You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2197 lines
82KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/channel_layout.h"
  28. #include "libavutil/common.h"
  29. #include "libavutil/float_dsp.h"
  30. #include "libavutil/internal.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "libavutil/mathematics.h"
  33. #include "libavutil/opt.h"
  34. #include "libavutil/samplefmt.h"
  35. #include "avcodec.h"
  36. #include "dca.h"
  37. #include "dcadata.h"
  38. #include "dcadsp.h"
  39. #include "dcahuff.h"
  40. #include "dca_exss.h"
  41. #include "fft.h"
  42. #include "fmtconvert.h"
  43. #include "get_bits.h"
  44. #include "internal.h"
  45. #include "mathops.h"
  46. #include "synth_filter.h"
  47. #if ARCH_ARM
  48. # include "arm/dca.h"
  49. #endif
  50. //#define TRACE
  51. enum DCAMode {
  52. DCA_MONO = 0,
  53. DCA_CHANNEL,
  54. DCA_STEREO,
  55. DCA_STEREO_SUMDIFF,
  56. DCA_STEREO_TOTAL,
  57. DCA_3F,
  58. DCA_2F1R,
  59. DCA_3F1R,
  60. DCA_2F2R,
  61. DCA_3F2R,
  62. DCA_4F2R
  63. };
  64. enum DCAXxchSpeakerMask {
  65. DCA_XXCH_FRONT_CENTER = 0x0000001,
  66. DCA_XXCH_FRONT_LEFT = 0x0000002,
  67. DCA_XXCH_FRONT_RIGHT = 0x0000004,
  68. DCA_XXCH_SIDE_REAR_LEFT = 0x0000008,
  69. DCA_XXCH_SIDE_REAR_RIGHT = 0x0000010,
  70. DCA_XXCH_LFE1 = 0x0000020,
  71. DCA_XXCH_REAR_CENTER = 0x0000040,
  72. DCA_XXCH_SURROUND_REAR_LEFT = 0x0000080,
  73. DCA_XXCH_SURROUND_REAR_RIGHT = 0x0000100,
  74. DCA_XXCH_SIDE_SURROUND_LEFT = 0x0000200,
  75. DCA_XXCH_SIDE_SURROUND_RIGHT = 0x0000400,
  76. DCA_XXCH_FRONT_CENTER_LEFT = 0x0000800,
  77. DCA_XXCH_FRONT_CENTER_RIGHT = 0x0001000,
  78. DCA_XXCH_FRONT_HIGH_LEFT = 0x0002000,
  79. DCA_XXCH_FRONT_HIGH_CENTER = 0x0004000,
  80. DCA_XXCH_FRONT_HIGH_RIGHT = 0x0008000,
  81. DCA_XXCH_LFE2 = 0x0010000,
  82. DCA_XXCH_SIDE_FRONT_LEFT = 0x0020000,
  83. DCA_XXCH_SIDE_FRONT_RIGHT = 0x0040000,
  84. DCA_XXCH_OVERHEAD = 0x0080000,
  85. DCA_XXCH_SIDE_HIGH_LEFT = 0x0100000,
  86. DCA_XXCH_SIDE_HIGH_RIGHT = 0x0200000,
  87. DCA_XXCH_REAR_HIGH_CENTER = 0x0400000,
  88. DCA_XXCH_REAR_HIGH_LEFT = 0x0800000,
  89. DCA_XXCH_REAR_HIGH_RIGHT = 0x1000000,
  90. DCA_XXCH_REAR_LOW_CENTER = 0x2000000,
  91. DCA_XXCH_REAR_LOW_LEFT = 0x4000000,
  92. DCA_XXCH_REAR_LOW_RIGHT = 0x8000000,
  93. };
  94. static const uint32_t map_xxch_to_native[28] = {
  95. AV_CH_FRONT_CENTER,
  96. AV_CH_FRONT_LEFT,
  97. AV_CH_FRONT_RIGHT,
  98. AV_CH_SIDE_LEFT,
  99. AV_CH_SIDE_RIGHT,
  100. AV_CH_LOW_FREQUENCY,
  101. AV_CH_BACK_CENTER,
  102. AV_CH_BACK_LEFT,
  103. AV_CH_BACK_RIGHT,
  104. AV_CH_SIDE_LEFT, /* side surround left -- dup sur side L */
  105. AV_CH_SIDE_RIGHT, /* side surround right -- dup sur side R */
  106. AV_CH_FRONT_LEFT_OF_CENTER,
  107. AV_CH_FRONT_RIGHT_OF_CENTER,
  108. AV_CH_TOP_FRONT_LEFT,
  109. AV_CH_TOP_FRONT_CENTER,
  110. AV_CH_TOP_FRONT_RIGHT,
  111. AV_CH_LOW_FREQUENCY, /* lfe2 -- duplicate lfe1 position */
  112. AV_CH_FRONT_LEFT_OF_CENTER, /* side front left -- dup front cntr L */
  113. AV_CH_FRONT_RIGHT_OF_CENTER,/* side front right -- dup front cntr R */
  114. AV_CH_TOP_CENTER, /* overhead */
  115. AV_CH_TOP_FRONT_LEFT, /* side high left -- dup */
  116. AV_CH_TOP_FRONT_RIGHT, /* side high right -- dup */
  117. AV_CH_TOP_BACK_CENTER,
  118. AV_CH_TOP_BACK_LEFT,
  119. AV_CH_TOP_BACK_RIGHT,
  120. AV_CH_BACK_CENTER, /* rear low center -- dup */
  121. AV_CH_BACK_LEFT, /* rear low left -- dup */
  122. AV_CH_BACK_RIGHT /* read low right -- dup */
  123. };
  124. /* -1 are reserved or unknown */
  125. static const int dca_ext_audio_descr_mask[] = {
  126. DCA_EXT_XCH,
  127. -1,
  128. DCA_EXT_X96,
  129. DCA_EXT_XCH | DCA_EXT_X96,
  130. -1,
  131. -1,
  132. DCA_EXT_XXCH,
  133. -1,
  134. };
  135. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  136. * Some compromises have been made for special configurations. Most configurations
  137. * are never used so complete accuracy is not needed.
  138. *
  139. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  140. * S -> side, when both rear and back are configured move one of them to the side channel
  141. * OV -> center back
  142. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  143. */
  144. static const uint64_t dca_core_channel_layout[] = {
  145. AV_CH_FRONT_CENTER, ///< 1, A
  146. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  147. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  148. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  149. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  150. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  151. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  152. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  153. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  154. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  155. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  156. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  157. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  158. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  159. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  160. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  161. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  162. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  163. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  164. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  165. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  166. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  167. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  168. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  169. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  170. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  171. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  172. };
  173. static const int8_t dca_lfe_index[] = {
  174. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  175. };
  176. static const int8_t dca_channel_reorder_lfe[][9] = {
  177. { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
  178. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  179. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  180. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  181. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  182. { 2, 0, 1, -1, -1, -1, -1, -1, -1 },
  183. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  184. { 2, 0, 1, 4, -1, -1, -1, -1, -1 },
  185. { 0, 1, 3, 4, -1, -1, -1, -1, -1 },
  186. { 2, 0, 1, 4, 5, -1, -1, -1, -1 },
  187. { 3, 4, 0, 1, 5, 6, -1, -1, -1 },
  188. { 2, 0, 1, 4, 5, 6, -1, -1, -1 },
  189. { 0, 6, 4, 5, 2, 3, -1, -1, -1 },
  190. { 4, 2, 5, 0, 1, 6, 7, -1, -1 },
  191. { 5, 6, 0, 1, 7, 3, 8, 4, -1 },
  192. { 4, 2, 5, 0, 1, 6, 8, 7, -1 },
  193. };
  194. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  195. { 0, 2, -1, -1, -1, -1, -1, -1, -1 },
  196. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  197. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  198. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  199. { 0, 1, 3, -1, -1, -1, -1, -1, -1 },
  200. { 2, 0, 1, 4, -1, -1, -1, -1, -1 },
  201. { 0, 1, 3, 4, -1, -1, -1, -1, -1 },
  202. { 2, 0, 1, 4, 5, -1, -1, -1, -1 },
  203. { 0, 1, 4, 5, 3, -1, -1, -1, -1 },
  204. { 2, 0, 1, 5, 6, 4, -1, -1, -1 },
  205. { 3, 4, 0, 1, 6, 7, 5, -1, -1 },
  206. { 2, 0, 1, 4, 5, 6, 7, -1, -1 },
  207. { 0, 6, 4, 5, 2, 3, 7, -1, -1 },
  208. { 4, 2, 5, 0, 1, 7, 8, 6, -1 },
  209. { 5, 6, 0, 1, 8, 3, 9, 4, 7 },
  210. { 4, 2, 5, 0, 1, 6, 9, 8, 7 },
  211. };
  212. static const int8_t dca_channel_reorder_nolfe[][9] = {
  213. { 0, -1, -1, -1, -1, -1, -1, -1, -1 },
  214. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  215. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  216. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  217. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  218. { 2, 0, 1, -1, -1, -1, -1, -1, -1 },
  219. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  220. { 2, 0, 1, 3, -1, -1, -1, -1, -1 },
  221. { 0, 1, 2, 3, -1, -1, -1, -1, -1 },
  222. { 2, 0, 1, 3, 4, -1, -1, -1, -1 },
  223. { 2, 3, 0, 1, 4, 5, -1, -1, -1 },
  224. { 2, 0, 1, 3, 4, 5, -1, -1, -1 },
  225. { 0, 5, 3, 4, 1, 2, -1, -1, -1 },
  226. { 3, 2, 4, 0, 1, 5, 6, -1, -1 },
  227. { 4, 5, 0, 1, 6, 2, 7, 3, -1 },
  228. { 3, 2, 4, 0, 1, 5, 7, 6, -1 },
  229. };
  230. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  231. { 0, 1, -1, -1, -1, -1, -1, -1, -1 },
  232. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  233. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  234. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  235. { 0, 1, 2, -1, -1, -1, -1, -1, -1 },
  236. { 2, 0, 1, 3, -1, -1, -1, -1, -1 },
  237. { 0, 1, 2, 3, -1, -1, -1, -1, -1 },
  238. { 2, 0, 1, 3, 4, -1, -1, -1, -1 },
  239. { 0, 1, 3, 4, 2, -1, -1, -1, -1 },
  240. { 2, 0, 1, 4, 5, 3, -1, -1, -1 },
  241. { 2, 3, 0, 1, 5, 6, 4, -1, -1 },
  242. { 2, 0, 1, 3, 4, 5, 6, -1, -1 },
  243. { 0, 5, 3, 4, 1, 2, 6, -1, -1 },
  244. { 3, 2, 4, 0, 1, 6, 7, 5, -1 },
  245. { 4, 5, 0, 1, 7, 2, 8, 3, 6 },
  246. { 3, 2, 4, 0, 1, 5, 8, 7, 6 },
  247. };
  248. #define DCA_DOLBY 101 /* FIXME */
  249. #define DCA_CHANNEL_BITS 6
  250. #define DCA_CHANNEL_MASK 0x3F
  251. #define DCA_LFE 0x80
  252. #define HEADER_SIZE 14
  253. #define DCA_NSYNCAUX 0x9A1105A0
  254. /** Bit allocation */
  255. typedef struct BitAlloc {
  256. int offset; ///< code values offset
  257. int maxbits[8]; ///< max bits in VLC
  258. int wrap; ///< wrap for get_vlc2()
  259. VLC vlc[8]; ///< actual codes
  260. } BitAlloc;
  261. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  262. static BitAlloc dca_tmode; ///< transition mode VLCs
  263. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  264. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  265. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  266. int idx)
  267. {
  268. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  269. ba->offset;
  270. }
  271. static float dca_dmix_code(unsigned code);
  272. static const uint16_t dca_vlc_offs[] = {
  273. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  274. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  275. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  276. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  277. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  278. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  279. };
  280. static av_cold void dca_init_vlcs(void)
  281. {
  282. static int vlcs_initialized = 0;
  283. int i, j, c = 14;
  284. static VLC_TYPE dca_table[23622][2];
  285. if (vlcs_initialized)
  286. return;
  287. dca_bitalloc_index.offset = 1;
  288. dca_bitalloc_index.wrap = 2;
  289. for (i = 0; i < 5; i++) {
