You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

583 lines
19KB

  1. /*
  2. * ALAC (Apple Lossless Audio Codec) decoder
  3. * Copyright (c) 2005 David Hammerton
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * ALAC (Apple Lossless Audio Codec) decoder
  24. * @author 2005 David Hammerton
  25. * @see http://crazney.net/programs/itunes/alac.html
  26. *
  27. * Note: This decoder expects a 36-byte QuickTime atom to be
  28. * passed through the extradata[_size] fields. This atom is tacked onto
  29. * the end of an 'alac' stsd atom and has the following format:
  30. *
  31. * 32bit atom size
  32. * 32bit tag ("alac")
  33. * 32bit tag version (0)
  34. * 32bit samples per frame (used when not set explicitly in the frames)
  35. * 8bit compatible version (0)
  36. * 8bit sample size
  37. * 8bit history mult (40)
  38. * 8bit initial history (14)
  39. * 8bit rice param limit (10)
  40. * 8bit channels
  41. * 16bit maxRun (255)
  42. * 32bit max coded frame size (0 means unknown)
  43. * 32bit average bitrate (0 means unknown)
  44. * 32bit samplerate
  45. */
  46. #include "libavutil/channel_layout.h"
  47. #include "avcodec.h"
  48. #include "get_bits.h"
  49. #include "bytestream.h"
  50. #include "internal.h"
  51. #include "unary.h"
  52. #include "mathops.h"
  53. #include "alac_data.h"
  54. #define ALAC_EXTRADATA_SIZE 36
  55. typedef struct {
  56. AVCodecContext *avctx;
  57. AVFrame frame;
  58. GetBitContext gb;
  59. int channels;
  60. int32_t *predict_error_buffer[2];
  61. int32_t *output_samples_buffer[2];
  62. int32_t *extra_bits_buffer[2];
  63. uint32_t max_samples_per_frame;
  64. uint8_t sample_size;
  65. uint8_t rice_history_mult;
  66. uint8_t rice_initial_history;
  67. uint8_t rice_limit;
  68. int extra_bits; /**< number of extra bits beyond 16-bit */
  69. int nb_samples; /**< number of samples in the current frame */
  70. } ALACContext;
  71. static inline unsigned int decode_scalar(GetBitContext *gb, int k, int bps)
  72. {
  73. unsigned int x = get_unary_0_9(gb);
  74. if (x > 8) { /* RICE THRESHOLD */
  75. /* use alternative encoding */
  76. x = get_bits_long(gb, bps);
  77. } else if (k != 1) {
  78. int extrabits = show_bits(gb, k);
  79. /* multiply x by 2^k - 1, as part of their strange algorithm */
  80. x = (x << k) - x;
  81. if (extrabits > 1) {
  82. x += extrabits - 1;
  83. skip_bits(gb, k);
  84. } else
  85. skip_bits(gb, k - 1);
  86. }
  87. return x;
  88. }
  89. static void rice_decompress(ALACContext *alac, int32_t *output_buffer,
  90. int nb_samples, int bps, int rice_history_mult)
  91. {
  92. int i;
  93. unsigned int history = alac->rice_initial_history;
  94. int sign_modifier = 0;
  95. for (i = 0; i < nb_samples; i++) {
  96. int k;
  97. unsigned int x;
  98. /* calculate rice param and decode next value */
  99. k = av_log2((history >> 9) + 3);
  100. k = FFMIN(k, alac->rice_limit);
  101. x = decode_scalar(&alac->gb, k, bps);
  102. x += sign_modifier;
  103. sign_modifier = 0;
  104. output_buffer[i] = (x >> 1) ^ -(x & 1);
  105. /* update the history */
  106. if (x > 0xffff)
  107. history = 0xffff;
  108. else
  109. history += x * rice_history_mult -
  110. ((history * rice_history_mult) >> 9);
  111. /* special case: there may be compressed blocks of 0 */
