You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1140 lines
37KB

  1. /*
  2. * AC-3 Audio Decoder
  3. * This code is developed as part of Google Summer of Code 2006 Program.
  4. *
  5. * Copyright (c) 2006 Kartikey Mahendra BHATT (bhattkm at gmail dot com).
  6. * Copyright (c) 2007 Justin Ruggles
  7. *
  8. * Portions of this code are derived from liba52
  9. * http://liba52.sourceforge.net
  10. * Copyright (C) 2000-2003 Michel Lespinasse <walken@zoy.org>
  11. * Copyright (C) 1999-2000 Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  12. *
  13. * This file is part of FFmpeg.
  14. *
  15. * FFmpeg is free software; you can redistribute it and/or
  16. * modify it under the terms of the GNU General Public
  17. * License as published by the Free Software Foundation; either
  18. * version 2 of the License, or (at your option) any later version.
  19. *
  20. * FFmpeg is distributed in the hope that it will be useful,
  21. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  22. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  23. * General Public License for more details.
  24. *
  25. * You should have received a copy of the GNU General Public
  26. * License along with FFmpeg; if not, write to the Free Software
  27. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  28. */
  29. #include <stdio.h>
  30. #include <stddef.h>
  31. #include <math.h>
  32. #include <string.h>
  33. #include "avcodec.h"
  34. #include "ac3_parser.h"
  35. #include "bitstream.h"
  36. #include "dsputil.h"
  37. #include "random.h"
  38. /**
  39. * Table of bin locations for rematrixing bands
  40. * reference: Section 7.5.2 Rematrixing : Frequency Band Definitions
  41. */
  42. static const uint8_t rematrix_band_tbl[5] = { 13, 25, 37, 61, 253 };
  43. /* table for exponent to scale_factor mapping
  44. * scale_factor[i] = 2 ^ -(i + 15)
  45. */
  46. static float scale_factors[25];
  47. /** table for grouping exponents */
  48. static uint8_t exp_ungroup_tbl[128][3];
  49. /** tables for ungrouping mantissas */
  50. static float b1_mantissas[32][3];
  51. static float b2_mantissas[128][3];
  52. static float b3_mantissas[8];
  53. static float b4_mantissas[128][2];
  54. static float b5_mantissas[16];
  55. /**
  56. * Quantization table: levels for symmetric. bits for asymmetric.
  57. * reference: Table 7.18 Mapping of bap to Quantizer
  58. */
  59. static const uint8_t qntztab[16] = {
  60. 0, 3, 5, 7, 11, 15,
  61. 5, 6, 7, 8, 9, 10, 11, 12, 14, 16
  62. };
  63. /** dynamic range table. converts codes to scale factors. */
  64. static float dynrng_tbl[256];
  65. /** dialogue normalization table */
  66. static float dialnorm_tbl[32];
  67. /* Adjustmens in dB gain */
  68. #define LEVEL_MINUS_3DB 0.7071067811865476
  69. #define LEVEL_MINUS_4POINT5DB 0.5946035575013605
  70. #define LEVEL_MINUS_6DB 0.5000000000000000
  71. #define LEVEL_MINUS_9DB 0.3535533905932738
  72. #define LEVEL_ZERO 0.0000000000000000
  73. #define LEVEL_ONE 1.0000000000000000
  74. static const float gain_levels[6] = {
  75. LEVEL_ZERO,
  76. LEVEL_ONE,
  77. LEVEL_MINUS_3DB,
  78. LEVEL_MINUS_4POINT5DB,
  79. LEVEL_MINUS_6DB,
  80. LEVEL_MINUS_9DB
  81. };
  82. /**
  83. * Table for center mix levels
  84. * reference: Section 5.4.2.4 cmixlev
  85. */
  86. static const uint8_t clevs[4] = { 2, 3, 4, 3 };
  87. /**
  88. * Table for surround mix levels
  89. * reference: Section 5.4.2.5 surmixlev
  90. */
  91. static const uint8_t slevs[4] = { 2, 4, 0, 4 };
  92. /**
  93. * Table for default stereo downmixing coefficients
  94. * reference: Section 7.8.2 Downmixing Into Two Channels
  95. */
  96. static const uint8_t ac3_default_coeffs[8][5][2] = {
  97. { { 1, 0 }, { 0, 1 }, },
  98. { { 2, 2 }, },
  99. { { 1, 0 }, { 0, 1 }, },
  100. { { 1, 0 }, { 3, 3 }, { 0, 1 }, },
  101. { { 1, 0 }, { 0, 1 }, { 4, 4 }, },
  102. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 5, 5 }, },
  103. { { 1, 0 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  104. { { 1, 0 }, { 3, 3 }, { 0, 1 }, { 4, 0 }, { 0, 4 }, },
  105. };
  106. /* override ac3.h to include coupling channel */
  107. #undef AC3_MAX_CHANNELS
  108. #define AC3_MAX_CHANNELS 7
  109. #define CPL_CH 0
  110. #define AC3_OUTPUT_LFEON 8
  111. typedef struct {
  112. int acmod;
  113. int dsurmod;
  114. int blksw[AC3_MAX_CHANNELS];
  115. int dithflag[AC3_MAX_CHANNELS];
  116. int dither_all;
  117. int cplinu;
  118. int chincpl[AC3_MAX_CHANNELS];
  119. int phsflginu;
  120. int cplbndstrc[18];
  121. int rematstr;
  122. int nrematbnd;
  123. int rematflg[4];
  124. int expstr[AC3_MAX_CHANNELS];
  125. int snroffst[AC3_MAX_CHANNELS];
  126. int fgain[AC3_MAX_CHANNELS];
  127. int deltbae[AC3_MAX_CHANNELS];
  128. int deltnseg[AC3_MAX_CHANNELS];
  129. uint8_t deltoffst[AC3_MAX_CHANNELS][8];
  130. uint8_t deltlen[AC3_MAX_CHANNELS][8];
  131. uint8_t deltba[AC3_MAX_CHANNELS][8];
  132. /* Derived Attributes. */
  133. int sampling_rate;
  134. int bit_rate;
  135. int frame_size;
  136. int nchans; //number of total channels
  137. int nfchans; //number of full-bandwidth channels
  138. int lfeon; //lfe channel in use
  139. int lfe_ch; ///< index of LFE channel
  140. int output_mode; ///< output channel configuration
  141. int out_channels; ///< number of output channels
  142. float downmix_coeffs[AC3_MAX_CHANNELS][2]; ///< stereo downmix coefficients
  143. float dialnorm[2]; ///< dialogue normalization
  144. float dynrng; //dynamic range gain
  145. float dynrng2; //dynamic range gain for 1+1 mode
