You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4620 lines
156KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #undef NDEBUG
  35. #include <assert.h>
  36. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  37. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  38. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  39. #define MB_INTRA_VLC_BITS 9
  40. extern VLC ff_msmp4_mb_i_vlc;
  41. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  42. #define DC_VLC_BITS 9
  43. #define AC_VLC_BITS 9
  44. static const uint16_t table_mb_intra[64][2];
  45. /** Markers used if VC-1 AP frame data */
  46. //@{
  47. enum VC1Code{
  48. VC1_CODE_RES0 = 0x00000100,
  49. VC1_CODE_ENDOFSEQ = 0x0000010A,
  50. VC1_CODE_SLICE,
  51. VC1_CODE_FIELD,
  52. VC1_CODE_FRAME,
  53. VC1_CODE_ENTRYPOINT,
  54. VC1_CODE_SEQHDR,
  55. };
  56. //@}
  57. /** Available Profiles */
  58. //@{
  59. enum Profile {
  60. PROFILE_SIMPLE,
  61. PROFILE_MAIN,
  62. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  63. PROFILE_ADVANCED
  64. };
  65. //@}
  66. /** Sequence quantizer mode */
  67. //@{
  68. enum QuantMode {
  69. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  70. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  71. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  72. QUANT_UNIFORM ///< Uniform quant used for all frames
  73. };
  74. //@}
  75. /** Where quant can be changed */
  76. //@{
  77. enum DQProfile {
  78. DQPROFILE_FOUR_EDGES,
  79. DQPROFILE_DOUBLE_EDGES,
  80. DQPROFILE_SINGLE_EDGE,
  81. DQPROFILE_ALL_MBS
  82. };
  83. //@}
  84. /** @name Where quant can be changed
  85. */
  86. //@{
  87. enum DQSingleEdge {
  88. DQSINGLE_BEDGE_LEFT,
  89. DQSINGLE_BEDGE_TOP,
  90. DQSINGLE_BEDGE_RIGHT,
  91. DQSINGLE_BEDGE_BOTTOM
  92. };
  93. //@}
  94. /** Which pair of edges is quantized with ALTPQUANT */
  95. //@{
  96. enum DQDoubleEdge {
  97. DQDOUBLE_BEDGE_TOPLEFT,
  98. DQDOUBLE_BEDGE_TOPRIGHT,
  99. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  100. DQDOUBLE_BEDGE_BOTTOMLEFT
  101. };
  102. //@}
  103. /** MV modes for P frames */
  104. //@{
  105. enum MVModes {
  106. MV_PMODE_1MV_HPEL_BILIN,
  107. MV_PMODE_1MV,
  108. MV_PMODE_1MV_HPEL,
  109. MV_PMODE_MIXED_MV,
  110. MV_PMODE_INTENSITY_COMP
  111. };
  112. //@}
  113. /** @name MV types for B frames */
  114. //@{
  115. enum BMVTypes {
  116. BMV_TYPE_BACKWARD,
  117. BMV_TYPE_FORWARD,
  118. BMV_TYPE_INTERPOLATED
  119. };
  120. //@}
  121. /** @name Block types for P/B frames */
  122. //@{
  123. enum TransformTypes {
  124. TT_8X8,
  125. TT_8X4_BOTTOM,
  126. TT_8X4_TOP,
  127. TT_8X4, //Both halves
  128. TT_4X8_RIGHT,
  129. TT_4X8_LEFT,
  130. TT_4X8, //Both halves
  131. TT_4X4
  132. };
  133. //@}
  134. /** Table for conversion between TTBLK and TTMB */
  135. static const int ttblk_to_tt[3][8] = {
  136. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  137. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  138. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  139. };
  140. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  141. /** MV P mode - the 5th element is only used for mode 1 */
  142. static const uint8_t mv_pmode_table[2][5] = {
  143. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  144. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  145. };
  146. static const uint8_t mv_pmode_table2[2][4] = {
  147. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  148. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  149. };
  150. /** One more frame type */
  151. #define BI_TYPE 7
  152. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  153. fps_dr[2] = { 1000, 1001 };
  154. static const uint8_t pquant_table[3][32] = {
  155. { /* Implicit quantizer */
  156. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  157. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  158. },
  159. { /* Explicit quantizer, pquantizer uniform */
  160. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  161. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  162. },
  163. { /* Explicit quantizer, pquantizer non-uniform */
  164. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  165. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  166. }
  167. };
  168. /** @name VC-1 VLC tables and defines
  169. * @todo TODO move this into the context
  170. */
  171. //@{
  172. #define VC1_BFRACTION_VLC_BITS 7
  173. static VLC vc1_bfraction_vlc;
  174. #define VC1_IMODE_VLC_BITS 4
  175. static VLC vc1_imode_vlc;
  176. #define VC1_NORM2_VLC_BITS 3
  177. static VLC vc1_norm2_vlc;
  178. #define VC1_NORM6_VLC_BITS 9
  179. static VLC vc1_norm6_vlc;
  180. /* Could be optimized, one table only needs 8 bits */
  181. #define VC1_TTMB_VLC_BITS 9 //12
  182. static VLC vc1_ttmb_vlc[3];
  183. #define VC1_MV_DIFF_VLC_BITS 9 //15
  184. static VLC vc1_mv_diff_vlc[4];
  185. #define VC1_CBPCY_P_VLC_BITS 9 //14
  186. static VLC vc1_cbpcy_p_vlc[4];
  187. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  188. static VLC vc1_4mv_block_pattern_vlc[4];
  189. #define VC1_TTBLK_VLC_BITS 5
  190. static VLC vc1_ttblk_vlc[3];
  191. #define VC1_SUBBLKPAT_VLC_BITS 6
  192. static VLC vc1_subblkpat_vlc[3];
  193. static VLC vc1_ac_coeff_table[8];
  194. //@}
  195. enum CodingSet {
  196. CS_HIGH_MOT_INTRA = 0,
  197. CS_HIGH_MOT_INTER,
  198. CS_LOW_MOT_INTRA,
  199. CS_LOW_MOT_INTER,
  200. CS_MID_RATE_INTRA,
  201. CS_MID_RATE_INTER,
  202. CS_HIGH_RATE_INTRA,
  203. CS_HIGH_RATE_INTER
  204. };
  205. /** @name Overlap conditions for Advanced Profile */
  206. //@{
  207. enum COTypes {
  208. CONDOVER_NONE = 0,
  209. CONDOVER_ALL,
  210. CONDOVER_SELECT
  211. };
  212. //@}
  213. /** The VC1 Context
  214. * @fixme Change size wherever another size is more efficient
  215. * Many members are only used for Advanced Profile
  216. */
  217. typedef struct VC1Context{
  218. MpegEncContext s;
  219. int bits;
  220. /** Simple/Main Profile sequence header */
  221. //@{
  222. int res_sm; ///< reserved, 2b
  223. int res_x8; ///< reserved
  224. int multires; ///< frame-level RESPIC syntax element present
  225. int res_fasttx; ///< reserved, always 1
  226. int res_transtab; ///< reserved, always 0
  227. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  228. ///< at frame level
  229. int res_rtm_flag; ///< reserved, set to 1
  230. int reserved; ///< reserved
  231. //@}
  232. /** Advanced Profile */
  233. //@{
  234. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  235. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  236. int postprocflag; ///< Per-frame processing suggestion flag present
  237. int broadcast; ///< TFF/RFF present
  238. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  239. int tfcntrflag; ///< TFCNTR present
  240. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  241. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  242. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  243. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  244. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  245. int hrd_param_flag; ///< Presence of Hypothetical Reference
  246. ///< Decoder parameters
  247. int psf; ///< Progressive Segmented Frame
  248. //@}
  249. /** Sequence header data for all Profiles
  250. * TODO: choose between ints, uint8_ts and monobit flags
  251. */
  252. //@{
  253. int profile; ///< 2bits, Profile
  254. int frmrtq_postproc; ///< 3bits,
  255. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  256. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  257. int extended_mv; ///< Ext MV in P/B (not in Simple)
  258. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  259. int vstransform; ///< variable-size [48]x[48] transform type + info
  260. int overlap; ///< overlapped transforms in use
  261. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  262. int finterpflag; ///< INTERPFRM present
  263. //@}
  264. /** Frame decoding info for all profiles */
  265. //@{
  266. uint8_t mv_mode; ///< MV coding monde
  267. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  268. int k_x; ///< Number of bits for MVs (depends on MV range)
  269. int k_y; ///< Number of bits for MVs (depends on MV range)
  270. int range_x, range_y; ///< MV range
  271. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  272. /** pquant parameters */
  273. //@{
  274. uint8_t dquantfrm;
  275. uint8_t dqprofile;
  276. uint8_t dqsbedge;
  277. uint8_t dqbilevel;
  278. //@}
  279. /** AC coding set indexes
  280. * @see 8.1.1.10, p(1)10
  281. */
  282. //@{
  283. int c_ac_table_index; ///< Chroma index from ACFRM element
  284. int y_ac_table_index; ///< Luma index from AC2FRM element
  285. //@}
  286. int ttfrm; ///< Transform type info present at frame level
  287. uint8_t ttmbf; ///< Transform type flag
  288. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  289. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  290. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  291. int pqindex; ///< raw pqindex used in coding set selection
  292. int a_avail, c_avail;
  293. uint8_t *mb_type_base, *mb_type[3];
  294. /** Luma compensation parameters */
  295. //@{
  296. uint8_t lumscale;
  297. uint8_t lumshift;
  298. //@}
  299. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  300. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  301. uint8_t respic; ///< Frame-level flag for resized images
  302. int buffer_fullness; ///< HRD info
  303. /** Ranges:
  304. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  305. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  306. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  307. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  308. */
  309. uint8_t mvrange;
  310. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  311. VLC *cbpcy_vlc; ///< CBPCY VLC table
  312. int tt_index; ///< Index for Transform Type tables
  313. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  314. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  315. int mv_type_is_raw; ///< mv type mb plane is not coded
  316. int dmb_is_raw; ///< direct mb plane is raw
  317. int skip_is_raw; ///< skip mb plane is not coded
  318. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  319. int use_ic; ///< use intensity compensation in B-frames
  320. int rnd; ///< rounding control
  321. /** Frame decoding info for S/M profiles only */
  322. //@{
  323. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  324. uint8_t interpfrm;
  325. //@}
  326. /** Frame decoding info for Advanced profile */
  327. //@{
  328. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  329. uint8_t numpanscanwin;
  330. uint8_t tfcntr;
  331. uint8_t rptfrm, tff, rff;
  332. uint16_t topleftx;
  333. uint16_t toplefty;
  334. uint16_t bottomrightx;
  335. uint16_t bottomrighty;
  336. uint8_t uvsamp;
  337. uint8_t postproc;
  338. int hrd_num_leaky_buckets;
  339. uint8_t bit_rate_exponent;
  340. uint8_t buffer_size_exponent;
  341. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  342. int acpred_is_raw;
  343. uint8_t* over_flags_plane; ///< Overflags bitplane
  344. int overflg_is_raw;
  345. uint8_t condover;
  346. uint16_t *hrd_rate, *hrd_buffer;
  347. uint8_t *hrd_fullness;
  348. uint8_t range_mapy_flag;
  349. uint8_t range_mapuv_flag;
  350. uint8_t range_mapy;
  351. uint8_t range_mapuv;
  352. //@}
  353. int p_frame_skipped;
  354. int bi_type;
  355. } VC1Context;
  356. /**
  357. * Get unary code of limited length
  358. * @fixme FIXME Slow and ugly
  359. * @param gb GetBitContext
  360. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  361. * @param[in] len Maximum length
  362. * @return Unary length/index
  363. */
  364. static int get_prefix(GetBitContext *gb, int stop, int len)
  365. {
  366. #if 1
  367. int i;
  368. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  369. return i;
  370. /* int i = 0, tmp = !stop;
  371. while (i != len && tmp != stop)
  372. {
  373. tmp = get_bits(gb, 1);
  374. i++;
  375. }
  376. if (i == len && tmp != stop) return len+1;
  377. return i;*/
  378. #else
  379. unsigned int buf;
  380. int log;
  381. OPEN_READER(re, gb);
  382. UPDATE_CACHE(re, gb);
  383. buf=GET_CACHE(re, gb); //Still not sure
  384. if (stop) buf = ~buf;
  385. log= av_log2(-buf); //FIXME: -?