  112. if ((history < 128) && (i + 1 < nb_samples)) {
  113. int block_size;
  114. /* calculate rice param and decode block size */
  115. k = 7 - av_log2(history) + ((history + 16) >> 6);
  116. k = FFMIN(k, alac->rice_limit);
  117. block_size = decode_scalar(&alac->gb, k, 16);
  118. if (block_size > 0) {
  119. if (block_size >= nb_samples - i) {
  120. av_log(alac->avctx, AV_LOG_ERROR,
  121. "invalid zero block size of %d %d %d\n", block_size,
  122. nb_samples, i);
  123. block_size = nb_samples - i - 1;
  124. }
  125. memset(&output_buffer[i + 1], 0,
  126. block_size * sizeof(*output_buffer));
  127. i += block_size;
  128. }
  129. if (block_size <= 0xffff)
  130. sign_modifier = 1;
  131. history = 0;
  132. }
  133. }
  134. }
  135. static inline int sign_only(int v)
  136. {
  137. return v ? FFSIGN(v) : 0;
  138. }
  139. static void lpc_prediction(int32_t *error_buffer, int32_t *buffer_out,
  140. int nb_samples, int bps, int16_t *lpc_coefs,
  141. int lpc_order, int lpc_quant)
  142. {
  143. int i;
  144. int32_t *pred = buffer_out;
  145. /* first sample always copies */
  146. *buffer_out = *error_buffer;
  147. if (nb_samples <= 1)
  148. return;
  149. if (!lpc_order) {
  150. memcpy(&buffer_out[1], &error_buffer[1],
  151. (nb_samples - 1) * sizeof(*buffer_out));
  152. return;
  153. }
  154. if (lpc_order == 31) {
  155. /* simple 1st-order prediction */
  156. for (i = 1; i < nb_samples; i++) {
  157. buffer_out[i] = sign_extend(buffer_out[i - 1] + error_buffer[i],
  158. bps);
  159. }
  160. return;
  161. }
  162. /* read warm-up samples */
  163. for (i = 1; i <= lpc_order; i++)
  164. buffer_out[i] = sign_extend(buffer_out[i - 1] + error_buffer[i], bps);
  165. /* NOTE: 4 and 8 are very common cases that could be optimized. */
  166. for (; i < nb_samples; i++) {
  167. int j;
  168. int val = 0;
  169. int error_val = error_buffer[i];
  170. int error_sign;
  171. int d = *pred++;
  172. /* LPC prediction */
  173. for (j = 0; j < lpc_order; j++)
  174. val += (pred[j] - d) * lpc_coefs[j];
  175. val = (val + (1 << (lpc_quant - 1))) >> lpc_quant;
  176. val += d + error_val;
  177. buffer_out[i] = sign_extend(val, bps);
  178. /* adapt LPC coefficients */
  179. error_sign = sign_only(error_val);
  180. if (error_sign) {
  181. for (j = 0; j < lpc_order && error_val * error_sign > 0; j++) {
  182. int sign;
  183. val = d - pred[j];
  184. sign = sign_only(val) * error_sign;
  185. lpc_coefs[j] -= sign;
  186. val *= sign;
  187. error_val -= (val >> lpc_quant) * (j + 1);
  188. }
  189. }
  190. }
  191. }
  192. static void decorrelate_stereo(int32_t *buffer[2], int nb_samples,
  193. int decorr_shift, int decorr_left_weight)
  194. {
  195. int i;
  196. for (i = 0; i < nb_samples; i++) {
  197. int32_t a, b;
  198. a = buffer[0][i];
  199. b = buffer[1][i];
  200. a -= (b * decorr_left_weight) >> decorr_shift;
  201. b += a;
  202. buffer[0][i] = b;
  203. buffer[1][i] = a;
  204. }
  205. }
  206. static void append_extra_bits(int32_t *buffer[2], int32_t *extra_bits_buffer[2],
  207. int extra_bits, int channels, int nb_samples)
  208. {
  209. int i, ch;
  210. for (ch = 0; ch < channels; ch++)
  211. for (i = 0; i < nb_samples; i++)
  212. buffer[ch][i] = (buffer[ch][i] << extra_bits) | extra_bits_buffer[ch][i];
  213. }
