You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

935 lines
31KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #include "eval.h"
  28. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  29. #include <assert.h>
  30. #ifndef M_E
  31. #define M_E 2.718281828
  32. #endif
  33. static int init_pass2(MpegEncContext *s);
  34. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  35. void ff_write_pass1_stats(MpegEncContext *s){
  36. snprintf(s->avctx->stats_out, 256, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d;\n",
  37. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  38. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  39. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count, s->skip_count, s->header_bits);
  40. }
  41. int ff_rate_control_init(MpegEncContext *s)
  42. {
  43. RateControlContext *rcc= &s->rc_context;
  44. int i;
  45. emms_c();
  46. for(i=0; i<5; i++){
  47. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  48. rcc->pred[i].count= 1.0;
  49. rcc->pred[i].decay= 0.4;
  50. rcc->i_cplx_sum [i]=
  51. rcc->p_cplx_sum [i]=
  52. rcc->mv_bits_sum[i]=
  53. rcc->qscale_sum [i]=
  54. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  55. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  56. }
  57. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  58. if(s->flags&CODEC_FLAG_PASS2){
  59. int i;
  60. char *p;
  61. /* find number of pics */
  62. p= s->avctx->stats_in;
  63. for(i=-1; p; i++){
  64. p= strchr(p+1, ';');
  65. }
  66. i+= s->max_b_frames;
  67. if(i<=0 || i>=INT_MAX / sizeof(RateControlEntry))
  68. return -1;
  69. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  70. rcc->num_entries= i;
  71. /* init all to skipped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  72. for(i=0; i<rcc->num_entries; i++){
  73. RateControlEntry *rce= &rcc->entry[i];
  74. rce->pict_type= rce->new_pict_type=P_TYPE;
  75. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  76. rce->misc_bits= s->mb_num + 10;
  77. rce->mb_var_sum= s->mb_num*100;
  78. }
  79. /* read stats */
  80. p= s->avctx->stats_in;
  81. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  82. RateControlEntry *rce;
  83. int picture_number;
  84. int e;
  85. char *next;
  86. next= strchr(p, ';');
  87. if(next){
  88. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  89. next++;
  90. }
  91. e= sscanf(p, " in:%d ", &picture_number);
  92. assert(picture_number >= 0);
  93. assert(picture_number < rcc->num_entries);
  94. rce= &rcc->entry[picture_number];
  95. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d skipcount:%d hbits:%d",
  96. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  97. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count, &rce->skip_count, &rce->header_bits);
  98. if(e!=14){
  99. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  100. return -1;
  101. }
  102. p= next;
  103. }
  104. if(init_pass2(s) < 0) return -1;
  105. //FIXME maybe move to end
  106. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  107. #ifdef CONFIG_XVID
  108. return ff_xvid_rate_control_init(s);
  109. #else
  110. av_log(s->avctx, AV_LOG_ERROR, "XviD ratecontrol requires libavcodec compiled with XviD support\n");
  111. return -1;
  112. #endif
  113. }
  114. }
  115. if(!(s->flags&CODEC_FLAG_PASS2)){
  116. rcc->short_term_qsum=0.001;
  117. rcc->short_term_qcount=0.001;
  118. rcc->pass1_rc_eq_output_sum= 0.001;
  119. rcc->pass1_wanted_bits=0.001;
  120. /* init stuff with the user specified complexity */
  121. if(s->avctx->rc_initial_cplx){
  122. for(i=0; i<60*30; i++){
  123. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  124. RateControlEntry rce;
  125. double q;
  126. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  127. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  128. else rce.pict_type= P_TYPE;
  129. rce.new_pict_type= rce.pict_type;
  130. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  131. rce.mb_var_sum = s->mb_num;
