. else
  1560. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1561. src2, src2stride, lc->tmp,
  1562. block_h,
  1563. s->sh.chroma_log2_weight_denom,
  1564. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1565. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1566. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1567. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1568. _mx1, _my1, block_w);
  1569. }
  1570. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1571. const Mv *mv, int y0, int height)
  1572. {
  1573. if (s->threads_type == FF_THREAD_FRAME ) {
  1574. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1575. ff_thread_await_progress(&ref->tf, y, 0);
  1576. }
  1577. }
  1578. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1579. int nPbH, int log2_cb_size, int part_idx,
  1580. int merge_idx, MvField *mv)
  1581. {
  1582. HEVCLocalContext *lc = s->HEVClc;
  1583. enum InterPredIdc inter_pred_idc = PRED_L0;
  1584. int mvp_flag;
  1585. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1586. mv->pred_flag = 0;
  1587. if (s->sh.slice_type == HEVC_SLICE_B)
  1588. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1589. if (inter_pred_idc != PRED_L1) {
  1590. if (s->sh.nb_refs[L0])
  1591. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1592. mv->pred_flag = PF_L0;
  1593. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1594. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1595. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1596. part_idx, merge_idx, mv, mvp_flag, 0);
  1597. mv->mv[0].x += lc->pu.mvd.x;
  1598. mv->mv[0].y += lc->pu.mvd.y;
  1599. }
  1600. if (inter_pred_idc != PRED_L0) {
  1601. if (s->sh.nb_refs[L1])
  1602. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1603. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1604. AV_ZERO32(&lc->pu.mvd);
  1605. } else {
  1606. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1607. }
  1608. mv->pred_flag += PF_L1;
  1609. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1610. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1611. part_idx, merge_idx, mv, mvp_flag, 1);
  1612. mv->mv[1].x += lc->pu.mvd.x;
  1613. mv->mv[1].y += lc->pu.mvd.y;
  1614. }
  1615. }
  1616. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1617. int nPbW, int nPbH,
  1618. int log2_cb_size, int partIdx, int idx)
  1619. {
  1620. #define POS(c_idx, x, y) \
  1621. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1622. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1623. HEVCLocalContext *lc = s->HEVClc;
  1624. int merge_idx = 0;
  1625. struct MvField current_mv = {{{ 0 }}};
  1626. int min_pu_width = s->ps.sps->min_pu_width;
  1627. MvField *tab_mvf = s->ref->tab_mvf;
  1628. RefPicList *refPicList = s->ref->refPicList;
  1629. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1630. uint8_t *dst0 = POS(0, x0, y0);
  1631. uint8_t *dst1 = POS(1, x0, y0);
  1632. uint8_t *dst2 = POS(2, x0, y0);
  1633. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1634. int min_cb_width = s->ps.sps->min_cb_width;
  1635. int x_cb = x0 >> log2_min_cb_size;
  1636. int y_cb = y0 >> log2_min_cb_size;
  1637. int x_pu, y_pu;
  1638. int i, j;
  1639. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1640. if (!skip_flag)
  1641. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1642. if (skip_flag || lc->pu.merge_flag) {
  1643. if (s->sh.max_num_merge_cand > 1)
  1644. merge_idx = ff_hevc_merge_idx_decode(s);
  1645. else
  1646. merge_idx = 0;
  1647. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1648. partIdx, merge_idx, &current_mv);
  1649. } else {
  1650. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1651. partIdx, merge_idx, &current_mv);
  1652. }
  1653. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1654. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1655. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1656. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1657. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1658. if (current_mv.pred_flag & PF_L0) {
  1659. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1660. if (!ref0)
  1661. return;
  1662. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1663. }
  1664. if (current_mv.pred_flag & PF_L1) {
  1665. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1666. if (!ref1)
  1667. return;
  1668. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1669. }
  1670. if (current_mv.pred_flag == PF_L0) {
  1671. int x0_c = x0 >> s->ps.sps->hshift[1];
  1672. int y0_c = y0 >> s->ps.sps->vshift[1];
  1673. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1674. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1675. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1676. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1677. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1678. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1679. if (s->ps.sps->chroma_format_idc) {
  1680. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1681. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1682. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1683. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1684. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1685. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1686. }
  1687. } else if (current_mv.pred_flag == PF_L1) {
  1688. int x0_c = x0 >> s->ps.sps->hshift[1];
  1689. int y0_c = y0 >> s->ps.sps->vshift[1];
  1690. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1691. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1692. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1693. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1694. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1695. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1696. if (s->ps.sps->chroma_format_idc) {
  1697. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1698. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1699. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1700. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1701. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1702. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1703. }
  1704. } else if (current_mv.pred_flag == PF_BI) {
  1705. int x0_c = x0 >> s->ps.sps->hshift[1];
  1706. int y0_c = y0 >> s->ps.sps->vshift[1];
  1707. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1708. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1709. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1710. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1711. ref1->frame, &current_mv.mv[1], &current_mv);
  1712. if (s->ps.sps->chroma_format_idc) {
  1713. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1714. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1715. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1716. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1717. }
  1718. }
  1719. }
  1720. /**
  1721. * 8.4.1
  1722. */
  1723. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1724. int prev_intra_luma_pred_flag)
  1725. {
  1726. HEVCLocalContext *lc = s->HEVClc;
  1727. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1728. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1729. int min_pu_width = s->ps.sps->min_pu_width;
  1730. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1731. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1732. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1733. int cand_up = (lc->ctb_up_flag || y0b) ?
  1734. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1735. int cand_left = (lc->ctb_left_flag || x0b) ?
