You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4318 lines
151KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MB_INTRA_VLC_BITS 9
  39. #define DC_VLC_BITS 9
  40. #define AC_VLC_BITS 9
  41. static const uint16_t table_mb_intra[64][2];
  42. /**
  43. * Init VC-1 specific tables and VC1Context members
  44. * @param v The VC1Context to initialize
  45. * @return Status
  46. */
  47. static int vc1_init_common(VC1Context *v)
  48. {
  49. static int done = 0;
  50. int i = 0;
  51. v->hrd_rate = v->hrd_buffer = NULL;
  52. /* VLC tables */
  53. if(!done)
  54. {
  55. done = 1;
  56. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  57. ff_vc1_bfraction_bits, 1, 1,
  58. ff_vc1_bfraction_codes, 1, 1, 1);
  59. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  60. ff_vc1_norm2_bits, 1, 1,
  61. ff_vc1_norm2_codes, 1, 1, 1);
  62. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  63. ff_vc1_norm6_bits, 1, 1,
  64. ff_vc1_norm6_codes, 2, 2, 1);
  65. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  66. ff_vc1_imode_bits, 1, 1,
  67. ff_vc1_imode_codes, 1, 1, 1);
  68. for (i=0; i<3; i++)
  69. {
  70. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  71. ff_vc1_ttmb_bits[i], 1, 1,
  72. ff_vc1_ttmb_codes[i], 2, 2, 1);
  73. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  74. ff_vc1_ttblk_bits[i], 1, 1,
  75. ff_vc1_ttblk_codes[i], 1, 1, 1);
  76. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  77. ff_vc1_subblkpat_bits[i], 1, 1,
  78. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  79. }
  80. for(i=0; i<4; i++)
  81. {
  82. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  83. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  84. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  85. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  86. ff_vc1_cbpcy_p_bits[i], 1, 1,
  87. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  88. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  89. ff_vc1_mv_diff_bits[i], 1, 1,
  90. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  91. }
  92. for(i=0; i<8; i++)
  93. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  94. &vc1_ac_tables[i][0][1], 8, 4,
  95. &vc1_ac_tables[i][0][0], 8, 4, 1);
  96. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  97. &ff_msmp4_mb_i_table[0][1], 4, 2,
  98. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  99. }
  100. /* Other defaults */
  101. v->pq = -1;
  102. v->mvrange = 0; /* 7.1.1.18, p80 */
  103. return 0;
  104. }
  105. /***********************************************************************/
  106. /**
  107. * @defgroup bitplane VC9 Bitplane decoding
  108. * @see 8.7, p56
  109. * @{
  110. */
  111. /** @addtogroup bitplane
  112. * Imode types
  113. * @{
  114. */
  115. enum Imode {
  116. IMODE_RAW,
  117. IMODE_NORM2,
  118. IMODE_DIFF2,
  119. IMODE_NORM6,
  120. IMODE_DIFF6,
  121. IMODE_ROWSKIP,
  122. IMODE_COLSKIP
  123. };
  124. /** @} */ //imode defines
  125. /** Decode rows by checking if they are skipped
  126. * @param plane Buffer to store decoded bits
  127. * @param[in] width Width of this buffer
  128. * @param[in] height Height of this buffer
  129. * @param[in] stride of this buffer
  130. */
  131. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  132. int x, y;
  133. for (y=0; y<height; y++){
  134. if (!get_bits1(gb)) //rowskip
  135. memset(plane, 0, width);
  136. else
  137. for (x=0; x<width; x++)
  138. plane[x] = get_bits1(gb);
  139. plane += stride;
  140. }
  141. }
  142. /** Decode columns by checking if they are skipped
  143. * @param plane Buffer to store decoded bits
  144. * @param[in] width Width of this buffer
  145. * @param[in] height Height of this buffer
  146. * @param[in] stride of this buffer
  147. * @todo FIXME: Optimize
  148. */
  149. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  150. int x, y;
  151. for (x=0; x<width; x++){
  152. if (!get_bits1(gb)) //colskip
  153. for (y=0; y<height; y++)
  154. plane[y*stride] = 0;
  155. else
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = get_bits1(gb);
  158. plane ++;
  159. }
  160. }
  161. /** Decode a bitplane's bits
  162. * @param bp Bitplane where to store the decode bits
  163. * @param v VC-1 context for bit reading and logging
  164. * @return Status
  165. * @todo FIXME: Optimize
  166. */
  167. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  168. {
  169. GetBitContext *gb = &v->s.gb;
  170. int imode, x, y, code, offset;
  171. uint8_t invert, *planep = data;
  172. int width, height, stride;
  173. width = v->s.mb_width;
  174. height = v->s.mb_height;
  175. stride = v->s.mb_stride;
  176. invert = get_bits1(gb);
  177. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  178. *raw_flag = 0;
  179. switch (imode)
  180. {
  181. case IMODE_RAW:
  182. //Data is actually read in the MB layer (same for all tests == "raw")
  183. *raw_flag = 1; //invert ignored
  184. return invert;
  185. case IMODE_DIFF2:
  186. case IMODE_NORM2:
  187. if ((height * width) & 1)
  188. {
  189. *planep++ = get_bits1(gb);
  190. offset = 1;
  191. }
  192. else offset = 0;
  193. // decode bitplane as one long line
  194. for (y = offset; y < height * width; y += 2) {
  195. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  196. *planep++ = code & 1;
  197. offset++;
  198. if(offset == width) {
  199. offset = 0;
  200. planep += stride - width;
  201. }
  202. *planep++ = code >> 1;
  203. offset++;
  204. if(offset == width) {
  205. offset = 0;
  206. planep += stride - width;
  207. }
  208. }
  209. break;
  210. case IMODE_DIFF6:
  211. case IMODE_NORM6:
  212. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  213. for(y = 0; y < height; y+= 3) {
  214. for(x = width & 1; x < width; x += 2) {
  215. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  216. if(code < 0){
  217. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  218. return -1;
  219. }
  220. planep[x + 0] = (code >> 0) & 1;
  221. planep[x + 1] = (code >> 1) & 1;
  222. planep[x + 0 + stride] = (code >> 2) & 1;
  223. planep[x + 1 + stride] = (code >> 3) & 1;
  224. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  225. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  226. }
  227. planep += stride * 3;
  228. }
  229. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  230. } else { // 3x2
  231. planep += (height & 1) * stride;
  232. for(y = height & 1; y < height; y += 2) {
  233. for(x = width % 3; x < width; x += 3) {
  234. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  235. if(code < 0){
  236. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  237. return -1;
  238. }
  239. planep[x + 0] = (code >> 0) & 1;
  240. planep[x + 1] = (code >> 1) & 1;
  241. planep[x + 2] = (code >> 2) & 1;
  242. planep[x + 0 + stride] = (code >> 3) & 1;
  243. planep[x + 1 + stride] = (code >> 4) & 1;
  244. planep[x + 2 + stride] = (code >> 5) & 1;
  245. }
  246. planep += stride * 2;
  247. }
  248. x = width % 3;
  249. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  250. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  251. }
  252. break;
  253. case IMODE_ROWSKIP:
  254. decode_rowskip(data, width, height, stride, &v->s.gb);
  255. break;
  256. case IMODE_COLSKIP:
  257. decode_colskip(data, width, height, stride, &v->s.gb);
  258. break;
  259. default: break;
  260. }
  261. /* Applying diff operator */
  262. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  263. {
  264. planep = data;
  265. planep[0] ^= invert;
  266. for (x=1; x<width; x++)
  267. planep[x] ^= planep[x-1];
  268. for (y=1; y<height; y++)
  269. {
  270. planep += stride;
  271. planep[0] ^= planep[-stride];
  272. for (x=1; x<width; x++)
  273. {
  274. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  275. else planep[x] ^= planep[x-1];
  276. }
  277. }
  278. }
  279. else if (invert)
  280. {
  281. planep = data;
  282. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  283. }
  284. return (imode<<1) + invert;
  285. }
  286. /** @} */ //Bitplane group
  287. #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
  288. /**
  289. * VC-1 in-loop deblocking filter for one line
  290. * @param src source block type
  291. * @param pq block quantizer
  292. * @return whether other 3 pairs should be filtered or not
  293. * @see 8.6
  294. */
  295. static int vc1_filter_line(uint8_t* src, int stride, int pq){
  296. int a0, a1, a2, a3, d, clip, filt3 = 0;
  297. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  298. a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  299. if(FFABS(a0) < pq){
  300. a1 = (2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3;
  301. a2 = (2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3;
  302. a3 = FFMIN(FFABS(a1), FFABS(a2));
  303. if(a3 < FFABS(a0)){
  304. d = 5 * ((a0 >=0 ? a3 : -a3) - a0) / 8;
  305. clip = (src[-1*stride] - src[ 0*stride])/2;
  306. if(clip){
  307. filt3 = 1;
  308. if(clip > 0)
  309. d = av_clip(d, 0, clip);
  310. else
  311. d = av_clip(d, clip, 0);
  312. src[-1*stride] = cm[src[-1*stride] - d];
  313. src[ 0*stride] = cm[src[ 0*stride] + d];
  314. }
  315. }
  316. }
  317. return filt3;
  318. }
  319. /**
  320. * VC-1 in-loop deblocking filter
  321. * @param src source block type
  322. * @param len edge length to filter (4 or 8 pixels)
  323. * @param pq block quantizer
  324. * @see 8.6
  325. */
  326. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  327. {
  328. int i;
  329. int filt3;
  330. for(i = 0; i < len; i += 4){
  331. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  332. if(filt3){
  333. vc1_filter_line(src + 0*step, stride, pq);
  334. vc1_filter_line(src + 1*step, stride, pq);
  335. vc1_filter_line(src + 3*step, stride, pq);
  336. }
  337. src += step * 4;
  338. }
  339. }
  340. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  341. {
  342. int i, j;
  343. if(!s->first_slice_line)
  344. vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
  345. vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
  346. for(i = !s->mb_x*8; i < 16; i += 8)
  347. vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
  348. for(j = 0; j < 2; j++){
  349. if(!s->first_slice_line)
  350. vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
  351. if(s->mb_x)
  352. vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
  353. }
  354. }
  355. /***********************************************************************/
  356. /** VOP Dquant decoding
  357. * @param v VC-1 Context
  358. */
  359. static int vop_dquant_decoding(VC1Context *v)
  360. {
  361. GetBitContext *gb = &v->s.gb;
  362. int pqdiff;
  363. //variable size
  364. if (v->dquant == 2)
  365. {
  366. pqdiff = get_bits(gb, 3);
  367. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  368. else v->altpq = v->pq + pqdiff + 1;
  369. }
  370. else
  371. {
  372. v->dquantfrm = get_bits1(gb);
  373. if ( v->dquantfrm )
  374. {
  375. v->dqprofile = get_bits(gb, 2);
  376. switch (v->dqprofile)
  377. {
  378. case DQPROFILE_SINGLE_EDGE:
  379. case DQPROFILE_DOUBLE_EDGES:
  380. v->dqsbedge = get_bits(gb, 2);
  381. break;
  382. case DQPROFILE_ALL_MBS:
  383. v->dqbilevel = get_bits1(gb);
  384. if(!v->dqbilevel)
  385. v->halfpq = 0;
  386. default: break; //Forbidden ?