  146. float cplco[AC3_MAX_CHANNELS][18]; //coupling coordinates
  147. int ncplbnd; //number of coupling bands
  148. int ncplsubnd; //number of coupling sub bands
  149. int startmant[AC3_MAX_CHANNELS]; ///< start frequency bin
  150. int endmant[AC3_MAX_CHANNELS]; //channel end mantissas
  151. AC3BitAllocParameters bit_alloc_params; ///< bit allocation parameters
  152. int8_t dexps[AC3_MAX_CHANNELS][256]; ///< decoded exponents
  153. uint8_t bap[AC3_MAX_CHANNELS][256]; ///< bit allocation pointers
  154. int16_t psd[AC3_MAX_CHANNELS][256]; ///< scaled exponents
  155. int16_t bndpsd[AC3_MAX_CHANNELS][50]; ///< interpolated exponents
  156. int16_t mask[AC3_MAX_CHANNELS][50]; ///< masking curve values
  157. DECLARE_ALIGNED_16(float, transform_coeffs[AC3_MAX_CHANNELS][256]); //transform coefficients
  158. /* For IMDCT. */
  159. MDCTContext imdct_512; //for 512 sample imdct transform
  160. MDCTContext imdct_256; //for 256 sample imdct transform
  161. DSPContext dsp; //for optimization
  162. float add_bias; ///< offset for float_to_int16 conversion
  163. float mul_bias; ///< scaling for float_to_int16 conversion
  164. DECLARE_ALIGNED_16(float, output[AC3_MAX_CHANNELS-1][256]); //output after imdct transform and windowing
  165. DECLARE_ALIGNED_16(short, int_output[AC3_MAX_CHANNELS-1][256]); ///< final 16-bit integer output
  166. DECLARE_ALIGNED_16(float, delay[AC3_MAX_CHANNELS-1][256]); //delay - added to the next block
  167. DECLARE_ALIGNED_16(float, tmp_imdct[256]); //temporary storage for imdct transform
  168. DECLARE_ALIGNED_16(float, tmp_output[512]); //temporary storage for output before windowing
  169. DECLARE_ALIGNED_16(float, window[256]); //window coefficients
  170. /* Miscellaneous. */
  171. GetBitContext gb;
  172. AVRandomState dith_state; //for dither generation
  173. } AC3DecodeContext;
  174. /*********** BEGIN INIT HELPER FUNCTIONS ***********/
  175. /**
  176. * Generate a Kaiser-Bessel Derived Window.
  177. */
  178. static void ac3_window_init(float *window)
  179. {
  180. int i, j;
  181. double sum = 0.0, bessel, tmp;
  182. double local_window[256];
  183. double alpha2 = (5.0 * M_PI / 256.0) * (5.0 * M_PI / 256.0);
  184. for (i = 0; i < 256; i++) {
  185. tmp = i * (256 - i) * alpha2;
  186. bessel = 1.0;
  187. for (j = 100; j > 0; j--) /* defaul to 100 iterations */
  188. bessel = bessel * tmp / (j * j) + 1;
  189. sum += bessel;
  190. local_window[i] = sum;
  191. }
  192. sum++;
  193. for (i = 0; i < 256; i++)
  194. window[i] = sqrt(local_window[i] / sum);
  195. }
  196. static inline float
  197. symmetric_dequant(int code, int levels)
  198. {
  199. return (code - (levels >> 1)) * (2.0f / levels);
  200. }
  201. /*
  202. * Initialize tables at runtime.
  203. */
  204. static void ac3_tables_init(void)
  205. {
  206. int i;
  207. /* generate grouped mantissa tables
  208. reference: Section 7.3.5 Ungrouping of Mantissas */
  209. for(i=0; i<32; i++) {
  210. /* bap=1 mantissas */
  211. b1_mantissas[i][0] = symmetric_dequant( i / 9 , 3);
  212. b1_mantissas[i][1] = symmetric_dequant((i % 9) / 3, 3);
  213. b1_mantissas[i][2] = symmetric_dequant((i % 9) % 3, 3);
  214. }
  215. for(i=0; i<128; i++) {
  216. /* bap=2 mantissas */
  217. b2_mantissas[i][0] = symmetric_dequant( i / 25 , 5);
  218. b2_mantissas[i][1] = symmetric_dequant((i % 25) / 5, 5);
  219. b2_mantissas[i][2] = symmetric_dequant((i % 25) % 5, 5);
  220. /* bap=4 mantissas */
  221. b4_mantissas[i][0] = symmetric_dequant(i / 11, 11);
  222. b4_mantissas[i][1] = symmetric_dequant(i % 11, 11);
  223. }
  224. /* generate ungrouped mantissa tables
  225. reference: Tables 7.21 and 7.23 */
  226. for(i=0; i<7; i++) {
  227. /* bap=3 mantissas */
  228. b3_mantissas[i] = symmetric_dequant(i, 7);
  229. }
  230. for(i=0; i<15; i++) {
  231. /* bap=5 mantissas */
  232. b5_mantissas[i] = symmetric_dequant(i, 15);
  233. }
  234. /* generate dynamic range table
  235. reference: Section 7.7.1 Dynamic Range Control */
  236. for(i=0; i<256; i++) {
  237. int v = (i >> 5) - ((i >> 7) << 3) - 5;
  238. dynrng_tbl[i] = powf(2.0f, v) * ((i & 0x1F) | 0x20);
  239. }
  240. /* generate dialogue normalization table
  241. references: Section 5.4.2.8 dialnorm
  242. Section 7.6 Dialogue Normalization */
  243. for(i=1; i<32; i++) {
  244. dialnorm_tbl[i] = expf((i-31) * M_LN10 / 20.0f);
  245. }
  246. dialnorm_tbl[0] = dialnorm_tbl[31];
  247. //generate scale factors
  248. for (i = 0; i < 25; i++)
  249. scale_factors[i] = pow(2.0, -i);
  250. /* generate exponent tables
  251. reference: Section 7.1.3 Exponent Decoding */
  252. for(i=0; i<128; i++) {
  253. exp_ungroup_tbl[i][0] = i / 25;
  254. exp_ungroup_tbl[i][1] = (i % 25) / 5;
  255. exp_ungroup_tbl[i][2] = (i % 25) % 5;
  256. }
  257. }
  258. static int ac3_decode_init(AVCodecContext *avctx)
  259. {
  260. AC3DecodeContext *ctx = avctx->priv_data;
  261. ac3_common_init();
  262. ac3_tables_init();
  263. ff_mdct_init(&ctx->imdct_256, 8, 1);
  264. ff_mdct_init(&ctx->imdct_512, 9, 1);
  265. ac3_window_init(ctx->window);
  266. dsputil_init(&ctx->dsp, avctx);
  267. av_init_random(0, &ctx->dith_state);
  268. if(ctx->dsp.float_to_int16 == ff_float_to_int16_c) {
  269. ctx->add_bias = 385.0f;
  270. ctx->mul_bias = 1.0f;
  271. } else {
  272. ctx->add_bias = 0.0f;
  273. ctx->mul_bias = 32767.0f;
  274. }
  275. return 0;
  276. }
  277. /*********** END INIT FUNCTIONS ***********/
  278. /**
  279. * Parses the 'sync info' and 'bit stream info' from the AC-3 bitstream.