  1736. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1737. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1738. MvField *tab_mvf = s->ref->tab_mvf;
  1739. int intra_pred_mode;
  1740. int candidate[3];
  1741. int i, j;
  1742. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1743. if ((y0 - 1) < y_ctb)
  1744. cand_up = INTRA_DC;
  1745. if (cand_left == cand_up) {
  1746. if (cand_left < 2) {
  1747. candidate[0] = INTRA_PLANAR;
  1748. candidate[1] = INTRA_DC;
  1749. candidate[2] = INTRA_ANGULAR_26;
  1750. } else {
  1751. candidate[0] = cand_left;
  1752. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1753. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1754. }
  1755. } else {
  1756. candidate[0] = cand_left;
  1757. candidate[1] = cand_up;
  1758. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1759. candidate[2] = INTRA_PLANAR;
  1760. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1761. candidate[2] = INTRA_DC;
  1762. } else {
  1763. candidate[2] = INTRA_ANGULAR_26;
  1764. }
  1765. }
  1766. if (prev_intra_luma_pred_flag) {
  1767. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1768. } else {
  1769. if (candidate[0] > candidate[1])
  1770. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1771. if (candidate[0] > candidate[2])
  1772. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1773. if (candidate[1] > candidate[2])
  1774. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1775. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1776. for (i = 0; i < 3; i++)
  1777. if (intra_pred_mode >= candidate[i])
  1778. intra_pred_mode++;
  1779. }
  1780. /* write the intra prediction units into the mv array */
  1781. if (!size_in_pus)
  1782. size_in_pus = 1;
  1783. for (i = 0; i < size_in_pus; i++) {
  1784. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1785. intra_pred_mode, size_in_pus);
  1786. for (j = 0; j < size_in_pus; j++) {
  1787. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1788. }
  1789. }
  1790. return intra_pred_mode;
  1791. }
  1792. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1793. int log2_cb_size, int ct_depth)
  1794. {
  1795. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1796. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1797. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1798. int y;
  1799. for (y = 0; y < length; y++)
  1800. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1801. ct_depth, length);
  1802. }
  1803. static const uint8_t tab_mode_idx[] = {
  1804. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1805. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1806. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1807. int log2_cb_size)
  1808. {
  1809. HEVCLocalContext *lc = s->HEVClc;
  1810. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1811. uint8_t prev_intra_luma_pred_flag[4];
  1812. int split = lc->cu.part_mode == PART_NxN;
  1813. int pb_size = (1 << log2_cb_size) >> split;
  1814. int side = split + 1;
  1815. int chroma_mode;
  1816. int i, j;
  1817. for (i = 0; i < side; i++)
  1818. for (j = 0; j < side; j++)
  1819. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1820. for (i = 0; i < side; i++) {
  1821. for (j = 0; j < side; j++) {
  1822. if (prev_intra_luma_pred_flag[2 * i + j])
  1823. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1824. else
  1825. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1826. lc->pu.intra_pred_mode[2 * i + j] =
  1827. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1828. prev_intra_luma_pred_flag[2 * i + j]);
  1829. }
  1830. }
  1831. if (s->ps.sps->chroma_format_idc == 3) {
  1832. for (i = 0; i < side; i++) {
  1833. for (j = 0; j < side; j++) {
  1834. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1835. if (chroma_mode != 4) {
  1836. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1837. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1838. else
  1839. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1840. } else {
  1841. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1842. }
  1843. }
  1844. }
  1845. } else if (s->ps.sps->chroma_format_idc == 2) {
  1846. int mode_idx;
  1847. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1848. if (chroma_mode != 4) {
  1849. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1850. mode_idx = 34;
  1851. else
  1852. mode_idx = intra_chroma_table[chroma_mode];
  1853. } else {
  1854. mode_idx = lc->pu.intra_pred_mode[0];
  1855. }
  1856. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1857. } else if (s->ps.sps->chroma_format_idc != 0) {
  1858. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1859. if (chroma_mode != 4) {
  1860. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1861. lc->pu.intra_pred_mode_c[0] = 34;
  1862. else
  1863. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1864. } else {
  1865. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1866. }
  1867. }
  1868. }
  1869. static void intra_prediction_unit_default_value(HEVCContext *s,
  1870. int x0, int y0,
  1871. int log2_cb_size)
  1872. {
  1873. HEVCLocalContext *lc = s->HEVClc;
  1874. int pb_size = 1 << log2_cb_size;
  1875. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1876. int min_pu_width = s->ps.sps->min_pu_width;
  1877. MvField *tab_mvf = s->ref->tab_mvf;
  1878. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1879. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1880. int j, k;
  1881. if (size_in_pus == 0)
  1882. size_in_pus = 1;
  1883. for (j = 0; j < size_in_pus; j++)
  1884. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1885. if (lc->cu.pred_mode == MODE_INTRA)
  1886. for (j = 0; j < size_in_pus; j++)
  1887. for (k = 0; k < size_in_pus; k++)
  1888. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1889. }
  1890. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1891. {
  1892. int cb_size = 1 << log2_cb_size;
  1893. HEVCLocalContext *lc = s->HEVClc;
  1894. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1895. int length = cb_size >> log2_min_cb_size;
  1896. int min_cb_width = s->ps.sps->min_cb_width;
  1897. int x_cb = x0 >> log2_min_cb_size;
  1898. int y_cb = y0 >> log2_min_cb_size;
  1899. int idx = log2_cb_size - 2;
  1900. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1901. int x, y, ret;
  1902. lc->cu.x = x0;
  1903. lc->cu.y = y0;
  1904. lc->cu.pred_mode = MODE_INTRA;
  1905. lc->cu.part_mode = PART_2Nx2N;
  1906. lc->cu.intra_split_flag = 0;
  1907. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1908. for (x = 0; x < 4; x++)
  1909. lc->pu.intra_pred_mode[x] = 1;
  1910. if (s->ps.pps->transquant_bypass_enable_flag) {
  1911. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1912. if (lc->cu.cu_transquant_bypass_flag)
  1913. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1914. } else
  1915. lc->cu.cu_transquant_bypass_flag = 0;
  1916. if (s->sh.slice_type != HEVC_SLICE_I) {
  1917. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1918. x = y_cb * min_cb_width + x_cb;
  1919. for (y = 0; y < length; y++) {
  1920. memset(&s->skip_flag[x], skip_flag, length);
  1921. x += min_cb_width;
  1922. }
  1923. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1924. } else {
  1925. x = y_cb * min_cb_width + x_cb;
  1926. for (y = 0; y < length; y++) {
  1927. memset(&s->skip_flag[x], 0, length);
  1928. x += min_cb_width;
  1929. }
  1930. }
  1931. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1932. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1933. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1934. if (!s->sh.disable_deblocking_filter_flag)
  1935. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1936. } else {
  1937. int pcm_flag = 0;
  1938. if (s->sh.slice_type != HEVC_SLICE_I)
  1939. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1940. if (lc->cu.pred_mode != MODE_INTRA ||
  1941. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1942. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1943. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1944. lc->cu.pred_mode == MODE_INTRA;
  1945. }
  1946. if (lc->cu.pred_mode == MODE_INTRA) {
  1947. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1948. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1949. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1950. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1951. }
  1952. if (pcm_flag) {
  1953. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1954. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1955. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1956. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1957. if (ret < 0)
  1958. return ret;
  1959. } else {
  1960. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1961. }
  1962. } else {
  1963. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1964. switch (lc->cu.part_mode) {
  1965. case PART_2Nx2N:
  1966. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1967. break;
  1968. case PART_2NxN:
  1969. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1970. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1971. break;
  1972. case PART_Nx2N:
  1973. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1974. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1975. break;
  1976. case PART_2NxnU:
  1977. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1978. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1979. break;
