You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1081 lines
40KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "libavutil/channel_layout.h"
  42. #include "avcodec.h"
  43. #include "dsputil.h"
  44. #include "libavutil/common.h"
  45. #include "celp_filters.h"
  46. #include "acelp_filters.h"
  47. #include "acelp_vectors.h"
  48. #include "acelp_pitch_delay.h"
  49. #include "lsp.h"
  50. #include "amr.h"
  51. #include "internal.h"
  52. #include "amrnbdata.h"
  53. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  54. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  55. /**
  56. * Scale from constructed speech to [-1,1]
  57. *
  58. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  59. * upscales by two (section 6.2.2).
  60. *
  61. * Fundamentally, this scale is determined by energy_mean through
  62. * the fixed vector contribution to the excitation vector.
  63. */
  64. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  65. /** Prediction factor for 12.2kbit/s mode */
  66. #define PRED_FAC_MODE_12k2 0.65
  67. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  68. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  69. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  70. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  71. #define MIN_ENERGY -14.0
  72. /** Maximum sharpening factor
  73. *
  74. * The specification says 0.8, which should be 13107, but the reference C code
  75. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in bitexact G.729.)
  76. */
  77. #define SHARP_MAX 0.79449462890625
  78. /** Number of impulse response coefficients used for tilt factor */
  79. #define AMR_TILT_RESPONSE 22
  80. /** Tilt factor = 1st reflection coefficient * gamma_t */
  81. #define AMR_TILT_GAMMA_T 0.8
  82. /** Adaptive gain control factor used in post-filter */
  83. #define AMR_AGC_ALPHA 0.9
  84. typedef struct AMRContext {
  85. AVFrame avframe; ///< AVFrame for decoded samples
  86. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  87. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  88. enum Mode cur_frame_mode;
  89. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  90. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  91. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  92. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  93. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  94. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  95. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  96. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  97. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  98. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  99. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  100. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  101. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  102. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  103. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  104. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  105. uint8_t hang_count; ///< the number of subframes since a hangover period started
  106. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  107. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  108. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  109. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  110. float tilt_mem; ///< previous input to tilt compensation filter
  111. float postfilter_agc; ///< previous factor used for adaptive gain control
  112. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  113. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  114. } AMRContext;
  115. /** Double version of ff_weighted_vector_sumf() */
  116. static void weighted_vector_sumd(double *out, const double *in_a,
  117. const double *in_b, double weight_coeff_a,
  118. double weight_coeff_b, int length)
  119. {
  120. int i;
  121. for (i = 0; i < length; i++)
  122. out[i] = weight_coeff_a * in_a[i]
  123. + weight_coeff_b * in_b[i];
  124. }
  125. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  126. {
  127. AMRContext *p = avctx->priv_data;
  128. int i;
  129. if (avctx->channels > 1) {
  130. av_log_missing_feature(avctx, "multi-channel AMR", 0);
  131. return AVERROR_PATCHWELCOME;
  132. }
  133. avctx->channels = 1;
  134. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  135. avctx->sample_rate = 8000;
  136. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  137. // p->excitation always points to the same position in p->excitation_buf
  138. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  139. for (i = 0; i < LP_FILTER_ORDER; i++) {
  140. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  141. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  142. }
  143. for (i = 0; i < 4; i++)
  144. p->prediction_error[i] = MIN_ENERGY;
  145. avcodec_get_frame_defaults(&p->avframe);
  146. avctx->coded_frame = &p->avframe;
  147. return 0;
  148. }
  149. /**
  150. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  151. *
  152. * The order of speech bits is specified by 3GPP TS 26.101.
  153. *
  154. * @param p the context
  155. * @param buf pointer to the input buffer
  156. * @param buf_size size of the input buffer
  157. *
  158. * @return the frame mode
  159. */
  160. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  161. int buf_size)
  162. {
  163. enum Mode mode;
  164. // Decode the first octet.
  165. mode = buf[0] >> 3 & 0x0F; // frame type
  166. p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  167. if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  168. return NO_DATA;
  169. }
  170. if (mode < MODE_DTX)
  171. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  172. amr_unpacking_bitmaps_per_mode[mode]);
  173. return mode;
  174. }
  175. /// @name AMR pitch LPC coefficient decoding functions
  176. /// @{
  177. /**
  178. * Interpolate the LSF vector (used for fixed gain smoothing).