  280. * GetBitContext within AC3DecodeContext must point to
  281. * start of the synchronized ac3 bitstream.
  282. */
  283. static int ac3_parse_header(AC3DecodeContext *ctx)
  284. {
  285. AC3HeaderInfo hdr;
  286. GetBitContext *gb = &ctx->gb;
  287. float cmixlev, surmixlev;
  288. int err, i;
  289. err = ff_ac3_parse_header(gb->buffer, &hdr);
  290. if(err)
  291. return err;
  292. /* get decoding parameters from header info */
  293. ctx->bit_alloc_params.fscod = hdr.fscod;
  294. ctx->acmod = hdr.acmod;
  295. cmixlev = gain_levels[clevs[hdr.cmixlev]];
  296. surmixlev = gain_levels[slevs[hdr.surmixlev]];
  297. ctx->dsurmod = hdr.dsurmod;
  298. ctx->lfeon = hdr.lfeon;
  299. ctx->bit_alloc_params.halfratecod = hdr.halfratecod;
  300. ctx->sampling_rate = hdr.sample_rate;
  301. ctx->bit_rate = hdr.bit_rate;
  302. ctx->nchans = hdr.channels;
  303. ctx->nfchans = ctx->nchans - ctx->lfeon;
  304. ctx->lfe_ch = ctx->nfchans + 1;
  305. ctx->frame_size = hdr.frame_size;
  306. /* set default output to all source channels */
  307. ctx->out_channels = ctx->nchans;
  308. ctx->output_mode = ctx->acmod;
  309. if(ctx->lfeon)
  310. ctx->output_mode |= AC3_OUTPUT_LFEON;
  311. /* skip over portion of header which has already been read */
  312. skip_bits(gb, 16); //skip the sync_word, sync_info->sync_word = get_bits(gb, 16);
  313. skip_bits(gb, 16); // skip crc1
  314. skip_bits(gb, 8); // skip fscod and frmsizecod
  315. skip_bits(gb, 11); // skip bsid, bsmod, and acmod
  316. if(ctx->acmod == AC3_ACMOD_STEREO) {
  317. skip_bits(gb, 2); // skip dsurmod
  318. } else {
  319. if((ctx->acmod & 1) && ctx->acmod != AC3_ACMOD_MONO)
  320. skip_bits(gb, 2); // skip cmixlev
  321. if(ctx->acmod & 4)
  322. skip_bits(gb, 2); // skip surmixlev
  323. }
  324. skip_bits1(gb); // skip lfeon
  325. /* read the rest of the bsi. read twice for dual mono mode. */
  326. i = !(ctx->acmod);
  327. do {
  328. ctx->dialnorm[i] = dialnorm_tbl[get_bits(gb, 5)]; // dialogue normalization
  329. if (get_bits1(gb))
  330. skip_bits(gb, 8); //skip compression
  331. if (get_bits1(gb))
  332. skip_bits(gb, 8); //skip language code
  333. if (get_bits1(gb))
  334. skip_bits(gb, 7); //skip audio production information
  335. } while (i--);
  336. skip_bits(gb, 2); //skip copyright bit and original bitstream bit
  337. /* FIXME: read & use the xbsi1 downmix levels */
  338. if (get_bits1(gb))
  339. skip_bits(gb, 14); //skip timecode1
  340. if (get_bits1(gb))
  341. skip_bits(gb, 14); //skip timecode2
  342. if (get_bits1(gb)) {
  343. i = get_bits(gb, 6); //additional bsi length
  344. do {
  345. skip_bits(gb, 8);
  346. } while(i--);
  347. }
  348. /* set stereo downmixing coefficients
  349. reference: Section 7.8.2 Downmixing Into Two Channels */
  350. for(i=0; i<ctx->nfchans; i++) {
  351. ctx->downmix_coeffs[i][0] = gain_levels[ac3_default_coeffs[ctx->acmod][i][0]];
  352. ctx->downmix_coeffs[i][1] = gain_levels[ac3_default_coeffs[ctx->acmod][i][1]];
  353. }
  354. if(ctx->acmod > 1 && ctx->acmod & 1) {
  355. ctx->downmix_coeffs[1][0] = ctx->downmix_coeffs[1][1] = cmixlev;
  356. }
  357. if(ctx->acmod == AC3_ACMOD_2F1R || ctx->acmod == AC3_ACMOD_3F1R) {
  358. int nf = ctx->acmod - 2;
  359. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf][1] = surmixlev * LEVEL_MINUS_3DB;
  360. }
  361. if(ctx->acmod == AC3_ACMOD_2F2R || ctx->acmod == AC3_ACMOD_3F2R) {
  362. int nf = ctx->acmod - 4;
  363. ctx->downmix_coeffs[nf][0] = ctx->downmix_coeffs[nf+1][1] = surmixlev;
  364. }
  365. return 0;
  366. }
  367. /**
  368. * Decodes the grouped exponents.