  290. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  291. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  292. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  293. bitalloc_12_bits[i], 1, 1,
  294. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  295. }
  296. dca_scalefactor.offset = -64;
  297. dca_scalefactor.wrap = 2;
  298. for (i = 0; i < 5; i++) {
  299. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  300. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  301. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  302. scales_bits[i], 1, 1,
  303. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  304. }
  305. dca_tmode.offset = 0;
  306. dca_tmode.wrap = 1;
  307. for (i = 0; i < 4; i++) {
  308. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  309. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  310. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  311. tmode_bits[i], 1, 1,
  312. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  313. }
  314. for (i = 0; i < 10; i++)
  315. for (j = 0; j < 7; j++) {
  316. if (!bitalloc_codes[i][j])
  317. break;
  318. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  319. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  320. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  321. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  322. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  323. bitalloc_sizes[i],
  324. bitalloc_bits[i][j], 1, 1,
  325. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  326. c++;
  327. }
  328. vlcs_initialized = 1;
  329. }
  330. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  331. {
  332. while (len--)
  333. *dst++ = get_bits(gb, bits);
  334. }
  335. static inline int dca_xxch2index(DCAContext *s, int xxch_ch)
  336. {
  337. int i, base, mask;
  338. /* locate channel set containing the channel */
  339. for (i = -1, base = 0, mask = (s->xxch_core_spkmask & ~DCA_XXCH_LFE1);
  340. i <= s->xxch_chset && !(mask & xxch_ch); mask = s->xxch_spk_masks[++i])
  341. base += av_popcount(mask);
  342. return base + av_popcount(mask & (xxch_ch - 1));
  343. }
  344. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel,
  345. int xxch)
  346. {
  347. int i, j;
  348. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  349. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  350. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  351. int hdr_pos = 0, hdr_size = 0;
  352. float scale_factor;
  353. int this_chans, acc_mask;
  354. int embedded_downmix;
  355. int nchans, mask[8];
  356. int coeff, ichan;
  357. /* xxch has arbitrary sized audio coding headers */
  358. if (xxch) {
  359. hdr_pos = get_bits_count(&s->gb);
  360. hdr_size = get_bits(&s->gb, 7) + 1;
  361. }
  362. nchans = get_bits(&s->gb, 3) + 1;
  363. s->total_channels = nchans + base_channel;
  364. s->prim_channels = s->total_channels;
  365. /* obtain speaker layout mask & downmix coefficients for XXCH */
  366. if (xxch) {
  367. acc_mask = s->xxch_core_spkmask;
  368. this_chans = get_bits(&s->gb, s->xxch_nbits_spk_mask - 6) << 6;
  369. s->xxch_spk_masks[s->xxch_chset] = this_chans;
  370. s->xxch_chset_nch[s->xxch_chset] = nchans;
  371. for (i = 0; i <= s->xxch_chset; i++)
  372. acc_mask |= s->xxch_spk_masks[i];
  373. /* check for downmixing information */
  374. if (get_bits1(&s->gb)) {
  375. embedded_downmix = get_bits1(&s->gb);
  376. coeff = get_bits(&s->gb, 6);
  377. if (coeff<1 || coeff>61) {
  378. av_log(s->avctx, AV_LOG_ERROR, "6bit coeff %d is out of range\n", coeff);
  379. return AVERROR_INVALIDDATA;
  380. }
  381. scale_factor = -1.0f / dca_dmix_code((coeff<<2)-3);
  382. s->xxch_dmix_sf[s->xxch_chset] = scale_factor;
  383. for (i = base_channel; i < s->prim_channels; i++) {
  384. mask[i] = get_bits(&s->gb, s->xxch_nbits_spk_mask);
  385. }
  386. for (j = base_channel; j < s->prim_channels; j++) {
  387. memset(s->xxch_dmix_coeff[j], 0, sizeof(s->xxch_dmix_coeff[0]));
  388. s->xxch_dmix_embedded |= (embedded_downmix << j);
  389. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  390. if (mask[j] & (1 << i)) {
  391. if ((1 << i) == DCA_XXCH_LFE1) {
  392. av_log(s->avctx, AV_LOG_WARNING,
  393. "DCA-XXCH: dmix to LFE1 not supported.\n");
  394. continue;
  395. }
  396. coeff = get_bits(&s->gb, 7);
  397. ichan = dca_xxch2index(s, 1 << i);
  398. if ((coeff&63)<1 || (coeff&63)>61) {
  399. av_log(s->avctx, AV_LOG_ERROR, "7bit coeff %d is out of range\n", coeff);
  400. return AVERROR_INVALIDDATA;
  401. }
  402. s->xxch_dmix_coeff[j][ichan] = dca_dmix_code((coeff<<2)-3);
  403. }
  404. }
  405. }
  406. }
  407. }
  408. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  409. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  410. for (i = base_channel; i < s->prim_channels; i++) {
  411. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  412. if (s->subband_activity[i] > DCA_SUBBANDS)
  413. s->subband_activity[i] = DCA_SUBBANDS;
  414. }
  415. for (i = base_channel; i < s->prim_channels; i++) {
  416. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  417. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  418. s->vq_start_subband[i] = DCA_SUBBANDS;
  419. }
  420. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  421. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  422. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  423. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  424. /* Get codebooks quantization indexes */
  425. if (!base_channel)
  426. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  427. for (j = 1; j < 11; j++)
  428. for (i = base_channel; i < s->prim_channels; i++)
  429. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  430. /* Get scale factor adjustment */
  431. for (j = 0; j < 11; j++)
  432. for (i = base_channel; i < s->prim_channels; i++)
  433. s->scalefactor_adj[i][j] = 1;
  434. for (j = 1; j < 11; j++)
  435. for (i = base_channel; i < s->prim_channels; i++)
  436. if (s->quant_index_huffman[i][j] < thr[j])
  437. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  438. if (!xxch) {
  439. if (s->crc_present) {
  440. /* Audio header CRC check */
  441. get_bits(&s->gb, 16);
  442. }
  443. } else {
  444. /* Skip to the end of the header, also ignore CRC if present */
  445. i = get_bits_count(&s->gb);
  446. if (hdr_pos + 8 * hdr_size > i)
  447. skip_bits_long(&s->gb, hdr_pos + 8 * hdr_size - i);
  448. }
  449. s->current_subframe = 0;
  450. s->current_subsubframe = 0;
  451. #ifdef TRACE
  452. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  453. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  454. for (i = base_channel; i < s->prim_channels; i++) {
  455. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  456. s->subband_activity[i]);
  457. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  458. s->vq_start_subband[i]);
  459. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  460. s->joint_intensity[i]);
  461. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  462. s->transient_huffman[i]);
  463. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  464. s->scalefactor_huffman[i]);
  465. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  466. s->bitalloc_huffman[i]);
  467. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  468. for (j = 0; j < 11; j++)
  469. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  470. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  471. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  472. for (j = 0; j < 11; j++)
  473. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  474. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  475. }
  476. #endif
  477. return 0;
  478. }
  479. static int dca_parse_frame_header(DCAContext *s)
  480. {
  481. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  482. /* Sync code */
  483. skip_bits_long(&s->gb, 32);
  484. /* Frame header */
  485. s->frame_type = get_bits(&s->gb, 1);
  486. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  487. s->crc_present = get_bits(&s->gb, 1);
  488. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  489. s->frame_size = get_bits(&s->gb, 14) + 1;
  490. if (s->frame_size < 95)
  491. return AVERROR_INVALIDDATA;
  492. s->amode = get_bits(&s->gb, 6);
  493. s->sample_rate = avpriv_dca_sample_rates[get_bits(&s->gb, 4)];
  494. if (!s->sample_rate)
  495. return AVERROR_INVALIDDATA;
  496. s->bit_rate_index = get_bits(&s->gb, 5);
  497. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  498. if (!s->bit_rate)
  499. return AVERROR_INVALIDDATA;
  500. skip_bits1(&s->gb); // always 0 (reserved, cf. ETSI TS 102 114 V1.4.1)
  501. s->dynrange = get_bits(&s->gb, 1);
  502. s->timestamp = get_bits(&s->gb, 1);
  503. s->aux_data = get_bits(&s->gb, 1);
  504. s->hdcd = get_bits(&s->gb, 1);
  505. s->ext_descr = get_bits(&s->gb, 3);
  506. s->ext_coding = get_bits(&s->gb, 1);
  507. s->aspf = get_bits(&s->gb, 1);
  508. s->lfe = get_bits(&s->gb, 2);
  509. s->predictor_history = get_bits(&s->gb, 1);
  510. if (s->lfe > 2) {
  511. s->lfe = 0;
  512. av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE value: %d\n", s->lfe);
  513. return AVERROR_INVALIDDATA;
  514. }
  515. /* TODO: check CRC */
  516. if (s->crc_present)
  517. s->header_crc = get_bits(&s->gb, 16);
  518. s->multirate_inter = get_bits(&s->gb, 1);
  519. s->version = get_bits(&s->gb, 4);
  520. s->copy_history = get_bits(&s->gb, 2);
  521. s->source_pcm_res = get_bits(&s->gb, 3);
  522. s->front_sum = get_bits(&s->gb, 1);
  523. s->surround_sum = get_bits(&s->gb, 1);
  524. s->dialog_norm = get_bits(&s->gb, 4);
  525. /* FIXME: channels mixing levels */
  526. s->output = s->amode;
  527. if (s->lfe)
  528. s->output |= DCA_LFE;
  529. #ifdef TRACE
  530. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  531. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  532. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  533. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  534. s->sample_blocks, s->sample_blocks * 32);
  535. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  536. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  537. s->amode, dca_channels[s->amode]);
  538. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  539. s->sample_rate);
  540. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  541. s->bit_rate);
  542. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  543. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  544. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  545. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  546. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  547. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  548. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  549. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  550. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  551. s->predictor_history);
