You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1119 lines
40KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "internal.h"
  37. #include "indeo3data.h"
  38. /* RLE opcodes. */
  39. enum {
  40. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  41. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  42. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  43. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  44. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  45. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  46. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  47. };
  48. /* Some constants for parsing frame bitstream flags. */
  49. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  50. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  51. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  52. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  53. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  54. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  55. typedef struct Plane {
  56. uint8_t *buffers[2];
  57. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  58. uint32_t width;
  59. uint32_t height;
  60. uint32_t pitch;
  61. } Plane;
  62. #define CELL_STACK_MAX 20
  63. typedef struct Cell {
  64. int16_t xpos; ///< cell coordinates in 4x4 blocks
  65. int16_t ypos;
  66. int16_t width; ///< cell width in 4x4 blocks
  67. int16_t height; ///< cell height in 4x4 blocks
  68. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  69. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  70. } Cell;
  71. typedef struct Indeo3DecodeContext {
  72. AVCodecContext *avctx;
  73. AVFrame frame;
  74. DSPContext dsp;
  75. GetBitContext gb;
  76. int need_resync;
  77. int skip_bits;
  78. const uint8_t *next_cell_data;
  79. const uint8_t *last_byte;
  80. const int8_t *mc_vectors;
  81. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  82. int16_t width, height;
  83. uint32_t frame_num; ///< current frame number (zero-based)
  84. uint32_t data_size; ///< size of the frame data in bytes
  85. uint16_t frame_flags; ///< frame properties
  86. uint8_t cb_offset; ///< needed for selecting VQ tables
  87. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  88. const uint8_t *y_data_ptr;
  89. const uint8_t *v_data_ptr;
  90. const uint8_t *u_data_ptr;
  91. int32_t y_data_size;
  92. int32_t v_data_size;
  93. int32_t u_data_size;
  94. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  95. Plane planes[3];
  96. } Indeo3DecodeContext;
  97. static uint8_t requant_tab[8][128];
  98. /*
  99. * Build the static requantization table.
  100. * This table is used to remap pixel values according to a specific
  101. * quant index and thus avoid overflows while adding deltas.
  102. */
  103. static av_cold void build_requant_tab(void)
  104. {
  105. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  106. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  107. int i, j, step;
  108. for (i = 0; i < 8; i++) {
  109. step = i + 2;
  110. for (j = 0; j < 128; j++)
  111. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  112. }
  113. /* some last elements calculated above will have values >= 128 */
  114. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  115. /* according with the quantization step of the respective section */
  116. requant_tab[0][127] = 126;
  117. requant_tab[1][119] = 118;
  118. requant_tab[1][120] = 118;
  119. requant_tab[2][126] = 124;
  120. requant_tab[2][127] = 124;
  121. requant_tab[6][124] = 120;
  122. requant_tab[6][125] = 120;
  123. requant_tab[6][126] = 120;
  124. requant_tab[6][127] = 120;
  125. /* Patch for compatibility with the Intel's binary decoders */
  126. requant_tab[1][7] = 10;
  127. requant_tab[4][8] = 10;
  128. }
  129. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  130. AVCodecContext *avctx)
  131. {
  132. int p, luma_width, luma_height, chroma_width, chroma_height;
  133. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  134. luma_width = ctx->width;
  135. luma_height = ctx->height;
  136. if (luma_width < 16 || luma_width > 640 ||
  137. luma_height < 16 || luma_height > 480 ||
  138. luma_width & 3 || luma_height & 3) {
  139. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  140. luma_width, luma_height);
  141. return AVERROR_INVALIDDATA;
  142. }
  143. chroma_width = FFALIGN(luma_width >> 2, 4);
  144. chroma_height = FFALIGN(luma_height >> 2, 4);
  145. luma_pitch = FFALIGN(luma_width, 16);
  146. chroma_pitch = FFALIGN(chroma_width, 16);
  147. /* Calculate size of the luminance plane. */
  148. /* Add one line more for INTRA prediction. */
  149. luma_size = luma_pitch * (luma_height + 1);
  150. /* Calculate size of a chrominance planes. */
  151. /* Add one line more for INTRA prediction. */
  152. chroma_size = chroma_pitch * (chroma_height + 1);
  153. /* allocate frame buffers */
  154. for (p = 0; p < 3; p++) {
  155. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  156. ctx->planes[p].width = !p ? luma_width : chroma_width;
  157. ctx->planes[p].height = !p ? luma_height : chroma_height;
  158. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  159. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  160. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  161. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  162. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  163. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  164. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  165. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  166. memset(ctx->planes[p].pixels[0], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  167. memset(ctx->planes[p].pixels[1], 0, ctx->planes[p].pitch * ctx->planes[p].height);
  168. }
  169. return 0;
  170. }
  171. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  172. {
  173. int p;
  174. for (p = 0; p < 3; p++) {
  175. av_freep(&ctx->planes[p].buffers[0]);
  176. av_freep(&ctx->planes[p].buffers[1]);
  177. ctx->planes[p].pixels[0] = ctx->planes[p].pixels[1] = 0;
  178. }
  179. }
  180. /**
  181. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  182. * the cell(x, y) in the current frame.