  369. * This function decodes the coded exponents according to exponent strategy
  370. * and stores them in the decoded exponents buffer.
  371. *
  372. * @param[in] gb GetBitContext which points to start of coded exponents
  373. * @param[in] expstr Exponent coding strategy
  374. * @param[in] ngrps Number of grouped exponents
  375. * @param[in] absexp Absolute exponent or DC exponent
  376. * @param[out] dexps Decoded exponents are stored in dexps
  377. */
  378. static void decode_exponents(GetBitContext *gb, int expstr, int ngrps,
  379. uint8_t absexp, int8_t *dexps)
  380. {
  381. int i, j, grp, grpsize;
  382. int dexp[256];
  383. int expacc, prevexp;
  384. /* unpack groups */
  385. grpsize = expstr + (expstr == EXP_D45);
  386. for(grp=0,i=0; grp<ngrps; grp++) {
  387. expacc = get_bits(gb, 7);
  388. dexp[i++] = exp_ungroup_tbl[expacc][0];
  389. dexp[i++] = exp_ungroup_tbl[expacc][1];
  390. dexp[i++] = exp_ungroup_tbl[expacc][2];
  391. }
  392. /* convert to absolute exps and expand groups */
  393. prevexp = absexp;
  394. for(i=0; i<ngrps*3; i++) {
  395. prevexp = av_clip(prevexp + dexp[i]-2, 0, 24);
  396. for(j=0; j<grpsize; j++) {
  397. dexps[(i*grpsize)+j] = prevexp;
  398. }
  399. }
  400. }
  401. /**
  402. * Generates transform coefficients for each coupled channel in the coupling
  403. * range using the coupling coefficients and coupling coordinates.
  404. * reference: Section 7.4.3 Coupling Coordinate Format
  405. */
  406. static void uncouple_channels(AC3DecodeContext *ctx)
  407. {
  408. int i, j, ch, bnd, subbnd;
  409. subbnd = -1;
  410. i = ctx->startmant[CPL_CH];
  411. for(bnd=0; bnd<ctx->ncplbnd; bnd++) {
  412. do {
  413. subbnd++;
  414. for(j=0; j<12; j++) {
  415. for(ch=1; ch<=ctx->nfchans; ch++) {
  416. if(ctx->chincpl[ch])
  417. ctx->transform_coeffs[ch][i] = ctx->transform_coeffs[CPL_CH][i] * ctx->cplco[ch][bnd] * 8.0f;
  418. }
  419. i++;
  420. }
  421. } while(ctx->cplbndstrc[subbnd]);
  422. }
  423. }
  424. typedef struct { /* grouped mantissas for 3-level 5-leve and 11-level quantization */
  425. float b1_mant[3];
  426. float b2_mant[3];
  427. float b4_mant[2];
  428. int b1ptr;
  429. int b2ptr;
  430. int b4ptr;
  431. } mant_groups;
  432. /* Get the transform coefficients for particular channel */
  433. static int get_transform_coeffs_ch(AC3DecodeContext *ctx, int ch_index, mant_groups *m)
  434. {
  435. GetBitContext *gb = &ctx->gb;
  436. int i, gcode, tbap, start, end;
  437. uint8_t *exps;
  438. uint8_t *bap;
  439. float *coeffs;
  440. exps = ctx->dexps[ch_index];
  441. bap = ctx->bap[ch_index];
  442. coeffs = ctx->transform_coeffs[ch_index];
  443. start = ctx->startmant[ch_index];
  444. end = ctx->endmant[ch_index];
  445. for (i = start; i < end; i++) {
  446. tbap = bap[i];
  447. switch (tbap) {
  448. case 0:
  449. coeffs[i] = ((av_random(&ctx->dith_state) & 0xFFFF) * LEVEL_MINUS_3DB) / 32768.0f;
  450. break;
  451. case 1:
  452. if(m->b1ptr > 2) {
  453. gcode = get_bits(gb, 5);
  454. m->b1_mant[0] = b1_mantissas[gcode][0];
  455. m->b1_mant[1] = b1_mantissas[gcode][1];
  456. m->b1_mant[2] = b1_mantissas[gcode][2];
  457. m->b1ptr = 0;
  458. }
  459. coeffs[i] = m->b1_mant[m->b1ptr++];
  460. break;
  461. case 2:
  462. if(m->b2ptr > 2) {
  463. gcode = get_bits(gb, 7);
  464. m->b2_mant[0] = b2_mantissas[gcode][0];
  465. m->b2_mant[1] = b2_mantissas[gcode][1];
  466. m->b2_mant[2] = b2_mantissas[gcode][2];
  467. m->b2ptr = 0;
  468. }
  469. coeffs[i] = m->b2_mant[m->b2ptr++];
  470. break;
  471. case 3:
  472. coeffs[i] = b3_mantissas[get_bits(gb, 3)];
  473. break;
  474. case 4:
  475. if(m->b4ptr > 1) {
  476. gcode = get_bits(gb, 7);
  477. m->b4_mant[0] = b4_mantissas[gcode][0];
  478. m->b4_mant[1] = b4_mantissas[gcode][1];
  479. m->b4ptr = 0;
  480. }
  481. coeffs[i] = m->b4_mant[m->b4ptr++];
  482. break;
  483. case 5:
  484. coeffs[i] = b5_mantissas[get_bits(gb, 4)];
  485. break;
  486. default:
  487. coeffs[i] = get_sbits(gb, qntztab[tbap]) * scale_factors[qntztab[tbap]-1];
  488. break;
  489. }
  490. coeffs[i] *= scale_factors[exps[i]];
  491. }
  492. return 0;
  493. }
  494. /**
  495. * Removes random dithering from coefficients with zero-bit mantissas
  496. * reference: Section 7.3.4 Dither for Zero Bit Mantissas (bap=0)
  497. */
  498. static void remove_dithering(AC3DecodeContext *ctx) {
  499. int ch, i;
  500. int end=0;
  501. float *coeffs;
  502. uint8_t *bap;
  503. for(ch=1; ch<=ctx->nfchans; ch++) {
  504. if(!ctx->dithflag[ch]) {
  505. coeffs = ctx->transform_coeffs[ch];
  506. bap = ctx->bap[ch];
  507. if(ctx->chincpl[ch])
  508. end = ctx->startmant[CPL_CH];
  509. else
  510. end = ctx->endmant[ch];
  511. for(i=0; i<end; i++) {
  512. if(bap[i] == 0)
  513. coeffs[i] = 0.0f;
  514. }
  515. if(ctx->chincpl[ch]) {
  516. bap = ctx->bap[CPL_CH];
  517. for(; i<ctx->endmant[CPL_CH]; i++) {
  518. if(bap[i] == 0)
  519. coeffs[i] = 0.0f;
  520. }
  521. }
  522. }
  523. }
  524. }
  525. /* Get the transform coefficients.