  552. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  553. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  554. s->multirate_inter);
  555. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  556. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  557. av_log(s->avctx, AV_LOG_DEBUG,
  558. "source pcm resolution: %i (%i bits/sample)\n",
  559. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  560. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  561. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  562. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  563. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  564. #endif
  565. /* Primary audio coding header */
  566. s->subframes = get_bits(&s->gb, 4) + 1;
  567. return dca_parse_audio_coding_header(s, 0, 0);
  568. }
  569. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  570. {
  571. if (level < 5) {
  572. /* huffman encoded */
  573. value += get_bitalloc(gb, &dca_scalefactor, level);
  574. value = av_clip(value, 0, (1 << log2range) - 1);
  575. } else if (level < 8) {
  576. if (level + 1 > log2range) {
  577. skip_bits(gb, level + 1 - log2range);
  578. value = get_bits(gb, log2range);
  579. } else {
  580. value = get_bits(gb, level + 1);
  581. }
  582. }
  583. return value;
  584. }
  585. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  586. {
  587. /* Primary audio coding side information */
  588. int j, k;
  589. if (get_bits_left(&s->gb) < 0)
  590. return AVERROR_INVALIDDATA;
  591. if (!base_channel) {
  592. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  593. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  594. }
  595. for (j = base_channel; j < s->prim_channels; j++) {
  596. for (k = 0; k < s->subband_activity[j]; k++)
  597. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  598. }
  599. /* Get prediction codebook */
  600. for (j = base_channel; j < s->prim_channels; j++) {
  601. for (k = 0; k < s->subband_activity[j]; k++) {
  602. if (s->prediction_mode[j][k] > 0) {
  603. /* (Prediction coefficient VQ address) */
  604. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  605. }
  606. }
  607. }
  608. /* Bit allocation index */
  609. for (j = base_channel; j < s->prim_channels; j++) {
  610. for (k = 0; k < s->vq_start_subband[j]; k++) {
  611. if (s->bitalloc_huffman[j] == 6)
  612. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  613. else if (s->bitalloc_huffman[j] == 5)
  614. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  615. else if (s->bitalloc_huffman[j] == 7) {
  616. av_log(s->avctx, AV_LOG_ERROR,
  617. "Invalid bit allocation index\n");
  618. return AVERROR_INVALIDDATA;
  619. } else {
  620. s->bitalloc[j][k] =
  621. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  622. }
  623. if (s->bitalloc[j][k] > 26) {
  624. av_dlog(s->avctx, "bitalloc index [%i][%i] too big (%i)\n",
  625. j, k, s->bitalloc[j][k]);
  626. return AVERROR_INVALIDDATA;
  627. }
  628. }
  629. }
  630. /* Transition mode */
  631. for (j = base_channel; j < s->prim_channels; j++) {
  632. for (k = 0; k < s->subband_activity[j]; k++) {
  633. s->transition_mode[j][k] = 0;
  634. if (s->subsubframes[s->current_subframe] > 1 &&
  635. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  636. s->transition_mode[j][k] =
  637. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  638. }
  639. }
  640. }
  641. if (get_bits_left(&s->gb) < 0)
  642. return AVERROR_INVALIDDATA;
  643. for (j = base_channel; j < s->prim_channels; j++) {
  644. const uint32_t *scale_table;
  645. int scale_sum, log_size;
  646. memset(s->scale_factor[j], 0,
  647. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  648. if (s->scalefactor_huffman[j] == 6) {
  649. scale_table = scale_factor_quant7;
  650. log_size = 7;
  651. } else {
  652. scale_table = scale_factor_quant6;
  653. log_size = 6;
  654. }
  655. /* When huffman coded, only the difference is encoded */
  656. scale_sum = 0;
  657. for (k = 0; k < s->subband_activity[j]; k++) {
  658. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  659. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  660. s->scale_factor[j][k][0] = scale_table[scale_sum];
  661. }
  662. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  663. /* Get second scale factor */
  664. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  665. s->scale_factor[j][k][1] = scale_table[scale_sum];
  666. }
  667. }
  668. }
  669. /* Joint subband scale factor codebook select */
  670. for (j = base_channel; j < s->prim_channels; j++) {
  671. /* Transmitted only if joint subband coding enabled */
  672. if (s->joint_intensity[j] > 0)
  673. s->joint_huff[j] = get_bits(&s->gb, 3);
  674. }
  675. if (get_bits_left(&s->gb) < 0)
  676. return AVERROR_INVALIDDATA;
  677. /* Scale factors for joint subband coding */
  678. for (j = base_channel; j < s->prim_channels; j++) {
  679. int source_channel;
  680. /* Transmitted only if joint subband coding enabled */
  681. if (s->joint_intensity[j] > 0) {
  682. int scale = 0;
  683. source_channel = s->joint_intensity[j] - 1;
  684. /* When huffman coded, only the difference is encoded
  685. * (is this valid as well for joint scales ???) */
  686. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  687. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  688. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  689. }
  690. if (!(s->debug_flag & 0x02)) {
  691. av_log(s->avctx, AV_LOG_DEBUG,
  692. "Joint stereo coding not supported\n");
  693. s->debug_flag |= 0x02;
  694. }
  695. }
  696. }
  697. /* Dynamic range coefficient */
  698. if (!base_channel && s->dynrange)
  699. s->dynrange_coef = get_bits(&s->gb, 8);
  700. /* Side information CRC check word */
  701. if (s->crc_present) {
  702. get_bits(&s->gb, 16);
  703. }
  704. /*
  705. * Primary audio data arrays
  706. */
  707. /* VQ encoded high frequency subbands */
  708. for (j = base_channel; j < s->prim_channels; j++)
  709. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  710. /* 1 vector -> 32 samples */
  711. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  712. /* Low frequency effect data */
  713. if (!base_channel && s->lfe) {
  714. int quant7;
  715. /* LFE samples */
  716. int lfe_samples = 2 * s->lfe * (4 + block_index);
  717. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  718. float lfe_scale;
  719. for (j = lfe_samples; j < lfe_end_sample; j++) {
  720. /* Signed 8 bits int */
  721. s->lfe_data[j] = get_sbits(&s->gb, 8);
  722. }
  723. /* Scale factor index */
  724. quant7 = get_bits(&s->gb, 8);
  725. if (quant7 > 127) {
  726. avpriv_request_sample(s->avctx, "LFEScaleIndex larger than 127");
  727. return AVERROR_INVALIDDATA;
  728. }
  729. s->lfe_scale_factor = scale_factor_quant7[quant7];
  730. /* Quantization step size * scale factor */
  731. lfe_scale = 0.035 * s->lfe_scale_factor;
  732. for (j = lfe_samples; j < lfe_end_sample; j++)
  733. s->lfe_data[j] *= lfe_scale;
  734. }
  735. #ifdef TRACE
  736. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  737. s->subsubframes[s->current_subframe]);
  738. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  739. s->partial_samples[s->current_subframe]);
  740. for (j = base_channel; j < s->prim_channels; j++) {
  741. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  742. for (k = 0; k < s->subband_activity[j]; k++)
  743. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  744. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  745. }
  746. for (j = base_channel; j < s->prim_channels; j++) {
  747. for (k = 0; k < s->subband_activity[j]; k++)
  748. av_log(s->avctx, AV_LOG_DEBUG,
  749. "prediction coefs: %f, %f, %f, %f\n",
  750. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  751. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  752. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  753. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  754. }
  755. for (j = base_channel; j < s->prim_channels; j++) {
  756. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  757. for (k = 0; k < s->vq_start_subband[j]; k++)
  758. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  759. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  760. }
  761. for (j = base_channel; j < s->prim_channels; j++) {
  762. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  763. for (k = 0; k < s->subband_activity[j]; k++)
  764. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  765. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  766. }
  767. for (j = base_channel; j < s->prim_channels; j++) {
  768. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  769. for (k = 0; k < s->subband_activity[j]; k++) {
  770. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  771. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  772. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  773. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  774. }
  775. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  776. }
  777. for (j = base_channel; j < s->prim_channels; j++) {
  778. if (s->joint_intensity[j] > 0) {
  779. int source_channel = s->joint_intensity[j] - 1;
  780. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  781. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  782. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  783. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  784. }
  785. }
  786. for (j = base_channel; j < s->prim_channels; j++)
  787. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  788. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  789. if (!base_channel && s->lfe) {
  790. int lfe_samples = 2 * s->lfe * (4 + block_index);
  791. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  792. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  793. for (j = lfe_samples; j < lfe_end_sample; j++)
  794. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  795. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  796. }
  797. #endif
  798. return 0;
  799. }
  800. static void qmf_32_subbands(DCAContext *s, int chans,
  801. float samples_in[32][8], float *samples_out,
  802. float scale)
  803. {
  804. const float *prCoeff;
  805. int sb_act = s->subband_activity[chans];
  806. scale *= sqrt(1 / 8.0);
  807. /* Select filter */
  808. if (!s->multirate_inter) /* Non-perfect reconstruction */
  809. prCoeff = fir_32bands_nonperfect;
  810. else /* Perfect reconstruction */
  811. prCoeff = fir_32bands_perfect;
  812. s->dcadsp.qmf_32_subbands(samples_in, sb_act, &s->synth, &s->imdct,
  813. s->subband_fir_hist[chans],
  814. &s->hist_index[chans],
  815. s->subband_fir_noidea[chans], prCoeff,
  816. samples_out, s->raXin, scale);
  817. }
  818. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  819. int num_deci_sample, float *samples_in,
  820. float *samples_out)
  821. {
  822. /* samples_in: An array holding decimated samples.