  132. rce.qscale = FF_QP2LAMBDA * 2;
  133. rce.f_code = 2;
  134. rce.b_code = 1;
  135. rce.misc_bits= 1;
  136. if(s->pict_type== I_TYPE){
  137. rce.i_count = s->mb_num;
  138. rce.i_tex_bits= bits;
  139. rce.p_tex_bits= 0;
  140. rce.mv_bits= 0;
  141. }else{
  142. rce.i_count = 0; //FIXME we do know this approx
  143. rce.i_tex_bits= 0;
  144. rce.p_tex_bits= bits*0.9;
  145. rce.mv_bits= bits*0.1;
  146. }
  147. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  148. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  149. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  150. rcc->frame_count[rce.pict_type] ++;
  151. bits= rce.i_tex_bits + rce.p_tex_bits;
  152. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  153. rcc->pass1_wanted_bits+= s->bit_rate/(1/av_q2d(s->avctx->time_base)); //FIXME missbehaves a little for variable fps
  154. }
  155. }
  156. }
  157. return 0;
  158. }
  159. void ff_rate_control_uninit(MpegEncContext *s)
  160. {
  161. RateControlContext *rcc= &s->rc_context;
  162. emms_c();
  163. av_freep(&rcc->entry);
  164. #ifdef CONFIG_XVID
  165. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  166. ff_xvid_rate_control_uninit(s);
  167. #endif
  168. }
  169. static inline double qp2bits(RateControlEntry *rce, double qp){
  170. if(qp<=0.0){
  171. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  172. }
  173. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  174. }
  175. static inline double bits2qp(RateControlEntry *rce, double bits){
  176. if(bits<0.9){
  177. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  178. }
  179. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  180. }
  181. int ff_vbv_update(MpegEncContext *s, int frame_size){
  182. RateControlContext *rcc= &s->rc_context;
  183. const double fps= 1/av_q2d(s->avctx->time_base);
  184. const int buffer_size= s->avctx->rc_buffer_size;
  185. const double min_rate= s->avctx->rc_min_rate/fps;
  186. const double max_rate= s->avctx->rc_max_rate/fps;
  187. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  188. if(buffer_size){
  189. int left;
  190. rcc->buffer_index-= frame_size;
  191. if(rcc->buffer_index < 0){
  192. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  193. rcc->buffer_index= 0;
  194. }
  195. left= buffer_size - rcc->buffer_index - 1;
  196. rcc->buffer_index += clip(left, min_rate, max_rate);
  197. if(rcc->buffer_index > buffer_size){
  198. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  199. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  200. stuffing=4;
  201. rcc->buffer_index -= 8*stuffing;
  202. if(s->avctx->debug & FF_DEBUG_RC)
  203. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  204. return stuffing;
  205. }
  206. }
  207. return 0;
  208. }
  209. /**
  210. * modifies the bitrate curve from pass1 for one frame
  211. */
  212. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  213. RateControlContext *rcc= &s->rc_context;
  214. AVCodecContext *a= s->avctx;
  215. double q, bits;
  216. const int pict_type= rce->new_pict_type;
  217. const double mb_num= s->mb_num;
  218. int i;
  219. char *error = NULL;
  220. double const_values[]={
  221. M_PI,
  222. M_E,
  223. rce->i_tex_bits*rce->qscale,
  224. rce->p_tex_bits*rce->qscale,
  225. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  226. rce->mv_bits/mb_num,
  227. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  228. rce->i_count/mb_num,
  229. rce->mc_mb_var_sum/mb_num,
  230. rce->mb_var_sum/mb_num,
  231. rce->pict_type == I_TYPE,
  232. rce->pict_type == P_TYPE,
  233. rce->pict_type == B_TYPE,
  234. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  235. a->qcompress,
  236. /* rcc->last_qscale_for[I_TYPE],
  237. rcc->last_qscale_for[P_TYPE],
  238. rcc->last_qscale_for[B_TYPE],
  239. rcc->next_non_b_qscale,*/