  526. * This function extracts the tranform coefficients form the ac3 bitstream.
  527. * This function is called after bit allocation is performed.
  528. */
  529. static int get_transform_coeffs(AC3DecodeContext * ctx)
  530. {
  531. int ch, end;
  532. int got_cplchan = 0;
  533. mant_groups m;
  534. m.b1ptr = m.b2ptr = m.b4ptr = 3;
  535. for (ch = 1; ch <= ctx->nchans; ch++) {
  536. /* transform coefficients for individual channel */
  537. if (get_transform_coeffs_ch(ctx, ch, &m))
  538. return -1;
  539. /* tranform coefficients for coupling channels */
  540. if (ctx->chincpl[ch]) {
  541. if (!got_cplchan) {
  542. if (get_transform_coeffs_ch(ctx, CPL_CH, &m)) {
  543. av_log(NULL, AV_LOG_ERROR, "error in decoupling channels\n");
  544. return -1;
  545. }
  546. uncouple_channels(ctx);
  547. got_cplchan = 1;
  548. }
  549. end = ctx->endmant[CPL_CH];
  550. } else {
  551. end = ctx->endmant[ch];
  552. }
  553. do
  554. ctx->transform_coeffs[ch][end] = 0;
  555. while(++end < 256);
  556. }
  557. /* if any channel doesn't use dithering, zero appropriate coefficients */
  558. if(!ctx->dither_all)
  559. remove_dithering(ctx);
  560. return 0;
  561. }
  562. /**
  563. * Performs stereo rematrixing.
  564. * reference: Section 7.5.4 Rematrixing : Decoding Technique
  565. */
  566. static void do_rematrixing(AC3DecodeContext *ctx)
  567. {
  568. int bnd, i;
  569. int end, bndend;
  570. float tmp0, tmp1;
  571. end = FFMIN(ctx->endmant[1], ctx->endmant[2]);
  572. for(bnd=0; bnd<ctx->nrematbnd; bnd++) {
  573. if(ctx->rematflg[bnd]) {
  574. bndend = FFMIN(end, rematrix_band_tbl[bnd+1]);
  575. for(i=rematrix_band_tbl[bnd]; i<bndend; i++) {
  576. tmp0 = ctx->transform_coeffs[1][i];
  577. tmp1 = ctx->transform_coeffs[2][i];
  578. ctx->transform_coeffs[1][i] = tmp0 + tmp1;
  579. ctx->transform_coeffs[2][i] = tmp0 - tmp1;
  580. }
  581. }
  582. }
  583. }
  584. /* This function performs the imdct on 256 sample transform
  585. * coefficients.
  586. */
  587. static void do_imdct_256(AC3DecodeContext *ctx, int chindex)
  588. {
  589. int i, k;
  590. DECLARE_ALIGNED_16(float, x[128]);
  591. FFTComplex z[2][64];
  592. float *o_ptr = ctx->tmp_output;
  593. for(i=0; i<2; i++) {
  594. /* de-interleave coefficients */
  595. for(k=0; k<128; k++) {
  596. x[k] = ctx->transform_coeffs[chindex][2*k+i];
  597. }
  598. /* run standard IMDCT */
  599. ctx->imdct_256.fft.imdct_calc(&ctx->imdct_256, o_ptr, x, ctx->tmp_imdct);
  600. /* reverse the post-rotation & reordering from standard IMDCT */
  601. for(k=0; k<32; k++) {
  602. z[i][32+k].re = -o_ptr[128+2*k];
  603. z[i][32+k].im = -o_ptr[2*k];
  604. z[i][31-k].re = o_ptr[2*k+1];
  605. z[i][31-k].im = o_ptr[128+2*k+1];
  606. }
  607. }
  608. /* apply AC-3 post-rotation & reordering */
  609. for(k=0; k<64; k++) {
  610. o_ptr[ 2*k ] = -z[0][ k].im;
  611. o_ptr[ 2*k+1] = z[0][63-k].re;
  612. o_ptr[128+2*k ] = -z[0][ k].re;
  613. o_ptr[128+2*k+1] = z[0][63-k].im;
  614. o_ptr[256+2*k ] = -z[1][ k].re;
  615. o_ptr[256+2*k+1] = z[1][63-k].im;
  616. o_ptr[384+2*k ] = z[1][ k].im;
  617. o_ptr[384+2*k+1] = -z[1][63-k].re;
  618. }
  619. }
  620. /* IMDCT Transform. */
  621. static inline void do_imdct(AC3DecodeContext *ctx)
  622. {
  623. int ch;
  624. int nchans;
  625. nchans = ctx->nfchans;
  626. if(ctx->output_mode & AC3_OUTPUT_LFEON)
  627. nchans++;
  628. for (ch=1; ch<=nchans; ch++) {
  629. if (ctx->blksw[ch]) {
  630. do_imdct_256(ctx, ch);
  631. } else {
  632. ctx->imdct_512.fft.imdct_calc(&ctx->imdct_512, ctx->tmp_output,
  633. ctx->transform_coeffs[ch],
  634. ctx->tmp_imdct);
  635. }
  636. ctx->dsp.vector_fmul_add_add(ctx->output[ch-1], ctx->tmp_output,
  637. ctx->window, ctx->delay[ch-1], 0, 256, 1);
  638. ctx->dsp.vector_fmul_reverse(ctx->delay[ch-1], ctx->tmp_output+256,
  639. ctx->window, 256);
  640. }
  641. }
  642. /**
  643. * Downmixes the output to stereo.