  179. * The interpolation is done over all four subframes even in MODE_12k2.
  180. *
  181. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  182. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  183. */
  184. static void interpolate_lsf(float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  185. {
  186. int i;
  187. for (i = 0; i < 4; i++)
  188. ff_weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  189. 0.25 * (3 - i), 0.25 * (i + 1),
  190. LP_FILTER_ORDER);
  191. }
  192. /**
  193. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  194. *
  195. * @param p the context
  196. * @param lsp output LSP vector
  197. * @param lsf_no_r LSF vector without the residual vector added
  198. * @param lsf_quantizer pointers to LSF dictionary tables
  199. * @param quantizer_offset offset in tables
  200. * @param sign for the 3 dictionary table
  201. * @param update store data for computing the next frame's LSFs
  202. */
  203. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  204. const float lsf_no_r[LP_FILTER_ORDER],
  205. const int16_t *lsf_quantizer[5],
  206. const int quantizer_offset,
  207. const int sign, const int update)
  208. {
  209. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  210. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  211. int i;
  212. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  213. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  214. 2 * sizeof(*lsf_r));
  215. if (sign) {
  216. lsf_r[4] *= -1;
  217. lsf_r[5] *= -1;
  218. }
  219. if (update)
  220. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  221. for (i = 0; i < LP_FILTER_ORDER; i++)
  222. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  223. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  224. if (update)
  225. interpolate_lsf(p->lsf_q, lsf_q);
  226. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  227. }
  228. /**
  229. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  230. *
  231. * @param p pointer to the AMRContext
  232. */
  233. static void lsf2lsp_5(AMRContext *p)
  234. {
  235. const uint16_t *lsf_param = p->frame.lsf;
  236. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  237. const int16_t *lsf_quantizer[5];
  238. int i;
  239. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  240. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  241. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  242. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  243. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  244. for (i = 0; i < LP_FILTER_ORDER; i++)
  245. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  246. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  247. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  248. // interpolate LSP vectors at subframes 1 and 3
  249. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  250. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  251. }
  252. /**
  253. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  254. *
  255. * @param p pointer to the AMRContext
  256. */
  257. static void lsf2lsp_3(AMRContext *p)
  258. {
  259. const uint16_t *lsf_param = p->frame.lsf;
  260. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  261. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  262. const int16_t *lsf_quantizer;
  263. int i, j;
  264. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  265. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  266. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  267. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  268. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  269. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  270. // calculate mean-removed LSF vector and add mean
  271. for (i = 0; i < LP_FILTER_ORDER; i++)
  272. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  273. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  274. // store data for computing the next frame's LSFs
  275. interpolate_lsf(p->lsf_q, lsf_q);
  276. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  277. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  278. // interpolate LSP vectors at subframes 1, 2 and 3
  279. for (i = 1; i <= 3; i++)
  280. for(j = 0; j < LP_FILTER_ORDER; j++)
  281. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  282. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  283. }
  284. /// @}
  285. /// @name AMR pitch vector decoding functions
  286. /// @{
  287. /**
  288. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  289. */
  290. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  291. const int prev_lag_int, const int subframe)
  292. {
  293. if (subframe == 0 || subframe == 2) {
  294. if (pitch_index < 463) {
  295. *lag_int = (pitch_index + 107) * 10923 >> 16;
  296. *lag_frac = pitch_index - *lag_int * 6 + 105;
  297. } else {
  298. *lag_int = pitch_index - 368;
  299. *lag_frac = 0;
  300. }
  301. } else {
  302. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  303. *lag_frac = pitch_index - *lag_int * 6 - 3;
  304. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  305. PITCH_DELAY_MAX - 9);
  306. }
  307. }
  308. static void decode_pitch_vector(AMRContext *p,
  309. const AMRNBSubframe *amr_subframe,
  310. const int subframe)
  311. {
  312. int pitch_lag_int, pitch_lag_frac;
  313. enum Mode mode = p->cur_frame_mode;
  314. if (p->cur_frame_mode == MODE_12k2) {
  315. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  316. amr_subframe->p_lag, p->pitch_lag_int,
  317. subframe);
  318. } else
  319. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  320. amr_subframe->p_lag,
  321. p->pitch_lag_int, subframe,
  322. mode != MODE_4k75 && mode != MODE_5k15,