  183. *
  184. * @param ctx pointer to the decoder context
  185. * @param plane pointer to the plane descriptor
  186. * @param cell pointer to the cell descriptor
  187. */
  188. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  189. {
  190. int h, w, mv_x, mv_y, offset, offset_dst;
  191. uint8_t *src, *dst;
  192. /* setup output and reference pointers */
  193. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  194. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  195. mv_y = cell->mv_ptr[0];
  196. mv_x = cell->mv_ptr[1];
  197. offset = offset_dst + mv_y * plane->pitch + mv_x;
  198. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  199. h = cell->height << 2;
  200. for (w = cell->width; w > 0;) {
  201. /* copy using 16xH blocks */
  202. if (!((cell->xpos << 2) & 15) && w >= 4) {
  203. for (; w >= 4; src += 16, dst += 16, w -= 4)
  204. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  205. }
  206. /* copy using 8xH blocks */
  207. if (!((cell->xpos << 2) & 7) && w >= 2) {
  208. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  209. w -= 2;
  210. src += 8;
  211. dst += 8;
  212. }
  213. if (w >= 1) {
  214. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  215. w--;
  216. src += 4;
  217. dst += 4;
  218. }
  219. }
  220. }
  221. /* Average 4/8 pixels at once without rounding using SWAR */
  222. #define AVG_32(dst, src, ref) \
  223. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  224. #define AVG_64(dst, src, ref) \
  225. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  226. /*
  227. * Replicate each even pixel as follows:
  228. * ABCDEFGH -> AACCEEGG
  229. */
  230. static inline uint64_t replicate64(uint64_t a) {
  231. #if HAVE_BIGENDIAN
  232. a &= 0xFF00FF00FF00FF00ULL;
  233. a |= a >> 8;
  234. #else
  235. a &= 0x00FF00FF00FF00FFULL;
  236. a |= a << 8;
  237. #endif
  238. return a;
  239. }
  240. static inline uint32_t replicate32(uint32_t a) {
  241. #if HAVE_BIGENDIAN
  242. a &= 0xFF00FF00UL;
  243. a |= a >> 8;
  244. #else
  245. a &= 0x00FF00FFUL;
  246. a |= a << 8;
  247. #endif
  248. return a;
  249. }
  250. /* Fill n lines with 64bit pixel value pix */
  251. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  252. int32_t row_offset)
  253. {
  254. for (; n > 0; dst += row_offset, n--)
  255. AV_WN64A(dst, pix);
  256. }
  257. /* Error codes for cell decoding. */
  258. enum {
  259. IV3_NOERR = 0,
  260. IV3_BAD_RLE = 1,
  261. IV3_BAD_DATA = 2,
  262. IV3_BAD_COUNTER = 3,
  263. IV3_UNSUPPORTED = 4,
  264. IV3_OUT_OF_DATA = 5
  265. };
  266. #define BUFFER_PRECHECK \
  267. if (*data_ptr >= last_ptr) \
  268. return IV3_OUT_OF_DATA; \
  269. #define RLE_BLOCK_COPY \
  270. if (cell->mv_ptr || !skip_flag) \
  271. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  272. #define RLE_BLOCK_COPY_8 \
  273. pix64 = AV_RN64A(ref);\
  274. if (is_first_row) {/* special prediction case: top line of a cell */\
  275. pix64 = replicate64(pix64);\
  276. fill_64(dst + row_offset, pix64, 7, row_offset);\
  277. AVG_64(dst, ref, dst + row_offset);\
  278. } else \
  279. fill_64(dst, pix64, 8, row_offset)
  280. #define RLE_LINES_COPY \
  281. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  282. #define RLE_LINES_COPY_M10 \
  283. pix64 = AV_RN64A(ref);\