  240. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  241. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  242. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  243. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  244. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  245. 0
  246. };
  247. static const char *const_names[]={
  248. "PI",
  249. "E",
  250. "iTex",
  251. "pTex",
  252. "tex",
  253. "mv",
  254. "fCode",
  255. "iCount",
  256. "mcVar",
  257. "var",
  258. "isI",
  259. "isP",
  260. "isB",
  261. "avgQP",
  262. "qComp",
  263. /* "lastIQP",
  264. "lastPQP",
  265. "lastBQP",
  266. "nextNonBQP",*/
  267. "avgIITex",
  268. "avgPITex",
  269. "avgPPTex",
  270. "avgBPTex",
  271. "avgTex",
  272. NULL
  273. };
  274. static double (*func1[])(void *, double)={
  275. (void *)bits2qp,
  276. (void *)qp2bits,
  277. NULL
  278. };
  279. static const char *func1_names[]={
  280. "bits2qp",
  281. "qp2bits",
  282. NULL
  283. };
  284. bits= ff_eval2(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce, &error);
  285. if (isnan(bits)) {
  286. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\": %s\n", s->avctx->rc_eq, error? error : "");
  287. return -1;
  288. }
  289. rcc->pass1_rc_eq_output_sum+= bits;
  290. bits*=rate_factor;
  291. if(bits<0.0) bits=0.0;
  292. bits+= 1.0; //avoid 1/0 issues
  293. /* user override */
  294. for(i=0; i<s->avctx->rc_override_count; i++){
  295. RcOverride *rco= s->avctx->rc_override;
  296. if(rco[i].start_frame > frame_num) continue;
  297. if(rco[i].end_frame < frame_num) continue;
  298. if(rco[i].qscale)
  299. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  300. else
  301. bits*= rco[i].quality_factor;
  302. }
  303. q= bits2qp(rce, bits);
  304. /* I/B difference */
  305. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  306. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  307. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  308. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  309. return q;
  310. }
  311. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  312. RateControlContext *rcc= &s->rc_context;
  313. AVCodecContext *a= s->avctx;
  314. const int pict_type= rce->new_pict_type;
  315. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  316. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  317. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  318. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  319. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  320. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  321. /* last qscale / qdiff stuff */
  322. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  323. double last_q= rcc->last_qscale_for[pict_type];
  324. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  325. if (q > last_q + maxdiff) q= last_q + maxdiff;
  326. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  327. }
  328. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  329. if(pict_type!=B_TYPE)
  330. rcc->last_non_b_pict_type= pict_type;
  331. return q;
  332. }
  333. /**
  334. * gets the qmin & qmax for pict_type
  335. */
  336. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  337. int qmin= s->avctx->lmin;
  338. int qmax= s->avctx->lmax;
  339. assert(qmin <= qmax);
  340. if(pict_type==B_TYPE){
  341. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  342. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  343. }else if(pict_type==I_TYPE){
  344. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  345. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  346. }
  347. qmin= clip(qmin, 1, FF_LAMBDA_MAX);
  348. qmax= clip(qmax, 1, FF_LAMBDA_MAX);
  349. if(qmax<qmin) qmax= qmin;
  350. *qmin_ret= qmin;
  351. *qmax_ret= qmax;
  352. }
  353. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  354. RateControlContext *rcc= &s->rc_context;
  355. int qmin, qmax;
  356. double bits;
  357. const int pict_type= rce->new_pict_type;
  358. const double buffer_size= s->avctx->rc_buffer_size;