  1980. case PART_2NxnD:
  1981. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1982. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1983. break;
  1984. case PART_nLx2N:
  1985. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1986. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1987. break;
  1988. case PART_nRx2N:
  1989. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1990. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1991. break;
  1992. case PART_NxN:
  1993. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1994. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1995. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1996. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1997. break;
  1998. }
  1999. }
  2000. if (!pcm_flag) {
  2001. int rqt_root_cbf = 1;
  2002. if (lc->cu.pred_mode != MODE_INTRA &&
  2003. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  2004. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  2005. }
  2006. if (rqt_root_cbf) {
  2007. const static int cbf[2] = { 0 };
  2008. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  2009. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  2010. s->ps.sps->max_transform_hierarchy_depth_inter;
  2011. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  2012. log2_cb_size,
  2013. log2_cb_size, 0, 0, cbf, cbf);
  2014. if (ret < 0)
  2015. return ret;
  2016. } else {
  2017. if (!s->sh.disable_deblocking_filter_flag)
  2018. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  2019. }
  2020. }
  2021. }
  2022. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  2023. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  2024. x = y_cb * min_cb_width + x_cb;
  2025. for (y = 0; y < length; y++) {
  2026. memset(&s->qp_y_tab[x], lc->qp_y, length);
  2027. x += min_cb_width;
  2028. }
  2029. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2030. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  2031. lc->qPy_pred = lc->qp_y;
  2032. }
  2033. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  2034. return 0;
  2035. }
  2036. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  2037. int log2_cb_size, int cb_depth)
  2038. {
  2039. HEVCLocalContext *lc = s->HEVClc;
  2040. const int cb_size = 1 << log2_cb_size;
  2041. int ret;
  2042. int split_cu;
  2043. lc->ct_depth = cb_depth;
  2044. if (x0 + cb_size <= s->ps.sps->width &&
  2045. y0 + cb_size <= s->ps.sps->height &&
  2046. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  2047. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  2048. } else {
  2049. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  2050. }
  2051. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  2052. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  2053. lc->tu.is_cu_qp_delta_coded = 0;
  2054. lc->tu.cu_qp_delta = 0;
  2055. }
  2056. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  2057. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  2058. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  2059. }
  2060. if (split_cu) {
  2061. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  2062. const int cb_size_split = cb_size >> 1;
  2063. const int x1 = x0 + cb_size_split;
  2064. const int y1 = y0 + cb_size_split;
  2065. int more_data = 0;
  2066. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  2067. if (more_data < 0)
  2068. return more_data;
  2069. if (more_data && x1 < s->ps.sps->width) {
  2070. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  2071. if (more_data < 0)
  2072. return more_data;
  2073. }
  2074. if (more_data && y1 < s->ps.sps->height) {
  2075. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  2076. if (more_data < 0)
  2077. return more_data;
  2078. }
  2079. if (more_data && x1 < s->ps.sps->width &&
  2080. y1 < s->ps.sps->height) {
  2081. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  2082. if (more_data < 0)
  2083. return more_data;
  2084. }
  2085. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  2086. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  2087. lc->qPy_pred = lc->qp_y;
  2088. if (more_data)
  2089. return ((x1 + cb_size_split) < s->ps.sps->width ||
  2090. (y1 + cb_size_split) < s->ps.sps->height);
  2091. else
  2092. return 0;
  2093. } else {
  2094. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  2095. if (ret < 0)
  2096. return ret;
  2097. if ((!((x0 + cb_size) %
  2098. (1 << (s->ps.sps->log2_ctb_size))) ||
  2099. (x0 + cb_size >= s->ps.sps->width)) &&
  2100. (!((y0 + cb_size) %
  2101. (1 << (s->ps.sps->log2_ctb_size))) ||
  2102. (y0 + cb_size >= s->ps.sps->height))) {
  2103. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  2104. return !end_of_slice_flag;
  2105. } else {
  2106. return 1;
  2107. }
  2108. }
  2109. return 0;
  2110. }
  2111. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2112. int ctb_addr_ts)
  2113. {
  2114. HEVCLocalContext *lc = s->HEVClc;
  2115. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2116. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2117. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2118. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2119. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2120. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2121. lc->first_qp_group = 1;
  2122. lc->end_of_tiles_x = s->ps.sps->width;
  2123. } else if (s->ps.pps->tiles_enabled_flag) {
  2124. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2125. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2126. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2127. lc->first_qp_group = 1;
  2128. }
  2129. } else {
  2130. lc->end_of_tiles_x = s->ps.sps->width;
  2131. }
  2132. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2133. lc->boundary_flags = 0;
  2134. if (s->ps.pps->tiles_enabled_flag) {
  2135. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2136. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2137. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2138. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2139. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2140. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2141. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2142. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2143. } else {
  2144. if (ctb_addr_in_slice <= 0)
  2145. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2146. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2147. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2148. }
  2149. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2150. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2151. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2152. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2153. }
  2154. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2155. {
  2156. HEVCContext *s = avctxt->priv_data;
  2157. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2158. int more_data = 1;
  2159. int x_ctb = 0;
  2160. int y_ctb = 0;
  2161. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2162. int ret;
  2163. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2164. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2165. return AVERROR_INVALIDDATA;
  2166. }
  2167. if (s->sh.dependent_slice_segment_flag) {
  2168. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2169. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2170. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2171. return AVERROR_INVALIDDATA;
  2172. }
  2173. }
  2174. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2175. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2176. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2177. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2178. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2179. ret = ff_hevc_cabac_init(s, ctb_addr_ts, 0);
  2180. if (ret < 0) {
  2181. s->tab_slice_address[ctb_addr_rs] = -1;
  2182. return ret;
  2183. }
  2184. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2185. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2186. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2187. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2188. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2189. if (more_data < 0) {
  2190. s->tab_slice_address[ctb_addr_rs] = -1;
  2191. return more_data;
  2192. }
  2193. ctb_addr_ts++;
  2194. ff_hevc_save_states(s, ctb_addr_ts);
  2195. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2196. }
  2197. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2198. y_ctb + ctb_size >= s->ps.sps->height)
  2199. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2200. return ctb_addr_ts;
  2201. }
  2202. static int hls_slice_data(HEVCContext *s)
  2203. {
  2204. int arg[2];
  2205. int ret[2];
  2206. arg[0] = 0;
  2207. arg[1] = 1;
  2208. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2209. return ret[0];
  2210. }
  2211. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2212. {
  2213. HEVCContext *s1 = avctxt->priv_data, *s;
  2214. HEVCLocalContext *lc;
  2215. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2216. int more_data = 1;
  2217. int *ctb_row_p = input_ctb_row;
  2218. int ctb_row = ctb_row_p[job];
  2219. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2220. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2221. int thread = ctb_row % s1->threads_number;