  386. if (log < limit){
  387. LAST_SKIP_BITS(re, gb, log+1);
  388. CLOSE_READER(re, gb);
  389. return log;
  390. }
  391. LAST_SKIP_BITS(re, gb, limit);
  392. CLOSE_READER(re, gb);
  393. return limit;
  394. #endif
  395. }
  396. static inline int decode210(GetBitContext *gb){
  397. int n;
  398. n = get_bits1(gb);
  399. if (n == 1)
  400. return 0;
  401. else
  402. return 2 - get_bits1(gb);
  403. }
  404. /**
  405. * Init VC-1 specific tables and VC1Context members
  406. * @param v The VC1Context to initialize
  407. * @return Status
  408. */
  409. static int vc1_init_common(VC1Context *v)
  410. {
  411. static int done = 0;
  412. int i = 0;
  413. v->hrd_rate = v->hrd_buffer = NULL;
  414. /* VLC tables */
  415. if(!done)
  416. {
  417. done = 1;
  418. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  419. vc1_bfraction_bits, 1, 1,
  420. vc1_bfraction_codes, 1, 1, 1);
  421. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  422. vc1_norm2_bits, 1, 1,
  423. vc1_norm2_codes, 1, 1, 1);
  424. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  425. vc1_norm6_bits, 1, 1,
  426. vc1_norm6_codes, 2, 2, 1);
  427. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  428. vc1_imode_bits, 1, 1,
  429. vc1_imode_codes, 1, 1, 1);
  430. for (i=0; i<3; i++)
  431. {
  432. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  433. vc1_ttmb_bits[i], 1, 1,
  434. vc1_ttmb_codes[i], 2, 2, 1);
  435. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  436. vc1_ttblk_bits[i], 1, 1,
  437. vc1_ttblk_codes[i], 1, 1, 1);
  438. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  439. vc1_subblkpat_bits[i], 1, 1,
  440. vc1_subblkpat_codes[i], 1, 1, 1);
  441. }
  442. for(i=0; i<4; i++)
  443. {
  444. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  445. vc1_4mv_block_pattern_bits[i], 1, 1,
  446. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  447. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  448. vc1_cbpcy_p_bits[i], 1, 1,
  449. vc1_cbpcy_p_codes[i], 2, 2, 1);
  450. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  451. vc1_mv_diff_bits[i], 1, 1,
  452. vc1_mv_diff_codes[i], 2, 2, 1);
  453. }
  454. for(i=0; i<8; i++)
  455. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  456. &vc1_ac_tables[i][0][1], 8, 4,
  457. &vc1_ac_tables[i][0][0], 8, 4, 1);
  458. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  459. &ff_msmp4_mb_i_table[0][1], 4, 2,
  460. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  461. }
  462. /* Other defaults */
  463. v->pq = -1;
  464. v->mvrange = 0; /* 7.1.1.18, p80 */
  465. return 0;
  466. }
  467. /***********************************************************************/
  468. /**
  469. * @defgroup bitplane VC9 Bitplane decoding
  470. * @see 8.7, p56
  471. * @{
  472. */
  473. /** @addtogroup bitplane
  474. * Imode types
  475. * @{
  476. */
  477. enum Imode {
  478. IMODE_RAW,
  479. IMODE_NORM2,
  480. IMODE_DIFF2,
  481. IMODE_NORM6,
  482. IMODE_DIFF6,
  483. IMODE_ROWSKIP,
  484. IMODE_COLSKIP
  485. };
  486. /** @} */ //imode defines
  487. /** Decode rows by checking if they are skipped
  488. * @param plane Buffer to store decoded bits
  489. * @param[in] width Width of this buffer
  490. * @param[in] height Height of this buffer
  491. * @param[in] stride of this buffer
  492. */
  493. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  494. int x, y;
  495. for (y=0; y<height; y++){
  496. if (!get_bits(gb, 1)) //rowskip
  497. memset(plane, 0, width);
  498. else
  499. for (x=0; x<width; x++)
  500. plane[x] = get_bits(gb, 1);
  501. plane += stride;
  502. }
  503. }
  504. /** Decode columns by checking if they are skipped
  505. * @param plane Buffer to store decoded bits
  506. * @param[in] width Width of this buffer
  507. * @param[in] height Height of this buffer
  508. * @param[in] stride of this buffer
  509. * @fixme FIXME: Optimize
  510. */
  511. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  512. int x, y;
  513. for (x=0; x<width; x++){
  514. if (!get_bits(gb, 1)) //colskip
  515. for (y=0; y<height; y++)
  516. plane[y*stride] = 0;
  517. else
  518. for (y=0; y<height; y++)
  519. plane[y*stride] = get_bits(gb, 1);
  520. plane ++;
  521. }
  522. }
  523. /** Decode a bitplane's bits
  524. * @param bp Bitplane where to store the decode bits
  525. * @param v VC-1 context for bit reading and logging
  526. * @return Status
  527. * @fixme FIXME: Optimize
  528. */
  529. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  530. {
  531. GetBitContext *gb = &v->s.gb;
  532. int imode, x, y, code, offset;
  533. uint8_t invert, *planep = data;
  534. int width, height, stride;
  535. width = v->s.mb_width;
  536. height = v->s.mb_height;
  537. stride = v->s.mb_stride;
  538. invert = get_bits(gb, 1);
  539. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  540. *raw_flag = 0;
  541. switch (imode)
  542. {
  543. case IMODE_RAW:
  544. //Data is actually read in the MB layer (same for all tests == "raw")
  545. *raw_flag = 1; //invert ignored
  546. return invert;
  547. case IMODE_DIFF2:
  548. case IMODE_NORM2:
  549. if ((height * width) & 1)
  550. {
  551. *planep++ = get_bits(gb, 1);
  552. offset = 1;
  553. }
  554. else offset = 0;
  555. // decode bitplane as one long line
  556. for (y = offset; y < height * width; y += 2) {
  557. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  558. *planep++ = code & 1;
  559. offset++;
  560. if(offset == width) {
  561. offset = 0;
  562. planep += stride - width;
  563. }
  564. *planep++ = code >> 1;
  565. offset++;
  566. if(offset == width) {
  567. offset = 0;
  568. planep += stride - width;
  569. }
  570. }
  571. break;
  572. case IMODE_DIFF6:
  573. case IMODE_NORM6:
  574. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  575. for(y = 0; y < height; y+= 3) {
  576. for(x = width & 1; x < width; x += 2) {
  577. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  578. if(code < 0){
  579. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  580. return -1;
  581. }
  582. planep[x + 0] = (code >> 0) & 1;
  583. planep[x + 1] = (code >> 1) & 1;
  584. planep[x + 0 + stride] = (code >> 2) & 1;
  585. planep[x + 1 + stride] = (code >> 3) & 1;
  586. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  587. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  588. }
  589. planep += stride * 3;
  590. }
  591. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  592. } else { // 3x2
  593. planep += (height & 1) * stride;
  594. for(y = height & 1; y < height; y += 2) {
  595. for(x = width % 3; x < width; x += 3) {
  596. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  597. if(code < 0){
  598. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  599. return -1;
  600. }
  601. planep[x + 0] = (code >> 0) & 1;
  602. planep[x + 1] = (code >> 1) & 1;
  603. planep[x + 2] = (code >> 2) & 1;
  604. planep[x + 0 + stride] = (code >> 3) & 1;
  605. planep[x + 1 + stride] = (code >> 4) & 1;
  606. planep[x + 2 + stride] = (code >> 5) & 1;
  607. }
  608. planep += stride * 2;
  609. }
  610. x = width % 3;
  611. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  612. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  613. }
  614. break;
  615. case IMODE_ROWSKIP:
  616. decode_rowskip(data, width, height, stride, &v->s.gb);
  617. break;
  618. case IMODE_COLSKIP:
  619. decode_colskip(data, width, height, stride, &v->s.gb);
  620. break;
  621. default: break;
  622. }
  623. /* Applying diff operator */
  624. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  625. {
  626. planep = data;
  627. planep[0] ^= invert;
  628. for (x=1; x<width; x++)
  629. planep[x] ^= planep[x-1];
  630. for (y=1; y<height; y++)
  631. {
  632. planep += stride;
  633. planep[0] ^= planep[-stride];
  634. for (x=1; x<width; x++)
  635. {
  636. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  637. else planep[x] ^= planep[x-1];
  638. }
  639. }
  640. }
  641. else if (invert)
  642. {
  643. planep = data;
  644. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  645. }
  646. return (imode<<1) + invert;
  647. }
  648. /** @} */ //Bitplane group
  649. /***********************************************************************/
  650. /** VOP Dquant decoding
  651. * @param v VC-1 Context
  652. */
  653. static int vop_dquant_decoding(VC1Context *v)
  654. {
  655. GetBitContext *gb = &v->s.gb;
  656. int pqdiff;
  657. //variable size
  658. if (v->dquant == 2)
  659. {
  660. pqdiff = get_bits(gb, 3);
  661. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  662. else v->altpq = v->pq + pqdiff + 1;
  663. }
  664. else
  665. {
  666. v->dquantfrm = get_bits(gb, 1);
  667. if ( v->dquantfrm )
  668. {
  669. v->dqprofile = get_bits(gb, 2);
  670. switch (v->dqprofile)
  671. {
  672. case DQPROFILE_SINGLE_EDGE:
  673. case DQPROFILE_DOUBLE_EDGES:
  674. v->dqsbedge = get_bits(gb, 2);
  675. break;
  676. case DQPROFILE_ALL_MBS:
  677. v->dqbilevel = get_bits(gb, 1);
  678. default: break; //Forbidden ?
  679. }
  680. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  681. {
  682. pqdiff = get_bits(gb, 3);
  683. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  684. else v->altpq = v->pq + pqdiff + 1;
  685. }
  686. }
  687. }
  688. return 0;
  689. }
  690. /** Put block onto picture
  691. */
  692. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  693. {
  694. uint8_t *Y;
  695. int ys, us, vs;
  696. DSPContext *dsp = &v->s.dsp;
  697. if(v->rangeredfrm) {
  698. int i, j, k;
  699. for(k = 0; k < 6; k++)
  700. for(j = 0; j < 8; j++)
  701. for(i = 0; i < 8; i++)
  702. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  703. }
  704. ys = v->s.current_picture.linesize[0];
  705. us = v->s.current_picture.linesize[1];
  706. vs = v->s.current_picture.linesize[2];
  707. Y = v->s.dest[0];
  708. dsp->put_pixels_clamped(block[0], Y, ys);
  709. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  710. Y += ys * 8;
  711. dsp->put_pixels_clamped(block[2], Y, ys);
  712. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  713. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  714. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  715. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  716. }
  717. }
  718. /** Do motion compensation over 1 macroblock
  719. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  720. */
  721. static void vc1_mc_1mv(VC1Context *v, int dir)
  722. {
  723. MpegEncContext *s = &v->s;
  724. DSPContext *dsp = &v->s.dsp;
  725. uint8_t *srcY, *srcU, *srcV;
  726. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  727. if(!v->s.last_picture.data[0])return;
  728. mx = s->mv[dir][0][0];
  729. my = s->mv[dir][0][1];
  730. // store motion vectors for further use in B frames
  731. if(s->pict_type == P_TYPE) {
  732. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  733. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  734. }
  735. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  736. uvmy = (my + ((my & 3) == 3)) >> 1;
  737. if(v->fastuvmc) {
  738. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  739. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  740. }
  741. if(!dir) {
  742. srcY = s->last_picture.data[0];
  743. srcU = s->last_picture.data[1];
  744. srcV = s->last_picture.data[2];
  745. } else {
  746. srcY = s->next_picture.data[0];
  747. srcU = s->next_picture.data[1];
  748. srcV = s->next_picture.data[2];
  749. }
  750. src_x = s->mb_x * 16 + (mx >> 2);
  751. src_y = s->mb_y * 16 + (my >> 2);
  752. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  753. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  754. if(v->profile != PROFILE_ADVANCED){
  755. src_x = av_clip( src_x, -16, s->mb_width * 16);
  756. src_y = av_clip( src_y, -16, s->mb_height * 16);
  757. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  758. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  759. }else{
  760. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  761. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  762. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  763. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  764. }
  765. srcY += src_y * s->linesize + src_x;
  766. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  767. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  768. /* for grayscale we should not try to read from unknown area */
  769. if(s->flags & CODEC_FLAG_GRAY) {
  770. srcU = s->edge_emu_buffer + 18 * s->linesize;
  771. srcV = s->edge_emu_buffer + 18 * s->linesize;
  772. }
  773. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  774. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  775. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  776. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  777. srcY -= s->mspel * (1 + s->linesize);
  778. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  779. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  780. srcY = s->edge_emu_buffer;
  781. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  782. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  783. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  784. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  785. srcU = uvbuf;
  786. srcV = uvbuf + 16;
  787. /* if we deal with range reduction we need to scale source blocks */
  788. if(v->rangeredfrm) {
  789. int i, j;
  790. uint8_t *src, *src2;
  791. src = srcY;
  792. for(j = 0; j < 17 + s->mspel*2; j++) {
  793. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  794. src += s->linesize;
  795. }
  796. src = srcU; src2 = srcV;
  797. for(j = 0; j < 9; j++) {
  798. for(i = 0; i < 9; i++) {
  799. src[i] = ((src[i] - 128) >> 1) + 128;
  800. src2[i] = ((src2[i] - 128) >> 1) + 128;
  801. }
  802. src += s->uvlinesize;
  803. src2 += s->uvlinesize;
  804. }
  805. }
  806. /* if we deal with intensity compensation we need to scale source blocks */
  807. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  808. int i, j;
  809. uint8_t *src, *src2;
  810. src = srcY;
  811. for(j = 0; j < 17 + s->mspel*2; j++) {
  812. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  813. src += s->linesize;
  814. }
  815. src = srcU; src2 = srcV;
  816. for(j = 0; j < 9; j++) {
  817. for(i = 0; i < 9; i++) {
  818. src[i] = v->lutuv[src[i]];
  819. src2[i] = v->lutuv[src2[i]];
  820. }
  821. src += s->uvlinesize;
  822. src2 += s->uvlinesize;
  823. }
  824. }
  825. srcY += s->mspel * (1 + s->linesize);
  826. }
  827. if(s->mspel) {
  828. dxy = ((my & 3) << 2) | (mx & 3);
  829. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  830. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  831. srcY += s->linesize * 8;
  832. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  833. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  834. } else { // hpel mc - always used for luma
  835. dxy = (my & 2) | ((mx & 2) >> 1);
  836. if(!v->rnd)
  837. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  838. else
  839. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  840. }
  841. if(s->flags & CODEC_FLAG_GRAY) return;
  842. /* Chroma MC always uses qpel bilinear */
  843. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  844. uvmx = (uvmx&3)<<1;
  845. uvmy = (uvmy&3)<<1;
  846. if(!v->rnd){
  847. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  848. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  849. }else{
  850. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  851. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  852. }
  853. }
  854. /** Do motion compensation for 4-MV macroblock - luminance block
  855. */
  856. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  857. {
  858. MpegEncContext *s = &v->s;
  859. DSPContext *dsp = &v->s.dsp;
  860. uint8_t *srcY;
  861. int dxy, mx, my, src_x, src_y;
  862. int off;
  863. if(!v->s.last_picture.data[0])return;
  864. mx = s->mv[0][n][0];
  865. my = s->mv[0][n][1];
  866. srcY = s->last_picture.data[0];
  867. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  868. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  869. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  870. if(v->profile != PROFILE_ADVANCED){
  871. src_x = av_clip( src_x, -16, s->mb_width * 16);
  872. src_y = av_clip( src_y, -16, s->mb_height * 16);
  873. }else{
  874. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  875. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  876. }
  877. srcY += src_y * s->linesize + src_x;
  878. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  879. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  880. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  881. srcY -= s->mspel * (1 + s->linesize);
  882. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  883. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  884. srcY = s->edge_emu_buffer;
  885. /* if we deal with range reduction we need to scale source blocks */
  886. if(v->rangeredfrm) {
  887. int i, j;
  888. uint8_t *src;
  889. src = srcY;
  890. for(j = 0; j < 9 + s->mspel*2; j++) {
  891. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  892. src += s->linesize;
  893. }
  894. }
  895. /* if we deal with intensity compensation we need to scale source blocks */
  896. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  897. int i, j;
  898. uint8_t *src;
  899. src = srcY;
  900. for(j = 0; j < 9 + s->mspel*2; j++) {
  901. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  902. src += s->linesize;
  903. }
  904. }
  905. srcY += s->mspel * (1 + s->linesize);
  906. }
  907. if(s->mspel) {
  908. dxy = ((my & 3) << 2) | (mx & 3);
  909. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  910. } else { // hpel mc - always used for luma
  911. dxy = (my & 2) | ((mx & 2) >> 1);
  912. if(!v->rnd)
  913. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  914. else
  915. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  916. }
  917. }
  918. static inline int median4(int a, int b, int c, int d)
  919. {
  920. if(a < b) {
  921. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  922. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  923. } else {
  924. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  925. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  926. }
  927. }
  928. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  929. */
  930. static void vc1_mc_4mv_chroma(VC1Context *v)
  931. {
  932. MpegEncContext *s = &v->s;
  933. DSPContext *dsp = &v->s.dsp;
  934. uint8_t *srcU, *srcV;
  935. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  936. int i, idx, tx = 0, ty = 0;
  937. int mvx[4], mvy[4], intra[4];
  938. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  939. if(!v->s.last_picture.data[0])return;
  940. if(s->flags & CODEC_FLAG_GRAY) return;
  941. for(i = 0; i < 4; i++) {
  942. mvx[i] = s->mv[0][i][0];
  943. mvy[i] = s->mv[0][i][1];
  944. intra[i] = v->mb_type[0][s->block_index[i]];
  945. }
  946. /* calculate chroma MV vector from four luma MVs */
  947. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  948. if(!idx) { // all blocks are inter
  949. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  950. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  951. } else if(count[idx] == 1) { // 3 inter blocks
  952. switch(idx) {
  953. case 0x1:
  954. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  955. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  956. break;
  957. case 0x2:
  958. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  959. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  960. break;
  961. case 0x4:
  962. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  963. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  964. break;
  965. case 0x8:
  966. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  967. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  968. break;
  969. }
  970. } else if(count[idx] == 2) {
  971. int t1 = 0, t2 = 0;