  823. * Samples in current subframe starts from samples_in[0],
  824. * while samples_in[-1], samples_in[-2], ..., stores samples
  825. * from last subframe as history.
  826. *
  827. * samples_out: An array holding interpolated samples
  828. */
  829. int idx;
  830. const float *prCoeff;
  831. int deciindex;
  832. /* Select decimation filter */
  833. if (decimation_select == 1) {
  834. idx = 1;
  835. prCoeff = lfe_fir_128;
  836. } else {
  837. idx = 0;
  838. prCoeff = lfe_fir_64;
  839. }
  840. /* Interpolation */
  841. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  842. s->dcadsp.lfe_fir[idx](samples_out, samples_in, prCoeff);
  843. samples_in++;
  844. samples_out += 2 * 32 * (1 + idx);
  845. }
  846. }
  847. /* downmixing routines */
  848. #define MIX_REAR1(samples, s1, rs, coef) \
  849. samples[0][i] += samples[s1][i] * coef[rs][0]; \
  850. samples[1][i] += samples[s1][i] * coef[rs][1];
  851. #define MIX_REAR2(samples, s1, s2, rs, coef) \
  852. samples[0][i] += samples[s1][i] * coef[rs][0] + samples[s2][i] * coef[rs + 1][0]; \
  853. samples[1][i] += samples[s1][i] * coef[rs][1] + samples[s2][i] * coef[rs + 1][1];
  854. #define MIX_FRONT3(samples, coef) \
  855. t = samples[c][i]; \
  856. u = samples[l][i]; \
  857. v = samples[r][i]; \
  858. samples[0][i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  859. samples[1][i] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  860. #define DOWNMIX_TO_STEREO(op1, op2) \
  861. for (i = 0; i < 256; i++) { \
  862. op1 \
  863. op2 \
  864. }
  865. static void dca_downmix(float **samples, int srcfmt, int lfe_present,
  866. float coef[DCA_PRIM_CHANNELS_MAX + 1][2],
  867. const int8_t *channel_mapping)
  868. {
  869. int c, l, r, sl, sr, s;
  870. int i;
  871. float t, u, v;
  872. switch (srcfmt) {
  873. case DCA_MONO:
  874. case DCA_4F2R:
  875. av_log(NULL, AV_LOG_ERROR, "Not implemented!\n");
  876. break;
  877. case DCA_CHANNEL:
  878. case DCA_STEREO:
  879. case DCA_STEREO_TOTAL:
  880. case DCA_STEREO_SUMDIFF:
  881. break;
  882. case DCA_3F:
  883. c = channel_mapping[0];
  884. l = channel_mapping[1];
  885. r = channel_mapping[2];
  886. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  887. break;
  888. case DCA_2F1R:
  889. s = channel_mapping[2];
  890. DOWNMIX_TO_STEREO(MIX_REAR1(samples, s, 2, coef), );
  891. break;
  892. case DCA_3F1R:
  893. c = channel_mapping[0];
  894. l = channel_mapping[1];
  895. r = channel_mapping[2];
  896. s = channel_mapping[3];
  897. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  898. MIX_REAR1(samples, s, 3, coef));
  899. break;
  900. case DCA_2F2R:
  901. sl = channel_mapping[2];
  902. sr = channel_mapping[3];
  903. DOWNMIX_TO_STEREO(MIX_REAR2(samples, sl, sr, 2, coef), );
  904. break;
  905. case DCA_3F2R:
  906. c = channel_mapping[0];
  907. l = channel_mapping[1];
  908. r = channel_mapping[2];
  909. sl = channel_mapping[3];
  910. sr = channel_mapping[4];
  911. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  912. MIX_REAR2(samples, sl, sr, 3, coef));
  913. break;
  914. }
  915. if (lfe_present) {
  916. int lf_buf = dca_lfe_index[srcfmt];
  917. int lf_idx = dca_channels[srcfmt];
  918. for (i = 0; i < 256; i++) {
  919. samples[0][i] += samples[lf_buf][i] * coef[lf_idx][0];
  920. samples[1][i] += samples[lf_buf][i] * coef[lf_idx][1];
  921. }
  922. }
  923. }
  924. #ifndef decode_blockcodes
  925. /* Very compact version of the block code decoder that does not use table
  926. * look-up but is slightly slower */
  927. static int decode_blockcode(int code, int levels, int32_t *values)
  928. {
  929. int i;
  930. int offset = (levels - 1) >> 1;
  931. for (i = 0; i < 4; i++) {
  932. int div = FASTDIV(code, levels);
  933. values[i] = code - offset - div * levels;
  934. code = div;
  935. }
  936. return code;
  937. }
  938. static int decode_blockcodes(int code1, int code2, int levels, int32_t *values)
  939. {
  940. return decode_blockcode(code1, levels, values) |
  941. decode_blockcode(code2, levels, values + 4);
  942. }
  943. #endif
  944. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  945. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  946. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  947. {
  948. int k, l;
  949. int subsubframe = s->current_subsubframe;
  950. const float *quant_step_table;
  951. /* FIXME */
  952. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  953. LOCAL_ALIGNED_16(int32_t, block, [8 * DCA_SUBBANDS]);
  954. /*
  955. * Audio data
  956. */
  957. /* Select quantization step size table */
  958. if (s->bit_rate_index == 0x1f)
  959. quant_step_table = lossless_quant_d;
  960. else
  961. quant_step_table = lossy_quant_d;
  962. for (k = base_channel; k < s->prim_channels; k++) {
  963. float rscale[DCA_SUBBANDS];
  964. if (get_bits_left(&s->gb) < 0)
  965. return AVERROR_INVALIDDATA;
  966. for (l = 0; l < s->vq_start_subband[k]; l++) {
  967. int m;
  968. /* Select the mid-tread linear quantizer */
  969. int abits = s->bitalloc[k][l];
  970. float quant_step_size = quant_step_table[abits];
  971. /*
  972. * Determine quantization index code book and its type
  973. */
  974. /* Select quantization index code book */
  975. int sel = s->quant_index_huffman[k][abits];
  976. /*
  977. * Extract bits from the bit stream
  978. */
  979. if (!abits) {
  980. rscale[l] = 0;
  981. memset(block + 8 * l, 0, 8 * sizeof(block[0]));
  982. } else {
  983. /* Deal with transients */
  984. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  985. rscale[l] = quant_step_size * s->scale_factor[k][l][sfi] *
  986. s->scalefactor_adj[k][sel];
  987. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  988. if (abits <= 7) {
  989. /* Block code */
  990. int block_code1, block_code2, size, levels, err;
  991. size = abits_sizes[abits - 1];
  992. levels = abits_levels[abits - 1];
  993. block_code1 = get_bits(&s->gb, size);
  994. block_code2 = get_bits(&s->gb, size);
  995. err = decode_blockcodes(block_code1, block_code2,
  996. levels, block + 8 * l);
  997. if (err) {
  998. av_log(s->avctx, AV_LOG_ERROR,
  999. "ERROR: block code look-up failed\n");
  1000. return AVERROR_INVALIDDATA;
  1001. }
  1002. } else {
  1003. /* no coding */
  1004. for (m = 0; m < 8; m++)
  1005. block[8 * l + m] = get_sbits(&s->gb, abits - 3);
  1006. }
  1007. } else {
  1008. /* Huffman coded */
  1009. for (m = 0; m < 8; m++)
  1010. block[8 * l + m] = get_bitalloc(&s->gb,
  1011. &dca_smpl_bitalloc[abits], sel);
  1012. }
  1013. }
  1014. }
  1015. s->fmt_conv.int32_to_float_fmul_array8(&s->fmt_conv, subband_samples[k][0],
  1016. block, rscale, 8 * s->vq_start_subband[k]);
  1017. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1018. int m;
  1019. /*
  1020. * Inverse ADPCM if in prediction mode
  1021. */
  1022. if (s->prediction_mode[k][l]) {
  1023. int n;
  1024. if (s->predictor_history)
  1025. subband_samples[k][l][0] += (adpcm_vb[s->prediction_vq[k][l]][0] *
  1026. s->subband_samples_hist[k][l][3] +
  1027. adpcm_vb[s->prediction_vq[k][l]][1] *
  1028. s->subband_samples_hist[k][l][2] +
  1029. adpcm_vb[s->prediction_vq[k][l]][2] *
  1030. s->subband_samples_hist[k][l][1] +
  1031. adpcm_vb[s->prediction_vq[k][l]][3] *
  1032. s->subband_samples_hist[k][l][0]) *
  1033. (1.0f / 8192);
  1034. for (m = 1; m < 8; m++) {
  1035. float sum = adpcm_vb[s->prediction_vq[k][l]][0] *
  1036. subband_samples[k][l][m - 1];
  1037. for (n = 2; n <= 4; n++)
  1038. if (m >= n)
  1039. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1040. subband_samples[k][l][m - n];
  1041. else if (s->predictor_history)
  1042. sum += adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1043. s->subband_samples_hist[k][l][m - n + 4];
  1044. subband_samples[k][l][m] += sum * (1.0f / 8192);
  1045. }
  1046. }
  1047. }
  1048. /*
  1049. * Decode VQ encoded high frequencies
  1050. */
  1051. if (s->subband_activity[k] > s->vq_start_subband[k]) {