  2222. int ret;
  2223. s = s1->sList[self_id];
  2224. lc = s->HEVClc;
  2225. if(ctb_row) {
  2226. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2227. if (ret < 0)
  2228. goto error;
  2229. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2230. }
  2231. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2232. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2233. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2234. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2235. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2236. if (atomic_load(&s1->wpp_err)) {
  2237. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2238. return 0;
  2239. }
  2240. ret = ff_hevc_cabac_init(s, ctb_addr_ts, thread);
  2241. if (ret < 0)
  2242. goto error;
  2243. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2244. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2245. if (more_data < 0) {
  2246. ret = more_data;
  2247. goto error;
  2248. }
  2249. ctb_addr_ts++;
  2250. ff_hevc_save_states(s, ctb_addr_ts);
  2251. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2252. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2253. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2254. atomic_store(&s1->wpp_err, 1);
  2255. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2256. return 0;
  2257. }
  2258. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2259. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2260. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2261. return ctb_addr_ts;
  2262. }
  2263. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2264. x_ctb+=ctb_size;
  2265. if(x_ctb >= s->ps.sps->width) {
  2266. break;
  2267. }
  2268. }
  2269. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2270. return 0;
  2271. error:
  2272. s->tab_slice_address[ctb_addr_rs] = -1;
  2273. atomic_store(&s1->wpp_err, 1);
  2274. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2275. return ret;
  2276. }
  2277. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2278. {
  2279. const uint8_t *data = nal->data;
  2280. int length = nal->size;
  2281. HEVCLocalContext *lc = s->HEVClc;
  2282. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2283. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2284. int64_t offset;
  2285. int64_t startheader, cmpt = 0;
  2286. int i, j, res = 0;
  2287. if (!ret || !arg) {
  2288. av_free(ret);
  2289. av_free(arg);
  2290. return AVERROR(ENOMEM);
  2291. }
  2292. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2293. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2294. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2295. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2296. );
  2297. res = AVERROR_INVALIDDATA;
  2298. goto error;
  2299. }
  2300. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2301. for (i = 1; i < s->threads_number; i++) {
  2302. if (s->sList[i] && s->HEVClcList[i])
  2303. continue;
  2304. av_freep(&s->sList[i]);
  2305. av_freep(&s->HEVClcList[i]);
  2306. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2307. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2308. if (!s->sList[i] || !s->HEVClcList[i]) {
  2309. res = AVERROR(ENOMEM);
  2310. goto error;
  2311. }
  2312. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2313. s->sList[i]->HEVClc = s->HEVClcList[i];
  2314. }
  2315. offset = (lc->gb.index >> 3);
  2316. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2317. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2318. startheader--;
  2319. cmpt++;
  2320. }
  2321. }
  2322. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2323. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2324. for (j = 0, cmpt = 0, startheader = offset
  2325. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2326. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2327. startheader--;
  2328. cmpt++;
  2329. }
  2330. }
  2331. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2332. s->sh.offset[i - 1] = offset;
  2333. }
  2334. if (s->sh.num_entry_point_offsets != 0) {
  2335. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2336. if (length < offset) {
  2337. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2338. res = AVERROR_INVALIDDATA;
  2339. goto error;
  2340. }
  2341. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2342. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2343. }
  2344. s->data = data;
  2345. for (i = 1; i < s->threads_number; i++) {
  2346. s->sList[i]->HEVClc->first_qp_group = 1;
  2347. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2348. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2349. s->sList[i]->HEVClc = s->HEVClcList[i];
  2350. }
  2351. atomic_store(&s->wpp_err, 0);
  2352. ff_reset_entries(s->avctx);
  2353. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2354. arg[i] = i;
  2355. ret[i] = 0;
  2356. }
  2357. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2358. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2359. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2360. res += ret[i];
  2361. error:
  2362. av_free(ret);
  2363. av_free(arg);
  2364. return res;
  2365. }
  2366. static int set_side_data(HEVCContext *s)
  2367. {
  2368. AVFrame *out = s->ref->frame;
  2369. if (s->sei.frame_packing.present &&
  2370. s->sei.frame_packing.arrangement_type >= 3 &&
  2371. s->sei.frame_packing.arrangement_type <= 5 &&
  2372. s->sei.frame_packing.content_interpretation_type > 0 &&
  2373. s->sei.frame_packing.content_interpretation_type < 3) {
  2374. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2375. if (!stereo)
  2376. return AVERROR(ENOMEM);
  2377. switch (s->sei.frame_packing.arrangement_type) {
  2378. case 3:
  2379. if (s->sei.frame_packing.quincunx_subsampling)
  2380. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2381. else
  2382. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2383. break;
  2384. case 4:
  2385. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2386. break;
  2387. case 5:
  2388. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2389. break;
  2390. }
  2391. if (s->sei.frame_packing.content_interpretation_type == 2)
  2392. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2393. if (s->sei.frame_packing.arrangement_type == 5) {
  2394. if (s->sei.frame_packing.current_frame_is_frame0_flag)
  2395. stereo->view = AV_STEREO3D_VIEW_LEFT;
  2396. else
  2397. stereo->view = AV_STEREO3D_VIEW_RIGHT;
  2398. }
  2399. }
  2400. if (s->sei.display_orientation.present &&
  2401. (s->sei.display_orientation.anticlockwise_rotation ||
  2402. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2403. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2404. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2405. AV_FRAME_DATA_DISPLAYMATRIX,
  2406. sizeof(int32_t) * 9);
  2407. if (!rotation)
  2408. return AVERROR(ENOMEM);
  2409. av_display_rotation_set((int32_t *)rotation->data, angle);
  2410. av_display_matrix_flip((int32_t *)rotation->data,
  2411. s->sei.display_orientation.hflip,
  2412. s->sei.display_orientation.vflip);
  2413. }
  2414. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2415. // so the side data persists for the entire coded video sequence.
  2416. if (s->sei.mastering_display.present > 0 &&
  2417. IS_IRAP(s) && s->no_rasl_output_flag) {
  2418. s->sei.mastering_display.present--;
  2419. }
  2420. if (s->sei.mastering_display.present) {
  2421. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2422. const int mapping[3] = {2, 0, 1};
  2423. const int chroma_den = 50000;
  2424. const int luma_den = 10000;
  2425. int i;
  2426. AVMasteringDisplayMetadata *metadata =
  2427. av_mastering_display_metadata_create_side_data(out);
  2428. if (!metadata)
  2429. return AVERROR(ENOMEM);
  2430. for (i = 0; i < 3; i++) {
  2431. const int j = mapping[i];
  2432. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2433. metadata->display_primaries[i][0].den = chroma_den;
  2434. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2435. metadata->display_primaries[i][1].den = chroma_den;
  2436. }
  2437. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2438. metadata->white_point[0].den = chroma_den;
  2439. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2440. metadata->white_point[1].den = chroma_den;
  2441. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2442. metadata->max_luminance.den = luma_den;
  2443. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2444. metadata->min_luminance.den = luma_den;
  2445. metadata->has_luminance = 1;
  2446. metadata->has_primaries = 1;
  2447. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2448. av_log(s->avctx, AV_LOG_DEBUG,
  2449. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2450. av_q2d(metadata->display_primaries[0][0]),
  2451. av_q2d(metadata->display_primaries[0][1]),
  2452. av_q2d(metadata->display_primaries[1][0]),
  2453. av_q2d(metadata->display_primaries[1][1]),
  2454. av_q2d(metadata->display_primaries[2][0]),
  2455. av_q2d(metadata->display_primaries[2][1]),
  2456. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2457. av_log(s->avctx, AV_LOG_DEBUG,
  2458. "min_luminance=%f, max_luminance=%f\n",
  2459. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2460. }
  2461. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2462. // so the side data persists for the entire coded video sequence.