  387. }
  388. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  389. {
  390. pqdiff = get_bits(gb, 3);
  391. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  392. else v->altpq = v->pq + pqdiff + 1;
  393. }
  394. }
  395. }
  396. return 0;
  397. }
  398. /** Put block onto picture
  399. */
  400. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  401. {
  402. uint8_t *Y;
  403. int ys, us, vs;
  404. DSPContext *dsp = &v->s.dsp;
  405. if(v->rangeredfrm) {
  406. int i, j, k;
  407. for(k = 0; k < 6; k++)
  408. for(j = 0; j < 8; j++)
  409. for(i = 0; i < 8; i++)
  410. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  411. }
  412. ys = v->s.current_picture.linesize[0];
  413. us = v->s.current_picture.linesize[1];
  414. vs = v->s.current_picture.linesize[2];
  415. Y = v->s.dest[0];
  416. dsp->put_pixels_clamped(block[0], Y, ys);
  417. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  418. Y += ys * 8;
  419. dsp->put_pixels_clamped(block[2], Y, ys);
  420. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  421. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  422. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  423. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  424. }
  425. }
  426. /** Do motion compensation over 1 macroblock
  427. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  428. */
  429. static void vc1_mc_1mv(VC1Context *v, int dir)
  430. {
  431. MpegEncContext *s = &v->s;
  432. DSPContext *dsp = &v->s.dsp;
  433. uint8_t *srcY, *srcU, *srcV;
  434. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  435. if(!v->s.last_picture.data[0])return;
  436. mx = s->mv[dir][0][0];
  437. my = s->mv[dir][0][1];
  438. // store motion vectors for further use in B frames
  439. if(s->pict_type == FF_P_TYPE) {
  440. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  441. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  442. }
  443. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  444. uvmy = (my + ((my & 3) == 3)) >> 1;
  445. if(v->fastuvmc) {
  446. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  447. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  448. }
  449. if(!dir) {
  450. srcY = s->last_picture.data[0];
  451. srcU = s->last_picture.data[1];
  452. srcV = s->last_picture.data[2];
  453. } else {
  454. srcY = s->next_picture.data[0];
  455. srcU = s->next_picture.data[1];
  456. srcV = s->next_picture.data[2];
  457. }
  458. src_x = s->mb_x * 16 + (mx >> 2);
  459. src_y = s->mb_y * 16 + (my >> 2);
  460. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  461. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  462. if(v->profile != PROFILE_ADVANCED){
  463. src_x = av_clip( src_x, -16, s->mb_width * 16);
  464. src_y = av_clip( src_y, -16, s->mb_height * 16);
  465. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  466. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  467. }else{
  468. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  469. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  470. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  471. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  472. }
  473. srcY += src_y * s->linesize + src_x;
  474. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  475. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  476. /* for grayscale we should not try to read from unknown area */
  477. if(s->flags & CODEC_FLAG_GRAY) {
  478. srcU = s->edge_emu_buffer + 18 * s->linesize;
  479. srcV = s->edge_emu_buffer + 18 * s->linesize;
  480. }
  481. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  482. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  483. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  484. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  485. srcY -= s->mspel * (1 + s->linesize);
  486. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  487. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  488. srcY = s->edge_emu_buffer;
  489. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  490. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  491. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  492. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  493. srcU = uvbuf;
  494. srcV = uvbuf + 16;
  495. /* if we deal with range reduction we need to scale source blocks */
  496. if(v->rangeredfrm) {
  497. int i, j;
  498. uint8_t *src, *src2;
  499. src = srcY;
  500. for(j = 0; j < 17 + s->mspel*2; j++) {
  501. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  502. src += s->linesize;
  503. }
  504. src = srcU; src2 = srcV;
  505. for(j = 0; j < 9; j++) {
  506. for(i = 0; i < 9; i++) {
  507. src[i] = ((src[i] - 128) >> 1) + 128;
  508. src2[i] = ((src2[i] - 128) >> 1) + 128;
  509. }
  510. src += s->uvlinesize;
  511. src2 += s->uvlinesize;
  512. }
  513. }
  514. /* if we deal with intensity compensation we need to scale source blocks */
  515. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  516. int i, j;
  517. uint8_t *src, *src2;
  518. src = srcY;
  519. for(j = 0; j < 17 + s->mspel*2; j++) {
  520. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  521. src += s->linesize;
  522. }
  523. src = srcU; src2 = srcV;
  524. for(j = 0; j < 9; j++) {
  525. for(i = 0; i < 9; i++) {
  526. src[i] = v->lutuv[src[i]];
  527. src2[i] = v->lutuv[src2[i]];
  528. }
  529. src += s->uvlinesize;
  530. src2 += s->uvlinesize;
  531. }
  532. }
  533. srcY += s->mspel * (1 + s->linesize);
  534. }
  535. if(s->mspel) {
  536. dxy = ((my & 3) << 2) | (mx & 3);
  537. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  538. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  539. srcY += s->linesize * 8;
  540. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  541. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  542. } else { // hpel mc - always used for luma
  543. dxy = (my & 2) | ((mx & 2) >> 1);
  544. if(!v->rnd)
  545. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  546. else
  547. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  548. }
  549. if(s->flags & CODEC_FLAG_GRAY) return;
  550. /* Chroma MC always uses qpel bilinear */
  551. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  552. uvmx = (uvmx&3)<<1;
  553. uvmy = (uvmy&3)<<1;
  554. if(!v->rnd){
  555. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  556. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  557. }else{
  558. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  559. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  560. }
  561. }
  562. /** Do motion compensation for 4-MV macroblock - luminance block
  563. */
  564. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  565. {
  566. MpegEncContext *s = &v->s;
  567. DSPContext *dsp = &v->s.dsp;
  568. uint8_t *srcY;
  569. int dxy, mx, my, src_x, src_y;
  570. int off;
  571. if(!v->s.last_picture.data[0])return;
  572. mx = s->mv[0][n][0];
  573. my = s->mv[0][n][1];
  574. srcY = s->last_picture.data[0];
  575. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  576. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  577. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  578. if(v->profile != PROFILE_ADVANCED){
  579. src_x = av_clip( src_x, -16, s->mb_width * 16);
  580. src_y = av_clip( src_y, -16, s->mb_height * 16);
  581. }else{
  582. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  583. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  584. }
  585. srcY += src_y * s->linesize + src_x;
  586. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  587. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  588. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  589. srcY -= s->mspel * (1 + s->linesize);
  590. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  591. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  592. srcY = s->edge_emu_buffer;
  593. /* if we deal with range reduction we need to scale source blocks */
  594. if(v->rangeredfrm) {
  595. int i, j;
  596. uint8_t *src;
  597. src = srcY;
  598. for(j = 0; j < 9 + s->mspel*2; j++) {
  599. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  600. src += s->linesize;
  601. }
  602. }
  603. /* if we deal with intensity compensation we need to scale source blocks */
  604. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  605. int i, j;
  606. uint8_t *src;
  607. src = srcY;
  608. for(j = 0; j < 9 + s->mspel*2; j++) {
  609. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  610. src += s->linesize;
  611. }
  612. }
  613. srcY += s->mspel * (1 + s->linesize);
  614. }
  615. if(s->mspel) {
  616. dxy = ((my & 3) << 2) | (mx & 3);
  617. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  618. } else { // hpel mc - always used for luma
  619. dxy = (my & 2) | ((mx & 2) >> 1);
  620. if(!v->rnd)
  621. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  622. else
  623. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  624. }
  625. }
  626. static inline int median4(int a, int b, int c, int d)
  627. {
  628. if(a < b) {
  629. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  630. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  631. } else {
  632. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  633. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  634. }
  635. }
  636. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  637. */
  638. static void vc1_mc_4mv_chroma(VC1Context *v)
  639. {
  640. MpegEncContext *s = &v->s;
  641. DSPContext *dsp = &v->s.dsp;
  642. uint8_t *srcU, *srcV;
  643. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  644. int i, idx, tx = 0, ty = 0;
  645. int mvx[4], mvy[4], intra[4];
  646. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  647. if(!v->s.last_picture.data[0])return;
  648. if(s->flags & CODEC_FLAG_GRAY) return;
  649. for(i = 0; i < 4; i++) {
  650. mvx[i] = s->mv[0][i][0];
  651. mvy[i] = s->mv[0][i][1];
  652. intra[i] = v->mb_type[0][s->block_index[i]];
  653. }
  654. /* calculate chroma MV vector from four luma MVs */
  655. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  656. if(!idx) { // all blocks are inter
  657. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  658. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  659. } else if(count[idx] == 1) { // 3 inter blocks
  660. switch(idx) {
  661. case 0x1:
  662. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  663. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  664. break;
  665. case 0x2:
  666. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  667. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  668. break;
  669. case 0x4:
  670. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  671. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  672. break;
  673. case 0x8:
  674. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  675. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  676. break;
  677. }
  678. } else if(count[idx] == 2) {
  679. int t1 = 0, t2 = 0;
  680. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  681. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  682. tx = (mvx[t1] + mvx[t2]) / 2;
  683. ty = (mvy[t1] + mvy[t2]) / 2;
  684. } else {
  685. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  686. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  687. return; //no need to do MC for inter blocks
  688. }
  689. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  690. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  691. uvmx = (tx + ((tx&3) == 3)) >> 1;
  692. uvmy = (ty + ((ty&3) == 3)) >> 1;
  693. if(v->fastuvmc) {
  694. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  695. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  696. }
  697. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  698. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  699. if(v->profile != PROFILE_ADVANCED){
  700. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  701. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  702. }else{
  703. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  704. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  705. }
  706. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  707. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  708. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  709. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  710. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  711. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  712. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  713. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  714. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  715. srcU = s->edge_emu_buffer;
  716. srcV = s->edge_emu_buffer + 16;
  717. /* if we deal with range reduction we need to scale source blocks */
  718. if(v->rangeredfrm) {
  719. int i, j;
  720. uint8_t *src, *src2;
  721. src = srcU; src2 = srcV;
  722. for(j = 0; j < 9; j++) {
  723. for(i = 0; i < 9; i++) {
  724. src[i] = ((src[i] - 128) >> 1) + 128;
  725. src2[i] = ((src2[i] - 128) >> 1) + 128;
  726. }
  727. src += s->uvlinesize;
  728. src2 += s->uvlinesize;
  729. }
  730. }
  731. /* if we deal with intensity compensation we need to scale source blocks */
  732. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  733. int i, j;
  734. uint8_t *src, *src2;
  735. src = srcU; src2 = srcV;
  736. for(j = 0; j < 9; j++) {
  737. for(i = 0; i < 9; i++) {
  738. src[i] = v->lutuv[src[i]];
  739. src2[i] = v->lutuv[src2[i]];
  740. }
  741. src += s->uvlinesize;
  742. src2 += s->uvlinesize;
  743. }
  744. }
  745. }
  746. /* Chroma MC always uses qpel bilinear */
  747. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  748. uvmx = (uvmx&3)<<1;
  749. uvmy = (uvmy&3)<<1;
  750. if(!v->rnd){
  751. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  752. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  753. }else{
  754. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  755. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  756. }
  757. }
  758. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  759. /**
  760. * Decode Simple/Main Profiles sequence header
  761. * @see Figure 7-8, p16-17
  762. * @param avctx Codec context
  763. * @param gb GetBit context initialized from Codec context extra_data
  764. * @return Status
  765. */
  766. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  767. {
  768. VC1Context *v = avctx->priv_data;
  769. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  770. v->profile = get_bits(gb, 2);
  771. if (v->profile == PROFILE_COMPLEX)
  772. {
  773. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  774. }
  775. if (v->profile == PROFILE_ADVANCED)
  776. {
  777. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  778. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  779. return decode_sequence_header_adv(v, gb);
  780. }
  781. else
  782. {
  783. v->zz_8x4 = wmv2_scantableA;
  784. v->zz_4x8 = wmv2_scantableB;
  785. v->res_sm = get_bits(gb, 2); //reserved
  786. if (v->res_sm)
  787. {
  788. av_log(avctx, AV_LOG_ERROR,
  789. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  790. return -1;
  791. }
  792. }
  793. // (fps-2)/4 (->30)
  794. v->frmrtq_postproc = get_bits(gb, 3); //common
  795. // (bitrate-32kbps)/64kbps
  796. v->bitrtq_postproc = get_bits(gb, 5); //common
  797. v->s.loop_filter = get_bits1(gb); //common
  798. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  799. {
  800. av_log(avctx, AV_LOG_ERROR,
  801. "LOOPFILTER shell not be enabled in simple profile\n");
  802. }
  803. v->res_x8 = get_bits1(gb); //reserved
  804. v->multires = get_bits1(gb);
  805. v->res_fasttx = get_bits1(gb);
  806. if (!v->res_fasttx)
  807. {
  808. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  809. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  810. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  811. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  812. }
  813. v->fastuvmc = get_bits1(gb); //common
  814. if (!v->profile && !v->fastuvmc)
  815. {
  816. av_log(avctx, AV_LOG_ERROR,
  817. "FASTUVMC unavailable in Simple Profile\n");
  818. return -1;
  819. }
  820. v->extended_mv = get_bits1(gb); //common
  821. if (!v->profile && v->extended_mv)
  822. {
  823. av_log(avctx, AV_LOG_ERROR,
  824. "Extended MVs unavailable in Simple Profile\n");
  825. return -1;
  826. }
  827. v->dquant = get_bits(gb, 2); //common
  828. v->vstransform = get_bits1(gb); //common
  829. v->res_transtab = get_bits1(gb);
  830. if (v->res_transtab)
  831. {
  832. av_log(avctx, AV_LOG_ERROR,
  833. "1 for reserved RES_TRANSTAB is forbidden\n");
  834. return -1;
  835. }
  836. v->overlap = get_bits1(gb); //common
  837. v->s.resync_marker = get_bits1(gb);
  838. v->rangered = get_bits1(gb);
  839. if (v->rangered && v->profile == PROFILE_SIMPLE)
  840. {
  841. av_log(avctx, AV_LOG_INFO,
  842. "RANGERED should be set to 0 in simple profile\n");
  843. }
  844. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  845. v->quantizer_mode = get_bits(gb, 2); //common
  846. v->finterpflag = get_bits1(gb); //common
  847. v->res_rtm_flag = get_bits1(gb); //reserved
  848. if (!v->res_rtm_flag)
  849. {
  850. // av_log(avctx, AV_LOG_ERROR,
  851. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  852. av_log(avctx, AV_LOG_ERROR,
  853. "Old WMV3 version detected, only I-frames will be decoded\n");
  854. //return -1;
  855. }
  856. //TODO: figure out what they mean (always 0x402F)
  857. if(!v->res_fasttx) skip_bits(gb, 16);
  858. av_log(avctx, AV_LOG_DEBUG,
  859. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  860. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  861. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  862. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  863. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  864. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  865. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  866. v->dquant, v->quantizer_mode, avctx->max_b_frames
  867. );
  868. return 0;
  869. }
  870. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  871. {
  872. v->res_rtm_flag = 1;
  873. v->level = get_bits(gb, 3);
  874. if(v->level >= 5)
  875. {
  876. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  877. }
  878. v->chromaformat = get_bits(gb, 2);
  879. if (v->chromaformat != 1)
  880. {
  881. av_log(v->s.avctx, AV_LOG_ERROR,
  882. "Only 4:2:0 chroma format supported\n");
  883. return -1;
  884. }
  885. // (fps-2)/4 (->30)
  886. v->frmrtq_postproc = get_bits(gb, 3); //common
  887. // (bitrate-32kbps)/64kbps
  888. v->bitrtq_postproc = get_bits(gb, 5); //common
  889. v->postprocflag = get_bits1(gb); //common
  890. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  891. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  892. v->s.avctx->width = v->s.avctx->coded_width;
  893. v->s.avctx->height = v->s.avctx->coded_height;
  894. v->broadcast = get_bits1(gb);
  895. v->interlace = get_bits1(gb);
  896. v->tfcntrflag = get_bits1(gb);
  897. v->finterpflag = get_bits1(gb);
  898. skip_bits1(gb); // reserved
  899. v->s.h_edge_pos = v->s.avctx->coded_width;
  900. v->s.v_edge_pos = v->s.avctx->coded_height;
  901. av_log(v->s.avctx, AV_LOG_DEBUG,
  902. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  903. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  904. "TFCTRflag=%i, FINTERPflag=%i\n",
  905. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  906. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  907. v->tfcntrflag, v->finterpflag
  908. );
  909. v->psf = get_bits1(gb);
  910. if(v->psf) { //PsF, 6.1.13
  911. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  912. return -1;
  913. }
  914. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  915. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  916. int w, h, ar = 0;
  917. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  918. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  919. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  920. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  921. if(get_bits1(gb))
  922. ar = get_bits(gb, 4);
  923. if(ar && ar < 14){
  924. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  925. }else if(ar == 15){
  926. w = get_bits(gb, 8);
  927. h = get_bits(gb, 8);
  928. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  929. }
  930. if(get_bits1(gb)){ //framerate stuff
  931. if(get_bits1(gb)) {
  932. v->s.avctx->time_base.num = 32;
  933. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  934. } else {
  935. int nr, dr;
  936. nr = get_bits(gb, 8);
  937. dr = get_bits(gb, 4);
  938. if(nr && nr < 8 && dr && dr < 3){
  939. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  940. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  941. }