  323. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  324. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  325. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  326. pitch_lag_int += pitch_lag_frac > 0;
  327. /* Calculate the pitch vector by interpolating the past excitation at the
  328. pitch lag using a b60 hamming windowed sinc function. */
  329. ff_acelp_interpolatef(p->excitation, p->excitation + 1 - pitch_lag_int,
  330. ff_b60_sinc, 6,
  331. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  332. 10, AMR_SUBFRAME_SIZE);
  333. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  334. }
  335. /// @}
  336. /// @name AMR algebraic code book (fixed) vector decoding functions
  337. /// @{
  338. /**
  339. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  340. */
  341. static void decode_10bit_pulse(int code, int pulse_position[8],
  342. int i1, int i2, int i3)
  343. {
  344. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  345. // the 3 pulses and the upper 7 bits being coded in base 5
  346. const uint8_t *positions = base_five_table[code >> 3];
  347. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  348. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  349. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  350. }
  351. /**
  352. * Decode the algebraic codebook index to pulse positions and signs and
  353. * construct the algebraic codebook vector for MODE_10k2.
  354. *
  355. * @param fixed_index positions of the eight pulses
  356. * @param fixed_sparse pointer to the algebraic codebook vector
  357. */
  358. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  359. AMRFixed *fixed_sparse)
  360. {
  361. int pulse_position[8];
  362. int i, temp;
  363. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  364. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  365. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  366. // the 2 pulses and the upper 5 bits being coded in base 5
  367. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  368. pulse_position[3] = temp % 5;
  369. pulse_position[7] = temp / 5;
  370. if (pulse_position[7] & 1)
  371. pulse_position[3] = 4 - pulse_position[3];
  372. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  373. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  374. fixed_sparse->n = 8;
  375. for (i = 0; i < 4; i++) {
  376. const int pos1 = (pulse_position[i] << 2) + i;
  377. const int pos2 = (pulse_position[i + 4] << 2) + i;
  378. const float sign = fixed_index[i] ? -1.0 : 1.0;
  379. fixed_sparse->x[i ] = pos1;
  380. fixed_sparse->x[i + 4] = pos2;
  381. fixed_sparse->y[i ] = sign;
  382. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  383. }
  384. }
  385. /**
  386. * Decode the algebraic codebook index to pulse positions and signs,
  387. * then construct the algebraic codebook vector.
  388. *
  389. * nb of pulses | bits encoding pulses
  390. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  391. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  392. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  393. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  394. *
  395. * @param fixed_sparse pointer to the algebraic codebook vector
  396. * @param pulses algebraic codebook indexes
  397. * @param mode mode of the current frame
  398. * @param subframe current subframe number
  399. */
  400. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  401. const enum Mode mode, const int subframe)
  402. {
  403. assert(MODE_4k75 <= mode && mode <= MODE_12k2);
  404. if (mode == MODE_12k2) {
  405. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  406. } else if (mode == MODE_10k2) {
  407. decode_8_pulses_31bits(pulses, fixed_sparse);
  408. } else {
  409. int *pulse_position = fixed_sparse->x;
  410. int i, pulse_subset;
  411. const int fixed_index = pulses[0];
  412. if (mode <= MODE_5k15) {
  413. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  414. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  415. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  416. fixed_sparse->n = 2;
  417. } else if (mode == MODE_5k9) {
  418. pulse_subset = ((fixed_index & 1) << 1) + 1;
  419. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  420. pulse_subset = (fixed_index >> 4) & 3;
  421. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  422. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  423. } else if (mode == MODE_6k7) {
  424. pulse_position[0] = (fixed_index & 7) * 5;
  425. pulse_subset = (fixed_index >> 2) & 2;
  426. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  427. pulse_subset = (fixed_index >> 6) & 2;
  428. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  429. fixed_sparse->n = 3;
  430. } else { // mode <= MODE_7k95
  431. pulse_position[0] = gray_decode[ fixed_index & 7];
  432. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  433. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  434. pulse_subset = (fixed_index >> 9) & 1;
  435. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  436. fixed_sparse->n = 4;
  437. }
  438. for (i = 0; i < fixed_sparse->n; i++)
  439. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  440. }
  441. }
  442. /**
  443. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  444. *
  445. * @param p the context
  446. * @param subframe unpacked amr subframe
  447. * @param mode mode of the current frame
  448. * @param fixed_sparse sparse respresentation of the fixed vector
  449. */
  450. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  451. AMRFixed *fixed_sparse)
  452. {
  453. // The spec suggests the current pitch gain is always used, but in other
  454. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  455. // so the codebook gain cannot depend on the quantized pitch gain.