  2463. if (s->sei.content_light.present > 0 &&
  2464. IS_IRAP(s) && s->no_rasl_output_flag) {
  2465. s->sei.content_light.present--;
  2466. }
  2467. if (s->sei.content_light.present) {
  2468. AVContentLightMetadata *metadata =
  2469. av_content_light_metadata_create_side_data(out);
  2470. if (!metadata)
  2471. return AVERROR(ENOMEM);
  2472. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2473. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2474. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2475. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2476. metadata->MaxCLL, metadata->MaxFALL);
  2477. }
  2478. if (s->sei.a53_caption.buf_ref) {
  2479. HEVCSEIA53Caption *a53 = &s->sei.a53_caption;
  2480. AVFrameSideData *sd = av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_A53_CC, a53->buf_ref);
  2481. if (!sd)
  2482. av_buffer_unref(&a53->buf_ref);
  2483. a53->buf_ref = NULL;
  2484. }
  2485. for (int i = 0; i < s->sei.unregistered.nb_buf_ref; i++) {
  2486. HEVCSEIUnregistered *unreg = &s->sei.unregistered;
  2487. if (unreg->buf_ref[i]) {
  2488. AVFrameSideData *sd = av_frame_new_side_data_from_buf(out,
  2489. AV_FRAME_DATA_SEI_UNREGISTERED,
  2490. unreg->buf_ref[i]);
  2491. if (!sd)
  2492. av_buffer_unref(&unreg->buf_ref[i]);
  2493. unreg->buf_ref[i] = NULL;
  2494. }
  2495. }
  2496. s->sei.unregistered.nb_buf_ref = 0;
  2497. if (s->sei.timecode.present) {
  2498. uint32_t *tc_sd;
  2499. char tcbuf[AV_TIMECODE_STR_SIZE];
  2500. AVFrameSideData *tcside = av_frame_new_side_data(out, AV_FRAME_DATA_S12M_TIMECODE,
  2501. sizeof(uint32_t) * 4);
  2502. if (!tcside)
  2503. return AVERROR(ENOMEM);
  2504. tc_sd = (uint32_t*)tcside->data;
  2505. tc_sd[0] = s->sei.timecode.num_clock_ts;
  2506. for (int i = 0; i < tc_sd[0]; i++) {
  2507. int drop = s->sei.timecode.cnt_dropped_flag[i];
  2508. int hh = s->sei.timecode.hours_value[i];
  2509. int mm = s->sei.timecode.minutes_value[i];
  2510. int ss = s->sei.timecode.seconds_value[i];
  2511. int ff = s->sei.timecode.n_frames[i];
  2512. tc_sd[i + 1] = av_timecode_get_smpte(s->avctx->framerate, drop, hh, mm, ss, ff);
  2513. av_timecode_make_smpte_tc_string2(tcbuf, s->avctx->framerate, tc_sd[i + 1], 0, 0);
  2514. av_dict_set(&out->metadata, "timecode", tcbuf, 0);
  2515. }
  2516. s->sei.timecode.num_clock_ts = 0;
  2517. }
  2518. if (s->sei.dynamic_hdr_plus.info) {
  2519. AVBufferRef *info_ref = av_buffer_ref(s->sei.dynamic_hdr_plus.info);
  2520. if (!info_ref)
  2521. return AVERROR(ENOMEM);
  2522. if (!av_frame_new_side_data_from_buf(out, AV_FRAME_DATA_DYNAMIC_HDR_PLUS, info_ref)) {
  2523. av_buffer_unref(&info_ref);
  2524. return AVERROR(ENOMEM);
  2525. }
  2526. }
  2527. return 0;
  2528. }
  2529. static int hevc_frame_start(HEVCContext *s)
  2530. {
  2531. HEVCLocalContext *lc = s->HEVClc;
  2532. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2533. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2534. int ret;
  2535. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2536. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2537. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2538. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2539. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2540. s->is_decoded = 0;
  2541. s->first_nal_type = s->nal_unit_type;
  2542. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2543. if (s->ps.pps->tiles_enabled_flag)
  2544. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2545. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2546. if (ret < 0)
  2547. goto fail;
  2548. ret = ff_hevc_frame_rps(s);
  2549. if (ret < 0) {
  2550. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2551. goto fail;
  2552. }
  2553. s->ref->frame->key_frame = IS_IRAP(s);
  2554. ret = set_side_data(s);
  2555. if (ret < 0)
  2556. goto fail;
  2557. s->frame->pict_type = 3 - s->sh.slice_type;
  2558. if (!IS_IRAP(s))
  2559. ff_hevc_bump_frame(s);
  2560. av_frame_unref(s->output_frame);
  2561. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2562. if (ret < 0)
  2563. goto fail;
  2564. if (!s->avctx->hwaccel)
  2565. ff_thread_finish_setup(s->avctx);
  2566. return 0;
  2567. fail:
  2568. if (s->ref)
  2569. ff_hevc_unref_frame(s, s->ref, ~0);
  2570. s->ref = NULL;
  2571. return ret;
  2572. }
  2573. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2574. {
  2575. HEVCLocalContext *lc = s->HEVClc;
  2576. GetBitContext *gb = &lc->gb;
  2577. int ctb_addr_ts, ret;
  2578. *gb = nal->gb;
  2579. s->nal_unit_type = nal->type;
  2580. s->temporal_id = nal->temporal_id;
  2581. switch (s->nal_unit_type) {
  2582. case HEVC_NAL_VPS:
  2583. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2584. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2585. nal->type,
  2586. nal->raw_data,
  2587. nal->raw_size);
  2588. if (ret < 0)
  2589. goto fail;
  2590. }
  2591. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2592. if (ret < 0)
  2593. goto fail;
  2594. break;
  2595. case HEVC_NAL_SPS:
  2596. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2597. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2598. nal->type,
  2599. nal->raw_data,
  2600. nal->raw_size);
  2601. if (ret < 0)
  2602. goto fail;
  2603. }
  2604. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2605. s->apply_defdispwin);
  2606. if (ret < 0)
  2607. goto fail;
  2608. break;
  2609. case HEVC_NAL_PPS:
  2610. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2611. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2612. nal->type,
  2613. nal->raw_data,
  2614. nal->raw_size);
  2615. if (ret < 0)
  2616. goto fail;
  2617. }
  2618. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2619. if (ret < 0)
  2620. goto fail;
  2621. break;
  2622. case HEVC_NAL_SEI_PREFIX:
  2623. case HEVC_NAL_SEI_SUFFIX:
  2624. if (s->avctx->hwaccel && s->avctx->hwaccel->decode_params) {
  2625. ret = s->avctx->hwaccel->decode_params(s->avctx,
  2626. nal->type,
  2627. nal->raw_data,
  2628. nal->raw_size);
  2629. if (ret < 0)
  2630. goto fail;
  2631. }
  2632. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2633. if (ret < 0)
  2634. goto fail;
  2635. break;
  2636. case HEVC_NAL_TRAIL_R:
  2637. case HEVC_NAL_TRAIL_N:
  2638. case HEVC_NAL_TSA_N:
  2639. case HEVC_NAL_TSA_R:
  2640. case HEVC_NAL_STSA_N:
  2641. case HEVC_NAL_STSA_R:
  2642. case HEVC_NAL_BLA_W_LP:
  2643. case HEVC_NAL_BLA_W_RADL:
  2644. case HEVC_NAL_BLA_N_LP:
  2645. case HEVC_NAL_IDR_W_RADL:
  2646. case HEVC_NAL_IDR_N_LP:
  2647. case HEVC_NAL_CRA_NUT:
  2648. case HEVC_NAL_RADL_N:
  2649. case HEVC_NAL_RADL_R:
  2650. case HEVC_NAL_RASL_N:
  2651. case HEVC_NAL_RASL_R:
  2652. ret = hls_slice_header(s);
  2653. if (ret < 0)
  2654. return ret;
  2655. if (ret == 1) {
  2656. ret = AVERROR_INVALIDDATA;
  2657. goto fail;
  2658. }
  2659. if (
  2660. (s->avctx->skip_frame >= AVDISCARD_BIDIR && s->sh.slice_type == HEVC_SLICE_B) ||
  2661. (s->avctx->skip_frame >= AVDISCARD_NONINTRA && s->sh.slice_type != HEVC_SLICE_I) ||
  2662. (s->avctx->skip_frame >= AVDISCARD_NONKEY && !IS_IRAP(s))) {
  2663. break;
  2664. }
  2665. if (s->sh.first_slice_in_pic_flag) {
  2666. if (s->max_ra == INT_MAX) {
  2667. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2668. s->max_ra = s->poc;
  2669. } else {
  2670. if (IS_IDR(s))
  2671. s->max_ra = INT_MIN;
  2672. }
  2673. }
  2674. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2675. s->poc <= s->max_ra) {
  2676. s->is_decoded = 0;
  2677. break;
  2678. } else {
  2679. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2680. s->max_ra = INT_MIN;
  2681. }
  2682. s->overlap ++;
  2683. ret = hevc_frame_start(s);
  2684. if (ret < 0)
  2685. return ret;
  2686. } else if (!s->ref) {
  2687. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2688. goto fail;
  2689. }
  2690. if (s->nal_unit_type != s->first_nal_type) {
  2691. av_log(s->avctx, AV_LOG_ERROR,
  2692. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2693. s->first_nal_type, s->nal_unit_type);
  2694. return AVERROR_INVALIDDATA;
  2695. }
  2696. if (!s->sh.dependent_slice_segment_flag &&
  2697. s->sh.slice_type != HEVC_SLICE_I) {
  2698. ret = ff_hevc_slice_rpl(s);
  2699. if (ret < 0) {
  2700. av_log(s->avctx, AV_LOG_WARNING,
  2701. "Error constructing the reference lists for the current slice.\n");
  2702. goto fail;
  2703. }
  2704. }
  2705. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2706. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2707. if (ret < 0)
  2708. goto fail;
  2709. }
  2710. if (s->avctx->hwaccel) {
  2711. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2712. if (ret < 0)
  2713. goto fail;
  2714. } else {
  2715. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2716. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2717. else
  2718. ctb_addr_ts = hls_slice_data(s);
  2719. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2720. s->is_decoded = 1;
  2721. }
  2722. if (ctb_addr_ts < 0) {
  2723. ret = ctb_addr_ts;
  2724. goto fail;
  2725. }
  2726. }
  2727. break;
  2728. case HEVC_NAL_EOS_NUT:
  2729. case HEVC_NAL_EOB_NUT:
  2730. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2731. s->max_ra = INT_MAX;
  2732. break;
  2733. case HEVC_NAL_AUD:
  2734. case HEVC_NAL_FD_NUT:
  2735. break;
  2736. default:
  2737. av_log(s->avctx, AV_LOG_INFO,
  2738. "Skipping NAL unit %d\n", s->nal_unit_type);
  2739. }
  2740. return 0;
  2741. fail:
  2742. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2743. return ret;
  2744. return 0;
  2745. }
  2746. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2747. {
  2748. int i, ret = 0;
  2749. int eos_at_start = 1;
  2750. s->ref = NULL;
  2751. s->last_eos = s->eos;
  2752. s->eos = 0;
  2753. s->overlap = 0;
  2754. /* split the input packet into NAL units, so we know the upper bound on the
  2755. * number of slices in the frame */
  2756. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2757. s->nal_length_size, s->avctx->codec_id, 1, 0);
  2758. if (ret < 0) {
  2759. av_log(s->avctx, AV_LOG_ERROR,
  2760. "Error splitting the input into NAL units.\n");
  2761. return ret;
  2762. }
  2763. for (i = 0; i < s->pkt.nb_nals; i++) {
  2764. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2765. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2766. if (eos_at_start) {
  2767. s->last_eos = 1;
  2768. } else {
  2769. s->eos = 1;
  2770. }
  2771. } else {
  2772. eos_at_start = 0;
  2773. }
  2774. }
  2775. /* decode the NAL units */
  2776. for (i = 0; i < s->pkt.nb_nals; i++) {
  2777. H2645NAL *nal = &s->pkt.nals[i];
  2778. if (s->avctx->skip_frame >= AVDISCARD_ALL ||
  2779. (s->avctx->skip_frame >= AVDISCARD_NONREF
  2780. && ff_hevc_nal_is_nonref(nal->type)) || nal->nuh_layer_id > 0)
  2781. continue;
  2782. ret = decode_nal_unit(s, nal);
  2783. if (ret >= 0 && s->overlap > 2)
  2784. ret = AVERROR_INVALIDDATA;
  2785. if (ret < 0) {
  2786. av_log(s->avctx, AV_LOG_WARNING,
  2787. "Error parsing NAL unit #%d.\n", i);
  2788. goto fail;
  2789. }
  2790. }
  2791. fail:
  2792. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2793. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2794. return ret;
  2795. }
  2796. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2797. {
  2798. int i;
  2799. for (i = 0; i < 16; i++)
  2800. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2801. }
  2802. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2803. {
  2804. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2805. int pixel_shift;
  2806. int i, j;
  2807. if (!desc)
  2808. return AVERROR(EINVAL);
  2809. pixel_shift = desc->comp[0].depth > 8;
  2810. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2811. s->poc);
  2812. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2813. * on BE arches */
  2814. #if HAVE_BIGENDIAN
  2815. if (pixel_shift && !s->checksum_buf) {
  2816. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2817. FFMAX3(frame->linesize[0], frame->linesize[1],
  2818. frame->linesize[2]));
  2819. if (!s->checksum_buf)
  2820. return AVERROR(ENOMEM);
  2821. }
  2822. #endif
  2823. for (i = 0; frame->data[i]; i++) {
  2824. int width = s->avctx->coded_width;
  2825. int height = s->avctx->coded_height;
  2826. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2827. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2828. uint8_t md5[16];
  2829. av_md5_init(s->md5_ctx);
  2830. for (j = 0; j < h; j++) {
  2831. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2832. #if HAVE_BIGENDIAN
  2833. if (pixel_shift) {
  2834. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2835. (const uint16_t *) src, w);
  2836. src = s->checksum_buf;
  2837. }
  2838. #endif
  2839. av_md5_update(s->md5_ctx, src, w << pixel_shift);
  2840. }
  2841. av_md5_final(s->md5_ctx, md5);
  2842. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2843. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2844. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2845. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2846. } else {