  359. const double fps= 1/av_q2d(s->avctx->time_base);
  360. const double min_rate= s->avctx->rc_min_rate / fps;
  361. const double max_rate= s->avctx->rc_max_rate / fps;
  362. get_qminmax(&qmin, &qmax, s, pict_type);
  363. /* modulation */
  364. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  365. q*= s->avctx->rc_qmod_amp;
  366. bits= qp2bits(rce, q);
  367. //printf("q:%f\n", q);
  368. /* buffer overflow/underflow protection */
  369. if(buffer_size){
  370. double expected_size= rcc->buffer_index;
  371. double q_limit;
  372. if(min_rate){
  373. double d= 2*(buffer_size - expected_size)/buffer_size;
  374. if(d>1.0) d=1.0;
  375. else if(d<0.0001) d=0.0001;
  376. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  377. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  378. if(q > q_limit){
  379. if(s->avctx->debug&FF_DEBUG_RC){
  380. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  381. }
  382. q= q_limit;
  383. }
  384. }
  385. if(max_rate){
  386. double d= 2*expected_size/buffer_size;
  387. if(d>1.0) d=1.0;
  388. else if(d<0.0001) d=0.0001;
  389. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  390. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  391. if(q < q_limit){
  392. if(s->avctx->debug&FF_DEBUG_RC){
  393. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  394. }
  395. q= q_limit;
  396. }
  397. }
  398. }
  399. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  400. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  401. if (q<qmin) q=qmin;
  402. else if(q>qmax) q=qmax;
  403. }else{
  404. double min2= log(qmin);
  405. double max2= log(qmax);
  406. q= log(q);
  407. q= (q - min2)/(max2-min2) - 0.5;
  408. q*= -4.0;
  409. q= 1.0/(1.0 + exp(q));
  410. q= q*(max2-min2) + min2;
  411. q= exp(q);
  412. }
  413. return q;
  414. }
  415. //----------------------------------
  416. // 1 Pass Code
  417. static double predict_size(Predictor *p, double q, double var)
  418. {
  419. return p->coeff*var / (q*p->count);
  420. }
  421. /*
  422. static double predict_qp(Predictor *p, double size, double var)
  423. {
  424. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  425. return p->coeff*var / (size*p->count);
  426. }
  427. */
  428. static void update_predictor(Predictor *p, double q, double var, double size)
  429. {
  430. double new_coeff= size*q / (var + 1);
  431. if(var<10) return;
  432. p->count*= p->decay;
  433. p->coeff*= p->decay;
  434. p->count++;
  435. p->coeff+= new_coeff;
  436. }
  437. static void adaptive_quantization(MpegEncContext *s, double q){
  438. int i;
  439. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  440. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  441. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  442. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  443. const float p_masking = s->avctx->p_masking;
  444. const float border_masking = s->avctx->border_masking;
  445. float bits_sum= 0.0;
  446. float cplx_sum= 0.0;
  447. float cplx_tab[s->mb_num];
  448. float bits_tab[s->mb_num];
  449. const int qmin= s->avctx->mb_lmin;
  450. const int qmax= s->avctx->mb_lmax;
  451. Picture * const pic= &s->current_picture;
  452. const int mb_width = s->mb_width;
  453. const int mb_height = s->mb_height;
  454. for(i=0; i<s->mb_num; i++){
  455. const int mb_xy= s->mb_index2xy[i];
  456. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  457. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  458. const int lumi= pic->mb_mean[mb_xy];
  459. float bits, cplx, factor;
  460. int mb_x = mb_xy % s->mb_stride;
  461. int mb_y = mb_xy / s->mb_stride;
  462. int mb_distance;
  463. float mb_factor = 0.0;
  464. #if 0
  465. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  466. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  467. #endif