  214. static int decode_element(AVCodecContext *avctx, void *data, int ch_index,
  215. int channels)
  216. {
  217. ALACContext *alac = avctx->priv_data;
  218. int has_size, bps, is_compressed, decorr_shift, decorr_left_weight, ret;
  219. uint32_t output_samples;
  220. int i, ch;
  221. skip_bits(&alac->gb, 4); /* element instance tag */
  222. skip_bits(&alac->gb, 12); /* unused header bits */
  223. /* the number of output samples is stored in the frame */
  224. has_size = get_bits1(&alac->gb);
  225. alac->extra_bits = get_bits(&alac->gb, 2) << 3;
  226. bps = alac->sample_size - alac->extra_bits + channels - 1;
  227. if (bps > 32) {
  228. av_log(avctx, AV_LOG_ERROR, "bps is unsupported: %d\n", bps);
  229. return AVERROR_PATCHWELCOME;
  230. }
  231. /* whether the frame is compressed */
  232. is_compressed = !get_bits1(&alac->gb);
  233. if (has_size)
  234. output_samples = get_bits_long(&alac->gb, 32);
  235. else
  236. output_samples = alac->max_samples_per_frame;
  237. if (!output_samples || output_samples > alac->max_samples_per_frame) {
  238. av_log(avctx, AV_LOG_ERROR, "invalid samples per frame: %d\n",
  239. output_samples);
  240. return AVERROR_INVALIDDATA;
  241. }
  242. if (!alac->nb_samples) {
  243. /* get output buffer */
  244. alac->frame.nb_samples = output_samples;
  245. if ((ret = ff_get_buffer(avctx, &alac->frame)) < 0) {
  246. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  247. return ret;
  248. }
  249. } else if (output_samples != alac->nb_samples) {
  250. av_log(avctx, AV_LOG_ERROR, "sample count mismatch: %u != %d\n",
  251. output_samples, alac->nb_samples);
  252. return AVERROR_INVALIDDATA;
  253. }
  254. alac->nb_samples = output_samples;
  255. if (alac->sample_size > 16) {
  256. for (ch = 0; ch < channels; ch++)
  257. alac->output_samples_buffer[ch] = (int32_t *)alac->frame.extended_data[ch_index + ch];
  258. }
  259. if (is_compressed) {
  260. int16_t lpc_coefs[2][32];
  261. int lpc_order[2];
  262. int prediction_type[2];
  263. int lpc_quant[2];
  264. int rice_history_mult[2];
  265. decorr_shift = get_bits(&alac->gb, 8);
  266. decorr_left_weight = get_bits(&alac->gb, 8);
  267. for (ch = 0; ch < channels; ch++) {
  268. prediction_type[ch] = get_bits(&alac->gb, 4);
  269. lpc_quant[ch] = get_bits(&alac->gb, 4);
  270. rice_history_mult[ch] = get_bits(&alac->gb, 3);
  271. lpc_order[ch] = get_bits(&alac->gb, 5);
  272. /* read the predictor table */
  273. for (i = lpc_order[ch] - 1; i >= 0; i--)
  274. lpc_coefs[ch][i] = get_sbits(&alac->gb, 16);
  275. }
  276. if (alac->extra_bits) {
  277. for (i = 0; i < alac->nb_samples; i++) {
  278. for (ch = 0; ch < channels; ch++)
  279. alac->extra_bits_buffer[ch][i] = get_bits(&alac->gb, alac->extra_bits);
  280. }
  281. }
  282. for (ch = 0; ch < channels; ch++) {
  283. rice_decompress(alac, alac->predict_error_buffer[ch],
  284. alac->nb_samples, bps,
  285. rice_history_mult[ch] * alac->rice_history_mult / 4);
  286. /* adaptive FIR filter */
  287. if (prediction_type[ch] == 15) {
  288. /* Prediction type 15 runs the adaptive FIR twice.
  289. * The first pass uses the special-case coef_num = 31, while
  290. * the second pass uses the coefs from the bitstream.
  291. *
  292. * However, this prediction type is not currently used by the
  293. * reference encoder.