  2847. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2848. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2849. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2850. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2851. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2852. return AVERROR_INVALIDDATA;
  2853. }
  2854. }
  2855. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2856. return 0;
  2857. }
  2858. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length, int first)
  2859. {
  2860. int ret, i;
  2861. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2862. &s->nal_length_size, s->avctx->err_recognition,
  2863. s->apply_defdispwin, s->avctx);
  2864. if (ret < 0)
  2865. return ret;
  2866. /* export stream parameters from the first SPS */
  2867. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2868. if (first && s->ps.sps_list[i]) {
  2869. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2870. export_stream_params(s, sps);
  2871. break;
  2872. }
  2873. }
  2874. /* export stream parameters from SEI */
  2875. ret = export_stream_params_from_sei(s);
  2876. if (ret < 0)
  2877. return ret;
  2878. return 0;
  2879. }
  2880. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2881. AVPacket *avpkt)
  2882. {
  2883. int ret;
  2884. buffer_size_t new_extradata_size;
  2885. uint8_t *new_extradata;
  2886. HEVCContext *s = avctx->priv_data;
  2887. if (!avpkt->size) {
  2888. ret = ff_hevc_output_frame(s, data, 1);
  2889. if (ret < 0)
  2890. return ret;
  2891. *got_output = ret;
  2892. return 0;
  2893. }
  2894. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2895. &new_extradata_size);
  2896. if (new_extradata && new_extradata_size > 0) {
  2897. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size, 0);
  2898. if (ret < 0)
  2899. return ret;
  2900. }
  2901. s->ref = NULL;
  2902. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2903. if (ret < 0)
  2904. return ret;
  2905. if (avctx->hwaccel) {
  2906. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2907. av_log(avctx, AV_LOG_ERROR,
  2908. "hardware accelerator failed to decode picture\n");
  2909. ff_hevc_unref_frame(s, s->ref, ~0);
  2910. return ret;
  2911. }
  2912. } else {
  2913. /* verify the SEI checksum */
  2914. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2915. s->sei.picture_hash.is_md5) {
  2916. ret = verify_md5(s, s->ref->frame);
  2917. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2918. ff_hevc_unref_frame(s, s->ref, ~0);
  2919. return ret;
  2920. }
  2921. }
  2922. }
  2923. s->sei.picture_hash.is_md5 = 0;
  2924. if (s->is_decoded) {
  2925. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2926. s->is_decoded = 0;
  2927. }
  2928. if (s->output_frame->buf[0]) {
  2929. av_frame_move_ref(data, s->output_frame);
  2930. *got_output = 1;
  2931. }
  2932. return avpkt->size;
  2933. }
  2934. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2935. {
  2936. int ret;
  2937. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2938. if (ret < 0)
  2939. return ret;
  2940. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2941. if (!dst->tab_mvf_buf)
  2942. goto fail;
  2943. dst->tab_mvf = src->tab_mvf;
  2944. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2945. if (!dst->rpl_tab_buf)
  2946. goto fail;
  2947. dst->rpl_tab = src->rpl_tab;
  2948. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2949. if (!dst->rpl_buf)
  2950. goto fail;
  2951. dst->poc = src->poc;
  2952. dst->ctb_count = src->ctb_count;
  2953. dst->flags = src->flags;
  2954. dst->sequence = src->sequence;
  2955. if (src->hwaccel_picture_private) {
  2956. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2957. if (!dst->hwaccel_priv_buf)
  2958. goto fail;
  2959. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2960. }
  2961. return 0;
  2962. fail:
  2963. ff_hevc_unref_frame(s, dst, ~0);
  2964. return AVERROR(ENOMEM);
  2965. }
  2966. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2967. {
  2968. HEVCContext *s = avctx->priv_data;
  2969. int i;
  2970. pic_arrays_free(s);
  2971. av_freep(&s->md5_ctx);
  2972. av_freep(&s->cabac_state);
  2973. for (i = 0; i < 3; i++) {
  2974. av_freep(&s->sao_pixel_buffer_h[i]);
  2975. av_freep(&s->sao_pixel_buffer_v[i]);
  2976. }
  2977. av_frame_free(&s->output_frame);
  2978. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2979. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2980. av_frame_free(&s->DPB[i].frame);
  2981. }
  2982. ff_hevc_ps_uninit(&s->ps);
  2983. av_freep(&s->sh.entry_point_offset);
  2984. av_freep(&s->sh.offset);
  2985. av_freep(&s->sh.size);
  2986. if (s->HEVClcList && s->sList) {
  2987. for (i = 1; i < s->threads_number; i++) {
  2988. av_freep(&s->HEVClcList[i]);
  2989. av_freep(&s->sList[i]);
  2990. }
  2991. }
  2992. av_freep(&s->HEVClc);
  2993. av_freep(&s->HEVClcList);
  2994. av_freep(&s->sList);
  2995. ff_h2645_packet_uninit(&s->pkt);
  2996. ff_hevc_reset_sei(&s->sei);
  2997. return 0;
  2998. }
  2999. static av_cold int hevc_init_context(AVCodecContext *avctx)
  3000. {
  3001. HEVCContext *s = avctx->priv_data;
  3002. int i;
  3003. s->avctx = avctx;
  3004. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  3005. s->HEVClcList = av_mallocz(sizeof(HEVCLocalContext*) * s->threads_number);
  3006. s->sList = av_mallocz(sizeof(HEVCContext*) * s->threads_number);
  3007. if (!s->HEVClc || !s->HEVClcList || !s->sList)
  3008. goto fail;
  3009. s->HEVClcList[0] = s->HEVClc;
  3010. s->sList[0] = s;
  3011. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  3012. if (!s->cabac_state)
  3013. goto fail;
  3014. s->output_frame = av_frame_alloc();
  3015. if (!s->output_frame)
  3016. goto fail;
  3017. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  3018. s->DPB[i].frame = av_frame_alloc();
  3019. if (!s->DPB[i].frame)
  3020. goto fail;
  3021. s->DPB[i].tf.f = s->DPB[i].frame;
  3022. }
  3023. s->max_ra = INT_MAX;
  3024. s->md5_ctx = av_md5_alloc();
  3025. if (!s->md5_ctx)
  3026. goto fail;
  3027. ff_bswapdsp_init(&s->bdsp);
  3028. s->context_initialized = 1;
  3029. s->eos = 0;
  3030. ff_hevc_reset_sei(&s->sei);
  3031. return 0;
  3032. fail:
  3033. hevc_decode_free(avctx);
  3034. return AVERROR(ENOMEM);
  3035. }
  3036. #if HAVE_THREADS
  3037. static int hevc_update_thread_context(AVCodecContext *dst,