  468. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  469. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  470. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  471. cplx= spat_cplx;
  472. factor= 1.0 + p_masking;
  473. }else{
  474. cplx= temp_cplx;
  475. factor= pow(temp_cplx, - temp_cplx_masking);
  476. }
  477. factor*=pow(spat_cplx, - spatial_cplx_masking);
  478. if(lumi>127)
  479. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  480. else
  481. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  482. if(mb_x < mb_width/5){
  483. mb_distance = mb_width/5 - mb_x;
  484. mb_factor = (float)mb_distance / (float)(mb_width/5);
  485. }else if(mb_x > 4*mb_width/5){
  486. mb_distance = mb_x - 4*mb_width/5;
  487. mb_factor = (float)mb_distance / (float)(mb_width/5);
  488. }
  489. if(mb_y < mb_height/5){
  490. mb_distance = mb_height/5 - mb_y;
  491. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  492. }else if(mb_y > 4*mb_height/5){
  493. mb_distance = mb_y - 4*mb_height/5;
  494. mb_factor = FFMAX(mb_factor, (float)mb_distance / (float)(mb_height/5));
  495. }
  496. factor*= 1.0 - border_masking*mb_factor;
  497. if(factor<0.00001) factor= 0.00001;
  498. bits= cplx*factor;
  499. cplx_sum+= cplx;
  500. bits_sum+= bits;
  501. cplx_tab[i]= cplx;
  502. bits_tab[i]= bits;
  503. }
  504. /* handle qmin/qmax cliping */
  505. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  506. float factor= bits_sum/cplx_sum;
  507. for(i=0; i<s->mb_num; i++){
  508. float newq= q*cplx_tab[i]/bits_tab[i];
  509. newq*= factor;
  510. if (newq > qmax){
  511. bits_sum -= bits_tab[i];
  512. cplx_sum -= cplx_tab[i]*q/qmax;
  513. }
  514. else if(newq < qmin){
  515. bits_sum -= bits_tab[i];
  516. cplx_sum -= cplx_tab[i]*q/qmin;
  517. }
  518. }
  519. if(bits_sum < 0.001) bits_sum= 0.001;
  520. if(cplx_sum < 0.001) cplx_sum= 0.001;
  521. }
  522. for(i=0; i<s->mb_num; i++){
  523. const int mb_xy= s->mb_index2xy[i];
  524. float newq= q*cplx_tab[i]/bits_tab[i];
  525. int intq;
  526. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  527. newq*= bits_sum/cplx_sum;
  528. }
  529. intq= (int)(newq + 0.5);
  530. if (intq > qmax) intq= qmax;
  531. else if(intq < qmin) intq= qmin;
  532. //if(i%s->mb_width==0) printf("\n");
  533. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  534. s->lambda_table[mb_xy]= intq;
  535. }
  536. }
  537. void ff_get_2pass_fcode(MpegEncContext *s){
  538. RateControlContext *rcc= &s->rc_context;
  539. int picture_number= s->picture_number;
  540. RateControlEntry *rce;
  541. rce= &rcc->entry[picture_number];
  542. s->f_code= rce->f_code;
  543. s->b_code= rce->b_code;
  544. }
  545. //FIXME rd or at least approx for dquant
  546. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  547. {
  548. float q;
  549. int qmin, qmax;
  550. float br_compensation;
  551. double diff;
  552. double short_term_q;
  553. double fps;
  554. int picture_number= s->picture_number;
  555. int64_t wanted_bits;
  556. RateControlContext *rcc= &s->rc_context;
  557. AVCodecContext *a= s->avctx;
  558. RateControlEntry local_rce, *rce;
  559. double bits;
  560. double rate_factor;
  561. int var;
  562. const int pict_type= s->pict_type;
  563. Picture * const pic= &s->current_picture;
  564. emms_c();
  565. #ifdef CONFIG_XVID
  566. if((s->flags&CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  567. return ff_xvid_rate_estimate_qscale(s, dry_run);
  568. #endif
  569. get_qminmax(&qmin, &qmax, s, pict_type);
  570. fps= 1/av_q2d(s->avctx->time_base);
  571. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  572. /* update predictors */
  573. if(picture_number>2 && !dry_run){
  574. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  575. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  576. }
  577. if(s->flags&CODEC_FLAG_PASS2){
  578. assert(picture_number>=0);
  579. assert(picture_number<rcc->num_entries);
  580. rce= &rcc->entry[picture_number];
  581. wanted_bits= rce->expected_bits;
  582. }else{
  583. rce= &local_rce;