  972. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  973. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  974. tx = (mvx[t1] + mvx[t2]) / 2;
  975. ty = (mvy[t1] + mvy[t2]) / 2;
  976. } else {
  977. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  978. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  979. return; //no need to do MC for inter blocks
  980. }
  981. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  982. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  983. uvmx = (tx + ((tx&3) == 3)) >> 1;
  984. uvmy = (ty + ((ty&3) == 3)) >> 1;
  985. if(v->fastuvmc) {
  986. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  987. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  988. }
  989. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  990. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  991. if(v->profile != PROFILE_ADVANCED){
  992. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  993. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  994. }else{
  995. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  996. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  997. }
  998. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  999. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  1000. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1001. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  1002. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  1003. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  1004. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1005. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1006. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1007. srcU = s->edge_emu_buffer;
  1008. srcV = s->edge_emu_buffer + 16;
  1009. /* if we deal with range reduction we need to scale source blocks */
  1010. if(v->rangeredfrm) {
  1011. int i, j;
  1012. uint8_t *src, *src2;
  1013. src = srcU; src2 = srcV;
  1014. for(j = 0; j < 9; j++) {
  1015. for(i = 0; i < 9; i++) {
  1016. src[i] = ((src[i] - 128) >> 1) + 128;
  1017. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1018. }
  1019. src += s->uvlinesize;
  1020. src2 += s->uvlinesize;
  1021. }
  1022. }
  1023. /* if we deal with intensity compensation we need to scale source blocks */
  1024. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1025. int i, j;
  1026. uint8_t *src, *src2;
  1027. src = srcU; src2 = srcV;
  1028. for(j = 0; j < 9; j++) {
  1029. for(i = 0; i < 9; i++) {
  1030. src[i] = v->lutuv[src[i]];
  1031. src2[i] = v->lutuv[src2[i]];
  1032. }
  1033. src += s->uvlinesize;
  1034. src2 += s->uvlinesize;
  1035. }
  1036. }
  1037. }
  1038. /* Chroma MC always uses qpel bilinear */
  1039. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1040. uvmx = (uvmx&3)<<1;
  1041. uvmy = (uvmy&3)<<1;
  1042. if(!v->rnd){
  1043. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1044. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1045. }else{
  1046. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1047. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1048. }
  1049. }
  1050. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1051. /**
  1052. * Decode Simple/Main Profiles sequence header
  1053. * @see Figure 7-8, p16-17
  1054. * @param avctx Codec context
  1055. * @param gb GetBit context initialized from Codec context extra_data
  1056. * @return Status
  1057. */
  1058. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1059. {
  1060. VC1Context *v = avctx->priv_data;
  1061. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1062. v->profile = get_bits(gb, 2);
  1063. if (v->profile == PROFILE_COMPLEX)
  1064. {
  1065. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  1066. }
  1067. if (v->profile == PROFILE_ADVANCED)
  1068. {
  1069. return decode_sequence_header_adv(v, gb);
  1070. }
  1071. else
  1072. {
  1073. v->res_sm = get_bits(gb, 2); //reserved
  1074. if (v->res_sm)
  1075. {
  1076. av_log(avctx, AV_LOG_ERROR,
  1077. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1078. return -1;
  1079. }
  1080. }
  1081. // (fps-2)/4 (->30)
  1082. v->frmrtq_postproc = get_bits(gb, 3); //common
  1083. // (bitrate-32kbps)/64kbps
  1084. v->bitrtq_postproc = get_bits(gb, 5); //common
  1085. v->s.loop_filter = get_bits(gb, 1); //common
  1086. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1087. {
  1088. av_log(avctx, AV_LOG_ERROR,
  1089. "LOOPFILTER shell not be enabled in simple profile\n");
  1090. }
  1091. v->res_x8 = get_bits(gb, 1); //reserved
  1092. if (v->res_x8)
  1093. {
  1094. av_log(avctx, AV_LOG_ERROR,
  1095. "1 for reserved RES_X8 is forbidden\n");
  1096. //return -1;
  1097. }
  1098. v->multires = get_bits(gb, 1);
  1099. v->res_fasttx = get_bits(gb, 1);
  1100. if (!v->res_fasttx)
  1101. {
  1102. av_log(avctx, AV_LOG_ERROR,
  1103. "0 for reserved RES_FASTTX is forbidden\n");
  1104. //return -1;
  1105. }
  1106. v->fastuvmc = get_bits(gb, 1); //common
  1107. if (!v->profile && !v->fastuvmc)
  1108. {
  1109. av_log(avctx, AV_LOG_ERROR,
  1110. "FASTUVMC unavailable in Simple Profile\n");
  1111. return -1;
  1112. }
  1113. v->extended_mv = get_bits(gb, 1); //common
  1114. if (!v->profile && v->extended_mv)
  1115. {
  1116. av_log(avctx, AV_LOG_ERROR,
  1117. "Extended MVs unavailable in Simple Profile\n");
  1118. return -1;
  1119. }
  1120. v->dquant = get_bits(gb, 2); //common
  1121. v->vstransform = get_bits(gb, 1); //common
  1122. v->res_transtab = get_bits(gb, 1);
  1123. if (v->res_transtab)
  1124. {
  1125. av_log(avctx, AV_LOG_ERROR,
  1126. "1 for reserved RES_TRANSTAB is forbidden\n");
  1127. return -1;
  1128. }
  1129. v->overlap = get_bits(gb, 1); //common
  1130. v->s.resync_marker = get_bits(gb, 1);
  1131. v->rangered = get_bits(gb, 1);
  1132. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1133. {
  1134. av_log(avctx, AV_LOG_INFO,
  1135. "RANGERED should be set to 0 in simple profile\n");
  1136. }
  1137. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1138. v->quantizer_mode = get_bits(gb, 2); //common
  1139. v->finterpflag = get_bits(gb, 1); //common
  1140. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1141. if (!v->res_rtm_flag)
  1142. {
  1143. // av_log(avctx, AV_LOG_ERROR,
  1144. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1145. av_log(avctx, AV_LOG_ERROR,
  1146. "Old WMV3 version detected, only I-frames will be decoded\n");
  1147. //return -1;
  1148. }
  1149. av_log(avctx, AV_LOG_DEBUG,
  1150. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1151. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1152. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1153. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1154. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1155. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1156. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1157. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1158. );
  1159. return 0;
  1160. }
  1161. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1162. {
  1163. v->res_rtm_flag = 1;
  1164. v->level = get_bits(gb, 3);
  1165. if(v->level >= 5)
  1166. {
  1167. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1168. }
  1169. v->chromaformat = get_bits(gb, 2);
  1170. if (v->chromaformat != 1)
  1171. {
  1172. av_log(v->s.avctx, AV_LOG_ERROR,
  1173. "Only 4:2:0 chroma format supported\n");
  1174. return -1;
  1175. }
  1176. // (fps-2)/4 (->30)
  1177. v->frmrtq_postproc = get_bits(gb, 3); //common
  1178. // (bitrate-32kbps)/64kbps
  1179. v->bitrtq_postproc = get_bits(gb, 5); //common
  1180. v->postprocflag = get_bits(gb, 1); //common
  1181. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1182. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1183. v->s.avctx->width = v->s.avctx->coded_width;
  1184. v->s.avctx->height = v->s.avctx->coded_height;
  1185. v->broadcast = get_bits1(gb);
  1186. v->interlace = get_bits1(gb);
  1187. v->tfcntrflag = get_bits1(gb);
  1188. v->finterpflag = get_bits1(gb);
  1189. get_bits1(gb); // reserved
  1190. v->s.h_edge_pos = v->s.avctx->coded_width;
  1191. v->s.v_edge_pos = v->s.avctx->coded_height;
  1192. av_log(v->s.avctx, AV_LOG_DEBUG,
  1193. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1194. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  1195. "TFCTRflag=%i, FINTERPflag=%i\n",
  1196. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  1197. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  1198. v->tfcntrflag, v->finterpflag
  1199. );
  1200. v->psf = get_bits1(gb);
  1201. if(v->psf) { //PsF, 6.1.13
  1202. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1203. return -1;
  1204. }
  1205. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  1206. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1207. int w, h, ar = 0;
  1208. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  1209. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  1210. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  1211. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  1212. if(get_bits1(gb))
  1213. ar = get_bits(gb, 4);
  1214. if(ar && ar < 14){
  1215. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  1216. }else if(ar == 15){
  1217. w = get_bits(gb, 8);
  1218. h = get_bits(gb, 8);
  1219. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  1220. }
  1221. if(get_bits1(gb)){ //framerate stuff
  1222. if(get_bits1(gb)) {
  1223. v->s.avctx->time_base.num = 32;
  1224. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  1225. } else {
  1226. int nr, dr;
  1227. nr = get_bits(gb, 8);
  1228. dr = get_bits(gb, 4);
  1229. if(nr && nr < 8 && dr && dr < 3){
  1230. v->s.avctx->time_base.num = fps_dr[dr - 1];
  1231. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  1232. }
  1233. }
  1234. }
  1235. if(get_bits1(gb)){
  1236. v->color_prim = get_bits(gb, 8);
  1237. v->transfer_char = get_bits(gb, 8);
  1238. v->matrix_coef = get_bits(gb, 8);
  1239. }
  1240. }
  1241. v->hrd_param_flag = get_bits1(gb);
  1242. if(v->hrd_param_flag) {
  1243. int i;
  1244. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1245. get_bits(gb, 4); //bitrate exponent
  1246. get_bits(gb, 4); //buffer size exponent
  1247. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1248. get_bits(gb, 16); //hrd_rate[n]
  1249. get_bits(gb, 16); //hrd_buffer[n]
  1250. }
  1251. }
  1252. return 0;
  1253. }
  1254. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1255. {
  1256. VC1Context *v = avctx->priv_data;
  1257. int i, blink, clentry, refdist;
  1258. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1259. blink = get_bits1(gb); // broken link
  1260. clentry = get_bits1(gb); // closed entry
  1261. v->panscanflag = get_bits1(gb);
  1262. refdist = get_bits1(gb); // refdist flag
  1263. v->s.loop_filter = get_bits1(gb);
  1264. v->fastuvmc = get_bits1(gb);
  1265. v->extended_mv = get_bits1(gb);
  1266. v->dquant = get_bits(gb, 2);
  1267. v->vstransform = get_bits1(gb);
  1268. v->overlap = get_bits1(gb);
  1269. v->quantizer_mode = get_bits(gb, 2);
  1270. if(v->hrd_param_flag){
  1271. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1272. get_bits(gb, 8); //hrd_full[n]
  1273. }
  1274. }
  1275. if(get_bits1(gb)){
  1276. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1277. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1278. }
  1279. if(v->extended_mv)
  1280. v->extended_dmv = get_bits1(gb);
  1281. if(get_bits1(gb)) {
  1282. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1283. skip_bits(gb, 3); // Y range, ignored for now
  1284. }
  1285. if(get_bits1(gb)) {
  1286. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1287. skip_bits(gb, 3); // UV range, ignored for now
  1288. }
  1289. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1290. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1291. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1292. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1293. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1294. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1295. return 0;
  1296. }
  1297. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1298. {
  1299. int pqindex, lowquant, status;
  1300. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1301. skip_bits(gb, 2); //framecnt unused
  1302. v->rangeredfrm = 0;
  1303. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1304. v->s.pict_type = get_bits(gb, 1);
  1305. if (v->s.avctx->max_b_frames) {
  1306. if (!v->s.pict_type) {
  1307. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1308. else v->s.pict_type = B_TYPE;
  1309. } else v->s.pict_type = P_TYPE;
  1310. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1311. v->bi_type = 0;
  1312. if(v->s.pict_type == B_TYPE) {
  1313. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1314. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1315. if(v->bfraction == 0) {
  1316. v->s.pict_type = BI_TYPE;
  1317. }
  1318. }
  1319. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1320. get_bits(gb, 7); // skip buffer fullness
  1321. /* calculate RND */
  1322. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1323. v->rnd = 1;
  1324. if(v->s.pict_type == P_TYPE)
  1325. v->rnd ^= 1;
  1326. /* Quantizer stuff */
  1327. pqindex = get_bits(gb, 5);
  1328. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1329. v->pq = pquant_table[0][pqindex];
  1330. else
  1331. v->pq = pquant_table[1][pqindex];
  1332. v->pquantizer = 1;
  1333. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1334. v->pquantizer = pqindex < 9;
  1335. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1336. v->pquantizer = 0;
  1337. v->pqindex = pqindex;
  1338. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1339. else v->halfpq = 0;
  1340. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1341. v->pquantizer = get_bits(gb, 1);
  1342. v->dquantfrm = 0;
  1343. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1344. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1345. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1346. v->range_x = 1 << (v->k_x - 1);
  1347. v->range_y = 1 << (v->k_y - 1);
  1348. if (v->profile == PROFILE_ADVANCED)
  1349. {
  1350. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1351. }
  1352. else
  1353. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1354. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1355. if(get_bits1(gb))return -1;
  1356. }
  1357. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1358. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1359. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1360. switch(v->s.pict_type) {
  1361. case P_TYPE:
  1362. if (v->pq < 5) v->tt_index = 0;
  1363. else if(v->pq < 13) v->tt_index = 1;
  1364. else v->tt_index = 2;
  1365. lowquant = (v->pq > 12) ? 0 : 1;
  1366. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1367. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1368. {
  1369. int scale, shift, i;
  1370. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1371. v->lumscale = get_bits(gb, 6);
  1372. v->lumshift = get_bits(gb, 6);
  1373. v->use_ic = 1;
  1374. /* fill lookup tables for intensity compensation */
  1375. if(!v->lumscale) {
  1376. scale = -64;
  1377. shift = (255 - v->lumshift * 2) << 6;
  1378. if(v->lumshift > 31)
  1379. shift += 128 << 6;
  1380. } else {
  1381. scale = v->lumscale + 32;
  1382. if(v->lumshift > 31)
  1383. shift = (v->lumshift - 64) << 6;
  1384. else
  1385. shift = v->lumshift << 6;
  1386. }
  1387. for(i = 0; i < 256; i++) {
  1388. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1389. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1390. }
  1391. }
  1392. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1393. v->s.quarter_sample = 0;
  1394. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1395. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1396. v->s.quarter_sample = 0;
  1397. else
  1398. v->s.quarter_sample = 1;
  1399. } else
  1400. v->s.quarter_sample = 1;
  1401. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1402. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1403. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1404. || v->mv_mode == MV_PMODE_MIXED_MV)
  1405. {
  1406. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1407. if (status < 0) return -1;
  1408. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1409. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1410. } else {
  1411. v->mv_type_is_raw = 0;
  1412. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1413. }
  1414. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1415. if (status < 0) return -1;
  1416. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1417. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1418. /* Hopefully this is correct for P frames */
  1419. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1420. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1421. if (v->dquant)
  1422. {
  1423. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1424. vop_dquant_decoding(v);
  1425. }
  1426. v->ttfrm = 0; //FIXME Is that so ?
  1427. if (v->vstransform)
  1428. {
  1429. v->ttmbf = get_bits(gb, 1);
  1430. if (v->ttmbf)
  1431. {
  1432. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1433. }
  1434. } else {
  1435. v->ttmbf = 1;
  1436. v->ttfrm = TT_8X8;
  1437. }
  1438. break;
  1439. case B_TYPE:
  1440. if (v->pq < 5) v->tt_index = 0;
  1441. else if(v->pq < 13) v->tt_index = 1;
  1442. else v->tt_index = 2;
  1443. lowquant = (v->pq > 12) ? 0 : 1;
  1444. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1445. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1446. v->s.mspel = v->s.quarter_sample;
  1447. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1448. if (status < 0) return -1;
  1449. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1450. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1451. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1452. if (status < 0) return -1;
  1453. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1454. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1455. v->s.mv_table_index = get_bits(gb, 2);
  1456. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1457. if (v->dquant)
  1458. {
  1459. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1460. vop_dquant_decoding(v);
  1461. }
  1462. v->ttfrm = 0;
  1463. if (v->vstransform)
  1464. {
  1465. v->ttmbf = get_bits(gb, 1);
  1466. if (v->ttmbf)
  1467. {
  1468. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1469. }
  1470. } else {
  1471. v->ttmbf = 1;
  1472. v->ttfrm = TT_8X8;
  1473. }
  1474. break;
  1475. }
  1476. /* AC Syntax */
  1477. v->c_ac_table_index = decode012(gb);
  1478. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1479. {
  1480. v->y_ac_table_index = decode012(gb);
  1481. }
  1482. /* DC Syntax */
  1483. v->s.dc_table_index = get_bits(gb, 1);
  1484. if(v->s.pict_type == BI_TYPE) {
  1485. v->s.pict_type = B_TYPE;
  1486. v->bi_type = 1;
  1487. }
  1488. return 0;
  1489. }
  1490. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1491. {
  1492. int pqindex, lowquant;
  1493. int status;
  1494. v->p_frame_skipped = 0;
  1495. if(v->interlace){
  1496. v->fcm = decode012(gb);
  1497. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1498. }
  1499. switch(get_prefix(gb, 0, 4)) {
  1500. case 0:
  1501. v->s.pict_type = P_TYPE;
  1502. break;
  1503. case 1:
  1504. v->s.pict_type = B_TYPE;
  1505. break;
  1506. case 2:
  1507. v->s.pict_type = I_TYPE;
  1508. break;
  1509. case 3:
  1510. v->s.pict_type = BI_TYPE;
  1511. break;
  1512. case 4:
  1513. v->s.pict_type = P_TYPE; // skipped pic
  1514. v->p_frame_skipped = 1;
  1515. return 0;
  1516. }
  1517. if(v->tfcntrflag)
  1518. get_bits(gb, 8);
  1519. if(v->broadcast) {
  1520. if(!v->interlace || v->psf) {
  1521. v->rptfrm = get_bits(gb, 2);
  1522. } else {
  1523. v->tff = get_bits1(gb);
  1524. v->rptfrm = get_bits1(gb);
  1525. }
  1526. }
  1527. if(v->panscanflag) {
  1528. //...