  942. }
  943. }
  944. if(get_bits1(gb)){
  945. v->color_prim = get_bits(gb, 8);
  946. v->transfer_char = get_bits(gb, 8);
  947. v->matrix_coef = get_bits(gb, 8);
  948. }
  949. }
  950. v->hrd_param_flag = get_bits1(gb);
  951. if(v->hrd_param_flag) {
  952. int i;
  953. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  954. skip_bits(gb, 4); //bitrate exponent
  955. skip_bits(gb, 4); //buffer size exponent
  956. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  957. skip_bits(gb, 16); //hrd_rate[n]
  958. skip_bits(gb, 16); //hrd_buffer[n]
  959. }
  960. }
  961. return 0;
  962. }
  963. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  964. {
  965. VC1Context *v = avctx->priv_data;
  966. int i, blink, clentry, refdist;
  967. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  968. blink = get_bits1(gb); // broken link
  969. clentry = get_bits1(gb); // closed entry
  970. v->panscanflag = get_bits1(gb);
  971. refdist = get_bits1(gb); // refdist flag
  972. v->s.loop_filter = get_bits1(gb);
  973. v->fastuvmc = get_bits1(gb);
  974. v->extended_mv = get_bits1(gb);
  975. v->dquant = get_bits(gb, 2);
  976. v->vstransform = get_bits1(gb);
  977. v->overlap = get_bits1(gb);
  978. v->quantizer_mode = get_bits(gb, 2);
  979. if(v->hrd_param_flag){
  980. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  981. skip_bits(gb, 8); //hrd_full[n]
  982. }
  983. }
  984. if(get_bits1(gb)){
  985. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  986. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  987. }
  988. if(v->extended_mv)
  989. v->extended_dmv = get_bits1(gb);
  990. if(get_bits1(gb)) {
  991. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  992. skip_bits(gb, 3); // Y range, ignored for now
  993. }
  994. if(get_bits1(gb)) {
  995. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  996. skip_bits(gb, 3); // UV range, ignored for now
  997. }
  998. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  999. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1000. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1001. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1002. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1003. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1004. return 0;
  1005. }
  1006. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1007. {
  1008. int pqindex, lowquant, status;
  1009. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1010. skip_bits(gb, 2); //framecnt unused
  1011. v->rangeredfrm = 0;
  1012. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  1013. v->s.pict_type = get_bits1(gb);
  1014. if (v->s.avctx->max_b_frames) {
  1015. if (!v->s.pict_type) {
  1016. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  1017. else v->s.pict_type = FF_B_TYPE;
  1018. } else v->s.pict_type = FF_P_TYPE;
  1019. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  1020. v->bi_type = 0;
  1021. if(v->s.pict_type == FF_B_TYPE) {
  1022. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1023. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1024. if(v->bfraction == 0) {
  1025. v->s.pict_type = FF_BI_TYPE;
  1026. }
  1027. }
  1028. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1029. skip_bits(gb, 7); // skip buffer fullness
  1030. /* calculate RND */
  1031. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1032. v->rnd = 1;
  1033. if(v->s.pict_type == FF_P_TYPE)
  1034. v->rnd ^= 1;
  1035. /* Quantizer stuff */
  1036. pqindex = get_bits(gb, 5);
  1037. if(!pqindex) return -1;
  1038. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1039. v->pq = ff_vc1_pquant_table[0][pqindex];
  1040. else
  1041. v->pq = ff_vc1_pquant_table[1][pqindex];
  1042. v->pquantizer = 1;
  1043. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1044. v->pquantizer = pqindex < 9;
  1045. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1046. v->pquantizer = 0;
  1047. v->pqindex = pqindex;
  1048. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1049. else v->halfpq = 0;
  1050. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1051. v->pquantizer = get_bits1(gb);
  1052. v->dquantfrm = 0;
  1053. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1054. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1055. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1056. v->range_x = 1 << (v->k_x - 1);
  1057. v->range_y = 1 << (v->k_y - 1);
  1058. if (v->profile == PROFILE_ADVANCED)
  1059. {
  1060. if (v->postprocflag) v->postproc = get_bits1(gb);
  1061. }
  1062. else
  1063. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1064. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1065. v->x8_type = get_bits1(gb);
  1066. }else v->x8_type = 0;
  1067. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1068. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1069. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1070. switch(v->s.pict_type) {
  1071. case FF_P_TYPE:
  1072. if (v->pq < 5) v->tt_index = 0;
  1073. else if(v->pq < 13) v->tt_index = 1;
  1074. else v->tt_index = 2;
  1075. lowquant = (v->pq > 12) ? 0 : 1;
  1076. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1077. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1078. {
  1079. int scale, shift, i;
  1080. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1081. v->lumscale = get_bits(gb, 6);
  1082. v->lumshift = get_bits(gb, 6);
  1083. v->use_ic = 1;
  1084. /* fill lookup tables for intensity compensation */
  1085. if(!v->lumscale) {
  1086. scale = -64;
  1087. shift = (255 - v->lumshift * 2) << 6;
  1088. if(v->lumshift > 31)
  1089. shift += 128 << 6;
  1090. } else {
  1091. scale = v->lumscale + 32;
  1092. if(v->lumshift > 31)
  1093. shift = (v->lumshift - 64) << 6;
  1094. else
  1095. shift = v->lumshift << 6;
  1096. }
  1097. for(i = 0; i < 256; i++) {
  1098. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1099. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1100. }
  1101. }
  1102. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1103. v->s.quarter_sample = 0;
  1104. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1105. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1106. v->s.quarter_sample = 0;
  1107. else
  1108. v->s.quarter_sample = 1;
  1109. } else
  1110. v->s.quarter_sample = 1;
  1111. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1112. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1113. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1114. || v->mv_mode == MV_PMODE_MIXED_MV)
  1115. {
  1116. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1117. if (status < 0) return -1;
  1118. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1119. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1120. } else {
  1121. v->mv_type_is_raw = 0;
  1122. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1123. }
  1124. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1125. if (status < 0) return -1;
  1126. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1127. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1128. /* Hopefully this is correct for P frames */
  1129. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1130. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1131. if (v->dquant)
  1132. {
  1133. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1134. vop_dquant_decoding(v);
  1135. }
  1136. v->ttfrm = 0; //FIXME Is that so ?
  1137. if (v->vstransform)
  1138. {
  1139. v->ttmbf = get_bits1(gb);
  1140. if (v->ttmbf)
  1141. {
  1142. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1143. }
  1144. } else {
  1145. v->ttmbf = 1;
  1146. v->ttfrm = TT_8X8;
  1147. }
  1148. break;
  1149. case FF_B_TYPE:
  1150. if (v->pq < 5) v->tt_index = 0;
  1151. else if(v->pq < 13) v->tt_index = 1;
  1152. else v->tt_index = 2;
  1153. lowquant = (v->pq > 12) ? 0 : 1;
  1154. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1155. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1156. v->s.mspel = v->s.quarter_sample;
  1157. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1158. if (status < 0) return -1;
  1159. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1160. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1161. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1162. if (status < 0) return -1;
  1163. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1164. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1165. v->s.mv_table_index = get_bits(gb, 2);
  1166. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1167. if (v->dquant)
  1168. {
  1169. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1170. vop_dquant_decoding(v);
  1171. }
  1172. v->ttfrm = 0;
  1173. if (v->vstransform)
  1174. {
  1175. v->ttmbf = get_bits1(gb);
  1176. if (v->ttmbf)
  1177. {
  1178. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1179. }
  1180. } else {
  1181. v->ttmbf = 1;
  1182. v->ttfrm = TT_8X8;
  1183. }
  1184. break;
  1185. }
  1186. if(!v->x8_type)
  1187. {
  1188. /* AC Syntax */
  1189. v->c_ac_table_index = decode012(gb);
  1190. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1191. {
  1192. v->y_ac_table_index = decode012(gb);
  1193. }
  1194. /* DC Syntax */
  1195. v->s.dc_table_index = get_bits1(gb);
  1196. }
  1197. if(v->s.pict_type == FF_BI_TYPE) {
  1198. v->s.pict_type = FF_B_TYPE;
  1199. v->bi_type = 1;
  1200. }
  1201. return 0;
  1202. }
  1203. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1204. {
  1205. int pqindex, lowquant;
  1206. int status;
  1207. v->p_frame_skipped = 0;
  1208. if(v->interlace){
  1209. v->fcm = decode012(gb);
  1210. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1211. }
  1212. switch(get_unary(gb, 0, 4)) {
  1213. case 0:
  1214. v->s.pict_type = FF_P_TYPE;
  1215. break;
  1216. case 1:
  1217. v->s.pict_type = FF_B_TYPE;
  1218. break;
  1219. case 2:
  1220. v->s.pict_type = FF_I_TYPE;
  1221. break;
  1222. case 3:
  1223. v->s.pict_type = FF_BI_TYPE;
  1224. break;
  1225. case 4:
  1226. v->s.pict_type = FF_P_TYPE; // skipped pic
  1227. v->p_frame_skipped = 1;
  1228. return 0;
  1229. }
  1230. if(v->tfcntrflag)
  1231. skip_bits(gb, 8);
  1232. if(v->broadcast) {
  1233. if(!v->interlace || v->psf) {
  1234. v->rptfrm = get_bits(gb, 2);
  1235. } else {
  1236. v->tff = get_bits1(gb);
  1237. v->rptfrm = get_bits1(gb);
  1238. }
  1239. }
  1240. if(v->panscanflag) {
  1241. //...