  284. if (is_top_of_cell) {\
  285. pix64 = replicate64(pix64);\
  286. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  287. AVG_64(dst, ref, dst + row_offset);\
  288. } else \
  289. fill_64(dst, pix64, num_lines << 1, row_offset)
  290. #define APPLY_DELTA_4 \
  291. AV_WN16A(dst + line_offset ,\
  292. (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  293. AV_WN16A(dst + line_offset + 2,\
  294. (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  295. if (mode >= 3) {\
  296. if (is_top_of_cell && !cell->ypos) {\
  297. AV_COPY32(dst, dst + row_offset);\
  298. } else {\
  299. AVG_32(dst, ref, dst + row_offset);\
  300. }\
  301. }
  302. #define APPLY_DELTA_8 \
  303. /* apply two 32-bit VQ deltas to next even line */\
  304. if (is_top_of_cell) { \
  305. AV_WN32A(dst + row_offset , \
  306. (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  307. AV_WN32A(dst + row_offset + 4, \
  308. (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  309. } else { \
  310. AV_WN32A(dst + row_offset , \
  311. (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  312. AV_WN32A(dst + row_offset + 4, \
  313. (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  314. } \
  315. /* odd lines are not coded but rather interpolated/replicated */\
  316. /* first line of the cell on the top of image? - replicate */\
  317. /* otherwise - interpolate */\
  318. if (is_top_of_cell && !cell->ypos) {\
  319. AV_COPY64(dst, dst + row_offset);\
  320. } else \
  321. AVG_64(dst, ref, dst + row_offset);
  322. #define APPLY_DELTA_1011_INTER \
  323. if (mode == 10) { \
  324. AV_WN32A(dst , \
  325. (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  326. AV_WN32A(dst + 4 , \
  327. (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  328. AV_WN32A(dst + row_offset , \
  329. (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  330. AV_WN32A(dst + row_offset + 4, \
  331. (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  332. } else { \
  333. AV_WN16A(dst , \
  334. (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  335. AV_WN16A(dst + 2 , \
  336. (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  337. AV_WN16A(dst + row_offset , \
  338. (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  339. AV_WN16A(dst + row_offset + 2, \
  340. (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  341. }
  342. static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
  343. int pitch, int h_zoom, int v_zoom, int mode,
  344. const vqEntry *delta[2], int swap_quads[2],
  345. const uint8_t **data_ptr, const uint8_t *last_ptr)
  346. {
  347. int x, y, line, num_lines;
  348. int rle_blocks = 0;
  349. uint8_t code, *dst, *ref;
  350. const vqEntry *delta_tab;
  351. unsigned int dyad1, dyad2;
  352. uint64_t pix64;
  353. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  354. int row_offset, blk_row_offset, line_offset;
  355. row_offset = pitch;
  356. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  357. line_offset = v_zoom ? row_offset : 0;
  358. if (cell->height & v_zoom || cell->width & h_zoom)
  359. return IV3_BAD_DATA;
  360. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  361. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  362. ref = ref_block;
  363. dst = block;