  584. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  585. }
  586. diff= s->total_bits - wanted_bits;
  587. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  588. if(br_compensation<=0.0) br_compensation=0.001;
  589. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  590. short_term_q = 0; /* avoid warning */
  591. if(s->flags&CODEC_FLAG_PASS2){
  592. if(pict_type!=I_TYPE)
  593. assert(pict_type == rce->new_pict_type);
  594. q= rce->new_qscale / br_compensation;
  595. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  596. }else{
  597. rce->pict_type=
  598. rce->new_pict_type= pict_type;
  599. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  600. rce->mb_var_sum = pic-> mb_var_sum;
  601. rce->qscale = FF_QP2LAMBDA * 2;
  602. rce->f_code = s->f_code;
  603. rce->b_code = s->b_code;
  604. rce->misc_bits= 1;
  605. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  606. if(pict_type== I_TYPE){
  607. rce->i_count = s->mb_num;
  608. rce->i_tex_bits= bits;
  609. rce->p_tex_bits= 0;
  610. rce->mv_bits= 0;
  611. }else{
  612. rce->i_count = 0; //FIXME we do know this approx
  613. rce->i_tex_bits= 0;
  614. rce->p_tex_bits= bits*0.9;
  615. rce->mv_bits= bits*0.1;
  616. }
  617. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  618. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  619. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  620. rcc->frame_count[pict_type] ++;
  621. bits= rce->i_tex_bits + rce->p_tex_bits;
  622. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  623. q= get_qscale(s, rce, rate_factor, picture_number);
  624. if (q < 0)
  625. return -1;
  626. assert(q>0.0);
  627. //printf("%f ", q);
  628. q= get_diff_limited_q(s, rce, q);
  629. //printf("%f ", q);
  630. assert(q>0.0);
  631. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  632. rcc->short_term_qsum*=a->qblur;
  633. rcc->short_term_qcount*=a->qblur;
  634. rcc->short_term_qsum+= q;
  635. rcc->short_term_qcount++;
  636. //printf("%f ", q);
  637. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  638. //printf("%f ", q);
  639. }
  640. assert(q>0.0);
  641. q= modify_qscale(s, rce, q, picture_number);
  642. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  643. assert(q>0.0);
  644. }
  645. if(s->avctx->debug&FF_DEBUG_RC){
  646. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  647. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  648. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  649. );
  650. }
  651. if (q<qmin) q=qmin;
  652. else if(q>qmax) q=qmax;
  653. if(s->adaptive_quant)
  654. adaptive_quantization(s, q);
  655. else
  656. q= (int)(q + 0.5);
  657. if(!dry_run){
  658. rcc->last_qscale= q;
  659. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  660. rcc->last_mb_var_sum= pic->mb_var_sum;
  661. }
  662. #if 0
  663. {
  664. static int mvsum=0, texsum=0;
  665. mvsum += s->mv_bits;
  666. texsum += s->i_tex_bits + s->p_tex_bits;
  667. printf("%d %d//\n\n", mvsum, texsum);
  668. }
  669. #endif
  670. return q;
  671. }
  672. //----------------------------------------------
  673. // 2-Pass code
  674. static int init_pass2(MpegEncContext *s)
  675. {
  676. RateControlContext *rcc= &s->rc_context;
  677. AVCodecContext *a= s->avctx;
  678. int i, toobig;
  679. double fps= 1/av_q2d(s->avctx->time_base);
  680. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  681. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  682. uint64_t all_const_bits;
  683. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  684. double rate_factor=0;
  685. double step;
  686. //int last_i_frame=-10000000;
  687. const int filter_size= (int)(a->qblur*4) | 1;
  688. double expected_bits;
  689. double *qscale, *blured_qscale, qscale_sum;
  690. /* find complexity & const_bits & decide the pict_types */
  691. for(i=0; i<rcc->num_entries; i++){
  692. RateControlEntry *rce= &rcc->entry[i];
  693. rce->new_pict_type= rce->pict_type;