  1242. }
  1243. v->rnd = get_bits1(gb);
  1244. if(v->interlace)
  1245. v->uvsamp = get_bits1(gb);
  1246. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1247. if(v->s.pict_type == FF_B_TYPE) {
  1248. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1249. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1250. if(v->bfraction == 0) {
  1251. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1252. }
  1253. }
  1254. pqindex = get_bits(gb, 5);
  1255. if(!pqindex) return -1;
  1256. v->pqindex = pqindex;
  1257. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1258. v->pq = ff_vc1_pquant_table[0][pqindex];
  1259. else
  1260. v->pq = ff_vc1_pquant_table[1][pqindex];
  1261. v->pquantizer = 1;
  1262. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1263. v->pquantizer = pqindex < 9;
  1264. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1265. v->pquantizer = 0;
  1266. v->pqindex = pqindex;
  1267. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1268. else v->halfpq = 0;
  1269. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1270. v->pquantizer = get_bits1(gb);
  1271. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1272. switch(v->s.pict_type) {
  1273. case FF_I_TYPE:
  1274. case FF_BI_TYPE:
  1275. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1276. if (status < 0) return -1;
  1277. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1278. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1279. v->condover = CONDOVER_NONE;
  1280. if(v->overlap && v->pq <= 8) {
  1281. v->condover = decode012(gb);
  1282. if(v->condover == CONDOVER_SELECT) {
  1283. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1284. if (status < 0) return -1;
  1285. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1286. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1287. }
  1288. }
  1289. break;
  1290. case FF_P_TYPE:
  1291. if(v->postprocflag)
  1292. v->postproc = get_bits1(gb);
  1293. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1294. else v->mvrange = 0;
  1295. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1296. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1297. v->range_x = 1 << (v->k_x - 1);
  1298. v->range_y = 1 << (v->k_y - 1);
  1299. if (v->pq < 5) v->tt_index = 0;
  1300. else if(v->pq < 13) v->tt_index = 1;
  1301. else v->tt_index = 2;
  1302. lowquant = (v->pq > 12) ? 0 : 1;
  1303. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1304. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1305. {
  1306. int scale, shift, i;
  1307. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1308. v->lumscale = get_bits(gb, 6);
  1309. v->lumshift = get_bits(gb, 6);
  1310. /* fill lookup tables for intensity compensation */
  1311. if(!v->lumscale) {
  1312. scale = -64;
  1313. shift = (255 - v->lumshift * 2) << 6;
  1314. if(v->lumshift > 31)
  1315. shift += 128 << 6;
  1316. } else {
  1317. scale = v->lumscale + 32;
  1318. if(v->lumshift > 31)
  1319. shift = (v->lumshift - 64) << 6;
  1320. else
  1321. shift = v->lumshift << 6;
  1322. }
  1323. for(i = 0; i < 256; i++) {
  1324. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1325. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1326. }
  1327. v->use_ic = 1;
  1328. }
  1329. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1330. v->s.quarter_sample = 0;
  1331. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1332. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1333. v->s.quarter_sample = 0;
  1334. else
  1335. v->s.quarter_sample = 1;
  1336. } else
  1337. v->s.quarter_sample = 1;
  1338. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1339. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1340. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1341. || v->mv_mode == MV_PMODE_MIXED_MV)
  1342. {
  1343. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1344. if (status < 0) return -1;
  1345. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1346. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1347. } else {
  1348. v->mv_type_is_raw = 0;
  1349. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1350. }
  1351. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1352. if (status < 0) return -1;
  1353. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1354. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1355. /* Hopefully this is correct for P frames */
  1356. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1357. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1358. if (v->dquant)
  1359. {
  1360. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1361. vop_dquant_decoding(v);
  1362. }
  1363. v->ttfrm = 0; //FIXME Is that so ?
  1364. if (v->vstransform)
  1365. {
  1366. v->ttmbf = get_bits1(gb);
  1367. if (v->ttmbf)
  1368. {
  1369. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1370. }
  1371. } else {
  1372. v->ttmbf = 1;
  1373. v->ttfrm = TT_8X8;
  1374. }
  1375. break;
  1376. case FF_B_TYPE:
  1377. if(v->postprocflag)
  1378. v->postproc = get_bits1(gb);
  1379. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1380. else v->mvrange = 0;
  1381. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1382. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1383. v->range_x = 1 << (v->k_x - 1);
  1384. v->range_y = 1 << (v->k_y - 1);
  1385. if (v->pq < 5) v->tt_index = 0;
  1386. else if(v->pq < 13) v->tt_index = 1;
  1387. else v->tt_index = 2;
  1388. lowquant = (v->pq > 12) ? 0 : 1;
  1389. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1390. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1391. v->s.mspel = v->s.quarter_sample;
  1392. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1393. if (status < 0) return -1;
  1394. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1395. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1396. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1397. if (status < 0) return -1;
  1398. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1399. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1400. v->s.mv_table_index = get_bits(gb, 2);
  1401. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1402. if (v->dquant)
  1403. {
  1404. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1405. vop_dquant_decoding(v);
  1406. }
  1407. v->ttfrm = 0;
  1408. if (v->vstransform)
  1409. {
  1410. v->ttmbf = get_bits1(gb);
  1411. if (v->ttmbf)
  1412. {
  1413. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1414. }
  1415. } else {
  1416. v->ttmbf = 1;
  1417. v->ttfrm = TT_8X8;
  1418. }
  1419. break;
  1420. }
  1421. /* AC Syntax */
  1422. v->c_ac_table_index = decode012(gb);
  1423. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1424. {
  1425. v->y_ac_table_index = decode012(gb);
  1426. }
  1427. /* DC Syntax */
  1428. v->s.dc_table_index = get_bits1(gb);
  1429. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1430. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1431. vop_dquant_decoding(v);
  1432. }
  1433. v->bi_type = 0;
  1434. if(v->s.pict_type == FF_BI_TYPE) {
  1435. v->s.pict_type = FF_B_TYPE;
  1436. v->bi_type = 1;
  1437. }
  1438. return 0;
  1439. }
  1440. /***********************************************************************/
  1441. /**
  1442. * @defgroup block VC-1 Block-level functions
  1443. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1444. * @{
  1445. */
  1446. /**
  1447. * @def GET_MQUANT
  1448. * @brief Get macroblock-level quantizer scale
  1449. */
  1450. #define GET_MQUANT() \
  1451. if (v->dquantfrm) \
  1452. { \
  1453. int edges = 0; \
  1454. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1455. { \
  1456. if (v->dqbilevel) \
  1457. { \
  1458. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1459. } \
  1460. else \
  1461. { \
  1462. mqdiff = get_bits(gb, 3); \
  1463. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1464. else mquant = get_bits(gb, 5); \
  1465. } \
  1466. } \
  1467. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1468. edges = 1 << v->dqsbedge; \
  1469. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1470. edges = (3 << v->dqsbedge) % 15; \
  1471. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1472. edges = 15; \
  1473. if((edges&1) && !s->mb_x) \
  1474. mquant = v->altpq; \
  1475. if((edges&2) && s->first_slice_line) \
  1476. mquant = v->altpq; \
  1477. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1478. mquant = v->altpq; \
  1479. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1480. mquant = v->altpq; \
  1481. }
  1482. /**
  1483. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1484. * @brief Get MV differentials
  1485. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1486. * @param _dmv_x Horizontal differential for decoded MV
  1487. * @param _dmv_y Vertical differential for decoded MV
  1488. */
  1489. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1490. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1491. VC1_MV_DIFF_VLC_BITS, 2); \
  1492. if (index > 36) \
  1493. { \
  1494. mb_has_coeffs = 1; \
  1495. index -= 37; \
  1496. } \
  1497. else mb_has_coeffs = 0; \
  1498. s->mb_intra = 0; \
  1499. if (!index) { _dmv_x = _dmv_y = 0; } \
  1500. else if (index == 35) \
  1501. { \
  1502. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1503. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1504. } \
  1505. else if (index == 36) \
  1506. { \
  1507. _dmv_x = 0; \
  1508. _dmv_y = 0; \
  1509. s->mb_intra = 1; \
  1510. } \
  1511. else \
  1512. { \
  1513. index1 = index%6; \