  1529. }
  1530. v->rnd = get_bits1(gb);
  1531. if(v->interlace)
  1532. v->uvsamp = get_bits1(gb);
  1533. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1534. if(v->s.pict_type == B_TYPE) {
  1535. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1536. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1537. if(v->bfraction == 0) {
  1538. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1539. }
  1540. }
  1541. pqindex = get_bits(gb, 5);
  1542. v->pqindex = pqindex;
  1543. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1544. v->pq = pquant_table[0][pqindex];
  1545. else
  1546. v->pq = pquant_table[1][pqindex];
  1547. v->pquantizer = 1;
  1548. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1549. v->pquantizer = pqindex < 9;
  1550. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1551. v->pquantizer = 0;
  1552. v->pqindex = pqindex;
  1553. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1554. else v->halfpq = 0;
  1555. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1556. v->pquantizer = get_bits(gb, 1);
  1557. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1558. switch(v->s.pict_type) {
  1559. case I_TYPE:
  1560. case BI_TYPE:
  1561. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1562. if (status < 0) return -1;
  1563. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1564. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1565. v->condover = CONDOVER_NONE;
  1566. if(v->overlap && v->pq <= 8) {
  1567. v->condover = decode012(gb);
  1568. if(v->condover == CONDOVER_SELECT) {
  1569. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1570. if (status < 0) return -1;
  1571. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1572. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1573. }
  1574. }
  1575. break;
  1576. case P_TYPE:
  1577. if(v->postprocflag)
  1578. v->postproc = get_bits1(gb);
  1579. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1580. else v->mvrange = 0;
  1581. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1582. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1583. v->range_x = 1 << (v->k_x - 1);
  1584. v->range_y = 1 << (v->k_y - 1);
  1585. if (v->pq < 5) v->tt_index = 0;
  1586. else if(v->pq < 13) v->tt_index = 1;
  1587. else v->tt_index = 2;
  1588. lowquant = (v->pq > 12) ? 0 : 1;
  1589. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1590. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1591. {
  1592. int scale, shift, i;
  1593. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1594. v->lumscale = get_bits(gb, 6);
  1595. v->lumshift = get_bits(gb, 6);
  1596. /* fill lookup tables for intensity compensation */
  1597. if(!v->lumscale) {
  1598. scale = -64;
  1599. shift = (255 - v->lumshift * 2) << 6;
  1600. if(v->lumshift > 31)
  1601. shift += 128 << 6;
  1602. } else {
  1603. scale = v->lumscale + 32;
  1604. if(v->lumshift > 31)
  1605. shift = (v->lumshift - 64) << 6;
  1606. else
  1607. shift = v->lumshift << 6;
  1608. }
  1609. for(i = 0; i < 256; i++) {
  1610. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1611. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1612. }
  1613. v->use_ic = 1;
  1614. }
  1615. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1616. v->s.quarter_sample = 0;
  1617. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1618. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1619. v->s.quarter_sample = 0;
  1620. else
  1621. v->s.quarter_sample = 1;
  1622. } else
  1623. v->s.quarter_sample = 1;
  1624. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1625. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1626. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1627. || v->mv_mode == MV_PMODE_MIXED_MV)
  1628. {
  1629. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1630. if (status < 0) return -1;
  1631. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1632. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1633. } else {
  1634. v->mv_type_is_raw = 0;
  1635. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1636. }
  1637. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1638. if (status < 0) return -1;
  1639. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1640. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1641. /* Hopefully this is correct for P frames */
  1642. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1643. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1644. if (v->dquant)
  1645. {
  1646. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1647. vop_dquant_decoding(v);
  1648. }
  1649. v->ttfrm = 0; //FIXME Is that so ?
  1650. if (v->vstransform)
  1651. {
  1652. v->ttmbf = get_bits(gb, 1);
  1653. if (v->ttmbf)
  1654. {
  1655. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1656. }
  1657. } else {
  1658. v->ttmbf = 1;
  1659. v->ttfrm = TT_8X8;
  1660. }
  1661. break;
  1662. case B_TYPE:
  1663. if(v->postprocflag)
  1664. v->postproc = get_bits1(gb);
  1665. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1666. else v->mvrange = 0;
  1667. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1668. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1669. v->range_x = 1 << (v->k_x - 1);
  1670. v->range_y = 1 << (v->k_y - 1);
  1671. if (v->pq < 5) v->tt_index = 0;
  1672. else if(v->pq < 13) v->tt_index = 1;
  1673. else v->tt_index = 2;
  1674. lowquant = (v->pq > 12) ? 0 : 1;
  1675. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1676. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1677. v->s.mspel = v->s.quarter_sample;
  1678. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1679. if (status < 0) return -1;
  1680. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1681. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1682. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1683. if (status < 0) return -1;
  1684. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1685. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1686. v->s.mv_table_index = get_bits(gb, 2);
  1687. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1688. if (v->dquant)
  1689. {
  1690. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1691. vop_dquant_decoding(v);
  1692. }
  1693. v->ttfrm = 0;
  1694. if (v->vstransform)
  1695. {
  1696. v->ttmbf = get_bits(gb, 1);
  1697. if (v->ttmbf)
  1698. {
  1699. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1700. }
  1701. } else {
  1702. v->ttmbf = 1;
  1703. v->ttfrm = TT_8X8;
  1704. }
  1705. break;
  1706. }
  1707. /* AC Syntax */
  1708. v->c_ac_table_index = decode012(gb);
  1709. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1710. {
  1711. v->y_ac_table_index = decode012(gb);
  1712. }
  1713. /* DC Syntax */
  1714. v->s.dc_table_index = get_bits(gb, 1);
  1715. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1716. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1717. vop_dquant_decoding(v);
  1718. }
  1719. v->bi_type = 0;
  1720. if(v->s.pict_type == BI_TYPE) {
  1721. v->s.pict_type = B_TYPE;
  1722. v->bi_type = 1;
  1723. }
  1724. return 0;
  1725. }
  1726. /***********************************************************************/
  1727. /**
  1728. * @defgroup block VC-1 Block-level functions
  1729. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1730. * @{
  1731. */
  1732. /**
  1733. * @def GET_MQUANT
  1734. * @brief Get macroblock-level quantizer scale
  1735. */
  1736. #define GET_MQUANT() \
  1737. if (v->dquantfrm) \
  1738. { \
  1739. int edges = 0; \
  1740. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1741. { \
  1742. if (v->dqbilevel) \
  1743. { \
  1744. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1745. } \
  1746. else \
  1747. { \
  1748. mqdiff = get_bits(gb, 3); \
  1749. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1750. else mquant = get_bits(gb, 5); \
  1751. } \
  1752. } \
  1753. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1754. edges = 1 << v->dqsbedge; \
  1755. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1756. edges = (3 << v->dqsbedge) % 15; \
  1757. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1758. edges = 15; \
  1759. if((edges&1) && !s->mb_x) \
  1760. mquant = v->altpq; \
  1761. if((edges&2) && s->first_slice_line) \
  1762. mquant = v->altpq; \
  1763. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1764. mquant = v->altpq; \
  1765. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1766. mquant = v->altpq; \
  1767. }
  1768. /**
  1769. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1770. * @brief Get MV differentials
  1771. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1772. * @param _dmv_x Horizontal differential for decoded MV
  1773. * @param _dmv_y Vertical differential for decoded MV
  1774. */
  1775. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1776. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1777. VC1_MV_DIFF_VLC_BITS, 2); \
  1778. if (index > 36) \
  1779. { \
  1780. mb_has_coeffs = 1; \
  1781. index -= 37; \
  1782. } \
  1783. else mb_has_coeffs = 0; \
  1784. s->mb_intra = 0; \
  1785. if (!index) { _dmv_x = _dmv_y = 0; } \
  1786. else if (index == 35) \
  1787. { \
  1788. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1789. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1790. } \
  1791. else if (index == 36) \
  1792. { \
  1793. _dmv_x = 0; \
  1794. _dmv_y = 0; \
  1795. s->mb_intra = 1; \
  1796. } \
  1797. else \
  1798. { \
  1799. index1 = index%6; \
  1800. if (!s->quarter_sample && index1 == 5) val = 1; \
  1801. else val = 0; \
  1802. if(size_table[index1] - val > 0) \
  1803. val = get_bits(gb, size_table[index1] - val); \
  1804. else val = 0; \
  1805. sign = 0 - (val&1); \
  1806. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1807. \
  1808. index1 = index/6; \
  1809. if (!s->quarter_sample && index1 == 5) val = 1; \
  1810. else val = 0; \
  1811. if(size_table[index1] - val > 0) \
  1812. val = get_bits(gb, size_table[index1] - val); \
  1813. else val = 0; \
  1814. sign = 0 - (val&1); \
  1815. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1816. }
  1817. /** Predict and set motion vector
  1818. */
  1819. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1820. {
  1821. int xy, wrap, off = 0;
  1822. int16_t *A, *B, *C;
  1823. int px, py;
  1824. int sum;
  1825. /* scale MV difference to be quad-pel */
  1826. dmv_x <<= 1 - s->quarter_sample;
  1827. dmv_y <<= 1 - s->quarter_sample;
  1828. wrap = s->b8_stride;
  1829. xy = s->block_index[n];
  1830. if(s->mb_intra){
  1831. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1832. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1833. s->current_picture.motion_val[1][xy][0] = 0;
  1834. s->current_picture.motion_val[1][xy][1] = 0;
  1835. if(mv1) { /* duplicate motion data for 1-MV block */
  1836. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1837. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1838. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1839. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1840. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1841. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1842. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1843. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1844. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1845. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1846. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1847. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1848. }
  1849. return;
  1850. }
  1851. C = s->current_picture.motion_val[0][xy - 1];
  1852. A = s->current_picture.motion_val[0][xy - wrap];
  1853. if(mv1)
  1854. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1855. else {
  1856. //in 4-MV mode different blocks have different B predictor position
  1857. switch(n){
  1858. case 0:
  1859. off = (s->mb_x > 0) ? -1 : 1;
  1860. break;
  1861. case 1:
  1862. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1863. break;
  1864. case 2:
  1865. off = 1;
  1866. break;
  1867. case 3:
  1868. off = -1;
  1869. }
  1870. }
  1871. B = s->current_picture.motion_val[0][xy - wrap + off];
  1872. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1873. if(s->mb_width == 1) {
  1874. px = A[0];
  1875. py = A[1];
  1876. } else {
  1877. px = mid_pred(A[0], B[0], C[0]);
  1878. py = mid_pred(A[1], B[1], C[1]);
  1879. }
  1880. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1881. px = C[0];
  1882. py = C[1];
  1883. } else {
  1884. px = py = 0;
  1885. }
  1886. /* Pullback MV as specified in 8.3.5.3.4 */
  1887. {
  1888. int qx, qy, X, Y;
  1889. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1890. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1891. X = (s->mb_width << 6) - 4;
  1892. Y = (s->mb_height << 6) - 4;
  1893. if(mv1) {
  1894. if(qx + px < -60) px = -60 - qx;
  1895. if(qy + py < -60) py = -60 - qy;
  1896. } else {
  1897. if(qx + px < -28) px = -28 - qx;
  1898. if(qy + py < -28) py = -28 - qy;
  1899. }
  1900. if(qx + px > X) px = X - qx;
  1901. if(qy + py > Y) py = Y - qy;
  1902. }
  1903. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1904. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1905. if(is_intra[xy - wrap])
  1906. sum = FFABS(px) + FFABS(py);
  1907. else
  1908. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1909. if(sum > 32) {
  1910. if(get_bits1(&s->gb)) {
  1911. px = A[0];
  1912. py = A[1];
  1913. } else {
  1914. px = C[0];
  1915. py = C[1];
  1916. }
  1917. } else {
  1918. if(is_intra[xy - 1])
  1919. sum = FFABS(px) + FFABS(py);
  1920. else
  1921. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1922. if(sum > 32) {
  1923. if(get_bits1(&s->gb)) {
  1924. px = A[0];
  1925. py = A[1];
  1926. } else {
  1927. px = C[0];
  1928. py = C[1];
  1929. }
  1930. }
  1931. }
  1932. }
  1933. /* store MV using signed modulus of MV range defined in 4.11 */
  1934. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1935. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1936. if(mv1) { /* duplicate motion data for 1-MV block */
  1937. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1938. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1939. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1940. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1941. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1942. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1943. }
  1944. }
  1945. /** Motion compensation for direct or interpolated blocks in B-frames
  1946. */
  1947. static void vc1_interp_mc(VC1Context *v)
  1948. {
  1949. MpegEncContext *s = &v->s;
  1950. DSPContext *dsp = &v->s.dsp;
  1951. uint8_t *srcY, *srcU, *srcV;
  1952. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1953. if(!v->s.next_picture.data[0])return;
  1954. mx = s->mv[1][0][0];
  1955. my = s->mv[1][0][1];
  1956. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1957. uvmy = (my + ((my & 3) == 3)) >> 1;
  1958. if(v->fastuvmc) {
  1959. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1960. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1961. }
  1962. srcY = s->next_picture.data[0];
  1963. srcU = s->next_picture.data[1];
  1964. srcV = s->next_picture.data[2];
  1965. src_x = s->mb_x * 16 + (mx >> 2);
  1966. src_y = s->mb_y * 16 + (my >> 2);
  1967. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1968. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1969. if(v->profile != PROFILE_ADVANCED){
  1970. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1971. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1972. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1973. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1974. }else{
  1975. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1976. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1977. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1978. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1979. }
  1980. srcY += src_y * s->linesize + src_x;
  1981. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1982. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1983. /* for grayscale we should not try to read from unknown area */
  1984. if(s->flags & CODEC_FLAG_GRAY) {
  1985. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1986. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1987. }
  1988. if(v->rangeredfrm
  1989. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1990. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1991. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1992. srcY -= s->mspel * (1 + s->linesize);
  1993. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1994. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1995. srcY = s->edge_emu_buffer;
  1996. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1997. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1998. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1999. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  2000. srcU = uvbuf;
  2001. srcV = uvbuf + 16;
  2002. /* if we deal with range reduction we need to scale source blocks */
  2003. if(v->rangeredfrm) {
  2004. int i, j;
  2005. uint8_t *src, *src2;
  2006. src = srcY;
  2007. for(j = 0; j < 17 + s->mspel*2; j++) {
  2008. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  2009. src += s->linesize;
  2010. }
  2011. src = srcU; src2 = srcV;
  2012. for(j = 0; j < 9; j++) {
  2013. for(i = 0; i < 9; i++) {
  2014. src[i] = ((src[i] - 128) >> 1) + 128;
  2015. src2[i] = ((src2[i] - 128) >> 1) + 128;
  2016. }
  2017. src += s->uvlinesize;
  2018. src2 += s->uvlinesize;
  2019. }
  2020. }
  2021. srcY += s->mspel * (1 + s->linesize);
  2022. }
  2023. mx >>= 1;
  2024. my >>= 1;
  2025. dxy = ((my & 1) << 1) | (mx & 1);
  2026. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  2027. if(s->flags & CODEC_FLAG_GRAY) return;
  2028. /* Chroma MC always uses qpel blilinear */
  2029. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  2030. uvmx = (uvmx&3)<<1;
  2031. uvmy = (uvmy&3)<<1;