  364. if (rle_blocks > 0) {
  365. if (mode <= 4) {
  366. RLE_BLOCK_COPY;
  367. } else if (mode == 10 && !cell->mv_ptr) {
  368. RLE_BLOCK_COPY_8;
  369. }
  370. rle_blocks--;
  371. } else {
  372. for (line = 0; line < 4;) {
  373. num_lines = 1;
  374. is_top_of_cell = is_first_row && !line;
  375. /* select primary VQ table for odd, secondary for even lines */
  376. if (mode <= 4)
  377. delta_tab = delta[line & 1];
  378. else
  379. delta_tab = delta[1];
  380. BUFFER_PRECHECK;
  381. code = bytestream_get_byte(data_ptr);
  382. if (code < 248) {
  383. if (code < delta_tab->num_dyads) {
  384. BUFFER_PRECHECK;
  385. dyad1 = bytestream_get_byte(data_ptr);
  386. dyad2 = code;
  387. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  388. return IV3_BAD_DATA;
  389. } else {
  390. /* process QUADS */
  391. code -= delta_tab->num_dyads;
  392. dyad1 = code / delta_tab->quad_exp;
  393. dyad2 = code % delta_tab->quad_exp;
  394. if (swap_quads[line & 1])
  395. FFSWAP(unsigned int, dyad1, dyad2);
  396. }
  397. if (mode <= 4) {
  398. APPLY_DELTA_4;
  399. } else if (mode == 10 && !cell->mv_ptr) {
  400. APPLY_DELTA_8;
  401. } else {
  402. APPLY_DELTA_1011_INTER;
  403. }
  404. } else {
  405. /* process RLE codes */
  406. switch (code) {
  407. case RLE_ESC_FC:
  408. skip_flag = 0;
  409. rle_blocks = 1;
  410. code = 253;
  411. /* FALLTHROUGH */
  412. case RLE_ESC_FF:
  413. case RLE_ESC_FE:
  414. case RLE_ESC_FD:
  415. num_lines = 257 - code - line;
  416. if (num_lines <= 0)
  417. return IV3_BAD_RLE;
  418. if (mode <= 4) {
  419. RLE_LINES_COPY;
  420. } else if (mode == 10 && !cell->mv_ptr) {
  421. RLE_LINES_COPY_M10;
  422. }
  423. break;
  424. case RLE_ESC_FB:
  425. BUFFER_PRECHECK;
  426. code = bytestream_get_byte(data_ptr);
  427. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  428. if (code >= 64 || rle_blocks < 0)
  429. return IV3_BAD_COUNTER;
  430. skip_flag = code & 0x20;
  431. num_lines = 4 - line; /* enforce next block processing */
  432. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  433. if (mode <= 4) {
  434. RLE_LINES_COPY;
  435. } else if (mode == 10 && !cell->mv_ptr) {
  436. RLE_LINES_COPY_M10;
  437. }
  438. }
  439. break;
  440. case RLE_ESC_F9:
  441. skip_flag = 1;
  442. rle_blocks = 1;
  443. /* FALLTHROUGH */
  444. case RLE_ESC_FA:
  445. if (line)
  446. return IV3_BAD_RLE;
  447. num_lines = 4; /* enforce next block processing */
  448. if (cell->mv_ptr) {
  449. if (mode <= 4) {
  450. RLE_LINES_COPY;
  451. } else if (mode == 10 && !cell->mv_ptr) {
  452. RLE_LINES_COPY_M10;
  453. }
  454. }
  455. break;
  456. default:
  457. return IV3_UNSUPPORTED;
  458. }
  459. }
  460. line += num_lines;
  461. ref += row_offset * (num_lines << v_zoom);
  462. dst += row_offset * (num_lines << v_zoom);
  463. }
  464. }
  465. /* move to next horizontal block */
  466. block += 4 << h_zoom;
  467. ref_block += 4 << h_zoom;
  468. }
  469. /* move to next line of blocks */
  470. ref_block += blk_row_offset;
  471. block += blk_row_offset;
  472. }
  473. return IV3_NOERR;
  474. }
  475. /**
  476. * Decode a vector-quantized cell.
  477. * It consists of several routines, each of which handles one or more "modes"
  478. * with which a cell can be encoded.