  294. */
  295. lpc_prediction(alac->predict_error_buffer[ch],
  296. alac->predict_error_buffer[ch],
  297. alac->nb_samples, bps, NULL, 31, 0);
  298. } else if (prediction_type[ch] > 0) {
  299. av_log(avctx, AV_LOG_WARNING, "unknown prediction type: %i\n",
  300. prediction_type[ch]);
  301. }
  302. lpc_prediction(alac->predict_error_buffer[ch],
  303. alac->output_samples_buffer[ch], alac->nb_samples,
  304. bps, lpc_coefs[ch], lpc_order[ch], lpc_quant[ch]);
  305. }
  306. } else {
  307. /* not compressed, easy case */
  308. for (i = 0; i < alac->nb_samples; i++) {
  309. for (ch = 0; ch < channels; ch++) {
  310. alac->output_samples_buffer[ch][i] =
  311. get_sbits_long(&alac->gb, alac->sample_size);
  312. }
  313. }
  314. alac->extra_bits = 0;
  315. decorr_shift = 0;
  316. decorr_left_weight = 0;
  317. }
  318. if (channels == 2 && decorr_left_weight) {
  319. decorrelate_stereo(alac->output_samples_buffer, alac->nb_samples,
  320. decorr_shift, decorr_left_weight);
  321. }
  322. if (alac->extra_bits) {
  323. append_extra_bits(alac->output_samples_buffer, alac->extra_bits_buffer,
  324. alac->extra_bits, channels, alac->nb_samples);
  325. }
  326. switch(alac->sample_size) {
  327. case 16: {
  328. for (ch = 0; ch < channels; ch++) {
  329. int16_t *outbuffer = (int16_t *)alac->frame.extended_data[ch_index + ch];
  330. for (i = 0; i < alac->nb_samples; i++)
  331. *outbuffer++ = alac->output_samples_buffer[ch][i];
  332. }}
  333. break;
  334. case 24: {
  335. for (ch = 0; ch < channels; ch++) {
  336. for (i = 0; i < alac->nb_samples; i++)
  337. alac->output_samples_buffer[ch][i] <<= 8;
  338. }}
  339. break;
  340. }
  341. return 0;
  342. }
  343. static int alac_decode_frame(AVCodecContext *avctx, void *data,
  344. int *got_frame_ptr, AVPacket *avpkt)
  345. {
  346. ALACContext *alac = avctx->priv_data;
  347. enum AlacRawDataBlockType element;
  348. int channels;
  349. int ch, ret, got_end;
  350. init_get_bits(&alac->gb, avpkt->data, avpkt->size * 8);
  351. got_end = 0;
  352. alac->nb_samples = 0;
  353. ch = 0;
  354. while (get_bits_left(&alac->gb) >= 3) {
  355. element = get_bits(&alac->gb, 3);
  356. if (element == TYPE_END) {
  357. got_end = 1;
  358. break;
  359. }
  360. if (element > TYPE_CPE && element != TYPE_LFE) {
  361. av_log(avctx, AV_LOG_ERROR, "syntax element unsupported: %d", element);
  362. return AVERROR_PATCHWELCOME;
  363. }
  364. channels = (element == TYPE_CPE) ? 2 : 1;
  365. if (ch + channels > alac->channels) {
  366. av_log(avctx, AV_LOG_ERROR, "invalid element channel count\n");
  367. return AVERROR_INVALIDDATA;
  368. }
  369. ret = decode_element(avctx, data,
  370. ff_alac_channel_layout_offsets[alac->channels - 1][ch],
  371. channels);
  372. if (ret < 0 && get_bits_left(&alac->gb))
  373. return ret;
  374. ch += channels;
  375. }
  376. if (!got_end) {
  377. av_log(avctx, AV_LOG_ERROR, "no end tag found. incomplete packet.\n");
  378. return AVERROR_INVALIDDATA;
  379. }
  380. if (avpkt->size * 8 - get_bits_count(&alac->gb) > 8) {
  381. av_log(avctx, AV_LOG_ERROR, "Error : %d bits left\n",
  382. avpkt->size * 8 - get_bits_count(&alac->gb));
  383. }
  384. *got_frame_ptr = 1;
  385. *(AVFrame *)data = alac->frame;
  386. return avpkt->size;
  387. }
  388. static av_cold int alac_decode_close(AVCodecContext *avctx)
  389. {
  390. ALACContext *alac = avctx->priv_data;
  391. int ch;
  392. for (ch = 0; ch < FFMIN(alac->channels, 2); ch++) {
  393. av_freep(&alac->predict_error_buffer[ch]);
  394. if (alac->sample_size == 16)
  395. av_freep(&alac->output_samples_buffer[ch]);
  396. av_freep(&alac->extra_bits_buffer[ch]);
  397. }
  398. return 0;
  399. }
  400. static int allocate_buffers(ALACContext *alac)
  401. {
  402. int ch;
  403. int buf_size = alac->max_samples_per_frame * sizeof(int32_t);