  2032. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  2033. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  2034. }
  2035. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  2036. {
  2037. int n = bfrac;
  2038. #if B_FRACTION_DEN==256
  2039. if(inv)
  2040. n -= 256;
  2041. if(!qs)
  2042. return 2 * ((value * n + 255) >> 9);
  2043. return (value * n + 128) >> 8;
  2044. #else
  2045. if(inv)
  2046. n -= B_FRACTION_DEN;
  2047. if(!qs)
  2048. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  2049. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  2050. #endif
  2051. }
  2052. /** Reconstruct motion vector for B-frame and do motion compensation
  2053. */
  2054. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  2055. {
  2056. if(v->use_ic) {
  2057. v->mv_mode2 = v->mv_mode;
  2058. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  2059. }
  2060. if(direct) {
  2061. vc1_mc_1mv(v, 0);
  2062. vc1_interp_mc(v);
  2063. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2064. return;
  2065. }
  2066. if(mode == BMV_TYPE_INTERPOLATED) {
  2067. vc1_mc_1mv(v, 0);
  2068. vc1_interp_mc(v);
  2069. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2070. return;
  2071. }
  2072. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  2073. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  2074. if(v->use_ic) v->mv_mode = v->mv_mode2;
  2075. }
  2076. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  2077. {
  2078. MpegEncContext *s = &v->s;
  2079. int xy, wrap, off = 0;
  2080. int16_t *A, *B, *C;
  2081. int px, py;
  2082. int sum;
  2083. int r_x, r_y;
  2084. const uint8_t *is_intra = v->mb_type[0];
  2085. r_x = v->range_x;
  2086. r_y = v->range_y;
  2087. /* scale MV difference to be quad-pel */
  2088. dmv_x[0] <<= 1 - s->quarter_sample;
  2089. dmv_y[0] <<= 1 - s->quarter_sample;
  2090. dmv_x[1] <<= 1 - s->quarter_sample;
  2091. dmv_y[1] <<= 1 - s->quarter_sample;
  2092. wrap = s->b8_stride;
  2093. xy = s->block_index[0];
  2094. if(s->mb_intra) {
  2095. s->current_picture.motion_val[0][xy][0] =
  2096. s->current_picture.motion_val[0][xy][1] =
  2097. s->current_picture.motion_val[1][xy][0] =
  2098. s->current_picture.motion_val[1][xy][1] = 0;
  2099. return;
  2100. }
  2101. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  2102. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  2103. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  2104. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  2105. if(direct) {
  2106. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2107. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2108. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2109. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2110. return;
  2111. }
  2112. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2113. C = s->current_picture.motion_val[0][xy - 2];
  2114. A = s->current_picture.motion_val[0][xy - wrap*2];
  2115. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2116. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  2117. if(!s->first_slice_line) { // predictor A is not out of bounds
  2118. if(s->mb_width == 1) {
  2119. px = A[0];
  2120. py = A[1];
  2121. } else {
  2122. px = mid_pred(A[0], B[0], C[0]);
  2123. py = mid_pred(A[1], B[1], C[1]);
  2124. }
  2125. } else if(s->mb_x) { // predictor C is not out of bounds
  2126. px = C[0];
  2127. py = C[1];
  2128. } else {
  2129. px = py = 0;
  2130. }
  2131. /* Pullback MV as specified in 8.3.5.3.4 */
  2132. {
  2133. int qx, qy, X, Y;
  2134. if(v->profile < PROFILE_ADVANCED) {
  2135. qx = (s->mb_x << 5);
  2136. qy = (s->mb_y << 5);
  2137. X = (s->mb_width << 5) - 4;
  2138. Y = (s->mb_height << 5) - 4;
  2139. if(qx + px < -28) px = -28 - qx;
  2140. if(qy + py < -28) py = -28 - qy;
  2141. if(qx + px > X) px = X - qx;
  2142. if(qy + py > Y) py = Y - qy;
  2143. } else {
  2144. qx = (s->mb_x << 6);
  2145. qy = (s->mb_y << 6);
  2146. X = (s->mb_width << 6) - 4;
  2147. Y = (s->mb_height << 6) - 4;
  2148. if(qx + px < -60) px = -60 - qx;
  2149. if(qy + py < -60) py = -60 - qy;
  2150. if(qx + px > X) px = X - qx;
  2151. if(qy + py > Y) py = Y - qy;
  2152. }
  2153. }
  2154. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2155. if(0 && !s->first_slice_line && s->mb_x) {
  2156. if(is_intra[xy - wrap])
  2157. sum = FFABS(px) + FFABS(py);
  2158. else
  2159. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2160. if(sum > 32) {
  2161. if(get_bits1(&s->gb)) {
  2162. px = A[0];
  2163. py = A[1];
  2164. } else {
  2165. px = C[0];
  2166. py = C[1];
  2167. }
  2168. } else {
  2169. if(is_intra[xy - 2])
  2170. sum = FFABS(px) + FFABS(py);
  2171. else
  2172. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2173. if(sum > 32) {
  2174. if(get_bits1(&s->gb)) {
  2175. px = A[0];
  2176. py = A[1];
  2177. } else {
  2178. px = C[0];
  2179. py = C[1];
  2180. }
  2181. }
  2182. }
  2183. }
  2184. /* store MV using signed modulus of MV range defined in 4.11 */
  2185. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2186. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2187. }
  2188. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2189. C = s->current_picture.motion_val[1][xy - 2];
  2190. A = s->current_picture.motion_val[1][xy - wrap*2];
  2191. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2192. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2193. if(!s->first_slice_line) { // predictor A is not out of bounds
  2194. if(s->mb_width == 1) {
  2195. px = A[0];
  2196. py = A[1];
  2197. } else {
  2198. px = mid_pred(A[0], B[0], C[0]);
  2199. py = mid_pred(A[1], B[1], C[1]);
  2200. }
  2201. } else if(s->mb_x) { // predictor C is not out of bounds
  2202. px = C[0];
  2203. py = C[1];
  2204. } else {
  2205. px = py = 0;
  2206. }
  2207. /* Pullback MV as specified in 8.3.5.3.4 */
  2208. {
  2209. int qx, qy, X, Y;
  2210. if(v->profile < PROFILE_ADVANCED) {
  2211. qx = (s->mb_x << 5);
  2212. qy = (s->mb_y << 5);
  2213. X = (s->mb_width << 5) - 4;
  2214. Y = (s->mb_height << 5) - 4;
  2215. if(qx + px < -28) px = -28 - qx;
  2216. if(qy + py < -28) py = -28 - qy;
  2217. if(qx + px > X) px = X - qx;
  2218. if(qy + py > Y) py = Y - qy;
  2219. } else {
  2220. qx = (s->mb_x << 6);
  2221. qy = (s->mb_y << 6);
  2222. X = (s->mb_width << 6) - 4;
  2223. Y = (s->mb_height << 6) - 4;
  2224. if(qx + px < -60) px = -60 - qx;
  2225. if(qy + py < -60) py = -60 - qy;
  2226. if(qx + px > X) px = X - qx;
  2227. if(qy + py > Y) py = Y - qy;
  2228. }
  2229. }
  2230. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2231. if(0 && !s->first_slice_line && s->mb_x) {
  2232. if(is_intra[xy - wrap])
  2233. sum = FFABS(px) + FFABS(py);
  2234. else
  2235. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  2236. if(sum > 32) {
  2237. if(get_bits1(&s->gb)) {
  2238. px = A[0];
  2239. py = A[1];
  2240. } else {
  2241. px = C[0];
  2242. py = C[1];
  2243. }
  2244. } else {
  2245. if(is_intra[xy - 2])
  2246. sum = FFABS(px) + FFABS(py);
  2247. else
  2248. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  2249. if(sum > 32) {
  2250. if(get_bits1(&s->gb)) {
  2251. px = A[0];
  2252. py = A[1];
  2253. } else {
  2254. px = C[0];
  2255. py = C[1];
  2256. }
  2257. }
  2258. }
  2259. }
  2260. /* store MV using signed modulus of MV range defined in 4.11 */
  2261. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2262. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2263. }
  2264. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2265. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2266. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2267. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2268. }
  2269. /** Get predicted DC value for I-frames only
  2270. * prediction dir: left=0, top=1
  2271. * @param s MpegEncContext
  2272. * @param[in] n block index in the current MB
  2273. * @param dc_val_ptr Pointer to DC predictor
  2274. * @param dir_ptr Prediction direction for use in AC prediction
  2275. */
  2276. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2277. int16_t **dc_val_ptr, int *dir_ptr)
  2278. {
  2279. int a, b, c, wrap, pred, scale;
  2280. int16_t *dc_val;
  2281. static const uint16_t dcpred[32] = {
  2282. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2283. 114, 102, 93, 85, 79, 73, 68, 64,
  2284. 60, 57, 54, 51, 49, 47, 45, 43,
  2285. 41, 39, 38, 37, 35, 34, 33
  2286. };
  2287. /* find prediction - wmv3_dc_scale always used here in fact */
  2288. if (n < 4) scale = s->y_dc_scale;
  2289. else scale = s->c_dc_scale;
  2290. wrap = s->block_wrap[n];
  2291. dc_val= s->dc_val[0] + s->block_index[n];
  2292. /* B A
  2293. * C X
  2294. */
  2295. c = dc_val[ - 1];
  2296. b = dc_val[ - 1 - wrap];
  2297. a = dc_val[ - wrap];
  2298. if (pq < 9 || !overlap)
  2299. {
  2300. /* Set outer values */
  2301. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2302. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2303. }
  2304. else
  2305. {
  2306. /* Set outer values */
  2307. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2308. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2309. }
  2310. if (abs(a - b) <= abs(b - c)) {
  2311. pred = c;
  2312. *dir_ptr = 1;//left
  2313. } else {
  2314. pred = a;
  2315. *dir_ptr = 0;//top
  2316. }
  2317. /* update predictor */
  2318. *dc_val_ptr = &dc_val[0];
  2319. return pred;
  2320. }
  2321. /** Get predicted DC value
  2322. * prediction dir: left=0, top=1
  2323. * @param s MpegEncContext
  2324. * @param[in] n block index in the current MB
  2325. * @param dc_val_ptr Pointer to DC predictor
  2326. * @param dir_ptr Prediction direction for use in AC prediction
  2327. */
  2328. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2329. int a_avail, int c_avail,
  2330. int16_t **dc_val_ptr, int *dir_ptr)
  2331. {
  2332. int a, b, c, wrap, pred, scale;
  2333. int16_t *dc_val;
  2334. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2335. int q1, q2 = 0;
  2336. /* find prediction - wmv3_dc_scale always used here in fact */
  2337. if (n < 4) scale = s->y_dc_scale;
  2338. else scale = s->c_dc_scale;
  2339. wrap = s->block_wrap[n];
  2340. dc_val= s->dc_val[0] + s->block_index[n];
  2341. /* B A
  2342. * C X
  2343. */
  2344. c = dc_val[ - 1];
  2345. b = dc_val[ - 1 - wrap];
  2346. a = dc_val[ - wrap];
  2347. /* scale predictors if needed */
  2348. q1 = s->current_picture.qscale_table[mb_pos];
  2349. if(c_avail && (n!= 1 && n!=3)) {
  2350. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2351. if(q2 && q2 != q1)
  2352. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2353. }
  2354. if(a_avail && (n!= 2 && n!=3)) {
  2355. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2356. if(q2 && q2 != q1)
  2357. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2358. }
  2359. if(a_avail && c_avail && (n!=3)) {
  2360. int off = mb_pos;
  2361. if(n != 1) off--;
  2362. if(n != 2) off -= s->mb_stride;
  2363. q2 = s->current_picture.qscale_table[off];
  2364. if(q2 && q2 != q1)
  2365. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2366. }
  2367. if(a_avail && c_avail) {
  2368. if(abs(a - b) <= abs(b - c)) {
  2369. pred = c;
  2370. *dir_ptr = 1;//left
  2371. } else {
  2372. pred = a;
  2373. *dir_ptr = 0;//top
  2374. }
  2375. } else if(a_avail) {
  2376. pred = a;
  2377. *dir_ptr = 0;//top
  2378. } else if(c_avail) {
  2379. pred = c;
  2380. *dir_ptr = 1;//left
  2381. } else {
  2382. pred = 0;
  2383. *dir_ptr = 1;//left
  2384. }
  2385. /* update predictor */
  2386. *dc_val_ptr = &dc_val[0];
  2387. return pred;
  2388. }
  2389. /**
  2390. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2391. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2392. * @{
  2393. */
  2394. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2395. {
  2396. int xy, wrap, pred, a, b, c;
  2397. xy = s->block_index[n];
  2398. wrap = s->b8_stride;
  2399. /* B C
  2400. * A X
  2401. */
  2402. a = s->coded_block[xy - 1 ];
  2403. b = s->coded_block[xy - 1 - wrap];
  2404. c = s->coded_block[xy - wrap];
  2405. if (b == c) {
  2406. pred = a;
  2407. } else {
  2408. pred = c;
  2409. }
  2410. /* store value */
  2411. *coded_block_ptr = &s->coded_block[xy];
  2412. return pred;
  2413. }
  2414. /**
  2415. * Decode one AC coefficient
  2416. * @param v The VC1 context
  2417. * @param last Last coefficient
  2418. * @param skip How much zero coefficients to skip
  2419. * @param value Decoded AC coefficient value
  2420. * @see 8.1.3.4
  2421. */
  2422. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2423. {
  2424. GetBitContext *gb = &v->s.gb;
  2425. int index, escape, run = 0, level = 0, lst = 0;
  2426. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2427. if (index != vc1_ac_sizes[codingset] - 1) {
  2428. run = vc1_index_decode_table[codingset][index][0];
  2429. level = vc1_index_decode_table[codingset][index][1];
  2430. lst = index >= vc1_last_decode_table[codingset];
  2431. if(get_bits(gb, 1))
  2432. level = -level;
  2433. } else {
  2434. escape = decode210(gb);
  2435. if (escape != 2) {
  2436. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2437. run = vc1_index_decode_table[codingset][index][0];
  2438. level = vc1_index_decode_table[codingset][index][1];
  2439. lst = index >= vc1_last_decode_table[codingset];
  2440. if(escape == 0) {
  2441. if(lst)
  2442. level += vc1_last_delta_level_table[codingset][run];
  2443. else
  2444. level += vc1_delta_level_table[codingset][run];
  2445. } else {
  2446. if(lst)
  2447. run += vc1_last_delta_run_table[codingset][level] + 1;
  2448. else
  2449. run += vc1_delta_run_table[codingset][level] + 1;
  2450. }
  2451. if(get_bits(gb, 1))
  2452. level = -level;
  2453. } else {
  2454. int sign;
  2455. lst = get_bits(gb, 1);
  2456. if(v->s.esc3_level_length == 0) {
  2457. if(v->pq < 8 || v->dquantfrm) { // table 59
  2458. v->s.esc3_level_length = get_bits(gb, 3);
  2459. if(!v->s.esc3_level_length)
  2460. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2461. } else { //table 60
  2462. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2463. }
  2464. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2465. }
  2466. run = get_bits(gb, v->s.esc3_run_length);
  2467. sign = get_bits(gb, 1);
  2468. level = get_bits(gb, v->s.esc3_level_length);
  2469. if(sign)
  2470. level = -level;
  2471. }
  2472. }
  2473. *last = lst;
  2474. *skip = run;
  2475. *value = level;
  2476. }
  2477. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2478. * @param v VC1Context
  2479. * @param block block to decode
  2480. * @param coded are AC coeffs present or not
  2481. * @param codingset set of VLC to decode data
  2482. */
  2483. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2484. {
  2485. GetBitContext *gb = &v->s.gb;
  2486. MpegEncContext *s = &v->s;
  2487. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2488. int run_diff, i;
  2489. int16_t *dc_val;
  2490. int16_t *ac_val, *ac_val2;
  2491. int dcdiff;
  2492. /* Get DC differential */
  2493. if (n < 4) {
  2494. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2495. } else {
  2496. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2497. }
  2498. if (dcdiff < 0){
  2499. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2500. return -1;
  2501. }
  2502. if (dcdiff)
  2503. {
  2504. if (dcdiff == 119 /* ESC index value */)
  2505. {
  2506. /* TODO: Optimize */
  2507. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2508. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2509. else dcdiff = get_bits(gb, 8);
  2510. }
  2511. else
  2512. {
  2513. if (v->pq == 1)
  2514. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2515. else if (v->pq == 2)
  2516. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2517. }
  2518. if (get_bits(gb, 1))
  2519. dcdiff = -dcdiff;
  2520. }
  2521. /* Prediction */
  2522. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2523. *dc_val = dcdiff;
  2524. /* Store the quantized DC coeff, used for prediction */
  2525. if (n < 4) {
  2526. block[0] = dcdiff * s->y_dc_scale;
  2527. } else {
  2528. block[0] = dcdiff * s->c_dc_scale;
  2529. }
  2530. /* Skip ? */
  2531. run_diff = 0;
  2532. i = 0;
  2533. if (!coded) {
  2534. goto not_coded;
  2535. }
  2536. //AC Decoding
  2537. i = 1;
  2538. {
  2539. int last = 0, skip, value;
  2540. const int8_t *zz_table;
  2541. int scale;
  2542. int k;
  2543. scale = v->pq * 2 + v->halfpq;
  2544. if(v->s.ac_pred) {
  2545. if(!dc_pred_dir)
  2546. zz_table = vc1_horizontal_zz;
  2547. else
  2548. zz_table = vc1_vertical_zz;
  2549. } else
  2550. zz_table = vc1_normal_zz;
  2551. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2552. ac_val2 = ac_val;
  2553. if(dc_pred_dir) //left
  2554. ac_val -= 16;
  2555. else //top
  2556. ac_val -= 16 * s->block_wrap[n];
  2557. while (!last) {
  2558. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2559. i += skip;
  2560. if(i > 63)
  2561. break;
  2562. block[zz_table[i++]] = value;
  2563. }
  2564. /* apply AC prediction if needed */
  2565. if(s->ac_pred) {
  2566. if(dc_pred_dir) { //left
  2567. for(k = 1; k < 8; k++)
  2568. block[k << 3] += ac_val[k];
  2569. } else { //top
  2570. for(k = 1; k < 8; k++)
  2571. block[k] += ac_val[k + 8];
  2572. }
  2573. }
  2574. /* save AC coeffs for further prediction */
  2575. for(k = 1; k < 8; k++) {
  2576. ac_val2[k] = block[k << 3];
  2577. ac_val2[k + 8] = block[k];
  2578. }
  2579. /* scale AC coeffs */
  2580. for(k = 1; k < 64; k++)
  2581. if(block[k]) {
  2582. block[k] *= scale;
  2583. if(!v->pquantizer)
  2584. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2585. }
  2586. if(s->ac_pred) i = 63;
  2587. }
  2588. not_coded:
  2589. if(!coded) {
  2590. int k, scale;
  2591. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2592. ac_val2 = ac_val;
  2593. scale = v->pq * 2 + v->halfpq;
  2594. memset(ac_val2, 0, 16 * 2);
  2595. if(dc_pred_dir) {//left
  2596. ac_val -= 16;