  479. *
  480. * @param ctx pointer to the decoder context
  481. * @param avctx ptr to the AVCodecContext
  482. * @param plane pointer to the plane descriptor
  483. * @param cell pointer to the cell descriptor
  484. * @param data_ptr pointer to the compressed data
  485. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  486. * @return number of consumed bytes or negative number in case of error
  487. */
  488. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  489. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  490. const uint8_t *last_ptr)
  491. {
  492. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  493. int zoom_fac;
  494. int offset, error = 0, swap_quads[2];
  495. uint8_t code, *block, *ref_block = 0;
  496. const vqEntry *delta[2];
  497. const uint8_t *data_start = data_ptr;
  498. /* get coding mode and VQ table index from the VQ descriptor byte */
  499. code = *data_ptr++;
  500. mode = code >> 4;
  501. vq_index = code & 0xF;
  502. /* setup output and reference pointers */
  503. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  504. block = plane->pixels[ctx->buf_sel] + offset;
  505. if (!cell->mv_ptr) {
  506. /* use previous line as reference for INTRA cells */
  507. ref_block = block - plane->pitch;
  508. } else if (mode >= 10) {
  509. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  510. /* so we don't need to do data copying for each RLE code later */
  511. copy_cell(ctx, plane, cell);
  512. } else {
  513. /* set the pointer to the reference pixels for modes 0-4 INTER */
  514. mv_y = cell->mv_ptr[0];
  515. mv_x = cell->mv_ptr[1];
  516. offset += mv_y * plane->pitch + mv_x;
  517. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  518. }
  519. /* select VQ tables as follows: */
  520. /* modes 0 and 3 use only the primary table for all lines in a block */
  521. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  522. if (mode == 1 || mode == 4) {
  523. code = ctx->alt_quant[vq_index];
  524. prim_indx = (code >> 4) + ctx->cb_offset;
  525. second_indx = (code & 0xF) + ctx->cb_offset;
  526. } else {
  527. vq_index += ctx->cb_offset;
  528. prim_indx = second_indx = vq_index;
  529. }
  530. if (prim_indx >= 24 || second_indx >= 24) {
  531. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  532. prim_indx, second_indx);
  533. return AVERROR_INVALIDDATA;
  534. }
  535. delta[0] = &vq_tab[second_indx];
  536. delta[1] = &vq_tab[prim_indx];
  537. swap_quads[0] = second_indx >= 16;
  538. swap_quads[1] = prim_indx >= 16;
  539. /* requantize the prediction if VQ index of this cell differs from VQ index */
  540. /* of the predicted cell in order to avoid overflows. */
  541. if (vq_index >= 8 && ref_block) {
  542. for (x = 0; x < cell->width << 2; x++)
  543. ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
  544. }
  545. error = IV3_NOERR;
  546. switch (mode) {
  547. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  548. case 1:
  549. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  550. case 4:
  551. if (mode >= 3 && cell->mv_ptr) {
  552. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  553. return AVERROR_INVALIDDATA;
  554. }
  555. zoom_fac = mode >= 3;
  556. error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
  557. mode, delta, swap_quads, &data_ptr, last_ptr);
  558. break;
  559. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  560. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  561. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  562. error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
  563. mode, delta, swap_quads, &data_ptr, last_ptr);
  564. } else { /* mode 10 and 11 INTER processing */
  565. if (mode == 11 && !cell->mv_ptr) {
  566. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  567. return AVERROR_INVALIDDATA;
  568. }
  569. zoom_fac = mode == 10;
  570. error = decode_cell_data(cell, block, ref_block, plane->pitch,
  571. zoom_fac, 1, mode, delta, swap_quads,
  572. &data_ptr, last_ptr);
  573. }
  574. break;
  575. default:
  576. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  577. return AVERROR_INVALIDDATA;
  578. }//switch mode
  579. switch (error) {
  580. case IV3_BAD_RLE:
  581. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  582. mode, data_ptr[-1]);
  583. return AVERROR_INVALIDDATA;
  584. case IV3_BAD_DATA:
  585. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  586. return AVERROR_INVALIDDATA;
  587. case IV3_BAD_COUNTER:
  588. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  589. return AVERROR_INVALIDDATA;
  590. case IV3_UNSUPPORTED:
  591. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  592. return AVERROR_INVALIDDATA;