  1514. if (!s->quarter_sample && index1 == 5) val = 1; \
  1515. else val = 0; \
  1516. if(size_table[index1] - val > 0) \
  1517. val = get_bits(gb, size_table[index1] - val); \
  1518. else val = 0; \
  1519. sign = 0 - (val&1); \
  1520. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1521. \
  1522. index1 = index/6; \
  1523. if (!s->quarter_sample && index1 == 5) val = 1; \
  1524. else val = 0; \
  1525. if(size_table[index1] - val > 0) \
  1526. val = get_bits(gb, size_table[index1] - val); \
  1527. else val = 0; \
  1528. sign = 0 - (val&1); \
  1529. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1530. }
  1531. /** Predict and set motion vector
  1532. */
  1533. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1534. {
  1535. int xy, wrap, off = 0;
  1536. int16_t *A, *B, *C;
  1537. int px, py;
  1538. int sum;
  1539. /* scale MV difference to be quad-pel */
  1540. dmv_x <<= 1 - s->quarter_sample;
  1541. dmv_y <<= 1 - s->quarter_sample;
  1542. wrap = s->b8_stride;
  1543. xy = s->block_index[n];
  1544. if(s->mb_intra){
  1545. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1546. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1547. s->current_picture.motion_val[1][xy][0] = 0;
  1548. s->current_picture.motion_val[1][xy][1] = 0;
  1549. if(mv1) { /* duplicate motion data for 1-MV block */
  1550. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1551. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1552. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1553. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1554. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1555. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1556. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1557. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1558. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1559. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1560. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1561. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1562. }
  1563. return;
  1564. }
  1565. C = s->current_picture.motion_val[0][xy - 1];
  1566. A = s->current_picture.motion_val[0][xy - wrap];
  1567. if(mv1)
  1568. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1569. else {
  1570. //in 4-MV mode different blocks have different B predictor position
  1571. switch(n){
  1572. case 0:
  1573. off = (s->mb_x > 0) ? -1 : 1;
  1574. break;
  1575. case 1:
  1576. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1577. break;
  1578. case 2:
  1579. off = 1;
  1580. break;
  1581. case 3:
  1582. off = -1;
  1583. }
  1584. }
  1585. B = s->current_picture.motion_val[0][xy - wrap + off];
  1586. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1587. if(s->mb_width == 1) {
  1588. px = A[0];
  1589. py = A[1];
  1590. } else {
  1591. px = mid_pred(A[0], B[0], C[0]);
  1592. py = mid_pred(A[1], B[1], C[1]);
  1593. }
  1594. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1595. px = C[0];
  1596. py = C[1];
  1597. } else {
  1598. px = py = 0;
  1599. }
  1600. /* Pullback MV as specified in 8.3.5.3.4 */
  1601. {
  1602. int qx, qy, X, Y;
  1603. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1604. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1605. X = (s->mb_width << 6) - 4;
  1606. Y = (s->mb_height << 6) - 4;
  1607. if(mv1) {
  1608. if(qx + px < -60) px = -60 - qx;
  1609. if(qy + py < -60) py = -60 - qy;
  1610. } else {
  1611. if(qx + px < -28) px = -28 - qx;
  1612. if(qy + py < -28) py = -28 - qy;
  1613. }
  1614. if(qx + px > X) px = X - qx;
  1615. if(qy + py > Y) py = Y - qy;
  1616. }
  1617. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1618. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1619. if(is_intra[xy - wrap])
  1620. sum = FFABS(px) + FFABS(py);
  1621. else
  1622. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1623. if(sum > 32) {
  1624. if(get_bits1(&s->gb)) {
  1625. px = A[0];
  1626. py = A[1];
  1627. } else {
  1628. px = C[0];
  1629. py = C[1];
  1630. }
  1631. } else {
  1632. if(is_intra[xy - 1])
  1633. sum = FFABS(px) + FFABS(py);
  1634. else
  1635. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1636. if(sum > 32) {
  1637. if(get_bits1(&s->gb)) {
  1638. px = A[0];
  1639. py = A[1];
  1640. } else {
  1641. px = C[0];
  1642. py = C[1];
  1643. }
  1644. }
  1645. }
  1646. }
  1647. /* store MV using signed modulus of MV range defined in 4.11 */
  1648. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1649. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1650. if(mv1) { /* duplicate motion data for 1-MV block */
  1651. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1652. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1653. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1654. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1655. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1656. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1657. }
  1658. }
  1659. /** Motion compensation for direct or interpolated blocks in B-frames
  1660. */
  1661. static void vc1_interp_mc(VC1Context *v)
  1662. {
  1663. MpegEncContext *s = &v->s;
  1664. DSPContext *dsp = &v->s.dsp;
  1665. uint8_t *srcY, *srcU, *srcV;
  1666. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1667. if(!v->s.next_picture.data[0])return;
  1668. mx = s->mv[1][0][0];
  1669. my = s->mv[1][0][1];
  1670. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1671. uvmy = (my + ((my & 3) == 3)) >> 1;
  1672. if(v->fastuvmc) {
  1673. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1674. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1675. }
  1676. srcY = s->next_picture.data[0];
  1677. srcU = s->next_picture.data[1];
  1678. srcV = s->next_picture.data[2];
  1679. src_x = s->mb_x * 16 + (mx >> 2);
  1680. src_y = s->mb_y * 16 + (my >> 2);
  1681. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1682. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1683. if(v->profile != PROFILE_ADVANCED){
  1684. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1685. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1686. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1687. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1688. }else{
  1689. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1690. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1691. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1692. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1693. }
  1694. srcY += src_y * s->linesize + src_x;
  1695. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1696. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1697. /* for grayscale we should not try to read from unknown area */
  1698. if(s->flags & CODEC_FLAG_GRAY) {
  1699. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1700. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1701. }
  1702. if(v->rangeredfrm
  1703. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1704. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1705. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1706. srcY -= s->mspel * (1 + s->linesize);
  1707. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1708. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1709. srcY = s->edge_emu_buffer;
  1710. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1711. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1712. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1713. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1714. srcU = uvbuf;
  1715. srcV = uvbuf + 16;
  1716. /* if we deal with range reduction we need to scale source blocks */
  1717. if(v->rangeredfrm) {
  1718. int i, j;
  1719. uint8_t *src, *src2;
  1720. src = srcY;
  1721. for(j = 0; j < 17 + s->mspel*2; j++) {
  1722. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1723. src += s->linesize;
  1724. }
  1725. src = srcU; src2 = srcV;
  1726. for(j = 0; j < 9; j++) {
  1727. for(i = 0; i < 9; i++) {
  1728. src[i] = ((src[i] - 128) >> 1) + 128;
  1729. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1730. }
  1731. src += s->uvlinesize;
  1732. src2 += s->uvlinesize;
  1733. }
  1734. }
  1735. srcY += s->mspel * (1 + s->linesize);
  1736. }
  1737. mx >>= 1;
  1738. my >>= 1;
  1739. dxy = ((my & 1) << 1) | (mx & 1);
  1740. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1741. if(s->flags & CODEC_FLAG_GRAY) return;
  1742. /* Chroma MC always uses qpel blilinear */
  1743. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1744. uvmx = (uvmx&3)<<1;
  1745. uvmy = (uvmy&3)<<1;
  1746. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1747. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1748. }
  1749. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1750. {
  1751. int n = bfrac;
  1752. #if B_FRACTION_DEN==256
  1753. if(inv)
  1754. n -= 256;
  1755. if(!qs)
  1756. return 2 * ((value * n + 255) >> 9);
  1757. return (value * n + 128) >> 8;
  1758. #else
  1759. if(inv)
  1760. n -= B_FRACTION_DEN;
  1761. if(!qs)
  1762. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1763. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1764. #endif
  1765. }
  1766. /** Reconstruct motion vector for B-frame and do motion compensation
  1767. */
  1768. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1769. {
  1770. if(v->use_ic) {
  1771. v->mv_mode2 = v->mv_mode;
  1772. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1773. }
  1774. if(direct) {
  1775. vc1_mc_1mv(v, 0);
  1776. vc1_interp_mc(v);