  456. if (mode == MODE_12k2)
  457. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  458. fixed_sparse->pitch_lag = p->pitch_lag_int;
  459. fixed_sparse->pitch_fac = p->beta;
  460. // Save pitch sharpening factor for the next subframe
  461. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  462. // the fact that the gains for two subframes are jointly quantized.
  463. if (mode != MODE_4k75 || subframe & 1)
  464. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  465. }
  466. /// @}
  467. /// @name AMR gain decoding functions
  468. /// @{
  469. /**
  470. * fixed gain smoothing
  471. * Note that where the spec specifies the "spectrum in the q domain"
  472. * in section 6.1.4, in fact frequencies should be used.
  473. *
  474. * @param p the context
  475. * @param lsf LSFs for the current subframe, in the range [0,1]
  476. * @param lsf_avg averaged LSFs
  477. * @param mode mode of the current frame
  478. *
  479. * @return fixed gain smoothed
  480. */
  481. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  482. const float *lsf_avg, const enum Mode mode)
  483. {
  484. float diff = 0.0;
  485. int i;
  486. for (i = 0; i < LP_FILTER_ORDER; i++)
  487. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  488. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  489. // hangover period.
  490. p->diff_count++;
  491. if (diff <= 0.65)
  492. p->diff_count = 0;
  493. if (p->diff_count > 10) {
  494. p->hang_count = 0;
  495. p->diff_count--; // don't let diff_count overflow
  496. }
  497. if (p->hang_count < 40) {
  498. p->hang_count++;
  499. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  500. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  501. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  502. p->fixed_gain[2] + p->fixed_gain[3] +
  503. p->fixed_gain[4]) * 0.2;
  504. return smoothing_factor * p->fixed_gain[4] +
  505. (1.0 - smoothing_factor) * fixed_gain_mean;
  506. }
  507. return p->fixed_gain[4];
  508. }
  509. /**
  510. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  511. *
  512. * @param p the context
  513. * @param amr_subframe unpacked amr subframe
  514. * @param mode mode of the current frame
  515. * @param subframe current subframe number
  516. * @param fixed_gain_factor decoded gain correction factor
  517. */
  518. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  519. const enum Mode mode, const int subframe,
  520. float *fixed_gain_factor)
  521. {
  522. if (mode == MODE_12k2 || mode == MODE_7k95) {
  523. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  524. * (1.0 / 16384.0);
  525. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  526. * (1.0 / 2048.0);
  527. } else {
  528. const uint16_t *gains;
  529. if (mode >= MODE_6k7) {
  530. gains = gains_high[amr_subframe->p_gain];
  531. } else if (mode >= MODE_5k15) {
  532. gains = gains_low [amr_subframe->p_gain];
  533. } else {
  534. // gain index is only coded in subframes 0,2 for MODE_4k75
  535. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  536. }
  537. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  538. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  539. }
  540. }
  541. /// @}
  542. /// @name AMR preprocessing functions
  543. /// @{
  544. /**
  545. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  546. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  547. *
  548. * @param out vector with filter applied
  549. * @param in source vector
  550. * @param filter phase filter coefficients
  551. *
  552. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  553. */
  554. static void apply_ir_filter(float *out, const AMRFixed *in,
  555. const float *filter)
  556. {
  557. float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
  558. filter2[AMR_SUBFRAME_SIZE];
  559. int lag = in->pitch_lag;
  560. float fac = in->pitch_fac;
  561. int i;
  562. if (lag < AMR_SUBFRAME_SIZE) {
  563. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  564. AMR_SUBFRAME_SIZE);
  565. if (lag < AMR_SUBFRAME_SIZE >> 1)
  566. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  567. AMR_SUBFRAME_SIZE);
  568. }
  569. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  570. for (i = 0; i < in->n; i++) {
  571. int x = in->x[i];
  572. float y = in->y[i];
  573. const float *filterp;
  574. if (x >= AMR_SUBFRAME_SIZE - lag) {
  575. filterp = filter;
  576. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  577. filterp = filter1;
  578. } else
  579. filterp = filter2;
  580. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  581. }
  582. }
  583. /**
  584. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  585. * Also know as "adaptive phase dispersion".