  644. */
  645. static void ac3_downmix(float samples[AC3_MAX_CHANNELS][256], int nfchans,
  646. int output_mode, float coef[AC3_MAX_CHANNELS][2])
  647. {
  648. int i, j;
  649. float v0, v1, s0, s1;
  650. for(i=0; i<256; i++) {
  651. v0 = v1 = s0 = s1 = 0.0f;
  652. for(j=0; j<nfchans; j++) {
  653. v0 += samples[j][i] * coef[j][0];
  654. v1 += samples[j][i] * coef[j][1];
  655. s0 += coef[j][0];
  656. s1 += coef[j][1];
  657. }
  658. v0 /= s0;
  659. v1 /= s1;
  660. if(output_mode == AC3_ACMOD_MONO) {
  661. samples[0][i] = (v0 + v1) * LEVEL_MINUS_3DB;
  662. } else if(output_mode == AC3_ACMOD_STEREO) {
  663. samples[0][i] = v0;
  664. samples[1][i] = v1;
  665. }
  666. }
  667. }
  668. /* Parse the audio block from ac3 bitstream.
  669. * This function extract the audio block from the ac3 bitstream
  670. * and produces the output for the block. This function must
  671. * be called for each of the six audio block in the ac3 bitstream.
  672. */
  673. static int ac3_parse_audio_block(AC3DecodeContext *ctx, int blk)
  674. {
  675. int nfchans = ctx->nfchans;
  676. int acmod = ctx->acmod;
  677. int i, bnd, seg, ch;
  678. GetBitContext *gb = &ctx->gb;
  679. uint8_t bit_alloc_stages[AC3_MAX_CHANNELS];
  680. memset(bit_alloc_stages, 0, AC3_MAX_CHANNELS);
  681. for (ch = 1; ch <= nfchans; ch++) /*block switch flag */
  682. ctx->blksw[ch] = get_bits1(gb);
  683. ctx->dither_all = 1;
  684. for (ch = 1; ch <= nfchans; ch++) { /* dithering flag */
  685. ctx->dithflag[ch] = get_bits1(gb);
  686. if(!ctx->dithflag[ch])
  687. ctx->dither_all = 0;
  688. }
  689. if (get_bits1(gb)) { /* dynamic range */
  690. ctx->dynrng = dynrng_tbl[get_bits(gb, 8)];
  691. } else if(blk == 0) {
  692. ctx->dynrng = 1.0;
  693. }
  694. if(acmod == AC3_ACMOD_DUALMONO) { /* dynamic range 1+1 mode */
  695. if(get_bits1(gb)) {
  696. ctx->dynrng2 = dynrng_tbl[get_bits(gb, 8)];
  697. } else if(blk == 0) {
  698. ctx->dynrng2 = 1.0;
  699. }
  700. }
  701. if (get_bits1(gb)) { /* coupling strategy */
  702. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  703. ctx->cplinu = get_bits1(gb);
  704. if (ctx->cplinu) { /* coupling in use */
  705. int cplbegf, cplendf;
  706. for (ch = 1; ch <= nfchans; ch++)
  707. ctx->chincpl[ch] = get_bits1(gb);
  708. if (acmod == AC3_ACMOD_STEREO)
  709. ctx->phsflginu = get_bits1(gb); //phase flag in use
  710. cplbegf = get_bits(gb, 4);
  711. cplendf = get_bits(gb, 4);
  712. if (3 + cplendf - cplbegf < 0) {
  713. av_log(NULL, AV_LOG_ERROR, "cplendf = %d < cplbegf = %d\n", cplendf, cplbegf);
  714. return -1;
  715. }
  716. ctx->ncplbnd = ctx->ncplsubnd = 3 + cplendf - cplbegf;
  717. ctx->startmant[CPL_CH] = cplbegf * 12 + 37;
  718. ctx->endmant[CPL_CH] = cplendf * 12 + 73;
  719. for (bnd = 0; bnd < ctx->ncplsubnd - 1; bnd++) { /* coupling band structure */
  720. if (get_bits1(gb)) {
  721. ctx->cplbndstrc[bnd] = 1;
  722. ctx->ncplbnd--;
  723. }
  724. }
  725. } else {
  726. for (ch = 1; ch <= nfchans; ch++)
  727. ctx->chincpl[ch] = 0;
  728. }
  729. }
  730. if (ctx->cplinu) {
  731. int cplcoe = 0;
  732. for (ch = 1; ch <= nfchans; ch++) {
  733. if (ctx->chincpl[ch]) {
  734. if (get_bits1(gb)) { /* coupling co-ordinates */
  735. int mstrcplco, cplcoexp, cplcomant;
  736. cplcoe = 1;
  737. mstrcplco = 3 * get_bits(gb, 2);
  738. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  739. cplcoexp = get_bits(gb, 4);
  740. cplcomant = get_bits(gb, 4);
  741. if (cplcoexp == 15)
  742. ctx->cplco[ch][bnd] = cplcomant / 16.0f;
  743. else
  744. ctx->cplco[ch][bnd] = (cplcomant + 16.0f) / 32.0f;
  745. ctx->cplco[ch][bnd] *= scale_factors[cplcoexp + mstrcplco];
  746. }
  747. }
  748. }
  749. }
  750. if (acmod == AC3_ACMOD_STEREO && ctx->phsflginu && cplcoe) {
  751. for (bnd = 0; bnd < ctx->ncplbnd; bnd++) {
  752. if (get_bits1(gb))
  753. ctx->cplco[2][bnd] = -ctx->cplco[2][bnd];
  754. }
  755. }
  756. }
  757. if (acmod == AC3_ACMOD_STEREO) {/* rematrixing */
  758. ctx->rematstr = get_bits1(gb);
  759. if (ctx->rematstr) {
  760. ctx->nrematbnd = 4;
  761. if(ctx->cplinu && ctx->startmant[CPL_CH] <= 61)
  762. ctx->nrematbnd -= 1 + (ctx->startmant[CPL_CH] == 37);
  763. for(bnd=0; bnd<ctx->nrematbnd; bnd++)
  764. ctx->rematflg[bnd] = get_bits1(gb);
  765. }
  766. }
  767. ctx->expstr[CPL_CH] = EXP_REUSE;
  768. ctx->expstr[ctx->lfe_ch] = EXP_REUSE;
  769. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  770. if(ch == ctx->lfe_ch)
  771. ctx->expstr[ch] = get_bits(gb, 1);
  772. else
  773. ctx->expstr[ch] = get_bits(gb, 2);
  774. if(ctx->expstr[ch] != EXP_REUSE)
  775. bit_alloc_stages[ch] = 3;
  776. }
  777. for (ch = 1; ch <= nfchans; ch++) { /* channel bandwidth code */