  404. for (ch = 0; ch < FFMIN(alac->channels, 2); ch++) {
  405. FF_ALLOC_OR_GOTO(alac->avctx, alac->predict_error_buffer[ch],
  406. buf_size, buf_alloc_fail);
  407. if (alac->sample_size == 16) {
  408. FF_ALLOC_OR_GOTO(alac->avctx, alac->output_samples_buffer[ch],
  409. buf_size, buf_alloc_fail);
  410. }
  411. FF_ALLOC_OR_GOTO(alac->avctx, alac->extra_bits_buffer[ch],
  412. buf_size, buf_alloc_fail);
  413. }
  414. return 0;
  415. buf_alloc_fail:
  416. alac_decode_close(alac->avctx);
  417. return AVERROR(ENOMEM);
  418. }
  419. static int alac_set_info(ALACContext *alac)
  420. {
  421. GetByteContext gb;
  422. bytestream2_init(&gb, alac->avctx->extradata,
  423. alac->avctx->extradata_size);
  424. bytestream2_skipu(&gb, 12); // size:4, alac:4, version:4
  425. alac->max_samples_per_frame = bytestream2_get_be32u(&gb);
  426. if (!alac->max_samples_per_frame || alac->max_samples_per_frame > INT_MAX) {
  427. av_log(alac->avctx, AV_LOG_ERROR, "max samples per frame invalid: %u\n",
  428. alac->max_samples_per_frame);
  429. return AVERROR_INVALIDDATA;
  430. }
  431. bytestream2_skipu(&gb, 1); // compatible version
  432. alac->sample_size = bytestream2_get_byteu(&gb);
  433. alac->rice_history_mult = bytestream2_get_byteu(&gb);
  434. alac->rice_initial_history = bytestream2_get_byteu(&gb);
  435. alac->rice_limit = bytestream2_get_byteu(&gb);
  436. alac->channels = bytestream2_get_byteu(&gb);
  437. bytestream2_get_be16u(&gb); // maxRun
  438. bytestream2_get_be32u(&gb); // max coded frame size
  439. bytestream2_get_be32u(&gb); // average bitrate
  440. bytestream2_get_be32u(&gb); // samplerate
  441. return 0;
  442. }
  443. static av_cold int alac_decode_init(AVCodecContext * avctx)
  444. {
  445. int ret;
  446. ALACContext *alac = avctx->priv_data;
  447. alac->avctx = avctx;
  448. /* initialize from the extradata */
  449. if (alac->avctx->extradata_size < ALAC_EXTRADATA_SIZE) {
  450. av_log(avctx, AV_LOG_ERROR, "alac: extradata is too small\n");
  451. return AVERROR_INVALIDDATA;
  452. }
  453. if (alac_set_info(alac)) {
  454. av_log(avctx, AV_LOG_ERROR, "alac: set_info failed\n");
  455. return -1;
  456. }
  457. switch (alac->sample_size) {
  458. case 16: avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
  459. break;
  460. case 24:
  461. case 32: avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
  462. break;
  463. default: av_log_ask_for_sample(avctx, "Sample depth %d is not supported.\n",
  464. alac->sample_size);
  465. return AVERROR_PATCHWELCOME;
  466. }
  467. avctx->bits_per_raw_sample = alac->sample_size;
  468. if (alac->channels < 1) {
  469. av_log(avctx, AV_LOG_WARNING, "Invalid channel count\n");
  470. alac->channels = avctx->channels;
  471. } else {
  472. if (alac->channels > ALAC_MAX_CHANNELS)
  473. alac->channels = avctx->channels;
  474. else
  475. avctx->channels = alac->channels;
  476. }
  477. if (avctx->channels > ALAC_MAX_CHANNELS) {
  478. av_log(avctx, AV_LOG_ERROR, "Unsupported channel count: %d\n",
  479. avctx->channels);
  480. return AVERROR_PATCHWELCOME;
  481. }
  482. avctx->channel_layout = ff_alac_channel_layouts[alac->channels - 1];
  483. if ((ret = allocate_buffers(alac)) < 0) {
  484. av_log(avctx, AV_LOG_ERROR, "Error allocating buffers\n");
  485. return ret;
  486. }
  487. avcodec_get_frame_defaults(&alac->frame);
  488. avctx->coded_frame = &alac->frame;
  489. return 0;
  490. }
  491. AVCodec ff_alac_decoder = {
  492. .name = "alac",
  493. .type = AVMEDIA_TYPE_AUDIO,
  494. .id = AV_CODEC_ID_ALAC,
  495. .priv_data_size = sizeof(ALACContext),
  496. .init = alac_decode_init,
  497. .close = alac_decode_close,
  498. .decode = alac_decode_frame,
  499. .capabilities = CODEC_CAP_DR1,
  500. .long_name = NULL_IF_CONFIG_SMALL("ALAC (Apple Lossless Audio Codec)"),
  501. };