  586. *
  587. * This implements 3GPP TS 26.090 section 6.1(5).
  588. *
  589. * @param p the context
  590. * @param fixed_sparse algebraic codebook vector
  591. * @param fixed_vector unfiltered fixed vector
  592. * @param fixed_gain smoothed gain
  593. * @param out space for modified vector if necessary
  594. */
  595. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  596. const float *fixed_vector,
  597. float fixed_gain, float *out)
  598. {
  599. int ir_filter_nr;
  600. if (p->pitch_gain[4] < 0.6) {
  601. ir_filter_nr = 0; // strong filtering
  602. } else if (p->pitch_gain[4] < 0.9) {
  603. ir_filter_nr = 1; // medium filtering
  604. } else
  605. ir_filter_nr = 2; // no filtering
  606. // detect 'onset'
  607. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  608. p->ir_filter_onset = 2;
  609. } else if (p->ir_filter_onset)
  610. p->ir_filter_onset--;
  611. if (!p->ir_filter_onset) {
  612. int i, count = 0;
  613. for (i = 0; i < 5; i++)
  614. if (p->pitch_gain[i] < 0.6)
  615. count++;
  616. if (count > 2)
  617. ir_filter_nr = 0;
  618. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  619. ir_filter_nr--;
  620. } else if (ir_filter_nr < 2)
  621. ir_filter_nr++;
  622. // Disable filtering for very low level of fixed_gain.
  623. // Note this step is not specified in the technical description but is in
  624. // the reference source in the function Ph_disp.
  625. if (fixed_gain < 5.0)
  626. ir_filter_nr = 2;
  627. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  628. && ir_filter_nr < 2) {
  629. apply_ir_filter(out, fixed_sparse,
  630. (p->cur_frame_mode == MODE_7k95 ?
  631. ir_filters_lookup_MODE_7k95 :
  632. ir_filters_lookup)[ir_filter_nr]);
  633. fixed_vector = out;
  634. }
  635. // update ir filter strength history
  636. p->prev_ir_filter_nr = ir_filter_nr;
  637. p->prev_sparse_fixed_gain = fixed_gain;
  638. return fixed_vector;
  639. }
  640. /// @}
  641. /// @name AMR synthesis functions
  642. /// @{
  643. /**
  644. * Conduct 10th order linear predictive coding synthesis.
  645. *
  646. * @param p pointer to the AMRContext
  647. * @param lpc pointer to the LPC coefficients
  648. * @param fixed_gain fixed codebook gain for synthesis
  649. * @param fixed_vector algebraic codebook vector
  650. * @param samples pointer to the output speech samples
  651. * @param overflow 16-bit overflow flag
  652. */
  653. static int synthesis(AMRContext *p, float *lpc,
  654. float fixed_gain, const float *fixed_vector,
  655. float *samples, uint8_t overflow)
  656. {
  657. int i;
  658. float excitation[AMR_SUBFRAME_SIZE];
  659. // if an overflow has been detected, the pitch vector is scaled down by a
  660. // factor of 4
  661. if (overflow)
  662. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  663. p->pitch_vector[i] *= 0.25;
  664. ff_weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  665. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  666. // emphasize pitch vector contribution
  667. if (p->pitch_gain[4] > 0.5 && !overflow) {
  668. float energy = ff_scalarproduct_float_c(excitation, excitation,
  669. AMR_SUBFRAME_SIZE);
  670. float pitch_factor =
  671. p->pitch_gain[4] *
  672. (p->cur_frame_mode == MODE_12k2 ?