  3038. const AVCodecContext *src)
  3039. {
  3040. HEVCContext *s = dst->priv_data;
  3041. HEVCContext *s0 = src->priv_data;
  3042. int i, ret;
  3043. if (!s->context_initialized) {
  3044. ret = hevc_init_context(dst);
  3045. if (ret < 0)
  3046. return ret;
  3047. }
  3048. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  3049. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  3050. if (s0->DPB[i].frame->buf[0]) {
  3051. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  3052. if (ret < 0)
  3053. return ret;
  3054. }
  3055. }
  3056. if (s->ps.sps != s0->ps.sps)
  3057. s->ps.sps = NULL;
  3058. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  3059. ret = av_buffer_replace(&s->ps.vps_list[i], s0->ps.vps_list[i]);
  3060. if (ret < 0)
  3061. return ret;
  3062. }
  3063. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  3064. ret = av_buffer_replace(&s->ps.sps_list[i], s0->ps.sps_list[i]);
  3065. if (ret < 0)
  3066. return ret;
  3067. }
  3068. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  3069. ret = av_buffer_replace(&s->ps.pps_list[i], s0->ps.pps_list[i]);
  3070. if (ret < 0)
  3071. return ret;
  3072. }
  3073. if (s->ps.sps != s0->ps.sps)
  3074. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  3075. return ret;
  3076. s->seq_decode = s0->seq_decode;
  3077. s->seq_output = s0->seq_output;
  3078. s->pocTid0 = s0->pocTid0;
  3079. s->max_ra = s0->max_ra;
  3080. s->eos = s0->eos;
  3081. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  3082. s->is_nalff = s0->is_nalff;
  3083. s->nal_length_size = s0->nal_length_size;
  3084. s->threads_number = s0->threads_number;
  3085. s->threads_type = s0->threads_type;
  3086. if (s0->eos) {
  3087. s->seq_decode = (s->seq_decode + 1) & 0xff;
  3088. s->max_ra = INT_MAX;
  3089. }
  3090. ret = av_buffer_replace(&s->sei.a53_caption.buf_ref, s0->sei.a53_caption.buf_ref);
  3091. if (ret < 0)
  3092. return ret;
  3093. for (i = 0; i < s->sei.unregistered.nb_buf_ref; i++)
  3094. av_buffer_unref(&s->sei.unregistered.buf_ref[i]);
  3095. s->sei.unregistered.nb_buf_ref = 0;
  3096. if (s0->sei.unregistered.nb_buf_ref) {
  3097. ret = av_reallocp_array(&s->sei.unregistered.buf_ref,
  3098. s0->sei.unregistered.nb_buf_ref,
  3099. sizeof(*s->sei.unregistered.buf_ref));
  3100. if (ret < 0)
  3101. return ret;
  3102. for (i = 0; i < s0->sei.unregistered.nb_buf_ref; i++) {
  3103. s->sei.unregistered.buf_ref[i] = av_buffer_ref(s0->sei.unregistered.buf_ref[i]);
  3104. if (!s->sei.unregistered.buf_ref[i])
  3105. return AVERROR(ENOMEM);
  3106. s->sei.unregistered.nb_buf_ref++;
  3107. }
  3108. }
  3109. ret = av_buffer_replace(&s->sei.dynamic_hdr_plus.info, s0->sei.dynamic_hdr_plus.info);
  3110. if (ret < 0)
  3111. return ret;
  3112. s->sei.frame_packing = s0->sei.frame_packing;
  3113. s->sei.display_orientation = s0->sei.display_orientation;
  3114. s->sei.mastering_display = s0->sei.mastering_display;
  3115. s->sei.content_light = s0->sei.content_light;
  3116. s->sei.alternative_transfer = s0->sei.alternative_transfer;
  3117. ret = export_stream_params_from_sei(s);
  3118. if (ret < 0)
  3119. return ret;
  3120. return 0;
  3121. }
  3122. #endif
  3123. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  3124. {
  3125. HEVCContext *s = avctx->priv_data;
  3126. int ret;
  3127. if(avctx->active_thread_type & FF_THREAD_SLICE)
  3128. s->threads_number = avctx->thread_count;
  3129. else
  3130. s->threads_number = 1;
  3131. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  3132. s->threads_type = FF_THREAD_FRAME;
  3133. else
  3134. s->threads_type = FF_THREAD_SLICE;
  3135. ret = hevc_init_context(avctx);
  3136. if (ret < 0)
  3137. return ret;
  3138. s->enable_parallel_tiles = 0;
  3139. s->sei.picture_timing.picture_struct = 0;
  3140. s->eos = 1;
  3141. atomic_init(&s->wpp_err, 0);
  3142. if (!avctx->internal->is_copy) {
  3143. if (avctx->extradata_size > 0 && avctx->extradata) {
  3144. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size, 1);
  3145. if (ret < 0) {
  3146. return ret;
  3147. }
  3148. }
  3149. }
  3150. return 0;
  3151. }
  3152. static void hevc_decode_flush(AVCodecContext *avctx)
  3153. {
  3154. HEVCContext *s = avctx->priv_data;
  3155. ff_hevc_flush_dpb(s);
  3156. ff_hevc_reset_sei(&s->sei);
  3157. s->max_ra = INT_MAX;
  3158. s->eos = 1;
  3159. }
  3160. #define OFFSET(x) offsetof(HEVCContext, x)
  3161. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  3162. static const AVOption options[] = {
  3163. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  3164. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3165. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  3166. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  3167. { NULL },
  3168. };
  3169. static const AVClass hevc_decoder_class = {
  3170. .class_name = "HEVC decoder",
  3171. .item_name = av_default_item_name,
  3172. .option = options,
  3173. .version = LIBAVUTIL_VERSION_INT,
  3174. };
  3175. AVCodec ff_hevc_decoder = {
  3176. .name = "hevc",
  3177. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  3178. .type = AVMEDIA_TYPE_VIDEO,
  3179. .id = AV_CODEC_ID_HEVC,
  3180. .priv_data_size = sizeof(HEVCContext),
  3181. .priv_class = &hevc_decoder_class,
  3182. .init = hevc_decode_init,
  3183. .close = hevc_decode_free,
  3184. .decode = hevc_decode_frame,
  3185. .flush = hevc_decode_flush,
  3186. .update_thread_context = ONLY_IF_THREADS_ENABLED(hevc_update_thread_context),
  3187. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  3188. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  3189. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING |
  3190. FF_CODEC_CAP_ALLOCATE_PROGRESS | FF_CODEC_CAP_INIT_CLEANUP,
  3191. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  3192. .hw_configs = (const AVCodecHWConfigInternal *const []) {
  3193. #if CONFIG_HEVC_DXVA2_HWACCEL
  3194. HWACCEL_DXVA2(hevc),
  3195. #endif
  3196. #if CONFIG_HEVC_D3D11VA_HWACCEL
  3197. HWACCEL_D3D11VA(hevc),
  3198. #endif
  3199. #if CONFIG_HEVC_D3D11VA2_HWACCEL
  3200. HWACCEL_D3D11VA2(hevc),
  3201. #endif
  3202. #if CONFIG_HEVC_NVDEC_HWACCEL
  3203. HWACCEL_NVDEC(hevc),
  3204. #endif
  3205. #if CONFIG_HEVC_VAAPI_HWACCEL
  3206. HWACCEL_VAAPI(hevc),
  3207. #endif
  3208. #if CONFIG_HEVC_VDPAU_HWACCEL
  3209. HWACCEL_VDPAU(hevc),
  3210. #endif
  3211. #if CONFIG_HEVC_VIDEOTOOLBOX_HWACCEL
  3212. HWACCEL_VIDEOTOOLBOX(hevc),
  3213. #endif
  3214. NULL
  3215. },
  3216. };