  778. ctx->startmant[ch] = 0;
  779. if (ctx->expstr[ch] != EXP_REUSE) {
  780. int prev = ctx->endmant[ch];
  781. if (ctx->chincpl[ch])
  782. ctx->endmant[ch] = ctx->startmant[CPL_CH];
  783. else {
  784. int chbwcod = get_bits(gb, 6);
  785. if (chbwcod > 60) {
  786. av_log(NULL, AV_LOG_ERROR, "chbwcod = %d > 60", chbwcod);
  787. return -1;
  788. }
  789. ctx->endmant[ch] = chbwcod * 3 + 73;
  790. }
  791. if(blk > 0 && ctx->endmant[ch] != prev)
  792. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  793. }
  794. }
  795. ctx->startmant[ctx->lfe_ch] = 0;
  796. ctx->endmant[ctx->lfe_ch] = 7;
  797. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) {
  798. if (ctx->expstr[ch] != EXP_REUSE) {
  799. int grpsize, ngrps;
  800. grpsize = 3 << (ctx->expstr[ch] - 1);
  801. if(ch == CPL_CH)
  802. ngrps = (ctx->endmant[ch] - ctx->startmant[ch]) / grpsize;
  803. else if(ch == ctx->lfe_ch)
  804. ngrps = 2;
  805. else
  806. ngrps = (ctx->endmant[ch] + grpsize - 4) / grpsize;
  807. ctx->dexps[ch][0] = get_bits(gb, 4) << !ch;
  808. decode_exponents(gb, ctx->expstr[ch], ngrps, ctx->dexps[ch][0],
  809. &ctx->dexps[ch][ctx->startmant[ch]+!!ch]);
  810. if(ch != CPL_CH && ch != ctx->lfe_ch)
  811. skip_bits(gb, 2); /* skip gainrng */
  812. }
  813. }
  814. if (get_bits1(gb)) { /* bit allocation information */
  815. ctx->bit_alloc_params.sdecay = ff_sdecaytab[get_bits(gb, 2)];
  816. ctx->bit_alloc_params.fdecay = ff_fdecaytab[get_bits(gb, 2)];
  817. ctx->bit_alloc_params.sgain = ff_sgaintab[get_bits(gb, 2)];
  818. ctx->bit_alloc_params.dbknee = ff_dbkneetab[get_bits(gb, 2)];
  819. ctx->bit_alloc_params.floor = ff_floortab[get_bits(gb, 3)];
  820. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  821. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  822. }
  823. }
  824. if (get_bits1(gb)) { /* snroffset */
  825. int csnr;
  826. csnr = (get_bits(gb, 6) - 15) << 4;
  827. for (ch = !ctx->cplinu; ch <= ctx->nchans; ch++) { /* snr offset and fast gain */
  828. ctx->snroffst[ch] = (csnr + get_bits(gb, 4)) << 2;
  829. ctx->fgain[ch] = ff_fgaintab[get_bits(gb, 3)];
  830. }
  831. memset(bit_alloc_stages, 3, AC3_MAX_CHANNELS);
  832. }
  833. if (ctx->cplinu && get_bits1(gb)) { /* coupling leak information */
  834. ctx->bit_alloc_params.cplfleak = get_bits(gb, 3);
  835. ctx->bit_alloc_params.cplsleak = get_bits(gb, 3);
  836. bit_alloc_stages[CPL_CH] = FFMAX(bit_alloc_stages[CPL_CH], 2);
  837. }
  838. if (get_bits1(gb)) { /* delta bit allocation information */
  839. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  840. ctx->deltbae[ch] = get_bits(gb, 2);
  841. if (ctx->deltbae[ch] == DBA_RESERVED) {
  842. av_log(NULL, AV_LOG_ERROR, "delta bit allocation strategy reserved\n");
  843. return -1;
  844. }
  845. bit_alloc_stages[ch] = FFMAX(bit_alloc_stages[ch], 2);
  846. }
  847. for (ch = !ctx->cplinu; ch <= nfchans; ch++) {
  848. if (ctx->deltbae[ch] == DBA_NEW) {/*channel delta offset, len and bit allocation */
  849. ctx->deltnseg[ch] = get_bits(gb, 3);
  850. for (seg = 0; seg <= ctx->deltnseg[ch]; seg++) {
  851. ctx->deltoffst[ch][seg] = get_bits(gb, 5);
  852. ctx->deltlen[ch][seg] = get_bits(gb, 4);
  853. ctx->deltba[ch][seg] = get_bits(gb, 3);
  854. }
  855. }
  856. }
  857. } else if(blk == 0) {
  858. for(ch=0; ch<=ctx->nchans; ch++) {
  859. ctx->deltbae[ch] = DBA_NONE;
  860. }
  861. }
  862. for(ch=!ctx->cplinu; ch<=ctx->nchans; ch++) {
  863. if(bit_alloc_stages[ch] > 2) {
  864. /* Exponent mapping into PSD and PSD integration */
  865. ff_ac3_bit_alloc_calc_psd(ctx->dexps[ch],
  866. ctx->startmant[ch], ctx->endmant[ch],
  867. ctx->psd[ch], ctx->bndpsd[ch]);
  868. }
  869. if(bit_alloc_stages[ch] > 1) {
  870. /* Compute excitation function, Compute masking curve, and
  871. Apply delta bit allocation */
  872. ff_ac3_bit_alloc_calc_mask(&ctx->bit_alloc_params, ctx->bndpsd[ch],
  873. ctx->startmant[ch], ctx->endmant[ch],
  874. ctx->fgain[ch], (ch == ctx->lfe_ch),
  875. ctx->deltbae[ch], ctx->deltnseg[ch],
  876. ctx->deltoffst[ch], ctx->deltlen[ch],
  877. ctx->deltba[ch], ctx->mask[ch]);
  878. }
  879. if(bit_alloc_stages[ch] > 0) {
  880. /* Compute bit allocation */
  881. ff_ac3_bit_alloc_calc_bap(ctx->mask[ch], ctx->psd[ch],
  882. ctx->startmant[ch], ctx->endmant[ch],
  883. ctx->snroffst[ch],
  884. ctx->bit_alloc_params.floor,
  885. ctx->bap[ch]);
  886. }
  887. }
  888. if (get_bits1(gb)) { /* unused dummy data */
  889. int skipl = get_bits(gb, 9);
  890. while(skipl--)
  891. skip_bits(gb, 8);
  892. }
  893. /* unpack the transform coefficients
  894. * * this also uncouples channels if coupling is in use.