  673. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  674. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  675. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  676. excitation[i] += pitch_factor * p->pitch_vector[i];
  677. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  678. AMR_SUBFRAME_SIZE);
  679. }
  680. ff_celp_lp_synthesis_filterf(samples, lpc, excitation, AMR_SUBFRAME_SIZE,
  681. LP_FILTER_ORDER);
  682. // detect overflow
  683. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  684. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  685. return 1;
  686. }
  687. return 0;
  688. }
  689. /// @}
  690. /// @name AMR update functions
  691. /// @{
  692. /**
  693. * Update buffers and history at the end of decoding a subframe.
  694. *
  695. * @param p pointer to the AMRContext
  696. */
  697. static void update_state(AMRContext *p)
  698. {
  699. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  700. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  701. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  702. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  703. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  704. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  705. LP_FILTER_ORDER * sizeof(float));
  706. }
  707. /// @}
  708. /// @name AMR Postprocessing functions
  709. /// @{
  710. /**
  711. * Get the tilt factor of a formant filter from its transfer function
  712. *
  713. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  714. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  715. */
  716. static float tilt_factor(float *lpc_n, float *lpc_d)
  717. {
  718. float rh0, rh1; // autocorrelation at lag 0 and 1
  719. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  720. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  721. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  722. hf[0] = 1.0;
  723. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  724. ff_celp_lp_synthesis_filterf(hf, lpc_d, hf, AMR_TILT_RESPONSE,
  725. LP_FILTER_ORDER);
  726. rh0 = ff_scalarproduct_float_c(hf, hf, AMR_TILT_RESPONSE);
  727. rh1 = ff_scalarproduct_float_c(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  728. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  729. // modes. But in the ref source the tilt is always non-negative.
  730. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  731. }
  732. /**
  733. * Perform adaptive post-filtering to enhance the quality of the speech.
  734. * See section 6.2.1.
  735. *
  736. * @param p pointer to the AMRContext
  737. * @param lpc interpolated LP coefficients for this subframe
  738. * @param buf_out output of the filter
  739. */
  740. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  741. {
  742. int i;
  743. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  744. float speech_gain = ff_scalarproduct_float_c(samples, samples,
  745. AMR_SUBFRAME_SIZE);
  746. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  747. const float *gamma_n, *gamma_d; // Formant filter factor table
  748. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  749. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  750. gamma_n = ff_pow_0_7;
  751. gamma_d = ff_pow_0_75;
  752. } else {
  753. gamma_n = ff_pow_0_55;
  754. gamma_d = ff_pow_0_7;
  755. }
  756. for (i = 0; i < LP_FILTER_ORDER; i++) {
  757. lpc_n[i] = lpc[i] * gamma_n[i];
  758. lpc_d[i] = lpc[i] * gamma_d[i];
  759. }
  760. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  761. ff_celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  762. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  763. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  764. sizeof(float) * LP_FILTER_ORDER);
  765. ff_celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  766. pole_out + LP_FILTER_ORDER,
  767. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  768. ff_tilt_compensation(&p->tilt_mem, tilt_factor(lpc_n, lpc_d), buf_out,
  769. AMR_SUBFRAME_SIZE);
  770. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  771. AMR_AGC_ALPHA, &p->postfilter_agc);
  772. }
  773. /// @}
  774. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  775. int *got_frame_ptr, AVPacket *avpkt)
  776. {
  777. AMRContext *p = avctx->priv_data; // pointer to private data
  778. const uint8_t *buf = avpkt->data;
  779. int buf_size = avpkt->size;
  780. float *buf_out; // pointer to the output data buffer
  781. int i, subframe, ret;
  782. float fixed_gain_factor;
  783. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  784. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  785. float synth_fixed_gain; // the fixed gain that synthesis should use
  786. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  787. /* get output buffer */
  788. p->avframe.nb_samples = AMR_BLOCK_SIZE;
  789. if ((ret = ff_get_buffer(avctx, &p->avframe)) < 0) {