  694. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  695. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  696. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  697. rcc->frame_count[rce->pict_type] ++;
  698. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  699. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  700. }
  701. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  702. if(all_available_bits < all_const_bits){
  703. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  704. return -1;
  705. }
  706. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  707. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  708. toobig = 0;
  709. for(step=256*256; step>0.0000001; step*=0.5){
  710. expected_bits=0;
  711. rate_factor+= step;
  712. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  713. /* find qscale */
  714. for(i=0; i<rcc->num_entries; i++){
  715. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  716. }
  717. assert(filter_size%2==1);
  718. /* fixed I/B QP relative to P mode */
  719. for(i=rcc->num_entries-1; i>=0; i--){
  720. RateControlEntry *rce= &rcc->entry[i];
  721. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  722. }
  723. /* smooth curve */
  724. for(i=0; i<rcc->num_entries; i++){
  725. RateControlEntry *rce= &rcc->entry[i];
  726. const int pict_type= rce->new_pict_type;
  727. int j;
  728. double q=0.0, sum=0.0;
  729. for(j=0; j<filter_size; j++){
  730. int index= i+j-filter_size/2;
  731. double d= index-i;
  732. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  733. if(index < 0 || index >= rcc->num_entries) continue;
  734. if(pict_type != rcc->entry[index].new_pict_type) continue;
  735. q+= qscale[index] * coeff;
  736. sum+= coeff;
  737. }
  738. blured_qscale[i]= q/sum;
  739. }
  740. /* find expected bits */
  741. for(i=0; i<rcc->num_entries; i++){
  742. RateControlEntry *rce= &rcc->entry[i];
  743. double bits;
  744. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  745. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  746. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  747. bits += 8*ff_vbv_update(s, bits);
  748. rce->expected_bits= expected_bits;
  749. expected_bits += bits;
  750. }
  751. /*
  752. av_log(s->avctx, AV_LOG_INFO,
  753. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  754. expected_bits, (int)all_available_bits, rate_factor);
  755. */
  756. if(expected_bits > all_available_bits) {
  757. rate_factor-= step;
  758. ++toobig;
  759. }
  760. }
  761. av_free(qscale);
  762. av_free(blured_qscale);
  763. /* check bitrate calculations and print info */
  764. qscale_sum = 0.0;
  765. for(i=0; i<rcc->num_entries; i++){
  766. /* av_log(s->avctx, AV_LOG_DEBUG, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  767. i, rcc->entry[i].new_qscale, rcc->entry[i].new_qscale / FF_QP2LAMBDA); */
  768. qscale_sum += clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA, s->avctx->qmin, s->avctx->qmax);
  769. }
  770. assert(toobig <= 40);
  771. av_log(s->avctx, AV_LOG_DEBUG,
  772. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  773. s->bit_rate,
  774. (int)(expected_bits / ((double)all_available_bits/s->bit_rate)));
  775. av_log(s->avctx, AV_LOG_DEBUG,
  776. "[lavc rc] estimated target average qp: %.3f\n",
  777. (float)qscale_sum / rcc->num_entries);
  778. if (toobig == 0) {
  779. av_log(s->avctx, AV_LOG_INFO,
  780. "[lavc rc] Using all of requested bitrate is not "
  781. "necessary for this video with these parameters.\n");
  782. } else if (toobig == 40) {
  783. av_log(s->avctx, AV_LOG_ERROR,
  784. "[lavc rc] Error: bitrate too low for this video "
  785. "with these parameters.\n");
  786. return -1;
  787. } else if (fabs(expected_bits/all_available_bits - 1.0) > 0.01) {
  788. av_log(s->avctx, AV_LOG_ERROR,
  789. "[lavc rc] Error: 2pass curve failed to converge\n");
  790. return -1;
  791. }
  792. return 0;
  793. }