  895. */
  896. if (get_transform_coeffs(ctx)) {
  897. av_log(NULL, AV_LOG_ERROR, "Error in routine get_transform_coeffs\n");
  898. return -1;
  899. }
  900. /* recover coefficients if rematrixing is in use */
  901. if(ctx->acmod == AC3_ACMOD_STEREO)
  902. do_rematrixing(ctx);
  903. /* apply scaling to coefficients (headroom, dialnorm, dynrng) */
  904. for(ch=1; ch<=ctx->nchans; ch++) {
  905. float gain = 2.0f * ctx->mul_bias;
  906. if(ctx->acmod == AC3_ACMOD_DUALMONO && ch == 2) {
  907. gain *= ctx->dialnorm[ch-1] * ctx->dynrng2;
  908. } else {
  909. gain *= ctx->dialnorm[0] * ctx->dynrng;
  910. }
  911. for(i=0; i<ctx->endmant[ch]; i++) {
  912. ctx->transform_coeffs[ch][i] *= gain;
  913. }
  914. }
  915. do_imdct(ctx);
  916. /* downmix output if needed */
  917. if(ctx->nchans != ctx->out_channels && !((ctx->output_mode & AC3_OUTPUT_LFEON) &&
  918. ctx->nfchans == ctx->out_channels)) {
  919. ac3_downmix(ctx->output, ctx->nfchans, ctx->output_mode,
  920. ctx->downmix_coeffs);
  921. }
  922. /* convert float to 16-bit integer */
  923. for(ch=0; ch<ctx->out_channels; ch++) {
  924. for(i=0; i<256; i++) {
  925. ctx->output[ch][i] += ctx->add_bias;
  926. }
  927. ctx->dsp.float_to_int16(ctx->int_output[ch], ctx->output[ch], 256);
  928. }
  929. return 0;
  930. }
  931. /* Decode ac3 frame.
  932. *
  933. * @param avctx Pointer to AVCodecContext
  934. * @param data Pointer to pcm smaples
  935. * @param data_size Set to number of pcm samples produced by decoding
  936. * @param buf Data to be decoded
  937. * @param buf_size Size of the buffer
  938. */
  939. static int ac3_decode_frame(AVCodecContext * avctx, void *data, int *data_size, uint8_t *buf, int buf_size)
  940. {
  941. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  942. int16_t *out_samples = (int16_t *)data;
  943. int i, blk, ch;
  944. //Initialize the GetBitContext with the start of valid AC3 Frame.
  945. init_get_bits(&ctx->gb, buf, buf_size * 8);
  946. //Parse the syncinfo.
  947. if (ac3_parse_header(ctx)) {
  948. av_log(avctx, AV_LOG_ERROR, "\n");
  949. *data_size = 0;
  950. return buf_size;
  951. }
  952. avctx->sample_rate = ctx->sampling_rate;
  953. avctx->bit_rate = ctx->bit_rate;
  954. /* channel config */
  955. ctx->out_channels = ctx->nchans;
  956. if (avctx->channels == 0) {
  957. avctx->channels = ctx->out_channels;
  958. } else if(ctx->out_channels < avctx->channels) {
  959. av_log(avctx, AV_LOG_ERROR, "Cannot upmix AC3 from %d to %d channels.\n",
  960. ctx->out_channels, avctx->channels);
  961. return -1;
  962. }
  963. if(avctx->channels == 2) {
  964. ctx->output_mode = AC3_ACMOD_STEREO;
  965. } else if(avctx->channels == 1) {
  966. ctx->output_mode = AC3_ACMOD_MONO;
  967. } else if(avctx->channels != ctx->out_channels) {
  968. av_log(avctx, AV_LOG_ERROR, "Cannot downmix AC3 from %d to %d channels.\n",
  969. ctx->out_channels, avctx->channels);
  970. return -1;
  971. }
  972. ctx->out_channels = avctx->channels;
  973. //av_log(avctx, AV_LOG_INFO, "channels = %d \t bit rate = %d \t sampling rate = %d \n", avctx->channels, avctx->bit_rate * 1000, avctx->sample_rate);
  974. //Parse the Audio Blocks.
  975. for (blk = 0; blk < NB_BLOCKS; blk++) {
  976. if (ac3_parse_audio_block(ctx, blk)) {
  977. av_log(avctx, AV_LOG_ERROR, "error parsing the audio block\n");
  978. *data_size = 0;
  979. return ctx->frame_size;
  980. }
  981. for (i = 0; i < 256; i++)
  982. for (ch = 0; ch < ctx->out_channels; ch++)
  983. *(out_samples++) = ctx->int_output[ch][i];
  984. }
  985. *data_size = NB_BLOCKS * 256 * avctx->channels * sizeof (int16_t);
  986. return ctx->frame_size;
  987. }
  988. /* Uninitialize ac3 decoder.
  989. */
  990. static int ac3_decode_end(AVCodecContext *avctx)
  991. {
  992. AC3DecodeContext *ctx = (AC3DecodeContext *)avctx->priv_data;
  993. ff_mdct_end(&ctx->imdct_512);
  994. ff_mdct_end(&ctx->imdct_256);
  995. return 0;
  996. }
  997. AVCodec ac3_decoder = {
  998. .name = "ac3",
  999. .type = CODEC_TYPE_AUDIO,
  1000. .id = CODEC_ID_AC3,
  1001. .priv_data_size = sizeof (AC3DecodeContext),
  1002. .init = ac3_decode_init,
  1003. .close = ac3_decode_end,
  1004. .decode = ac3_decode_frame,
  1005. };