  1052. if (!(s->debug_flag & 0x01)) {
  1053. av_log(s->avctx, AV_LOG_DEBUG,
  1054. "Stream with high frequencies VQ coding\n");
  1055. s->debug_flag |= 0x01;
  1056. }
  1057. s->dcadsp.decode_hf(subband_samples[k], s->high_freq_vq[k],
  1058. high_freq_vq, subsubframe * 8,
  1059. s->scale_factor[k], s->vq_start_subband[k],
  1060. s->subband_activity[k]);
  1061. }
  1062. }
  1063. /* Check for DSYNC after subsubframe */
  1064. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1065. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1066. #ifdef TRACE
  1067. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1068. #endif
  1069. } else {
  1070. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1071. return AVERROR_INVALIDDATA;
  1072. }
  1073. }
  1074. /* Backup predictor history for adpcm */
  1075. for (k = base_channel; k < s->prim_channels; k++)
  1076. for (l = 0; l < s->vq_start_subband[k]; l++)
  1077. AV_COPY128(s->subband_samples_hist[k][l], &subband_samples[k][l][4]);
  1078. return 0;
  1079. }
  1080. static int dca_filter_channels(DCAContext *s, int block_index)
  1081. {
  1082. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1083. int k;
  1084. /* 32 subbands QMF */
  1085. for (k = 0; k < s->prim_channels; k++) {
  1086. if (s->channel_order_tab[k] >= 0)
  1087. qmf_32_subbands(s, k, subband_samples[k],
  1088. s->samples_chanptr[s->channel_order_tab[k]],
  1089. M_SQRT1_2 / 32768.0);
  1090. }
  1091. /* Generate LFE samples for this subsubframe FIXME!!! */
  1092. if (s->lfe) {
  1093. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1094. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1095. s->samples_chanptr[s->lfe_index]);
  1096. /* Outputs 20bits pcm samples */
  1097. }
  1098. /* Downmixing to Stereo */
  1099. if (s->prim_channels + !!s->lfe > 2 &&
  1100. s->avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1101. dca_downmix(s->samples_chanptr, s->amode, !!s->lfe, s->downmix_coef,
  1102. s->channel_order_tab);
  1103. }
  1104. return 0;
  1105. }
  1106. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1107. {
  1108. int in, out, aux_data_count, aux_data_end, reserved;
  1109. uint32_t nsyncaux;
  1110. /*
  1111. * Unpack optional information
  1112. */
  1113. /* presumably optional information only appears in the core? */
  1114. if (!base_channel) {
  1115. if (s->timestamp)
  1116. skip_bits_long(&s->gb, 32);
  1117. if (s->aux_data) {
  1118. aux_data_count = get_bits(&s->gb, 6);
  1119. // align (32-bit)
  1120. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1121. aux_data_end = 8 * aux_data_count + get_bits_count(&s->gb);
  1122. if ((nsyncaux = get_bits_long(&s->gb, 32)) != DCA_NSYNCAUX) {
  1123. av_log(s->avctx, AV_LOG_ERROR, "nSYNCAUX mismatch %#"PRIx32"\n",
  1124. nsyncaux);
  1125. return AVERROR_INVALIDDATA;
  1126. }
  1127. if (get_bits1(&s->gb)) { // bAUXTimeStampFlag
  1128. avpriv_request_sample(s->avctx,
  1129. "Auxiliary Decode Time Stamp Flag");
  1130. // align (4-bit)
  1131. skip_bits(&s->gb, (-get_bits_count(&s->gb)) & 4);
  1132. // 44 bits: nMSByte (8), nMarker (4), nLSByte (28), nMarker (4)
  1133. skip_bits_long(&s->gb, 44);
  1134. }
  1135. if ((s->core_downmix = get_bits1(&s->gb))) {
  1136. int am = get_bits(&s->gb, 3);
  1137. switch (am) {
  1138. case 0:
  1139. s->core_downmix_amode = DCA_MONO;
  1140. break;
  1141. case 1:
  1142. s->core_downmix_amode = DCA_STEREO;
  1143. break;
  1144. case 2:
  1145. s->core_downmix_amode = DCA_STEREO_TOTAL;
  1146. break;
  1147. case 3:
  1148. s->core_downmix_amode = DCA_3F;
  1149. break;
  1150. case 4:
  1151. s->core_downmix_amode = DCA_2F1R;
  1152. break;
  1153. case 5:
  1154. s->core_downmix_amode = DCA_2F2R;
  1155. break;
  1156. case 6:
  1157. s->core_downmix_amode = DCA_3F1R;
  1158. break;
  1159. default:
  1160. av_log(s->avctx, AV_LOG_ERROR,
  1161. "Invalid mode %d for embedded downmix coefficients\n",
  1162. am);
  1163. return AVERROR_INVALIDDATA;
  1164. }
  1165. for (out = 0; out < dca_channels[s->core_downmix_amode]; out++) {
  1166. for (in = 0; in < s->prim_channels + !!s->lfe; in++) {
  1167. uint16_t tmp = get_bits(&s->gb, 9);
  1168. if ((tmp & 0xFF) > 241) {
  1169. av_log(s->avctx, AV_LOG_ERROR,
  1170. "Invalid downmix coefficient code %"PRIu16"\n",
  1171. tmp);
  1172. return AVERROR_INVALIDDATA;
  1173. }
  1174. s->core_downmix_codes[in][out] = tmp;
  1175. }
  1176. }
  1177. }
  1178. align_get_bits(&s->gb); // byte align
  1179. skip_bits(&s->gb, 16); // nAUXCRC16
  1180. // additional data (reserved, cf. ETSI TS 102 114 V1.4.1)
  1181. if ((reserved = (aux_data_end - get_bits_count(&s->gb))) < 0) {
  1182. av_log(s->avctx, AV_LOG_ERROR,
  1183. "Overread auxiliary data by %d bits\n", -reserved);
  1184. return AVERROR_INVALIDDATA;
  1185. } else if (reserved) {
  1186. avpriv_request_sample(s->avctx,
  1187. "Core auxiliary data reserved content");
  1188. skip_bits_long(&s->gb, reserved);
  1189. }
  1190. }
  1191. if (s->crc_present && s->dynrange)
  1192. get_bits(&s->gb, 16);
  1193. }
  1194. return 0;
  1195. }
  1196. /**
  1197. * Decode a dca frame block
  1198. *
  1199. * @param s pointer to the DCAContext
  1200. */
  1201. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1202. {
  1203. int ret;
  1204. /* Sanity check */
  1205. if (s->current_subframe >= s->subframes) {
  1206. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1207. s->current_subframe, s->subframes);
  1208. return AVERROR_INVALIDDATA;
  1209. }
  1210. if (!s->current_subsubframe) {
  1211. #ifdef TRACE
  1212. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1213. #endif
  1214. /* Read subframe header */
  1215. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1216. return ret;
  1217. }
  1218. /* Read subsubframe */
  1219. #ifdef TRACE
  1220. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1221. #endif
  1222. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1223. return ret;
  1224. /* Update state */
  1225. s->current_subsubframe++;
  1226. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1227. s->current_subsubframe = 0;
  1228. s->current_subframe++;
  1229. }
  1230. if (s->current_subframe >= s->subframes) {
  1231. #ifdef TRACE
  1232. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1233. #endif
  1234. /* Read subframe footer */
  1235. if ((ret = dca_subframe_footer(s, base_channel)))
  1236. return ret;
  1237. }
  1238. return 0;
  1239. }
  1240. int ff_dca_xbr_parse_frame(DCAContext *s)
  1241. {
  1242. int scale_table_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS][2];
  1243. int active_bands[DCA_CHSETS_MAX][DCA_CHSET_CHANS_MAX];
  1244. int abits_high[DCA_CHSET_CHANS_MAX][DCA_SUBBANDS];
  1245. int anctemp[DCA_CHSET_CHANS_MAX];
  1246. int chset_fsize[DCA_CHSETS_MAX];
  1247. int n_xbr_ch[DCA_CHSETS_MAX];
  1248. int hdr_size, num_chsets, xbr_tmode, hdr_pos;
  1249. int i, j, k, l, chset, chan_base;
  1250. av_log(s->avctx, AV_LOG_DEBUG, "DTS-XBR: decoding XBR extension\n");
  1251. /* get bit position of sync header */
  1252. hdr_pos = get_bits_count(&s->gb) - 32;
  1253. hdr_size = get_bits(&s->gb, 6) + 1;
  1254. num_chsets = get_bits(&s->gb, 2) + 1;
  1255. for(i = 0; i < num_chsets; i++)
  1256. chset_fsize[i] = get_bits(&s->gb, 14) + 1;
  1257. xbr_tmode = get_bits1(&s->gb);
  1258. for(i = 0; i < num_chsets; i++) {
  1259. n_xbr_ch[i] = get_bits(&s->gb, 3) + 1;
  1260. k = get_bits(&s->gb, 2) + 5;
  1261. for(j = 0; j < n_xbr_ch[i]; j++)
  1262. active_bands[i][j] = get_bits(&s->gb, k) + 1;
  1263. }
  1264. /* skip to the end of the header */
  1265. i = get_bits_count(&s->gb);
  1266. if(hdr_pos + hdr_size * 8 > i)
  1267. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1268. /* loop over the channel data sets */
  1269. /* only decode as many channels as we've decoded base data for */
  1270. for(chset = 0, chan_base = 0;