  1777. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1778. return;
  1779. }
  1780. if(mode == BMV_TYPE_INTERPOLATED) {
  1781. vc1_mc_1mv(v, 0);
  1782. vc1_interp_mc(v);
  1783. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1784. return;
  1785. }
  1786. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1787. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1788. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1789. }
  1790. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1791. {
  1792. MpegEncContext *s = &v->s;
  1793. int xy, wrap, off = 0;
  1794. int16_t *A, *B, *C;
  1795. int px, py;
  1796. int sum;
  1797. int r_x, r_y;
  1798. const uint8_t *is_intra = v->mb_type[0];
  1799. r_x = v->range_x;
  1800. r_y = v->range_y;
  1801. /* scale MV difference to be quad-pel */
  1802. dmv_x[0] <<= 1 - s->quarter_sample;
  1803. dmv_y[0] <<= 1 - s->quarter_sample;
  1804. dmv_x[1] <<= 1 - s->quarter_sample;
  1805. dmv_y[1] <<= 1 - s->quarter_sample;
  1806. wrap = s->b8_stride;
  1807. xy = s->block_index[0];
  1808. if(s->mb_intra) {
  1809. s->current_picture.motion_val[0][xy][0] =
  1810. s->current_picture.motion_val[0][xy][1] =
  1811. s->current_picture.motion_val[1][xy][0] =
  1812. s->current_picture.motion_val[1][xy][1] = 0;
  1813. return;
  1814. }
  1815. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1816. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1817. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1818. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1819. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1820. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1821. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1822. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1823. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1824. if(direct) {
  1825. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1826. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1827. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1828. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1829. return;
  1830. }
  1831. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1832. C = s->current_picture.motion_val[0][xy - 2];
  1833. A = s->current_picture.motion_val[0][xy - wrap*2];
  1834. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1835. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1836. if(!s->mb_x) C[0] = C[1] = 0;
  1837. if(!s->first_slice_line) { // predictor A is not out of bounds
  1838. if(s->mb_width == 1) {
  1839. px = A[0];
  1840. py = A[1];
  1841. } else {
  1842. px = mid_pred(A[0], B[0], C[0]);
  1843. py = mid_pred(A[1], B[1], C[1]);
  1844. }
  1845. } else if(s->mb_x) { // predictor C is not out of bounds
  1846. px = C[0];
  1847. py = C[1];
  1848. } else {
  1849. px = py = 0;
  1850. }
  1851. /* Pullback MV as specified in 8.3.5.3.4 */
  1852. {
  1853. int qx, qy, X, Y;
  1854. if(v->profile < PROFILE_ADVANCED) {
  1855. qx = (s->mb_x << 5);
  1856. qy = (s->mb_y << 5);
  1857. X = (s->mb_width << 5) - 4;
  1858. Y = (s->mb_height << 5) - 4;
  1859. if(qx + px < -28) px = -28 - qx;
  1860. if(qy + py < -28) py = -28 - qy;
  1861. if(qx + px > X) px = X - qx;
  1862. if(qy + py > Y) py = Y - qy;
  1863. } else {
  1864. qx = (s->mb_x << 6);
  1865. qy = (s->mb_y << 6);
  1866. X = (s->mb_width << 6) - 4;
  1867. Y = (s->mb_height << 6) - 4;
  1868. if(qx + px < -60) px = -60 - qx;
  1869. if(qy + py < -60) py = -60 - qy;
  1870. if(qx + px > X) px = X - qx;
  1871. if(qy + py > Y) py = Y - qy;
  1872. }
  1873. }
  1874. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1875. if(0 && !s->first_slice_line && s->mb_x) {
  1876. if(is_intra[xy - wrap])
  1877. sum = FFABS(px) + FFABS(py);
  1878. else
  1879. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1880. if(sum > 32) {
  1881. if(get_bits1(&s->gb)) {
  1882. px = A[0];
  1883. py = A[1];
  1884. } else {
  1885. px = C[0];
  1886. py = C[1];
  1887. }
  1888. } else {
  1889. if(is_intra[xy - 2])
  1890. sum = FFABS(px) + FFABS(py);
  1891. else
  1892. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1893. if(sum > 32) {
  1894. if(get_bits1(&s->gb)) {
  1895. px = A[0];
  1896. py = A[1];
  1897. } else {
  1898. px = C[0];
  1899. py = C[1];
  1900. }
  1901. }
  1902. }
  1903. }
  1904. /* store MV using signed modulus of MV range defined in 4.11 */
  1905. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1906. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1907. }
  1908. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1909. C = s->current_picture.motion_val[1][xy - 2];
  1910. A = s->current_picture.motion_val[1][xy - wrap*2];
  1911. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1912. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1913. if(!s->mb_x) C[0] = C[1] = 0;
  1914. if(!s->first_slice_line) { // predictor A is not out of bounds
  1915. if(s->mb_width == 1) {
  1916. px = A[0];
  1917. py = A[1];
  1918. } else {
  1919. px = mid_pred(A[0], B[0], C[0]);
  1920. py = mid_pred(A[1], B[1], C[1]);
  1921. }
  1922. } else if(s->mb_x) { // predictor C is not out of bounds
  1923. px = C[0];
  1924. py = C[1];
  1925. } else {
  1926. px = py = 0;
  1927. }
  1928. /* Pullback MV as specified in 8.3.5.3.4 */
  1929. {
  1930. int qx, qy, X, Y;
  1931. if(v->profile < PROFILE_ADVANCED) {
  1932. qx = (s->mb_x << 5);
  1933. qy = (s->mb_y << 5);
  1934. X = (s->mb_width << 5) - 4;
  1935. Y = (s->mb_height << 5) - 4;
  1936. if(qx + px < -28) px = -28 - qx;
  1937. if(qy + py < -28) py = -28 - qy;
  1938. if(qx + px > X) px = X - qx;
  1939. if(qy + py > Y) py = Y - qy;
  1940. } else {
  1941. qx = (s->mb_x << 6);
  1942. qy = (s->mb_y << 6);
  1943. X = (s->mb_width << 6) - 4;
  1944. Y = (s->mb_height << 6) - 4;
  1945. if(qx + px < -60) px = -60 - qx;
  1946. if(qy + py < -60) py = -60 - qy;
  1947. if(qx + px > X) px = X - qx;
  1948. if(qy + py > Y) py = Y - qy;
  1949. }
  1950. }
  1951. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1952. if(0 && !s->first_slice_line && s->mb_x) {
  1953. if(is_intra[xy - wrap])
  1954. sum = FFABS(px) + FFABS(py);
  1955. else
  1956. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1957. if(sum > 32) {
  1958. if(get_bits1(&s->gb)) {
  1959. px = A[0];
  1960. py = A[1];
  1961. } else {
  1962. px = C[0];
  1963. py = C[1];
  1964. }
  1965. } else {
  1966. if(is_intra[xy - 2])
  1967. sum = FFABS(px) + FFABS(py);
  1968. else
  1969. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1970. if(sum > 32) {
  1971. if(get_bits1(&s->gb)) {
  1972. px = A[0];
  1973. py = A[1];
  1974. } else {
  1975. px = C[0];
  1976. py = C[1];
  1977. }
  1978. }
  1979. }
  1980. }
  1981. /* store MV using signed modulus of MV range defined in 4.11 */
  1982. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1983. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1984. }
  1985. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1986. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1987. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1988. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1989. }
  1990. /** Get predicted DC value for I-frames only
  1991. * prediction dir: left=0, top=1
  1992. * @param s MpegEncContext
  1993. * @param[in] n block index in the current MB
  1994. * @param dc_val_ptr Pointer to DC predictor
  1995. * @param dir_ptr Prediction direction for use in AC prediction
  1996. */
  1997. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1998. int16_t **dc_val_ptr, int *dir_ptr)
  1999. {
  2000. int a, b, c, wrap, pred, scale;
  2001. int16_t *dc_val;
  2002. static const uint16_t dcpred[32] = {
  2003. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2004. 114, 102, 93, 85, 79, 73, 68, 64,
  2005. 60, 57, 54, 51, 49, 47, 45, 43,
  2006. 41, 39, 38, 37, 35, 34, 33
  2007. };
  2008. /* find prediction - wmv3_dc_scale always used here in fact */
  2009. if (n < 4) scale = s->y_dc_scale;
  2010. else scale = s->c_dc_scale;
  2011. wrap = s->block_wrap[n];
  2012. dc_val= s->dc_val[0] + s->block_index[n];
  2013. /* B A
  2014. * C X
  2015. */
  2016. c = dc_val[ - 1];
  2017. b = dc_val[ - 1 - wrap];
  2018. a = dc_val[ - wrap];
  2019. if (pq < 9 || !overlap)
  2020. {
  2021. /* Set outer values */
  2022. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2023. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2024. }
  2025. else
  2026. {
  2027. /* Set outer values */
  2028. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2029. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2030. }
  2031. if (abs(a - b) <= abs(b - c)) {
  2032. pred = c;
  2033. *dir_ptr = 1;//left
  2034. } else {
  2035. pred = a;
  2036. *dir_ptr = 0;//top
  2037. }
  2038. /* update predictor */
  2039. *dc_val_ptr = &dc_val[0];
  2040. return pred;
  2041. }
  2042. /** Get predicted DC value
  2043. * prediction dir: left=0, top=1
  2044. * @param s MpegEncContext
  2045. * @param[in] n block index in the current MB
  2046. * @param dc_val_ptr Pointer to DC predictor
  2047. * @param dir_ptr Prediction direction for use in AC prediction
  2048. */
  2049. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2050. int a_avail, int c_avail,
  2051. int16_t **dc_val_ptr, int *dir_ptr)
  2052. {
  2053. int a, b, c, wrap, pred, scale;
  2054. int16_t *dc_val;
  2055. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2056. int q1, q2 = 0;
  2057. /* find prediction - wmv3_dc_scale always used here in fact */
  2058. if (n < 4) scale = s->y_dc_scale;
  2059. else scale = s->c_dc_scale;