  593. case IV3_OUT_OF_DATA:
  594. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  595. return AVERROR_INVALIDDATA;
  596. }
  597. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  598. }
  599. /* Binary tree codes. */
  600. enum {
  601. H_SPLIT = 0,
  602. V_SPLIT = 1,
  603. INTRA_NULL = 2,
  604. INTER_DATA = 3
  605. };
  606. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  607. #define UPDATE_BITPOS(n) \
  608. ctx->skip_bits += (n); \
  609. ctx->need_resync = 1
  610. #define RESYNC_BITSTREAM \
  611. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  612. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  613. ctx->skip_bits = 0; \
  614. ctx->need_resync = 0; \
  615. }
  616. #define CHECK_CELL \
  617. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  618. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  619. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  620. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  621. return AVERROR_INVALIDDATA; \
  622. }
  623. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  624. Plane *plane, int code, Cell *ref_cell,
  625. const int depth, const int strip_width)
  626. {
  627. Cell curr_cell;
  628. int bytes_used;
  629. if (depth <= 0) {
  630. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  631. return AVERROR_INVALIDDATA; // unwind recursion
  632. }
  633. curr_cell = *ref_cell; // clone parent cell
  634. if (code == H_SPLIT) {
  635. SPLIT_CELL(ref_cell->height, curr_cell.height);
  636. ref_cell->ypos += curr_cell.height;
  637. ref_cell->height -= curr_cell.height;
  638. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  639. return AVERROR_INVALIDDATA;
  640. } else if (code == V_SPLIT) {
  641. if (curr_cell.width > strip_width) {
  642. /* split strip */
  643. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  644. } else
  645. SPLIT_CELL(ref_cell->width, curr_cell.width);
  646. ref_cell->xpos += curr_cell.width;
  647. ref_cell->width -= curr_cell.width;
  648. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  649. return AVERROR_INVALIDDATA;
  650. }
  651. while (1) { /* loop until return */
  652. RESYNC_BITSTREAM;
  653. switch (code = get_bits(&ctx->gb, 2)) {
  654. case H_SPLIT:
  655. case V_SPLIT:
  656. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  657. return AVERROR_INVALIDDATA;
  658. break;
  659. case INTRA_NULL:
  660. if (!curr_cell.tree) { /* MC tree INTRA code */
  661. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  662. curr_cell.tree = 1; /* enter the VQ tree */
  663. } else { /* VQ tree NULL code */
  664. RESYNC_BITSTREAM;
  665. code = get_bits(&ctx->gb, 2);
  666. if (code >= 2) {
  667. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  668. return AVERROR_INVALIDDATA;
  669. }
  670. if (code == 1)
  671. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  672. CHECK_CELL
  673. if (!curr_cell.mv_ptr)
  674. return AVERROR_INVALIDDATA;
  675. copy_cell(ctx, plane, &curr_cell);
  676. return 0;
  677. }
  678. break;
  679. case INTER_DATA:
  680. if (!curr_cell.tree) { /* MC tree INTER code */
  681. unsigned mv_idx;
  682. /* get motion vector index and setup the pointer to the mv set */
  683. if (!ctx->need_resync)
  684. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  685. mv_idx = *(ctx->next_cell_data++);
  686. if (mv_idx >= ctx->num_vectors) {
  687. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  688. return AVERROR_INVALIDDATA;
  689. }
  690. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  691. curr_cell.tree = 1; /* enter the VQ tree */
  692. UPDATE_BITPOS(8);
  693. } else { /* VQ tree DATA code */
  694. if (!ctx->need_resync)
  695. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  696. CHECK_CELL
  697. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  698. ctx->next_cell_data, ctx->last_byte);
  699. if (bytes_used < 0)
  700. return AVERROR_INVALIDDATA;
  701. UPDATE_BITPOS(bytes_used << 3);
  702. ctx->next_cell_data += bytes_used;
  703. return 0;
  704. }
  705. break;
  706. }
  707. }//while
  708. return 0;
  709. }
  710. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  711. Plane *plane, const uint8_t *data, int32_t data_size,
  712. int32_t strip_width)
  713. {
  714. Cell curr_cell;
  715. unsigned num_vectors;
  716. /* each plane data starts with mc_vector_count field, */
  717. /* an optional array of motion vectors followed by the vq data */
  718. num_vectors = bytestream_get_le32(&data);
  719. if (num_vectors > 256) {
  720. av_log(ctx->avctx, AV_LOG_ERROR,
  721. "Read invalid number of motion vectors %d\n", num_vectors);
  722. return AVERROR_INVALIDDATA;