  1271. chset < num_chsets && chan_base + n_xbr_ch[chset] <= s->prim_channels;
  1272. chan_base += n_xbr_ch[chset++]) {
  1273. int start_posn = get_bits_count(&s->gb);
  1274. int subsubframe = 0;
  1275. int subframe = 0;
  1276. /* loop over subframes */
  1277. for (k = 0; k < (s->sample_blocks / 8); k++) {
  1278. /* parse header if we're on first subsubframe of a block */
  1279. if(subsubframe == 0) {
  1280. /* Parse subframe header */
  1281. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1282. anctemp[i] = get_bits(&s->gb, 2) + 2;
  1283. }
  1284. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1285. get_array(&s->gb, abits_high[i], active_bands[chset][i], anctemp[i]);
  1286. }
  1287. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1288. anctemp[i] = get_bits(&s->gb, 3);
  1289. if(anctemp[i] < 1) {
  1290. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: SYNC ERROR\n");
  1291. return AVERROR_INVALIDDATA;
  1292. }
  1293. }
  1294. /* generate scale factors */
  1295. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1296. const uint32_t *scale_table;
  1297. int nbits;
  1298. if (s->scalefactor_huffman[chan_base+i] == 6) {
  1299. scale_table = scale_factor_quant7;
  1300. } else {
  1301. scale_table = scale_factor_quant6;
  1302. }
  1303. nbits = anctemp[i];
  1304. for(j = 0; j < active_bands[chset][i]; j++) {
  1305. if(abits_high[i][j] > 0) {
  1306. scale_table_high[i][j][0] =
  1307. scale_table[get_bits(&s->gb, nbits)];
  1308. if(xbr_tmode && s->transition_mode[i][j]) {
  1309. scale_table_high[i][j][1] =
  1310. scale_table[get_bits(&s->gb, nbits)];
  1311. }
  1312. }
  1313. }
  1314. }
  1315. }
  1316. /* decode audio array for this block */
  1317. for(i = 0; i < n_xbr_ch[chset]; i++) {
  1318. for(j = 0; j < active_bands[chset][i]; j++) {
  1319. const int xbr_abits = abits_high[i][j];
  1320. const float quant_step_size = lossless_quant_d[xbr_abits];
  1321. const int sfi = xbr_tmode && s->transition_mode[i][j] && subsubframe >= s->transition_mode[i][j];
  1322. const float rscale = quant_step_size * scale_table_high[i][j][sfi];
  1323. float *subband_samples = s->subband_samples[k][chan_base+i][j];
  1324. int block[8];
  1325. if(xbr_abits <= 0)
  1326. continue;
  1327. if(xbr_abits > 7) {
  1328. get_array(&s->gb, block, 8, xbr_abits - 3);
  1329. } else {
  1330. int block_code1, block_code2, size, levels, err;
  1331. size = abits_sizes[xbr_abits - 1];
  1332. levels = abits_levels[xbr_abits - 1];
  1333. block_code1 = get_bits(&s->gb, size);
  1334. block_code2 = get_bits(&s->gb, size);
  1335. err = decode_blockcodes(block_code1, block_code2,
  1336. levels, block);
  1337. if (err) {
  1338. av_log(s->avctx, AV_LOG_ERROR,
  1339. "ERROR: DTS-XBR: block code look-up failed\n");
  1340. return AVERROR_INVALIDDATA;
  1341. }
  1342. }
  1343. /* scale & sum into subband */
  1344. for(l = 0; l < 8; l++)
  1345. subband_samples[l] += (float)block[l] * rscale;
  1346. }
  1347. }
  1348. /* check DSYNC marker */
  1349. if(s->aspf || subsubframe == s->subsubframes[subframe] - 1) {
  1350. if(get_bits(&s->gb, 16) != 0xffff) {
  1351. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: Didn't get subframe DSYNC\n");
  1352. return AVERROR_INVALIDDATA;
  1353. }
  1354. }
  1355. /* advance sub-sub-frame index */
  1356. if(++subsubframe >= s->subsubframes[subframe]) {
  1357. subsubframe = 0;
  1358. subframe++;
  1359. }
  1360. }
  1361. /* skip to next channel set */
  1362. i = get_bits_count(&s->gb);
  1363. if(start_posn + chset_fsize[chset] * 8 != i) {
  1364. j = start_posn + chset_fsize[chset] * 8 - i;
  1365. if(j < 0 || j >= 8)
  1366. av_log(s->avctx, AV_LOG_ERROR, "DTS-XBR: end of channel set,"
  1367. " skipping further than expected (%d bits)\n", j);
  1368. skip_bits_long(&s->gb, j);
  1369. }
  1370. }
  1371. return 0;
  1372. }
  1373. /* parse initial header for XXCH and dump details */
  1374. int ff_dca_xxch_decode_frame(DCAContext *s)
  1375. {
  1376. int hdr_size, spkmsk_bits, num_chsets, core_spk, hdr_pos;
  1377. int i, chset, base_channel, chstart, fsize[8];
  1378. /* assume header word has already been parsed */
  1379. hdr_pos = get_bits_count(&s->gb) - 32;
  1380. hdr_size = get_bits(&s->gb, 6) + 1;
  1381. /*chhdr_crc =*/ skip_bits1(&s->gb);
  1382. spkmsk_bits = get_bits(&s->gb, 5) + 1;
  1383. num_chsets = get_bits(&s->gb, 2) + 1;
  1384. for (i = 0; i < num_chsets; i++)
  1385. fsize[i] = get_bits(&s->gb, 14) + 1;
  1386. core_spk = get_bits(&s->gb, spkmsk_bits);
  1387. s->xxch_core_spkmask = core_spk;
  1388. s->xxch_nbits_spk_mask = spkmsk_bits;
  1389. s->xxch_dmix_embedded = 0;
  1390. /* skip to the end of the header */
  1391. i = get_bits_count(&s->gb);
  1392. if (hdr_pos + hdr_size * 8 > i)
  1393. skip_bits_long(&s->gb, hdr_pos + hdr_size * 8 - i);
  1394. for (chset = 0; chset < num_chsets; chset++) {
  1395. chstart = get_bits_count(&s->gb);
  1396. base_channel = s->prim_channels;
  1397. s->xxch_chset = chset;
  1398. /* XXCH and Core headers differ, see 6.4.2 "XXCH Channel Set Header" vs.
  1399. 5.3.2 "Primary Audio Coding Header", DTS Spec 1.3.1 */
  1400. dca_parse_audio_coding_header(s, base_channel, 1);
  1401. /* decode channel data */
  1402. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1403. if (dca_decode_block(s, base_channel, i)) {
  1404. av_log(s->avctx, AV_LOG_ERROR,
  1405. "Error decoding DTS-XXCH extension\n");
  1406. continue;
  1407. }
  1408. }
  1409. /* skip to end of this section */
  1410. i = get_bits_count(&s->gb);
  1411. if (chstart + fsize[chset] * 8 > i)
  1412. skip_bits_long(&s->gb, chstart + fsize[chset] * 8 - i);
  1413. }
  1414. s->xxch_chset = num_chsets;
  1415. return 0;
  1416. }
  1417. static float dca_dmix_code(unsigned code)
  1418. {
  1419. int sign = (code >> 8) - 1;
  1420. code &= 0xff;
  1421. return ((dca_dmixtable[code] ^ sign) - sign) * (1.0 / (1 << 15));
  1422. }
  1423. /**
  1424. * Main frame decoding function
  1425. * FIXME add arguments
  1426. */
  1427. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1428. int *got_frame_ptr, AVPacket *avpkt)
  1429. {
  1430. AVFrame *frame = data;
  1431. const uint8_t *buf = avpkt->data;
  1432. int buf_size = avpkt->size;
  1433. int channel_mask;
  1434. int channel_layout;
  1435. int lfe_samples;
  1436. int num_core_channels = 0;
  1437. int i, ret;
  1438. float **samples_flt;
  1439. float *src_chan;
  1440. float *dst_chan;
  1441. DCAContext *s = avctx->priv_data;
  1442. int core_ss_end;
  1443. int channels, full_channels;
  1444. float scale;
  1445. int achan;
  1446. int chset;
  1447. int mask;
  1448. int lavc;
  1449. int posn;
  1450. int j, k;
  1451. int endch;
  1452. s->xch_present = 0;
  1453. s->dca_buffer_size = avpriv_dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1454. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1455. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1456. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1457. return AVERROR_INVALIDDATA;
  1458. }
  1459. if ((ret = dca_parse_frame_header(s)) < 0) {
  1460. // seems like the frame is corrupt, try with the next one
  1461. return ret;
  1462. }
  1463. // set AVCodec values with parsed data
  1464. avctx->sample_rate = s->sample_rate;
  1465. avctx->bit_rate = s->bit_rate;
  1466. s->profile = FF_PROFILE_DTS;
  1467. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1468. if ((ret = dca_decode_block(s, 0, i))) {
  1469. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1470. return ret;
  1471. }
  1472. }
  1473. /* record number of core channels incase less than max channels are requested */
  1474. num_core_channels = s->prim_channels;
  1475. if (s->prim_channels + !!s->lfe > 2 &&
  1476. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1477. /* Stereo downmix coefficients
  1478. *
  1479. * The decoder can only downmix to 2-channel, so we need to ensure
  1480. * embedded downmix coefficients are actually targeting 2-channel.