  2597. if(s->ac_pred)
  2598. memcpy(ac_val2, ac_val, 8 * 2);
  2599. } else {//top
  2600. ac_val -= 16 * s->block_wrap[n];
  2601. if(s->ac_pred)
  2602. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2603. }
  2604. /* apply AC prediction if needed */
  2605. if(s->ac_pred) {
  2606. if(dc_pred_dir) { //left
  2607. for(k = 1; k < 8; k++) {
  2608. block[k << 3] = ac_val[k] * scale;
  2609. if(!v->pquantizer && block[k << 3])
  2610. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2611. }
  2612. } else { //top
  2613. for(k = 1; k < 8; k++) {
  2614. block[k] = ac_val[k + 8] * scale;
  2615. if(!v->pquantizer && block[k])
  2616. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2617. }
  2618. }
  2619. i = 63;
  2620. }
  2621. }
  2622. s->block_last_index[n] = i;
  2623. return 0;
  2624. }
  2625. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2626. * @param v VC1Context
  2627. * @param block block to decode
  2628. * @param coded are AC coeffs present or not
  2629. * @param codingset set of VLC to decode data
  2630. */
  2631. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2632. {
  2633. GetBitContext *gb = &v->s.gb;
  2634. MpegEncContext *s = &v->s;
  2635. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2636. int run_diff, i;
  2637. int16_t *dc_val;
  2638. int16_t *ac_val, *ac_val2;
  2639. int dcdiff;
  2640. int a_avail = v->a_avail, c_avail = v->c_avail;
  2641. int use_pred = s->ac_pred;
  2642. int scale;
  2643. int q1, q2 = 0;
  2644. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2645. /* Get DC differential */
  2646. if (n < 4) {
  2647. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2648. } else {
  2649. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2650. }
  2651. if (dcdiff < 0){
  2652. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2653. return -1;
  2654. }
  2655. if (dcdiff)
  2656. {
  2657. if (dcdiff == 119 /* ESC index value */)
  2658. {
  2659. /* TODO: Optimize */
  2660. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2661. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2662. else dcdiff = get_bits(gb, 8);
  2663. }
  2664. else
  2665. {
  2666. if (mquant == 1)
  2667. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2668. else if (mquant == 2)
  2669. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2670. }
  2671. if (get_bits(gb, 1))
  2672. dcdiff = -dcdiff;
  2673. }
  2674. /* Prediction */
  2675. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2676. *dc_val = dcdiff;
  2677. /* Store the quantized DC coeff, used for prediction */
  2678. if (n < 4) {
  2679. block[0] = dcdiff * s->y_dc_scale;
  2680. } else {
  2681. block[0] = dcdiff * s->c_dc_scale;
  2682. }
  2683. /* Skip ? */
  2684. run_diff = 0;
  2685. i = 0;
  2686. //AC Decoding
  2687. i = 1;
  2688. /* check if AC is needed at all and adjust direction if needed */
  2689. if(!a_avail) dc_pred_dir = 1;
  2690. if(!c_avail) dc_pred_dir = 0;
  2691. if(!a_avail && !c_avail) use_pred = 0;
  2692. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2693. ac_val2 = ac_val;
  2694. scale = mquant * 2 + v->halfpq;
  2695. if(dc_pred_dir) //left
  2696. ac_val -= 16;
  2697. else //top
  2698. ac_val -= 16 * s->block_wrap[n];
  2699. q1 = s->current_picture.qscale_table[mb_pos];
  2700. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2701. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2702. if(n && n<4) q2 = q1;
  2703. if(coded) {
  2704. int last = 0, skip, value;
  2705. const int8_t *zz_table;
  2706. int k;
  2707. if(v->s.ac_pred) {
  2708. if(!dc_pred_dir)
  2709. zz_table = vc1_horizontal_zz;
  2710. else
  2711. zz_table = vc1_vertical_zz;
  2712. } else
  2713. zz_table = vc1_normal_zz;
  2714. while (!last) {
  2715. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2716. i += skip;
  2717. if(i > 63)
  2718. break;
  2719. block[zz_table[i++]] = value;
  2720. }
  2721. /* apply AC prediction if needed */
  2722. if(use_pred) {
  2723. /* scale predictors if needed*/
  2724. if(q2 && q1!=q2) {
  2725. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2726. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2727. if(dc_pred_dir) { //left
  2728. for(k = 1; k < 8; k++)
  2729. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2730. } else { //top
  2731. for(k = 1; k < 8; k++)
  2732. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2733. }
  2734. } else {
  2735. if(dc_pred_dir) { //left
  2736. for(k = 1; k < 8; k++)
  2737. block[k << 3] += ac_val[k];
  2738. } else { //top
  2739. for(k = 1; k < 8; k++)
  2740. block[k] += ac_val[k + 8];
  2741. }
  2742. }
  2743. }
  2744. /* save AC coeffs for further prediction */
  2745. for(k = 1; k < 8; k++) {
  2746. ac_val2[k] = block[k << 3];
  2747. ac_val2[k + 8] = block[k];
  2748. }
  2749. /* scale AC coeffs */
  2750. for(k = 1; k < 64; k++)
  2751. if(block[k]) {
  2752. block[k] *= scale;
  2753. if(!v->pquantizer)
  2754. block[k] += (block[k] < 0) ? -mquant : mquant;
  2755. }
  2756. if(use_pred) i = 63;
  2757. } else { // no AC coeffs
  2758. int k;
  2759. memset(ac_val2, 0, 16 * 2);
  2760. if(dc_pred_dir) {//left
  2761. if(use_pred) {
  2762. memcpy(ac_val2, ac_val, 8 * 2);
  2763. if(q2 && q1!=q2) {
  2764. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2765. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2766. for(k = 1; k < 8; k++)
  2767. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2768. }
  2769. }
  2770. } else {//top
  2771. if(use_pred) {
  2772. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2773. if(q2 && q1!=q2) {
  2774. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2775. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2776. for(k = 1; k < 8; k++)
  2777. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2778. }
  2779. }
  2780. }
  2781. /* apply AC prediction if needed */
  2782. if(use_pred) {
  2783. if(dc_pred_dir) { //left
  2784. for(k = 1; k < 8; k++) {
  2785. block[k << 3] = ac_val2[k] * scale;
  2786. if(!v->pquantizer && block[k << 3])
  2787. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2788. }
  2789. } else { //top
  2790. for(k = 1; k < 8; k++) {
  2791. block[k] = ac_val2[k + 8] * scale;
  2792. if(!v->pquantizer && block[k])
  2793. block[k] += (block[k] < 0) ? -mquant : mquant;
  2794. }
  2795. }
  2796. i = 63;
  2797. }
  2798. }
  2799. s->block_last_index[n] = i;
  2800. return 0;
  2801. }
  2802. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2803. * @param v VC1Context
  2804. * @param block block to decode
  2805. * @param coded are AC coeffs present or not
  2806. * @param mquant block quantizer
  2807. * @param codingset set of VLC to decode data
  2808. */
  2809. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2810. {
  2811. GetBitContext *gb = &v->s.gb;
  2812. MpegEncContext *s = &v->s;
  2813. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2814. int run_diff, i;
  2815. int16_t *dc_val;
  2816. int16_t *ac_val, *ac_val2;
  2817. int dcdiff;
  2818. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2819. int a_avail = v->a_avail, c_avail = v->c_avail;
  2820. int use_pred = s->ac_pred;
  2821. int scale;
  2822. int q1, q2 = 0;
  2823. /* XXX: Guard against dumb values of mquant */
  2824. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2825. /* Set DC scale - y and c use the same */
  2826. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2827. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2828. /* Get DC differential */
  2829. if (n < 4) {
  2830. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2831. } else {
  2832. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2833. }
  2834. if (dcdiff < 0){
  2835. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2836. return -1;
  2837. }
  2838. if (dcdiff)
  2839. {
  2840. if (dcdiff == 119 /* ESC index value */)
  2841. {
  2842. /* TODO: Optimize */
  2843. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2844. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2845. else dcdiff = get_bits(gb, 8);
  2846. }
  2847. else
  2848. {
  2849. if (mquant == 1)
  2850. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2851. else if (mquant == 2)
  2852. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2853. }
  2854. if (get_bits(gb, 1))
  2855. dcdiff = -dcdiff;
  2856. }
  2857. /* Prediction */
  2858. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2859. *dc_val = dcdiff;
  2860. /* Store the quantized DC coeff, used for prediction */
  2861. if (n < 4) {
  2862. block[0] = dcdiff * s->y_dc_scale;
  2863. } else {
  2864. block[0] = dcdiff * s->c_dc_scale;
  2865. }
  2866. /* Skip ? */
  2867. run_diff = 0;
  2868. i = 0;
  2869. //AC Decoding
  2870. i = 1;
  2871. /* check if AC is needed at all and adjust direction if needed */
  2872. if(!a_avail) dc_pred_dir = 1;
  2873. if(!c_avail) dc_pred_dir = 0;
  2874. if(!a_avail && !c_avail) use_pred = 0;
  2875. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2876. ac_val2 = ac_val;
  2877. scale = mquant * 2 + v->halfpq;
  2878. if(dc_pred_dir) //left
  2879. ac_val -= 16;
  2880. else //top
  2881. ac_val -= 16 * s->block_wrap[n];
  2882. q1 = s->current_picture.qscale_table[mb_pos];
  2883. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2884. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2885. if(n && n<4) q2 = q1;
  2886. if(coded) {
  2887. int last = 0, skip, value;
  2888. const int8_t *zz_table;
  2889. int k;
  2890. zz_table = vc1_simple_progressive_8x8_zz;
  2891. while (!last) {
  2892. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2893. i += skip;
  2894. if(i > 63)
  2895. break;
  2896. block[zz_table[i++]] = value;
  2897. }
  2898. /* apply AC prediction if needed */
  2899. if(use_pred) {
  2900. /* scale predictors if needed*/
  2901. if(q2 && q1!=q2) {
  2902. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2903. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2904. if(dc_pred_dir) { //left
  2905. for(k = 1; k < 8; k++)
  2906. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2907. } else { //top
  2908. for(k = 1; k < 8; k++)
  2909. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2910. }
  2911. } else {
  2912. if(dc_pred_dir) { //left
  2913. for(k = 1; k < 8; k++)
  2914. block[k << 3] += ac_val[k];
  2915. } else { //top
  2916. for(k = 1; k < 8; k++)
  2917. block[k] += ac_val[k + 8];
  2918. }
  2919. }
  2920. }
  2921. /* save AC coeffs for further prediction */
  2922. for(k = 1; k < 8; k++) {
  2923. ac_val2[k] = block[k << 3];
  2924. ac_val2[k + 8] = block[k];
  2925. }
  2926. /* scale AC coeffs */
  2927. for(k = 1; k < 64; k++)
  2928. if(block[k]) {
  2929. block[k] *= scale;
  2930. if(!v->pquantizer)
  2931. block[k] += (block[k] < 0) ? -mquant : mquant;
  2932. }
  2933. if(use_pred) i = 63;
  2934. } else { // no AC coeffs
  2935. int k;
  2936. memset(ac_val2, 0, 16 * 2);
  2937. if(dc_pred_dir) {//left
  2938. if(use_pred) {
  2939. memcpy(ac_val2, ac_val, 8 * 2);
  2940. if(q2 && q1!=q2) {
  2941. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2942. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2943. for(k = 1; k < 8; k++)
  2944. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2945. }
  2946. }
  2947. } else {//top
  2948. if(use_pred) {
  2949. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2950. if(q2 && q1!=q2) {
  2951. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2952. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2953. for(k = 1; k < 8; k++)
  2954. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2955. }
  2956. }
  2957. }
  2958. /* apply AC prediction if needed */
  2959. if(use_pred) {
  2960. if(dc_pred_dir) { //left
  2961. for(k = 1; k < 8; k++) {
  2962. block[k << 3] = ac_val2[k] * scale;
  2963. if(!v->pquantizer && block[k << 3])
  2964. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2965. }
  2966. } else { //top
  2967. for(k = 1; k < 8; k++) {
  2968. block[k] = ac_val2[k + 8] * scale;
  2969. if(!v->pquantizer && block[k])
  2970. block[k] += (block[k] < 0) ? -mquant : mquant;
  2971. }
  2972. }
  2973. i = 63;
  2974. }
  2975. }
  2976. s->block_last_index[n] = i;
  2977. return 0;
  2978. }
  2979. /** Decode P block
  2980. */
  2981. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2982. {
  2983. MpegEncContext *s = &v->s;
  2984. GetBitContext *gb = &s->gb;
  2985. int i, j;
  2986. int subblkpat = 0;
  2987. int scale, off, idx, last, skip, value;
  2988. int ttblk = ttmb & 7;
  2989. if(ttmb == -1) {
  2990. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2991. }
  2992. if(ttblk == TT_4X4) {
  2993. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2994. }
  2995. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2996. subblkpat = decode012(gb);
  2997. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2998. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2999. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  3000. }
  3001. scale = 2 * mquant + v->halfpq;
  3002. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  3003. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  3004. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  3005. ttblk = TT_8X4;
  3006. }
  3007. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  3008. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  3009. ttblk = TT_4X8;
  3010. }
  3011. switch(ttblk) {
  3012. case TT_8X8:
  3013. i = 0;
  3014. last = 0;
  3015. while (!last) {
  3016. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3017. i += skip;
  3018. if(i > 63)
  3019. break;
  3020. idx = vc1_simple_progressive_8x8_zz[i++];
  3021. block[idx] = value * scale;
  3022. if(!v->pquantizer)
  3023. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  3024. }
  3025. s->dsp.vc1_inv_trans_8x8(block);
  3026. break;
  3027. case TT_4X4:
  3028. for(j = 0; j < 4; j++) {
  3029. last = subblkpat & (1 << (3 - j));
  3030. i = 0;
  3031. off = (j & 1) * 4 + (j & 2) * 16;
  3032. while (!last) {
  3033. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3034. i += skip;
  3035. if(i > 15)
  3036. break;
  3037. idx = vc1_simple_progressive_4x4_zz[i++];
  3038. block[idx + off] = value * scale;
  3039. if(!v->pquantizer)
  3040. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3041. }
  3042. if(!(subblkpat & (1 << (3 - j))))
  3043. s->dsp.vc1_inv_trans_4x4(block, j);
  3044. }
  3045. break;
  3046. case TT_8X4:
  3047. for(j = 0; j < 2; j++) {
  3048. last = subblkpat & (1 << (1 - j));
  3049. i = 0;
  3050. off = j * 32;
  3051. while (!last) {
  3052. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3053. i += skip;
  3054. if(i > 31)
  3055. break;
  3056. if(v->profile < PROFILE_ADVANCED)
  3057. idx = vc1_simple_progressive_8x4_zz[i++];
  3058. else
  3059. idx = vc1_adv_progressive_8x4_zz[i++];
  3060. block[idx + off] = value * scale;
  3061. if(!v->pquantizer)
  3062. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3063. }
  3064. if(!(subblkpat & (1 << (1 - j))))
  3065. s->dsp.vc1_inv_trans_8x4(block, j);
  3066. }
  3067. break;
  3068. case TT_4X8:
  3069. for(j = 0; j < 2; j++) {
  3070. last = subblkpat & (1 << (1 - j));
  3071. i = 0;
  3072. off = j * 4;
  3073. while (!last) {
  3074. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  3075. i += skip;
  3076. if(i > 31)
  3077. break;
  3078. if(v->profile < PROFILE_ADVANCED)
  3079. idx = vc1_simple_progressive_4x8_zz[i++];
  3080. else
  3081. idx = vc1_adv_progressive_4x8_zz[i++];
  3082. block[idx + off] = value * scale;
  3083. if(!v->pquantizer)
  3084. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  3085. }
  3086. if(!(subblkpat & (1 << (1 - j))))
  3087. s->dsp.vc1_inv_trans_4x8(block, j);
  3088. }
  3089. break;
  3090. }
  3091. return 0;
  3092. }
  3093. /** Decode one P-frame MB (in Simple/Main profile)
  3094. */
  3095. static int vc1_decode_p_mb(VC1Context *v)
  3096. {
  3097. MpegEncContext *s = &v->s;
  3098. GetBitContext *gb = &s->gb;
  3099. int i, j;
  3100. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3101. int cbp; /* cbp decoding stuff */
  3102. int mqdiff, mquant; /* MB quantization */
  3103. int ttmb = v->ttfrm; /* MB Transform type */
  3104. int status;
  3105. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3106. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3107. int mb_has_coeffs = 1; /* last_flag */
  3108. int dmv_x, dmv_y; /* Differential MV components */
  3109. int index, index1; /* LUT indices */
  3110. int val, sign; /* temp values */
  3111. int first_block = 1;
  3112. int dst_idx, off;
  3113. int skipped, fourmv;
  3114. mquant = v->pq; /* Loosy initialization */
  3115. if (v->mv_type_is_raw)
  3116. fourmv = get_bits1(gb);
  3117. else
  3118. fourmv = v->mv_type_mb_plane[mb_pos];
  3119. if (v->skip_is_raw)
  3120. skipped = get_bits1(gb);
  3121. else
  3122. skipped = v->s.mbskip_table[mb_pos];
  3123. s->dsp.clear_blocks(s->block[0]);
  3124. if (!fourmv) /* 1MV mode */
  3125. {
  3126. if (!skipped)
  3127. {
  3128. GET_MVDATA(dmv_x, dmv_y);
  3129. if (s->mb_intra) {
  3130. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3131. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3132. }
  3133. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3134. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3135. /* FIXME Set DC val for inter block ? */
  3136. if (s->mb_intra && !mb_has_coeffs)
  3137. {
  3138. GET_MQUANT();
  3139. s->ac_pred = get_bits(gb, 1);
  3140. cbp = 0;
  3141. }
  3142. else if (mb_has_coeffs)
  3143. {
  3144. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3145. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3146. GET_MQUANT();
  3147. }
  3148. else
  3149. {
  3150. mquant = v->pq;
  3151. cbp = 0;
  3152. }
  3153. s->current_picture.qscale_table[mb_pos] = mquant;
  3154. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3155. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3156. VC1_TTMB_VLC_BITS, 2);
  3157. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3158. dst_idx = 0;
