You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

249 lines
7.4KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "config.h"
  23. #include "libavutil/attributes.h"
  24. #include "sbrdsp.h"
  25. static void sbr_sum64x5_c(float *z)
  26. {
  27. int k;
  28. for (k = 0; k < 64; k++) {
  29. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  30. z[k] = f;
  31. }
  32. }
  33. static float sbr_sum_square_c(float (*x)[2], int n)
  34. {
  35. float sum0 = 0.0f, sum1 = 0.0f;
  36. int i;
  37. for (i = 0; i < n; i += 2)
  38. {
  39. sum0 += x[i + 0][0] * x[i + 0][0];
  40. sum1 += x[i + 0][1] * x[i + 0][1];
  41. sum0 += x[i + 1][0] * x[i + 1][0];
  42. sum1 += x[i + 1][1] * x[i + 1][1];
  43. }
  44. return sum0 + sum1;
  45. }
  46. static void sbr_neg_odd_64_c(float *x)
  47. {
  48. int i;
  49. for (i = 1; i < 64; i += 2)
  50. x[i] = -x[i];
  51. }
  52. static void sbr_qmf_pre_shuffle_c(float *z)
  53. {
  54. int k;
  55. z[64] = z[0];
  56. z[65] = z[1];
  57. for (k = 1; k < 32; k++) {
  58. z[64+2*k ] = -z[64 - k];
  59. z[64+2*k+1] = z[ k + 1];
  60. }
  61. }
  62. static void sbr_qmf_post_shuffle_c(float W[32][2], const float *z)
  63. {
  64. int k;
  65. for (k = 0; k < 32; k++) {
  66. W[k][0] = -z[63-k];
  67. W[k][1] = z[k];
  68. }
  69. }
  70. static void sbr_qmf_deint_neg_c(float *v, const float *src)
  71. {
  72. int i;
  73. for (i = 0; i < 32; i++) {
  74. v[ i] = src[63 - 2*i ];
  75. v[63 - i] = -src[63 - 2*i - 1];
  76. }
  77. }
  78. static void sbr_qmf_deint_bfly_c(float *v, const float *src0, const float *src1)
  79. {
  80. int i;
  81. for (i = 0; i < 64; i++) {
  82. v[ i] = src0[i] - src1[63 - i];
  83. v[127 - i] = src0[i] + src1[63 - i];
  84. }
  85. }
  86. static av_always_inline void autocorrelate(const float x[40][2],
  87. float phi[3][2][2], int lag)
  88. {
  89. int i;
  90. float real_sum = 0.0f;
  91. float imag_sum = 0.0f;
  92. if (lag) {
  93. for (i = 1; i < 38; i++) {
  94. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  95. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  96. }
  97. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  98. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  99. if (lag == 1) {
  100. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  101. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  102. }
  103. } else {
  104. for (i = 1; i < 38; i++) {
  105. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  106. }
  107. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  108. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  109. }
  110. }
  111. static void sbr_autocorrelate_c(const float x[40][2], float phi[3][2][2])
  112. {
  113. autocorrelate(x, phi, 0);
  114. autocorrelate(x, phi, 1);
  115. autocorrelate(x, phi, 2);
  116. }
  117. static void sbr_hf_gen_c(float (*X_high)[2], const float (*X_low)[2],
  118. const float alpha0[2], const float alpha1[2],
  119. float bw, int start, int end)
  120. {
  121. float alpha[4];
  122. int i;
  123. alpha[0] = alpha1[0] * bw * bw;
  124. alpha[1] = alpha1[1] * bw * bw;
  125. alpha[2] = alpha0[0] * bw;
  126. alpha[3] = alpha0[1] * bw;
  127. for (i = start; i < end; i++) {