  1481. */
  1482. if (s->core_downmix && (s->core_downmix_amode == DCA_STEREO ||
  1483. s->core_downmix_amode == DCA_STEREO_TOTAL)) {
  1484. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1485. /* Range checked earlier */
  1486. s->downmix_coef[i][0] = dca_dmix_code(s->core_downmix_codes[i][0]);
  1487. s->downmix_coef[i][1] = dca_dmix_code(s->core_downmix_codes[i][1]);
  1488. }
  1489. s->output = s->core_downmix_amode;
  1490. } else {
  1491. int am = s->amode & DCA_CHANNEL_MASK;
  1492. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  1493. av_log(s->avctx, AV_LOG_ERROR,
  1494. "Invalid channel mode %d\n", am);
  1495. return AVERROR_INVALIDDATA;
  1496. }
  1497. if (num_core_channels + !!s->lfe >
  1498. FF_ARRAY_ELEMS(dca_default_coeffs[0])) {
  1499. avpriv_request_sample(s->avctx, "Downmixing %d channels",
  1500. s->prim_channels + !!s->lfe);
  1501. return AVERROR_PATCHWELCOME;
  1502. }
  1503. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1504. s->downmix_coef[i][0] = dca_default_coeffs[am][i][0];
  1505. s->downmix_coef[i][1] = dca_default_coeffs[am][i][1];
  1506. }
  1507. }
  1508. av_dlog(s->avctx, "Stereo downmix coeffs:\n");
  1509. for (i = 0; i < num_core_channels + !!s->lfe; i++) {
  1510. av_dlog(s->avctx, "L, input channel %d = %f\n", i,
  1511. s->downmix_coef[i][0]);
  1512. av_dlog(s->avctx, "R, input channel %d = %f\n", i,
  1513. s->downmix_coef[i][1]);
  1514. }
  1515. av_dlog(s->avctx, "\n");
  1516. }
  1517. if (s->ext_coding)
  1518. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1519. else
  1520. s->core_ext_mask = 0;
  1521. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1522. /* only scan for extensions if ext_descr was unknown or indicated a
  1523. * supported XCh extension */
  1524. if (s->core_ext_mask < 0 || s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH)) {
  1525. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1526. * extensions scan can fill it up */
  1527. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1528. /* extensions start at 32-bit boundaries into bitstream */
  1529. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1530. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1531. uint32_t bits = get_bits_long(&s->gb, 32);
  1532. switch (bits) {
  1533. case 0x5a5a5a5a: {
  1534. int ext_amode, xch_fsize;
  1535. s->xch_base_channel = s->prim_channels;
  1536. /* validate sync word using XCHFSIZE field */
  1537. xch_fsize = show_bits(&s->gb, 10);
  1538. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1539. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1540. continue;
  1541. /* skip length-to-end-of-frame field for the moment */
  1542. skip_bits(&s->gb, 10);
  1543. s->core_ext_mask |= DCA_EXT_XCH;
  1544. /* extension amode(number of channels in extension) should be 1 */
  1545. /* AFAIK XCh is not used for more channels */
  1546. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1547. av_log(avctx, AV_LOG_ERROR,
  1548. "XCh extension amode %d not supported!\n",
  1549. ext_amode);
  1550. continue;
  1551. }
  1552. if (s->xch_base_channel < 2) {
  1553. avpriv_request_sample(avctx, "XCh with fewer than 2 base channels");
  1554. continue;
  1555. }
  1556. /* much like core primary audio coding header */
  1557. dca_parse_audio_coding_header(s, s->xch_base_channel, 0);
  1558. for (i = 0; i < (s->sample_blocks / 8); i++)
  1559. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1560. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1561. continue;
  1562. }
  1563. s->xch_present = 1;
  1564. break;
  1565. }
  1566. case 0x47004a03:
  1567. /* XXCh: extended channels */
  1568. /* usually found either in core or HD part in DTS-HD HRA streams,
  1569. * but not in DTS-ES which contains XCh extensions instead */
  1570. s->core_ext_mask |= DCA_EXT_XXCH;
  1571. ff_dca_xxch_decode_frame(s);
  1572. break;
  1573. case 0x1d95f262: {
  1574. int fsize96 = show_bits(&s->gb, 12) + 1;
  1575. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1576. continue;
  1577. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1578. get_bits_count(&s->gb));
  1579. skip_bits(&s->gb, 12);
  1580. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1581. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1582. s->core_ext_mask |= DCA_EXT_X96;
  1583. break;
  1584. }
  1585. }
  1586. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1587. }
  1588. } else {
  1589. /* no supported extensions, skip the rest of the core substream */
  1590. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1591. }
  1592. if (s->core_ext_mask & DCA_EXT_X96)
  1593. s->profile = FF_PROFILE_DTS_96_24;
  1594. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1595. s->profile = FF_PROFILE_DTS_ES;
  1596. /* check for ExSS (HD part) */
  1597. if (s->dca_buffer_size - s->frame_size > 32 &&
  1598. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1599. ff_dca_exss_parse_header(s);
  1600. avctx->profile = s->profile;
  1601. full_channels = channels = s->prim_channels + !!s->lfe;
  1602. /* If we have XXCH then the channel layout is managed differently */
  1603. /* note that XLL will also have another way to do things */
  1604. if (!(s->core_ext_mask & DCA_EXT_XXCH)
  1605. || (s->core_ext_mask & DCA_EXT_XXCH && avctx->request_channels > 0
  1606. && avctx->request_channels
  1607. < num_core_channels + !!s->lfe + s->xxch_chset_nch[0]))
  1608. { /* xxx should also do MA extensions */
  1609. if (s->amode < 16) {
  1610. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1611. if (s->prim_channels + !!s->lfe > 2 &&
  1612. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1613. /*
  1614. * Neither the core's auxiliary data nor our default tables contain
  1615. * downmix coefficients for the additional channel coded in the XCh
  1616. * extension, so when we're doing a Stereo downmix, don't decode it.