  3159. for (i=0; i<6; i++)
  3160. {
  3161. s->dc_val[0][s->block_index[i]] = 0;
  3162. dst_idx += i >> 2;
  3163. val = ((cbp >> (5 - i)) & 1);
  3164. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3165. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3166. if(s->mb_intra) {
  3167. /* check if prediction blocks A and C are available */
  3168. v->a_avail = v->c_avail = 0;
  3169. if(i == 2 || i == 3 || !s->first_slice_line)
  3170. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3171. if(i == 1 || i == 3 || s->mb_x)
  3172. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3173. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3174. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3175. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3176. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3177. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3178. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3179. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3180. if(v->pq >= 9 && v->overlap) {
  3181. if(v->c_avail)
  3182. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3183. if(v->a_avail)
  3184. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3185. }
  3186. } else if(val) {
  3187. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3188. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3189. first_block = 0;
  3190. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3191. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3192. }
  3193. }
  3194. }
  3195. else //Skipped
  3196. {
  3197. s->mb_intra = 0;
  3198. for(i = 0; i < 6; i++) {
  3199. v->mb_type[0][s->block_index[i]] = 0;
  3200. s->dc_val[0][s->block_index[i]] = 0;
  3201. }
  3202. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3203. s->current_picture.qscale_table[mb_pos] = 0;
  3204. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3205. vc1_mc_1mv(v, 0);
  3206. return 0;
  3207. }
  3208. } //1MV mode
  3209. else //4MV mode
  3210. {
  3211. if (!skipped /* unskipped MB */)
  3212. {
  3213. int intra_count = 0, coded_inter = 0;
  3214. int is_intra[6], is_coded[6];
  3215. /* Get CBPCY */
  3216. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3217. for (i=0; i<6; i++)
  3218. {
  3219. val = ((cbp >> (5 - i)) & 1);
  3220. s->dc_val[0][s->block_index[i]] = 0;
  3221. s->mb_intra = 0;
  3222. if(i < 4) {
  3223. dmv_x = dmv_y = 0;
  3224. s->mb_intra = 0;
  3225. mb_has_coeffs = 0;
  3226. if(val) {
  3227. GET_MVDATA(dmv_x, dmv_y);
  3228. }
  3229. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3230. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3231. intra_count += s->mb_intra;
  3232. is_intra[i] = s->mb_intra;
  3233. is_coded[i] = mb_has_coeffs;
  3234. }
  3235. if(i&4){
  3236. is_intra[i] = (intra_count >= 3);
  3237. is_coded[i] = val;
  3238. }
  3239. if(i == 4) vc1_mc_4mv_chroma(v);
  3240. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3241. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3242. }
  3243. // if there are no coded blocks then don't do anything more
  3244. if(!intra_count && !coded_inter) return 0;
  3245. dst_idx = 0;
  3246. GET_MQUANT();
  3247. s->current_picture.qscale_table[mb_pos] = mquant;
  3248. /* test if block is intra and has pred */
  3249. {
  3250. int intrapred = 0;
  3251. for(i=0; i<6; i++)
  3252. if(is_intra[i]) {
  3253. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3254. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3255. intrapred = 1;
  3256. break;
  3257. }
  3258. }
  3259. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3260. else s->ac_pred = 0;
  3261. }
  3262. if (!v->ttmbf && coded_inter)
  3263. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3264. for (i=0; i<6; i++)
  3265. {
  3266. dst_idx += i >> 2;
  3267. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3268. s->mb_intra = is_intra[i];
  3269. if (is_intra[i]) {
  3270. /* check if prediction blocks A and C are available */
  3271. v->a_avail = v->c_avail = 0;
  3272. if(i == 2 || i == 3 || !s->first_slice_line)
  3273. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3274. if(i == 1 || i == 3 || s->mb_x)
  3275. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3276. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3277. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3278. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3279. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3280. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3281. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  3282. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3283. if(v->pq >= 9 && v->overlap) {
  3284. if(v->c_avail)
  3285. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3286. if(v->a_avail)
  3287. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3288. }
  3289. } else if(is_coded[i]) {
  3290. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3291. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3292. first_block = 0;
  3293. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3294. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3295. }
  3296. }
  3297. return status;
  3298. }
  3299. else //Skipped MB
  3300. {
  3301. s->mb_intra = 0;
  3302. s->current_picture.qscale_table[mb_pos] = 0;
  3303. for (i=0; i<6; i++) {
  3304. v->mb_type[0][s->block_index[i]] = 0;
  3305. s->dc_val[0][s->block_index[i]] = 0;
  3306. }
  3307. for (i=0; i<4; i++)
  3308. {
  3309. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3310. vc1_mc_4mv_luma(v, i);
  3311. }
  3312. vc1_mc_4mv_chroma(v);
  3313. s->current_picture.qscale_table[mb_pos] = 0;
  3314. return 0;
  3315. }
  3316. }
  3317. /* Should never happen */
  3318. return -1;
  3319. }
  3320. /** Decode one B-frame MB (in Main profile)
  3321. */
  3322. static void vc1_decode_b_mb(VC1Context *v)
  3323. {
  3324. MpegEncContext *s = &v->s;
  3325. GetBitContext *gb = &s->gb;
  3326. int i, j;
  3327. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3328. int cbp = 0; /* cbp decoding stuff */
  3329. int mqdiff, mquant; /* MB quantization */
  3330. int ttmb = v->ttfrm; /* MB Transform type */
  3331. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3332. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3333. int mb_has_coeffs = 0; /* last_flag */
  3334. int index, index1; /* LUT indices */
  3335. int val, sign; /* temp values */
  3336. int first_block = 1;
  3337. int dst_idx, off;
  3338. int skipped, direct;
  3339. int dmv_x[2], dmv_y[2];
  3340. int bmvtype = BMV_TYPE_BACKWARD;
  3341. mquant = v->pq; /* Loosy initialization */
  3342. s->mb_intra = 0;
  3343. if (v->dmb_is_raw)
  3344. direct = get_bits1(gb);
  3345. else
  3346. direct = v->direct_mb_plane[mb_pos];
  3347. if (v->skip_is_raw)
  3348. skipped = get_bits1(gb);
  3349. else
  3350. skipped = v->s.mbskip_table[mb_pos];
  3351. s->dsp.clear_blocks(s->block[0]);
  3352. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3353. for(i = 0; i < 6; i++) {
  3354. v->mb_type[0][s->block_index[i]] = 0;
  3355. s->dc_val[0][s->block_index[i]] = 0;
  3356. }
  3357. s->current_picture.qscale_table[mb_pos] = 0;
  3358. if (!direct) {
  3359. if (!skipped) {
  3360. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3361. dmv_x[1] = dmv_x[0];
  3362. dmv_y[1] = dmv_y[0];
  3363. }
  3364. if(skipped || !s->mb_intra) {
  3365. bmvtype = decode012(gb);
  3366. switch(bmvtype) {
  3367. case 0:
  3368. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3369. break;
  3370. case 1:
  3371. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3372. break;
  3373. case 2:
  3374. bmvtype = BMV_TYPE_INTERPOLATED;
  3375. dmv_x[0] = dmv_y[0] = 0;
  3376. }
  3377. }
  3378. }
  3379. for(i = 0; i < 6; i++)
  3380. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3381. if (skipped) {
  3382. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3383. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3384. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3385. return;
  3386. }
  3387. if (direct) {
  3388. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3389. GET_MQUANT();
  3390. s->mb_intra = 0;
  3391. mb_has_coeffs = 0;
  3392. s->current_picture.qscale_table[mb_pos] = mquant;
  3393. if(!v->ttmbf)
  3394. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3395. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3396. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3397. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3398. } else {
  3399. if(!mb_has_coeffs && !s->mb_intra) {
  3400. /* no coded blocks - effectively skipped */
  3401. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3402. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3403. return;
  3404. }
  3405. if(s->mb_intra && !mb_has_coeffs) {
  3406. GET_MQUANT();
  3407. s->current_picture.qscale_table[mb_pos] = mquant;
  3408. s->ac_pred = get_bits1(gb);
  3409. cbp = 0;
  3410. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3411. } else {
  3412. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3413. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3414. if(!mb_has_coeffs) {
  3415. /* interpolated skipped block */
  3416. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3417. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3418. return;
  3419. }
  3420. }
  3421. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3422. if(!s->mb_intra) {
  3423. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3424. }
  3425. if(s->mb_intra)
  3426. s->ac_pred = get_bits1(gb);
  3427. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3428. GET_MQUANT();
  3429. s->current_picture.qscale_table[mb_pos] = mquant;
  3430. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3431. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3432. }
  3433. }
  3434. dst_idx = 0;
  3435. for (i=0; i<6; i++)
  3436. {
  3437. s->dc_val[0][s->block_index[i]] = 0;
  3438. dst_idx += i >> 2;
  3439. val = ((cbp >> (5 - i)) & 1);
  3440. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3441. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3442. if(s->mb_intra) {
  3443. /* check if prediction blocks A and C are available */
  3444. v->a_avail = v->c_avail = 0;
  3445. if(i == 2 || i == 3 || !s->first_slice_line)
  3446. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3447. if(i == 1 || i == 3 || s->mb_x)
  3448. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3449. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3450. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3451. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3452. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3453. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3454. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3455. } else if(val) {
  3456. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3457. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3458. first_block = 0;
  3459. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3460. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3461. }
  3462. }
  3463. }
  3464. /** Decode blocks of I-frame
  3465. */
  3466. static void vc1_decode_i_blocks(VC1Context *v)
  3467. {
  3468. int k, j;
  3469. MpegEncContext *s = &v->s;
  3470. int cbp, val;
  3471. uint8_t *coded_val;
  3472. int mb_pos;
  3473. /* select codingmode used for VLC tables selection */
  3474. switch(v->y_ac_table_index){
  3475. case 0:
  3476. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3477. break;
  3478. case 1:
  3479. v->codingset = CS_HIGH_MOT_INTRA;
  3480. break;
  3481. case 2:
  3482. v->codingset = CS_MID_RATE_INTRA;
  3483. break;
  3484. }
  3485. switch(v->c_ac_table_index){
  3486. case 0:
  3487. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3488. break;
  3489. case 1:
  3490. v->codingset2 = CS_HIGH_MOT_INTER;
  3491. break;
  3492. case 2:
  3493. v->codingset2 = CS_MID_RATE_INTER;
  3494. break;
  3495. }
  3496. /* Set DC scale - y and c use the same */
  3497. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3498. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3499. //do frame decode
  3500. s->mb_x = s->mb_y = 0;
  3501. s->mb_intra = 1;
  3502. s->first_slice_line = 1;
  3503. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3504. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3505. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3506. ff_init_block_index(s);
  3507. ff_update_block_index(s);
  3508. s->dsp.clear_blocks(s->block[0]);
  3509. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3510. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3511. s->current_picture.qscale_table[mb_pos] = v->pq;
  3512. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3513. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3514. // do actual MB decoding and displaying
  3515. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3516. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3517. for(k = 0; k < 6; k++) {
  3518. val = ((cbp >> (5 - k)) & 1);
  3519. if (k < 4) {
  3520. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3521. val = val ^ pred;
  3522. *coded_val = val;
  3523. }
  3524. cbp |= val << (5 - k);
  3525. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3526. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3527. if(v->pq >= 9 && v->overlap) {
  3528. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3529. }
  3530. }
  3531. vc1_put_block(v, s->block);
  3532. if(v->pq >= 9 && v->overlap) {
  3533. if(s->mb_x) {
  3534. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3535. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3536. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3537. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3538. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3539. }
  3540. }
  3541. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3542. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3543. if(!s->first_slice_line) {
  3544. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3545. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3546. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3547. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3548. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3549. }
  3550. }
  3551. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3552. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3553. }
  3554. if(get_bits_count(&s->gb) > v->bits) {
  3555. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3556. return;
  3557. }
  3558. }
  3559. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3560. s->first_slice_line = 0;
  3561. }
  3562. }
  3563. /** Decode blocks of I-frame for advanced profile
  3564. */
  3565. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3566. {
  3567. int k, j;
  3568. MpegEncContext *s = &v->s;
  3569. int cbp, val;
  3570. uint8_t *coded_val;
  3571. int mb_pos;
  3572. int mquant = v->pq;
  3573. int mqdiff;
  3574. int overlap;
  3575. GetBitContext *gb = &s->gb;
  3576. /* select codingmode used for VLC tables selection */
  3577. switch(v->y_ac_table_index){
  3578. case 0:
  3579. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3580. break;
  3581. case 1:
  3582. v->codingset = CS_HIGH_MOT_INTRA;
  3583. break;
  3584. case 2:
  3585. v->codingset = CS_MID_RATE_INTRA;
  3586. break;
  3587. }
  3588. switch(v->c_ac_table_index){
  3589. case 0:
  3590. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3591. break;
  3592. case 1:
  3593. v->codingset2 = CS_HIGH_MOT_INTER;
  3594. break;
  3595. case 2:
  3596. v->codingset2 = CS_MID_RATE_INTER;
  3597. break;
  3598. }
  3599. //do frame decode
  3600. s->mb_x = s->mb_y = 0;
  3601. s->mb_intra = 1;
  3602. s->first_slice_line = 1;
  3603. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3604. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3605. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3606. ff_init_block_index(s);
  3607. ff_update_block_index(s);
  3608. s->dsp.clear_blocks(s->block[0]);
  3609. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3610. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3611. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3612. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3613. // do actual MB decoding and displaying
  3614. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3615. if(v->acpred_is_raw)
  3616. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3617. else
  3618. v->s.ac_pred = v->acpred_plane[mb_pos];
  3619. if(v->condover == CONDOVER_SELECT) {
  3620. if(v->overflg_is_raw)
  3621. overlap = get_bits(&v->s.gb, 1);
  3622. else
  3623. overlap = v->over_flags_plane[mb_pos];
  3624. } else
  3625. overlap = (v->condover == CONDOVER_ALL);
  3626. GET_MQUANT();
  3627. s->current_picture.qscale_table[mb_pos] = mquant;
  3628. /* Set DC scale - y and c use the same */
  3629. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3630. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3631. for(k = 0; k < 6; k++) {
  3632. val = ((cbp >> (5 - k)) & 1);
  3633. if (k < 4) {
  3634. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3635. val = val ^ pred;
  3636. *coded_val = val;
  3637. }
  3638. cbp |= val << (5 - k);
  3639. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3640. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3641. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3642. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3643. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3644. }
  3645. vc1_put_block(v, s->block);
  3646. if(overlap) {
  3647. if(s->mb_x) {
  3648. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3649. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3650. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3651. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3652. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3653. }
  3654. }
  3655. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3656. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3657. if(!s->first_slice_line) {