  723. }
  724. if (num_vectors * 2 >= data_size)
  725. return AVERROR_INVALIDDATA;
  726. ctx->num_vectors = num_vectors;
  727. ctx->mc_vectors = num_vectors ? data : 0;
  728. /* init the bitreader */
  729. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  730. ctx->skip_bits = 0;
  731. ctx->need_resync = 0;
  732. ctx->last_byte = data + data_size - 1;
  733. /* initialize the 1st cell and set its dimensions to whole plane */
  734. curr_cell.xpos = curr_cell.ypos = 0;
  735. curr_cell.width = plane->width >> 2;
  736. curr_cell.height = plane->height >> 2;
  737. curr_cell.tree = 0; // we are in the MC tree now
  738. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  739. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  740. }
  741. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  742. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  743. const uint8_t *buf, int buf_size)
  744. {
  745. const uint8_t *buf_ptr = buf, *bs_hdr;
  746. uint32_t frame_num, word2, check_sum, data_size;
  747. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  748. uint16_t height, width;
  749. int i, j;
  750. /* parse and check the OS header */
  751. frame_num = bytestream_get_le32(&buf_ptr);
  752. word2 = bytestream_get_le32(&buf_ptr);
  753. check_sum = bytestream_get_le32(&buf_ptr);
  754. data_size = bytestream_get_le32(&buf_ptr);
  755. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  756. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  757. return AVERROR_INVALIDDATA;
  758. }
  759. /* parse the bitstream header */
  760. bs_hdr = buf_ptr;
  761. if (bytestream_get_le16(&buf_ptr) != 32) {
  762. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  763. return AVERROR_INVALIDDATA;
  764. }
  765. ctx->frame_num = frame_num;
  766. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  767. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  768. ctx->cb_offset = *buf_ptr++;
  769. if (ctx->data_size == 16)
  770. return 4;
  771. if (ctx->data_size > buf_size)
  772. ctx->data_size = buf_size;
  773. buf_ptr += 3; // skip reserved byte and checksum
  774. /* check frame dimensions */
  775. height = bytestream_get_le16(&buf_ptr);
  776. width = bytestream_get_le16(&buf_ptr);
  777. if (av_image_check_size(width, height, 0, avctx))
  778. return AVERROR_INVALIDDATA;
  779. if (width != ctx->width || height != ctx->height) {
  780. int res;
  781. av_dlog(avctx, "Frame dimensions changed!\n");
  782. if (width < 16 || width > 640 ||
  783. height < 16 || height > 480 ||
  784. width & 3 || height & 3) {
  785. av_log(avctx, AV_LOG_ERROR,
  786. "Invalid picture dimensions: %d x %d!\n", width, height);
  787. return AVERROR_INVALIDDATA;
  788. }
  789. ctx->width = width;
  790. ctx->height = height;
  791. free_frame_buffers(ctx);
  792. if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
  793. return res;
  794. avcodec_set_dimensions(avctx, width, height);
  795. }
  796. y_offset = bytestream_get_le32(&buf_ptr);
  797. v_offset = bytestream_get_le32(&buf_ptr);
  798. u_offset = bytestream_get_le32(&buf_ptr);
  799. /* unfortunately there is no common order of planes in the buffer */
  800. /* so we use that sorting algo for determining planes data sizes */
  801. starts[0] = y_offset;
  802. starts[1] = v_offset;
  803. starts[2] = u_offset;
  804. for (j = 0; j < 3; j++) {
  805. ends[j] = ctx->data_size;
  806. for (i = 2; i >= 0; i--)
  807. if (starts[i] < ends[j] && starts[i] > starts[j])
  808. ends[j] = starts[i];
  809. }
  810. ctx->y_data_size = ends[0] - starts[0];
  811. ctx->v_data_size = ends[1] - starts[1];
  812. ctx->u_data_size = ends[2] - starts[2];
  813. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  814. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  815. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  816. return AVERROR_INVALIDDATA;
  817. }
  818. ctx->y_data_ptr = bs_hdr + y_offset;
  819. ctx->v_data_ptr = bs_hdr + v_offset;
  820. ctx->u_data_ptr = bs_hdr + u_offset;
  821. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  822. if (ctx->data_size == 16) {
  823. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  824. return 16;
  825. }
  826. if (ctx->frame_flags & BS_8BIT_PEL) {
  827. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  828. return AVERROR_PATCHWELCOME;
  829. }
  830. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  831. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  832. return AVERROR_PATCHWELCOME;
  833. }
  834. return 0;
  835. }
  836. /**
  837. * Convert and output the current plane.
  838. * All pixel values will be upsampled by shifting right by one bit.