  1617. */
  1618. s->xch_disable = 1;
  1619. }
  1620. #if FF_API_REQUEST_CHANNELS
  1621. FF_DISABLE_DEPRECATION_WARNINGS
  1622. if (s->xch_present && !s->xch_disable &&
  1623. (!avctx->request_channels ||
  1624. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1625. FF_ENABLE_DEPRECATION_WARNINGS
  1626. #else
  1627. if (s->xch_present && !s->xch_disable) {
  1628. #endif
  1629. if (avctx->channel_layout & AV_CH_BACK_CENTER) {
  1630. avpriv_request_sample(avctx, "XCh with Back center channel");
  1631. return AVERROR_INVALIDDATA;
  1632. }
  1633. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1634. if (s->lfe) {
  1635. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1636. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1637. } else {
  1638. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1639. }
  1640. if (s->channel_order_tab[s->xch_base_channel] < 0)
  1641. return AVERROR_INVALIDDATA;
  1642. } else {
  1643. channels = num_core_channels + !!s->lfe;
  1644. s->xch_present = 0; /* disable further xch processing */
  1645. if (s->lfe) {
  1646. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1647. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1648. } else
  1649. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1650. }
  1651. if (channels > !!s->lfe &&
  1652. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1653. return AVERROR_INVALIDDATA;
  1654. if (av_get_channel_layout_nb_channels(avctx->channel_layout) != channels) {
  1655. av_log(avctx, AV_LOG_ERROR, "Number of channels %d mismatches layout %d\n", channels, av_get_channel_layout_nb_channels(avctx->channel_layout));
  1656. return AVERROR_INVALIDDATA;
  1657. }
  1658. if (num_core_channels + !!s->lfe > 2 &&
  1659. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO) {
  1660. channels = 2;
  1661. s->output = s->prim_channels == 2 ? s->amode : DCA_STEREO;
  1662. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1663. }
  1664. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1665. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1666. s->channel_order_tab = dca_channel_order_native;
  1667. }
  1668. s->lfe_index = dca_lfe_index[s->amode];
  1669. } else {
  1670. av_log(avctx, AV_LOG_ERROR,
  1671. "Non standard configuration %d !\n", s->amode);
  1672. return AVERROR_INVALIDDATA;
  1673. }
  1674. s->xxch_dmix_embedded = 0;
  1675. } else {
  1676. /* we only get here if an XXCH channel set can be added to the mix */
  1677. channel_mask = s->xxch_core_spkmask;
  1678. if (avctx->request_channels > 0
  1679. && avctx->request_channels < s->prim_channels) {
  1680. channels = num_core_channels + !!s->lfe;
  1681. for (i = 0; i < s->xxch_chset && channels + s->xxch_chset_nch[i]
  1682. <= avctx->request_channels; i++) {
  1683. channels += s->xxch_chset_nch[i];
  1684. channel_mask |= s->xxch_spk_masks[i];
  1685. }
  1686. } else {
  1687. channels = s->prim_channels + !!s->lfe;
  1688. for (i = 0; i < s->xxch_chset; i++) {
  1689. channel_mask |= s->xxch_spk_masks[i];
  1690. }
  1691. }
  1692. /* Given the DTS spec'ed channel mask, generate an avcodec version */
  1693. channel_layout = 0;
  1694. for (i = 0; i < s->xxch_nbits_spk_mask; ++i) {
  1695. if (channel_mask & (1 << i)) {
  1696. channel_layout |= map_xxch_to_native[i];
  1697. }
  1698. }
  1699. /* make sure that we have managed to get equivalent dts/avcodec channel
  1700. * masks in some sense -- unfortunately some channels could overlap */
  1701. if (av_popcount(channel_mask) != av_popcount(channel_layout)) {
  1702. av_log(avctx, AV_LOG_DEBUG,
  1703. "DTS-XXCH: Inconsistent avcodec/dts channel layouts\n");
  1704. return AVERROR_INVALIDDATA;
  1705. }
  1706. avctx->channel_layout = channel_layout;
  1707. if (!(avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE)) {
  1708. /* Estimate DTS --> avcodec ordering table */
  1709. for (chset = -1, j = 0; chset < s->xxch_chset; ++chset) {
  1710. mask = chset >= 0 ? s->xxch_spk_masks[chset]
  1711. : s->xxch_core_spkmask;
  1712. for (i = 0; i < s->xxch_nbits_spk_mask; i++) {
  1713. if (mask & ~(DCA_XXCH_LFE1 | DCA_XXCH_LFE2) & (1 << i)) {
  1714. lavc = map_xxch_to_native[i];
  1715. posn = av_popcount(channel_layout & (lavc - 1));
  1716. s->xxch_order_tab[j++] = posn;
  1717. }
  1718. }
  1719. }
  1720. s->lfe_index = av_popcount(channel_layout & (AV_CH_LOW_FREQUENCY-1));
  1721. } else { /* native ordering */
  1722. for (i = 0; i < channels; i++)
  1723. s->xxch_order_tab[i] = i;
  1724. s->lfe_index = channels - 1;
  1725. }
  1726. s->channel_order_tab = s->xxch_order_tab;
  1727. }
  1728. if (avctx->channels != channels) {
  1729. if (avctx->channels)
  1730. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1731. avctx->channels = channels;
  1732. }
  1733. /* get output buffer */
  1734. frame->nb_samples = 256 * (s->sample_blocks / 8);
  1735. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  1736. return ret;
  1737. samples_flt = (float **) frame->extended_data;
  1738. /* allocate buffer for extra channels if downmixing */
  1739. if (avctx->channels < full_channels) {
  1740. ret = av_samples_get_buffer_size(NULL, full_channels - channels,
  1741. frame->nb_samples,
  1742. avctx->sample_fmt, 0);
  1743. if (ret < 0)
  1744. return ret;
  1745. av_fast_malloc(&s->extra_channels_buffer,
  1746. &s->extra_channels_buffer_size, ret);
  1747. if (!s->extra_channels_buffer)
  1748. return AVERROR(ENOMEM);
  1749. ret = av_samples_fill_arrays((uint8_t **) s->extra_channels, NULL,
  1750. s->extra_channels_buffer,
  1751. full_channels - channels,
  1752. frame->nb_samples, avctx->sample_fmt, 0);
  1753. if (ret < 0)
  1754. return ret;
  1755. }
  1756. /* filter to get final output */
  1757. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1758. int ch;
  1759. for (ch = 0; ch < channels; ch++)
  1760. s->samples_chanptr[ch] = samples_flt[ch] + i * 256;
  1761. for (; ch < full_channels; ch++)
  1762. s->samples_chanptr[ch] = s->extra_channels[ch - channels] + i * 256;
  1763. dca_filter_channels(s, i);
  1764. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1765. /* channel from SL & SR to remove matrixed back-channel signal */
  1766. if ((s->source_pcm_res & 1) && s->xch_present) {
  1767. float *back_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel]];
  1768. float *lt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 2]];
  1769. float *rt_chan = s->samples_chanptr[s->channel_order_tab[s->xch_base_channel - 1]];
  1770. s->fdsp->vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1771. s->fdsp->vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1772. }
  1773. /* If stream contains XXCH, we might need to undo an embedded downmix */
  1774. if (s->xxch_dmix_embedded) {
  1775. /* Loop over channel sets in turn */
  1776. ch = num_core_channels;
  1777. for (chset = 0; chset < s->xxch_chset; chset++) {
  1778. endch = ch + s->xxch_chset_nch[chset];
  1779. mask = s->xxch_dmix_embedded;
  1780. /* undo downmix */
  1781. for (j = ch; j < endch; j++) {
  1782. if (mask & (1 << j)) { /* this channel has been mixed-out */
  1783. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1784. for (k = 0; k < endch; k++) {
  1785. achan = s->channel_order_tab[k];
  1786. scale = s->xxch_dmix_coeff[j][k];
  1787. if (scale != 0.0) {
  1788. dst_chan = s->samples_chanptr[achan];
  1789. s->fdsp->vector_fmac_scalar(dst_chan, src_chan,
  1790. -scale, 256);
  1791. }
  1792. }
  1793. }
  1794. }
  1795. /* if a downmix has been embedded then undo the pre-scaling */
  1796. if ((mask & (1 << ch)) && s->xxch_dmix_sf[chset] != 1.0f) {
  1797. scale = s->xxch_dmix_sf[chset];
  1798. for (j = 0; j < ch; j++) {
  1799. src_chan = s->samples_chanptr[s->channel_order_tab[j]];
  1800. for (k = 0; k < 256; k++)
  1801. src_chan[k] *= scale;
  1802. }
  1803. /* LFE channel is always part of core, scale if it exists */
  1804. if (s->lfe) {
  1805. src_chan = s->samples_chanptr[s->lfe_index];
  1806. for (k = 0; k < 256; k++)
  1807. src_chan[k] *= scale;
  1808. }
  1809. }
  1810. ch = endch;
  1811. }
  1812. }
  1813. }
  1814. /* update lfe history */
  1815. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1816. for (i = 0; i < 2 * s->lfe * 4; i++)
  1817. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1818. /* AVMatrixEncoding
  1819. *
  1820. * DCA_STEREO_TOTAL (Lt/Rt) is equivalent to Dolby Surround */
  1821. ret = ff_side_data_update_matrix_encoding(frame,
  1822. (s->output & ~DCA_LFE) == DCA_STEREO_TOTAL ?
  1823. AV_MATRIX_ENCODING_DOLBY : AV_MATRIX_ENCODING_NONE);
  1824. if (ret < 0)
  1825. return ret;
  1826. *got_frame_ptr = 1;
  1827. return buf_size;
  1828. }
  1829. /**
  1830. * DCA initialization
  1831. *
  1832. * @param avctx pointer to the AVCodecContext
  1833. */
  1834. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1835. {
  1836. DCAContext *s = avctx->priv_data;
  1837. s->avctx = avctx;
  1838. dca_init_vlcs();
  1839. s->fdsp = avpriv_float_dsp_alloc(avctx->flags & CODEC_FLAG_BITEXACT);
  1840. if (!s->fdsp)
  1841. return AVERROR(ENOMEM);
  1842. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1843. ff_synth_filter_init(&s->synth);
  1844. ff_dcadsp_init(&s->dcadsp);
  1845. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1846. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  1847. /* allow downmixing to stereo */
  1848. #if FF_API_REQUEST_CHANNELS
  1849. FF_DISABLE_DEPRECATION_WARNINGS
  1850. if (avctx->request_channels == 2)
  1851. avctx->request_channel_layout = AV_CH_LAYOUT_STEREO;
  1852. FF_ENABLE_DEPRECATION_WARNINGS
  1853. #endif
  1854. if (avctx->channels > 2 &&
  1855. avctx->request_channel_layout == AV_CH_LAYOUT_STEREO)
  1856. avctx->channels = 2;
  1857. return 0;
  1858. }
  1859. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1860. {
  1861. DCAContext *s = avctx->priv_data;
  1862. ff_mdct_end(&s->imdct);
  1863. av_freep(&s->extra_channels_buffer);
  1864. av_freep(&s->fdsp);
  1865. return 0;
  1866. }
  1867. static const AVProfile profiles[] = {
  1868. { FF_PROFILE_DTS, "DTS" },
  1869. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1870. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1871. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1872. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1873. { FF_PROFILE_UNKNOWN },
  1874. };
  1875. static const AVOption options[] = {
  1876. { "disable_xch", "disable decoding of the XCh extension", offsetof(DCAContext, xch_disable), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM },
  1877. { NULL },
  1878. };
  1879. static const AVClass dca_decoder_class = {
  1880. .class_name = "DCA decoder",
  1881. .item_name = av_default_item_name,
  1882. .option = options,
  1883. .version = LIBAVUTIL_VERSION_INT,
  1884. .category = AV_CLASS_CATEGORY_DECODER,
  1885. };
  1886. AVCodec ff_dca_decoder = {
  1887. .name = "dca",
  1888. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1889. .type = AVMEDIA_TYPE_AUDIO,
  1890. .id = AV_CODEC_ID_DTS,
  1891. .priv_data_size = sizeof(DCAContext),
  1892. .init = dca_decode_init,
  1893. .decode = dca_decode_frame,
  1894. .close = dca_decode_end,
  1895. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1896. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  1897. AV_SAMPLE_FMT_NONE },
  1898. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1899. .priv_class = &dca_decoder_class,
  1900. };