  790. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  791. return ret;
  792. }
  793. buf_out = (float *)p->avframe.data[0];
  794. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  795. if (p->cur_frame_mode == NO_DATA) {
  796. av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  797. return AVERROR_INVALIDDATA;
  798. }
  799. if (p->cur_frame_mode == MODE_DTX) {
  800. av_log_missing_feature(avctx, "dtx mode", 1);
  801. return AVERROR_PATCHWELCOME;
  802. }
  803. if (p->cur_frame_mode == MODE_12k2) {
  804. lsf2lsp_5(p);
  805. } else
  806. lsf2lsp_3(p);
  807. for (i = 0; i < 4; i++)
  808. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  809. for (subframe = 0; subframe < 4; subframe++) {
  810. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  811. decode_pitch_vector(p, amr_subframe, subframe);
  812. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  813. p->cur_frame_mode, subframe);
  814. // The fixed gain (section 6.1.3) depends on the fixed vector
  815. // (section 6.1.2), but the fixed vector calculation uses
  816. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  817. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  818. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  819. &fixed_gain_factor);
  820. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  821. if (fixed_sparse.pitch_lag == 0) {
  822. av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  823. return AVERROR_INVALIDDATA;
  824. }
  825. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  826. AMR_SUBFRAME_SIZE);
  827. p->fixed_gain[4] =
  828. ff_amr_set_fixed_gain(fixed_gain_factor,
  829. ff_scalarproduct_float_c(p->fixed_vector,
  830. p->fixed_vector,
  831. AMR_SUBFRAME_SIZE) /
  832. AMR_SUBFRAME_SIZE,
  833. p->prediction_error,
  834. energy_mean[p->cur_frame_mode], energy_pred_fac);
  835. // The excitation feedback is calculated without any processing such
  836. // as fixed gain smoothing. This isn't mentioned in the specification.
  837. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  838. p->excitation[i] *= p->pitch_gain[4];
  839. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  840. AMR_SUBFRAME_SIZE);
  841. // In the ref decoder, excitation is stored with no fractional bits.
  842. // This step prevents buzz in silent periods. The ref encoder can
  843. // emit long sequences with pitch factor greater than one. This
  844. // creates unwanted feedback if the excitation vector is nonzero.
  845. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  846. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  847. p->excitation[i] = truncf(p->excitation[i]);
  848. // Smooth fixed gain.
  849. // The specification is ambiguous, but in the reference source, the
  850. // smoothed value is NOT fed back into later fixed gain smoothing.
  851. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  852. p->lsf_avg, p->cur_frame_mode);
  853. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  854. synth_fixed_gain, spare_vector);
  855. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  856. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  857. // overflow detected -> rerun synthesis scaling pitch vector down
  858. // by a factor of 4, skipping pitch vector contribution emphasis
  859. // and adaptive gain control
  860. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  861. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  862. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  863. // update buffers and history
  864. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  865. update_state(p);
  866. }
  867. ff_acelp_apply_order_2_transfer_function(buf_out, buf_out, highpass_zeros,
  868. highpass_poles,
  869. highpass_gain * AMR_SAMPLE_SCALE,
  870. p->high_pass_mem, AMR_BLOCK_SIZE);
  871. /* Update averaged lsf vector (used for fixed gain smoothing).
  872. *
  873. * Note that lsf_avg should not incorporate the current frame's LSFs
  874. * for fixed_gain_smooth.
  875. * The specification has an incorrect formula: the reference decoder uses
  876. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  877. ff_weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  878. 0.84, 0.16, LP_FILTER_ORDER);
  879. *got_frame_ptr = 1;
  880. *(AVFrame *)data = p->avframe;
  881. /* return the amount of bytes consumed if everything was OK */
  882. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  883. }
  884. AVCodec ff_amrnb_decoder = {
  885. .name = "amrnb",
  886. .type = AVMEDIA_TYPE_AUDIO,
  887. .id = AV_CODEC_ID_AMR_NB,
  888. .priv_data_size = sizeof(AMRContext),
  889. .init = amrnb_decode_init,
  890. .decode = amrnb_decode_frame,
  891. .capabilities = CODEC_CAP_DR1,
  892. .long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
  893. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  894. AV_SAMPLE_FMT_NONE },
  895. };