  839. *
  840. * @param[in] plane pointer to the descriptor of the plane being processed
  841. * @param[in] buf_sel indicates which frame buffer the input data stored in
  842. * @param[out] dst pointer to the buffer receiving converted pixels
  843. * @param[in] dst_pitch pitch for moving to the next y line
  844. * @param[in] dst_height output plane height
  845. */
  846. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst,
  847. int dst_pitch, int dst_height)
  848. {
  849. int x,y;
  850. const uint8_t *src = plane->pixels[buf_sel];
  851. uint32_t pitch = plane->pitch;
  852. dst_height = FFMIN(dst_height, plane->height);
  853. for (y = 0; y < dst_height; y++) {
  854. /* convert four pixels at once using SWAR */
  855. for (x = 0; x < plane->width >> 2; x++) {
  856. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  857. src += 4;
  858. dst += 4;
  859. }
  860. for (x <<= 2; x < plane->width; x++)
  861. *dst++ = *src++ << 1;
  862. src += pitch - plane->width;
  863. dst += dst_pitch - plane->width;
  864. }
  865. }
  866. static av_cold int decode_init(AVCodecContext *avctx)
  867. {
  868. Indeo3DecodeContext *ctx = avctx->priv_data;
  869. ctx->avctx = avctx;
  870. ctx->width = avctx->width;
  871. ctx->height = avctx->height;
  872. avctx->pix_fmt = AV_PIX_FMT_YUV410P;
  873. build_requant_tab();
  874. ff_dsputil_init(&ctx->dsp, avctx);
  875. allocate_frame_buffers(ctx, avctx);
  876. return 0;
  877. }
  878. static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  879. AVPacket *avpkt)
  880. {
  881. Indeo3DecodeContext *ctx = avctx->priv_data;
  882. const uint8_t *buf = avpkt->data;
  883. int buf_size = avpkt->size;
  884. int res;
  885. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  886. if (res < 0)
  887. return res;
  888. /* skip sync(null) frames */
  889. if (res) {
  890. // we have processed 16 bytes but no data was decoded
  891. *got_frame = 0;
  892. return buf_size;
  893. }
  894. /* skip droppable INTER frames if requested */
  895. if (ctx->frame_flags & BS_NONREF &&
  896. (avctx->skip_frame >= AVDISCARD_NONREF))
  897. return 0;
  898. /* skip INTER frames if requested */
  899. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  900. return 0;
  901. /* use BS_BUFFER flag for buffer switching */
  902. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  903. /* decode luma plane */
  904. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  905. return res;
  906. /* decode chroma planes */
  907. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  908. return res;
  909. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  910. return res;
  911. if (ctx->frame.data[0])
  912. avctx->release_buffer(avctx, &ctx->frame);
  913. ctx->frame.reference = 0;
  914. if ((res = ff_get_buffer(avctx, &ctx->frame)) < 0) {
  915. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  916. return res;
  917. }
  918. output_plane(&ctx->planes[0], ctx->buf_sel,
  919. ctx->frame.data[0], ctx->frame.linesize[0],
  920. avctx->height);
  921. output_plane(&ctx->planes[1], ctx->buf_sel,
  922. ctx->frame.data[1], ctx->frame.linesize[1],
  923. (avctx->height + 3) >> 2);
  924. output_plane(&ctx->planes[2], ctx->buf_sel,
  925. ctx->frame.data[2], ctx->frame.linesize[2],
  926. (avctx->height + 3) >> 2);
  927. *got_frame = 1;
  928. *(AVFrame*)data = ctx->frame;
  929. return buf_size;
  930. }
  931. static av_cold int decode_close(AVCodecContext *avctx)
  932. {
  933. Indeo3DecodeContext *ctx = avctx->priv_data;
  934. free_frame_buffers(avctx->priv_data);
  935. if (ctx->frame.data[0])
  936. avctx->release_buffer(avctx, &ctx->frame);
  937. return 0;
  938. }
  939. AVCodec ff_indeo3_decoder = {
  940. .name = "indeo3",
  941. .type = AVMEDIA_TYPE_VIDEO,
  942. .id = AV_CODEC_ID_INDEO3,
  943. .priv_data_size = sizeof(Indeo3DecodeContext),
  944. .init = decode_init,
  945. .close = decode_close,
  946. .decode = decode_frame,
  947. .capabilities = CODEC_CAP_DR1,
  948. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  949. };