  128. X_high[i][0] =
  129. X_low[i - 2][0] * alpha[0] -
  130. X_low[i - 2][1] * alpha[1] +
  131. X_low[i - 1][0] * alpha[2] -
  132. X_low[i - 1][1] * alpha[3] +
  133. X_low[i][0];
  134. X_high[i][1] =
  135. X_low[i - 2][1] * alpha[0] +
  136. X_low[i - 2][0] * alpha[1] +
  137. X_low[i - 1][1] * alpha[2] +
  138. X_low[i - 1][0] * alpha[3] +
  139. X_low[i][1];
  140. }
  141. }
  142. static void sbr_hf_g_filt_c(float (*Y)[2], const float (*X_high)[40][2],
  143. const float *g_filt, int m_max, intptr_t ixh)
  144. {
  145. int m;
  146. for (m = 0; m < m_max; m++) {
  147. Y[m][0] = X_high[m][ixh][0] * g_filt[m];
  148. Y[m][1] = X_high[m][ixh][1] * g_filt[m];
  149. }
  150. }
  151. static av_always_inline void sbr_hf_apply_noise(float (*Y)[2],
  152. const float *s_m,
  153. const float *q_filt,
  154. int noise,
  155. float phi_sign0,
  156. float phi_sign1,
  157. int m_max)
  158. {
  159. int m;
  160. for (m = 0; m < m_max; m++) {
  161. float y0 = Y[m][0];
  162. float y1 = Y[m][1];
  163. noise = (noise + 1) & 0x1ff;
  164. if (s_m[m]) {
  165. y0 += s_m[m] * phi_sign0;
  166. y1 += s_m[m] * phi_sign1;
  167. } else {
  168. y0 += q_filt[m] * ff_sbr_noise_table[noise][0];
  169. y1 += q_filt[m] * ff_sbr_noise_table[noise][1];
  170. }
  171. Y[m][0] = y0;
  172. Y[m][1] = y1;
  173. phi_sign1 = -phi_sign1;
  174. }
  175. }
  176. static void sbr_hf_apply_noise_0(float (*Y)[2], const float *s_m,
  177. const float *q_filt, int noise,
  178. int kx, int m_max)
  179. {
  180. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 1.0, 0.0, m_max);
  181. }
  182. static void sbr_hf_apply_noise_1(float (*Y)[2], const float *s_m,
  183. const float *q_filt, int noise,
  184. int kx, int m_max)
  185. {
  186. float phi_sign = 1 - 2 * (kx & 1);
  187. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, phi_sign, m_max);
  188. }
  189. static void sbr_hf_apply_noise_2(float (*Y)[2], const float *s_m,
  190. const float *q_filt, int noise,
  191. int kx, int m_max)
  192. {
  193. sbr_hf_apply_noise(Y, s_m, q_filt, noise, -1.0, 0.0, m_max);
  194. }
  195. static void sbr_hf_apply_noise_3(float (*Y)[2], const float *s_m,
  196. const float *q_filt, int noise,
  197. int kx, int m_max)
  198. {
  199. float phi_sign = 1 - 2 * (kx & 1);
  200. sbr_hf_apply_noise(Y, s_m, q_filt, noise, 0.0, -phi_sign, m_max);
  201. }
  202. av_cold void ff_sbrdsp_init(SBRDSPContext *s)
  203. {
  204. s->sum64x5 = sbr_sum64x5_c;
  205. s->sum_square = sbr_sum_square_c;
  206. s->neg_odd_64 = sbr_neg_odd_64_c;
  207. s->qmf_pre_shuffle = sbr_qmf_pre_shuffle_c;
  208. s->qmf_post_shuffle = sbr_qmf_post_shuffle_c;
  209. s->qmf_deint_neg = sbr_qmf_deint_neg_c;
  210. s->qmf_deint_bfly = sbr_qmf_deint_bfly_c;
  211. s->autocorrelate = sbr_autocorrelate_c;
  212. s->hf_gen = sbr_hf_gen_c;
  213. s->hf_g_filt = sbr_hf_g_filt_c;
  214. s->hf_apply_noise[0] = sbr_hf_apply_noise_0;
  215. s->hf_apply_noise[1] = sbr_hf_apply_noise_1;
  216. s->hf_apply_noise[2] = sbr_hf_apply_noise_2;
  217. s->hf_apply_noise[3] = sbr_hf_apply_noise_3;
  218. if (ARCH_ARM)
  219. ff_sbrdsp_init_arm(s);
  220. if (ARCH_X86)
  221. ff_sbrdsp_init_x86(s);
  222. }