  3658. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3659. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3660. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3661. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3662. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3663. }
  3664. }
  3665. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3666. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3667. }
  3668. if(get_bits_count(&s->gb) > v->bits) {
  3669. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3670. return;
  3671. }
  3672. }
  3673. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3674. s->first_slice_line = 0;
  3675. }
  3676. }
  3677. static void vc1_decode_p_blocks(VC1Context *v)
  3678. {
  3679. MpegEncContext *s = &v->s;
  3680. /* select codingmode used for VLC tables selection */
  3681. switch(v->c_ac_table_index){
  3682. case 0:
  3683. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3684. break;
  3685. case 1:
  3686. v->codingset = CS_HIGH_MOT_INTRA;
  3687. break;
  3688. case 2:
  3689. v->codingset = CS_MID_RATE_INTRA;
  3690. break;
  3691. }
  3692. switch(v->c_ac_table_index){
  3693. case 0:
  3694. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3695. break;
  3696. case 1:
  3697. v->codingset2 = CS_HIGH_MOT_INTER;
  3698. break;
  3699. case 2:
  3700. v->codingset2 = CS_MID_RATE_INTER;
  3701. break;
  3702. }
  3703. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3704. s->first_slice_line = 1;
  3705. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3706. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3707. ff_init_block_index(s);
  3708. ff_update_block_index(s);
  3709. s->dsp.clear_blocks(s->block[0]);
  3710. vc1_decode_p_mb(v);
  3711. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3712. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3713. return;
  3714. }
  3715. }
  3716. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3717. s->first_slice_line = 0;
  3718. }
  3719. }
  3720. static void vc1_decode_b_blocks(VC1Context *v)
  3721. {
  3722. MpegEncContext *s = &v->s;
  3723. /* select codingmode used for VLC tables selection */
  3724. switch(v->c_ac_table_index){
  3725. case 0:
  3726. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3727. break;
  3728. case 1:
  3729. v->codingset = CS_HIGH_MOT_INTRA;
  3730. break;
  3731. case 2:
  3732. v->codingset = CS_MID_RATE_INTRA;
  3733. break;
  3734. }
  3735. switch(v->c_ac_table_index){
  3736. case 0:
  3737. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3738. break;
  3739. case 1:
  3740. v->codingset2 = CS_HIGH_MOT_INTER;
  3741. break;
  3742. case 2:
  3743. v->codingset2 = CS_MID_RATE_INTER;
  3744. break;
  3745. }
  3746. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3747. s->first_slice_line = 1;
  3748. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3749. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3750. ff_init_block_index(s);
  3751. ff_update_block_index(s);
  3752. s->dsp.clear_blocks(s->block[0]);
  3753. vc1_decode_b_mb(v);
  3754. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3755. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3756. return;
  3757. }
  3758. }
  3759. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3760. s->first_slice_line = 0;
  3761. }
  3762. }
  3763. static void vc1_decode_skip_blocks(VC1Context *v)
  3764. {
  3765. MpegEncContext *s = &v->s;
  3766. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3767. s->first_slice_line = 1;
  3768. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3769. s->mb_x = 0;
  3770. ff_init_block_index(s);
  3771. ff_update_block_index(s);
  3772. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3773. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3774. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3775. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3776. s->first_slice_line = 0;
  3777. }
  3778. s->pict_type = P_TYPE;
  3779. }
  3780. static void vc1_decode_blocks(VC1Context *v)
  3781. {
  3782. v->s.esc3_level_length = 0;
  3783. switch(v->s.pict_type) {
  3784. case I_TYPE:
  3785. if(v->profile == PROFILE_ADVANCED)
  3786. vc1_decode_i_blocks_adv(v);
  3787. else
  3788. vc1_decode_i_blocks(v);
  3789. break;
  3790. case P_TYPE:
  3791. if(v->p_frame_skipped)
  3792. vc1_decode_skip_blocks(v);
  3793. else
  3794. vc1_decode_p_blocks(v);
  3795. break;
  3796. case B_TYPE:
  3797. if(v->bi_type){
  3798. if(v->profile == PROFILE_ADVANCED)
  3799. vc1_decode_i_blocks_adv(v);
  3800. else
  3801. vc1_decode_i_blocks(v);
  3802. }else
  3803. vc1_decode_b_blocks(v);
  3804. break;
  3805. }
  3806. }
  3807. #define IS_MARKER(x) (((x) & ~0xFF) == VC1_CODE_RES0)
  3808. /** Find VC-1 marker in buffer
  3809. * @return position where next marker starts or end of buffer if no marker found
  3810. */
  3811. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3812. {
  3813. uint32_t mrk = 0xFFFFFFFF;
  3814. if(end-src < 4) return end;
  3815. while(src < end){
  3816. mrk = (mrk << 8) | *src++;
  3817. if(IS_MARKER(mrk))
  3818. return src-4;
  3819. }
  3820. return end;
  3821. }
  3822. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3823. {
  3824. int dsize = 0, i;
  3825. if(size < 4){
  3826. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3827. return size;
  3828. }
  3829. for(i = 0; i < size; i++, src++) {
  3830. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3831. dst[dsize++] = src[1];
  3832. src++;
  3833. i++;
  3834. } else
  3835. dst[dsize++] = *src;
  3836. }
  3837. return dsize;
  3838. }
  3839. /** Initialize a VC1/WMV3 decoder
  3840. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3841. * @todo TODO: Decypher remaining bits in extra_data
  3842. */
  3843. static int vc1_decode_init(AVCodecContext *avctx)
  3844. {
  3845. VC1Context *v = avctx->priv_data;
  3846. MpegEncContext *s = &v->s;
  3847. GetBitContext gb;
  3848. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3849. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3850. avctx->pix_fmt = PIX_FMT_YUV420P;
  3851. else
  3852. avctx->pix_fmt = PIX_FMT_GRAY8;
  3853. v->s.avctx = avctx;
  3854. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3855. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3856. if(ff_h263_decode_init(avctx) < 0)
  3857. return -1;
  3858. if (vc1_init_common(v) < 0) return -1;
  3859. avctx->coded_width = avctx->width;
  3860. avctx->coded_height = avctx->height;
  3861. if (avctx->codec_id == CODEC_ID_WMV3)
  3862. {
  3863. int count = 0;
  3864. // looks like WMV3 has a sequence header stored in the extradata
  3865. // advanced sequence header may be before the first frame
  3866. // the last byte of the extradata is a version number, 1 for the
  3867. // samples we can decode
  3868. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3869. if (decode_sequence_header(avctx, &gb) < 0)
  3870. return -1;
  3871. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3872. if (count>0)
  3873. {
  3874. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3875. count, get_bits(&gb, count));
  3876. }
  3877. else if (count < 0)
  3878. {
  3879. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3880. }
  3881. } else { // VC1/WVC1
  3882. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3883. uint8_t *next; int size, buf2_size;
  3884. uint8_t *buf2 = NULL;
  3885. int seq_inited = 0, ep_inited = 0;
  3886. if(avctx->extradata_size < 16) {
  3887. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3888. return -1;
  3889. }
  3890. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3891. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3892. next = start;
  3893. for(; next < end; start = next){
  3894. next = find_next_marker(start + 4, end);
  3895. size = next - start - 4;
  3896. if(size <= 0) continue;
  3897. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3898. init_get_bits(&gb, buf2, buf2_size * 8);
  3899. switch(AV_RB32(start)){
  3900. case VC1_CODE_SEQHDR:
  3901. if(decode_sequence_header(avctx, &gb) < 0){
  3902. av_free(buf2);
  3903. return -1;
  3904. }
  3905. seq_inited = 1;
  3906. break;
  3907. case VC1_CODE_ENTRYPOINT:
  3908. if(decode_entry_point(avctx, &gb) < 0){
  3909. av_free(buf2);
  3910. return -1;
  3911. }
  3912. ep_inited = 1;
  3913. break;
  3914. }
  3915. }
  3916. av_free(buf2);
  3917. if(!seq_inited || !ep_inited){
  3918. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3919. return -1;
  3920. }
  3921. }
  3922. avctx->has_b_frames= !!(avctx->max_b_frames);
  3923. s->low_delay = !avctx->has_b_frames;
  3924. s->mb_width = (avctx->coded_width+15)>>4;
  3925. s->mb_height = (avctx->coded_height+15)>>4;
  3926. /* Allocate mb bitplanes */
  3927. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3928. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3929. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3930. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3931. /* allocate block type info in that way so it could be used with s->block_index[] */
  3932. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3933. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3934. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3935. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3936. /* Init coded blocks info */
  3937. if (v->profile == PROFILE_ADVANCED)
  3938. {
  3939. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3940. // return -1;
  3941. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3942. // return -1;
  3943. }
  3944. return 0;
  3945. }
  3946. /** Decode a VC1/WMV3 frame
  3947. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3948. */
  3949. static int vc1_decode_frame(AVCodecContext *avctx,
  3950. void *data, int *data_size,
  3951. uint8_t *buf, int buf_size)
  3952. {
  3953. VC1Context *v = avctx->priv_data;
  3954. MpegEncContext *s = &v->s;
  3955. AVFrame *pict = data;
  3956. uint8_t *buf2 = NULL;
  3957. /* no supplementary picture */
  3958. if (buf_size == 0) {
  3959. /* special case for last picture */
  3960. if (s->low_delay==0 && s->next_picture_ptr) {
  3961. *pict= *(AVFrame*)s->next_picture_ptr;
  3962. s->next_picture_ptr= NULL;
  3963. *data_size = sizeof(AVFrame);
  3964. }
  3965. return 0;
  3966. }
  3967. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3968. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3969. int i= ff_find_unused_picture(s, 0);
  3970. s->current_picture_ptr= &s->picture[i];
  3971. }
  3972. //for advanced profile we may need to parse and unescape data
  3973. if (avctx->codec_id == CODEC_ID_VC1) {
  3974. int buf_size2 = 0;
  3975. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3976. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3977. uint8_t *dst = buf2, *start, *end, *next;
  3978. int size;
  3979. next = buf;
  3980. for(start = buf, end = buf + buf_size; next < end; start = next){
  3981. next = find_next_marker(start + 4, end);
  3982. size = next - start - 4;
  3983. if(size <= 0) continue;
  3984. switch(AV_RB32(start)){
  3985. case VC1_CODE_FRAME:
  3986. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3987. break;
  3988. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3989. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3990. init_get_bits(&s->gb, buf2, buf_size2*8);
  3991. decode_entry_point(avctx, &s->gb);
  3992. break;
  3993. case VC1_CODE_SLICE:
  3994. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3995. av_free(buf2);
  3996. return -1;
  3997. }
  3998. }
  3999. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  4000. uint8_t *divider;
  4001. divider = find_next_marker(buf, buf + buf_size);
  4002. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  4003. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  4004. return -1;
  4005. }
  4006. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  4007. // TODO
  4008. av_free(buf2);return -1;
  4009. }else{
  4010. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  4011. }
  4012. init_get_bits(&s->gb, buf2, buf_size2*8);
  4013. } else
  4014. init_get_bits(&s->gb, buf, buf_size*8);
  4015. // do parse frame header
  4016. if(v->profile < PROFILE_ADVANCED) {
  4017. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  4018. av_free(buf2);
  4019. return -1;
  4020. }
  4021. } else {
  4022. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  4023. av_free(buf2);
  4024. return -1;
  4025. }
  4026. }
  4027. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  4028. av_free(buf2);
  4029. return -1;
  4030. }
  4031. // for hurry_up==5
  4032. s->current_picture.pict_type= s->pict_type;
  4033. s->current_picture.key_frame= s->pict_type == I_TYPE;
  4034. /* skip B-frames if we don't have reference frames */
  4035. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  4036. av_free(buf2);
  4037. return -1;//buf_size;
  4038. }
  4039. /* skip b frames if we are in a hurry */
  4040. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  4041. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  4042. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  4043. || avctx->skip_frame >= AVDISCARD_ALL) {
  4044. av_free(buf2);
  4045. return buf_size;
  4046. }
  4047. /* skip everything if we are in a hurry>=5 */
  4048. if(avctx->hurry_up>=5) {
  4049. av_free(buf2);
  4050. return -1;//buf_size;
  4051. }
  4052. if(s->next_p_frame_damaged){
  4053. if(s->pict_type==B_TYPE)
  4054. return buf_size;
  4055. else
  4056. s->next_p_frame_damaged=0;
  4057. }
  4058. if(MPV_frame_start(s, avctx) < 0) {
  4059. av_free(buf2);
  4060. return -1;
  4061. }
  4062. ff_er_frame_start(s);
  4063. v->bits = buf_size * 8;
  4064. vc1_decode_blocks(v);
  4065. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  4066. // if(get_bits_count(&s->gb) > buf_size * 8)
  4067. // return -1;
  4068. ff_er_frame_end(s);
  4069. MPV_frame_end(s);
  4070. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  4071. assert(s->current_picture.pict_type == s->pict_type);
  4072. if (s->pict_type == B_TYPE || s->low_delay) {
  4073. *pict= *(AVFrame*)s->current_picture_ptr;
  4074. } else if (s->last_picture_ptr != NULL) {
  4075. *pict= *(AVFrame*)s->last_picture_ptr;
  4076. }
  4077. if(s->last_picture_ptr || s->low_delay){
  4078. *data_size = sizeof(AVFrame);
  4079. ff_print_debug_info(s, pict);
  4080. }
  4081. /* Return the Picture timestamp as the frame number */
  4082. /* we substract 1 because it is added on utils.c */
  4083. avctx->frame_number = s->picture_number - 1;
  4084. av_free(buf2);
  4085. return buf_size;
  4086. }
  4087. /** Close a VC1/WMV3 decoder
  4088. * @warning Initial try at using MpegEncContext stuff
  4089. */
  4090. static int vc1_decode_end(AVCodecContext *avctx)
  4091. {
  4092. VC1Context *v = avctx->priv_data;
  4093. av_freep(&v->hrd_rate);
  4094. av_freep(&v->hrd_buffer);
  4095. MPV_common_end(&v->s);
  4096. av_freep(&v->mv_type_mb_plane);
  4097. av_freep(&v->direct_mb_plane);
  4098. av_freep(&v->acpred_plane);
  4099. av_freep(&v->over_flags_plane);
  4100. av_freep(&v->mb_type_base);
  4101. return 0;
  4102. }
  4103. AVCodec vc1_decoder = {
  4104. "vc1",
  4105. CODEC_TYPE_VIDEO,
  4106. CODEC_ID_VC1,
  4107. sizeof(VC1Context),
  4108. vc1_decode_init,
  4109. NULL,
  4110. vc1_decode_end,
  4111. vc1_decode_frame,
  4112. CODEC_CAP_DELAY,
  4113. NULL
  4114. };
  4115. AVCodec wmv3_decoder = {
  4116. "wmv3",
  4117. CODEC_TYPE_VIDEO,
  4118. CODEC_ID_WMV3,
  4119. sizeof(VC1Context),
  4120. vc1_decode_init,
  4121. NULL,
  4122. vc1_decode_end,
  4123. vc1_decode_frame,
  4124. CODEC_CAP_DELAY,
  4125. NULL
  4126. };
  4127. #ifdef CONFIG_VC1_PARSER
  4128. /**
  4129. * finds the end of the current frame in the bitstream.
  4130. * @return the position of the first byte of the next frame, or -1
  4131. */
  4132. static int vc1_find_frame_end(ParseContext *pc, const uint8_t *buf,
  4133. int buf_size) {
  4134. int pic_found, i;
  4135. uint32_t state;
  4136. pic_found= pc->frame_start_found;
  4137. state= pc->state;
  4138. i=0;
  4139. if(!pic_found){
  4140. for(i=0; i<buf_size; i++){
  4141. state= (state<<8) | buf[i];
  4142. if(state == VC1_CODE_FRAME || state == VC1_CODE_FIELD){
  4143. i++;
  4144. pic_found=1;
  4145. break;
  4146. }
  4147. }
  4148. }
  4149. if(pic_found){
  4150. /* EOF considered as end of frame */
  4151. if (buf_size == 0)
  4152. return 0;
  4153. for(; i<buf_size; i++){
  4154. state= (state<<8) | buf[i];
  4155. if(IS_MARKER(state) && state != VC1_CODE_FIELD && state != VC1_CODE_SLICE){
  4156. pc->frame_start_found=0;
  4157. pc->state=-1;
  4158. return i-3;
  4159. }
  4160. }
  4161. }
  4162. pc->frame_start_found= pic_found;
  4163. pc->state= state;
  4164. return END_NOT_FOUND;
  4165. }
  4166. static int vc1_parse(AVCodecParserContext *s,
  4167. AVCodecContext *avctx,
  4168. uint8_t **poutbuf, int *poutbuf_size,
  4169. const uint8_t *buf, int buf_size)
  4170. {
  4171. ParseContext *pc = s->priv_data;
  4172. int next;
  4173. if(s->flags & PARSER_FLAG_COMPLETE_FRAMES){
  4174. next= buf_size;
  4175. }else{
  4176. next= vc1_find_frame_end(pc, buf, buf_size);
  4177. if (ff_combine_frame(pc, next, (uint8_t **)&buf, &buf_size) < 0) {
  4178. *poutbuf = NULL;
  4179. *poutbuf_size = 0;
  4180. return buf_size;
  4181. }
  4182. }
  4183. *poutbuf = (uint8_t *)buf;
  4184. *poutbuf_size = buf_size;
  4185. return next;
  4186. }
  4187. int vc1_split(AVCodecContext *avctx,
  4188. const uint8_t *buf, int buf_size)
  4189. {
  4190. int i;
  4191. uint32_t state= -1;
  4192. for(i=0; i<buf_size; i++){
  4193. state= (state<<8) | buf[i];
  4194. if(IS_MARKER(state) && state != VC1_CODE_SEQHDR && state != VC1_CODE_ENTRYPOINT)
  4195. return i-3;
  4196. }
  4197. return 0;
  4198. }
  4199. AVCodecParser vc1_parser = {
  4200. { CODEC_ID_VC1 },
  4201. sizeof(ParseContext1),
  4202. NULL,
  4203. vc1_parse,
  4204. ff_parse1_close,
  4205. vc1_split,
  4206. };
  4207. #endif /* CONFIG_VC1_PARSER */