  2060. wrap = s->block_wrap[n];
  2061. dc_val= s->dc_val[0] + s->block_index[n];
  2062. /* B A
  2063. * C X
  2064. */
  2065. c = dc_val[ - 1];
  2066. b = dc_val[ - 1 - wrap];
  2067. a = dc_val[ - wrap];
  2068. /* scale predictors if needed */
  2069. q1 = s->current_picture.qscale_table[mb_pos];
  2070. if(c_avail && (n!= 1 && n!=3)) {
  2071. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2072. if(q2 && q2 != q1)
  2073. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2074. }
  2075. if(a_avail && (n!= 2 && n!=3)) {
  2076. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2077. if(q2 && q2 != q1)
  2078. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2079. }
  2080. if(a_avail && c_avail && (n!=3)) {
  2081. int off = mb_pos;
  2082. if(n != 1) off--;
  2083. if(n != 2) off -= s->mb_stride;
  2084. q2 = s->current_picture.qscale_table[off];
  2085. if(q2 && q2 != q1)
  2086. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2087. }
  2088. if(a_avail && c_avail) {
  2089. if(abs(a - b) <= abs(b - c)) {
  2090. pred = c;
  2091. *dir_ptr = 1;//left
  2092. } else {
  2093. pred = a;
  2094. *dir_ptr = 0;//top
  2095. }
  2096. } else if(a_avail) {
  2097. pred = a;
  2098. *dir_ptr = 0;//top
  2099. } else if(c_avail) {
  2100. pred = c;
  2101. *dir_ptr = 1;//left
  2102. } else {
  2103. pred = 0;
  2104. *dir_ptr = 1;//left
  2105. }
  2106. /* update predictor */
  2107. *dc_val_ptr = &dc_val[0];
  2108. return pred;
  2109. }
  2110. /**
  2111. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2112. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2113. * @{
  2114. */
  2115. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2116. {
  2117. int xy, wrap, pred, a, b, c;
  2118. xy = s->block_index[n];
  2119. wrap = s->b8_stride;
  2120. /* B C
  2121. * A X
  2122. */
  2123. a = s->coded_block[xy - 1 ];
  2124. b = s->coded_block[xy - 1 - wrap];
  2125. c = s->coded_block[xy - wrap];
  2126. if (b == c) {
  2127. pred = a;
  2128. } else {
  2129. pred = c;
  2130. }
  2131. /* store value */
  2132. *coded_block_ptr = &s->coded_block[xy];
  2133. return pred;
  2134. }
  2135. /**
  2136. * Decode one AC coefficient
  2137. * @param v The VC1 context
  2138. * @param last Last coefficient
  2139. * @param skip How much zero coefficients to skip
  2140. * @param value Decoded AC coefficient value
  2141. * @see 8.1.3.4
  2142. */
  2143. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2144. {
  2145. GetBitContext *gb = &v->s.gb;
  2146. int index, escape, run = 0, level = 0, lst = 0;
  2147. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2148. if (index != vc1_ac_sizes[codingset] - 1) {
  2149. run = vc1_index_decode_table[codingset][index][0];
  2150. level = vc1_index_decode_table[codingset][index][1];
  2151. lst = index >= vc1_last_decode_table[codingset];
  2152. if(get_bits1(gb))
  2153. level = -level;
  2154. } else {
  2155. escape = decode210(gb);
  2156. if (escape != 2) {
  2157. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2158. run = vc1_index_decode_table[codingset][index][0];
  2159. level = vc1_index_decode_table[codingset][index][1];
  2160. lst = index >= vc1_last_decode_table[codingset];
  2161. if(escape == 0) {
  2162. if(lst)
  2163. level += vc1_last_delta_level_table[codingset][run];
  2164. else
  2165. level += vc1_delta_level_table[codingset][run];
  2166. } else {
  2167. if(lst)
  2168. run += vc1_last_delta_run_table[codingset][level] + 1;
  2169. else
  2170. run += vc1_delta_run_table[codingset][level] + 1;
  2171. }
  2172. if(get_bits1(gb))
  2173. level = -level;
  2174. } else {
  2175. int sign;
  2176. lst = get_bits1(gb);
  2177. if(v->s.esc3_level_length == 0) {
  2178. if(v->pq < 8 || v->dquantfrm) { // table 59
  2179. v->s.esc3_level_length = get_bits(gb, 3);
  2180. if(!v->s.esc3_level_length)
  2181. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2182. } else { //table 60
  2183. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2184. }
  2185. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2186. }
  2187. run = get_bits(gb, v->s.esc3_run_length);
  2188. sign = get_bits1(gb);
  2189. level = get_bits(gb, v->s.esc3_level_length);
  2190. if(sign)
  2191. level = -level;
  2192. }
  2193. }
  2194. *last = lst;
  2195. *skip = run;
  2196. *value = level;
  2197. }
  2198. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2199. * @param v VC1Context
  2200. * @param block block to decode
  2201. * @param coded are AC coeffs present or not
  2202. * @param codingset set of VLC to decode data
  2203. */
  2204. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2205. {
  2206. GetBitContext *gb = &v->s.gb;
  2207. MpegEncContext *s = &v->s;
  2208. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2209. int run_diff, i;
  2210. int16_t *dc_val;
  2211. int16_t *ac_val, *ac_val2;
  2212. int dcdiff;
  2213. /* Get DC differential */
  2214. if (n < 4) {
  2215. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2216. } else {
  2217. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2218. }
  2219. if (dcdiff < 0){
  2220. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2221. return -1;
  2222. }
  2223. if (dcdiff)
  2224. {
  2225. if (dcdiff == 119 /* ESC index value */)
  2226. {
  2227. /* TODO: Optimize */
  2228. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2229. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2230. else dcdiff = get_bits(gb, 8);
  2231. }
  2232. else
  2233. {
  2234. if (v->pq == 1)
  2235. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2236. else if (v->pq == 2)
  2237. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2238. }
  2239. if (get_bits1(gb))
  2240. dcdiff = -dcdiff;
  2241. }
  2242. /* Prediction */
  2243. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2244. *dc_val = dcdiff;
  2245. /* Store the quantized DC coeff, used for prediction */
  2246. if (n < 4) {
  2247. block[0] = dcdiff * s->y_dc_scale;
  2248. } else {
  2249. block[0] = dcdiff * s->c_dc_scale;
  2250. }
  2251. /* Skip ? */
  2252. run_diff = 0;
  2253. i = 0;
  2254. if (!coded) {
  2255. goto not_coded;
  2256. }
  2257. //AC Decoding
  2258. i = 1;
  2259. {
  2260. int last = 0, skip, value;
  2261. const int8_t *zz_table;
  2262. int scale;
  2263. int k;
  2264. scale = v->pq * 2 + v->halfpq;
  2265. if(v->s.ac_pred) {
  2266. if(!dc_pred_dir)
  2267. zz_table = wmv1_scantable[2];
  2268. else
  2269. zz_table = wmv1_scantable[3];
  2270. } else
  2271. zz_table = wmv1_scantable[1];
  2272. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2273. ac_val2 = ac_val;
  2274. if(dc_pred_dir) //left
  2275. ac_val -= 16;
  2276. else //top
  2277. ac_val -= 16 * s->block_wrap[n];
  2278. while (!last) {
  2279. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2280. i += skip;
  2281. if(i > 63)
  2282. break;
  2283. block[zz_table[i++]] = value;
  2284. }
  2285. /* apply AC prediction if needed */
  2286. if(s->ac_pred) {
  2287. if(dc_pred_dir) { //left
  2288. for(k = 1; k < 8; k++)
  2289. block[k << 3] += ac_val[k];
  2290. } else { //top
  2291. for(k = 1; k < 8; k++)
  2292. block[k] += ac_val[k + 8];
  2293. }
  2294. }
  2295. /* save AC coeffs for further prediction */
  2296. for(k = 1; k < 8; k++) {
  2297. ac_val2[k] = block[k << 3];
  2298. ac_val2[k + 8] = block[k];
  2299. }
  2300. /* scale AC coeffs */
  2301. for(k = 1; k < 64; k++)
  2302. if(block[k]) {
  2303. block[k] *= scale;
  2304. if(!v->pquantizer)
  2305. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2306. }
  2307. if(s->ac_pred) i = 63;
  2308. }
  2309. not_coded:
  2310. if(!coded) {
  2311. int k, scale;
  2312. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2313. ac_val2 = ac_val;
  2314. scale = v->pq * 2 + v->halfpq;
  2315. memset(ac_val2, 0, 16 * 2);
  2316. if(dc_pred_dir) {//left
  2317. ac_val -= 16;
  2318. if(s->ac_pred)
  2319. memcpy(ac_val2, ac_val, 8 * 2);
  2320. } else {//top
  2321. ac_val -= 16 * s->block_wrap[n];
  2322. if(s->ac_pred)
  2323. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2324. }
  2325. /* apply AC prediction if needed */
  2326. if(s->ac_pred) {
  2327. if(dc_pred_dir) { //left
  2328. for(k = 1; k < 8; k++) {
  2329. block[k << 3] = ac_val[k] * scale;
  2330. if(!v->pquantizer && block[k << 3])
  2331. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2332. }
  2333. } else { //top
  2334. for(k = 1; k < 8; k++) {
  2335. block[k] = ac_val[k + 8] * scale;
  2336. if(!v->pquantizer && block[k])
  2337. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2338. }
  2339. }
  2340. i = 63;
  2341. }
  2342. }
  2343. s->block_last_index[n] = i;
  2344. return 0;
  2345. }
  2346. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2347. * @param v VC1Context
  2348. * @param block block to decode
  2349. * @param coded are AC coeffs present or not
  2350. * @param codingset set of VLC to decode data
  2351. */
  2352. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2353. {
  2354. GetBitContext *gb = &v->s.gb;
  2355. MpegEncContext *s = &v->s;
  2356. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2357. int run_diff, i;
  2358. int16_t *dc_val;
  2359. int16_t *ac_val, *ac_val2;
  2360. int dcdiff;
  2361. int a_avail = v->a_avail, c_avail = v->c_avail;
  2362. int use_pred = s->ac_pred;
  2363. int scale;
  2364. int q1, q2 = 0;
  2365. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2366. /* Get DC differential */
  2367. if (n < 4) {
  2368. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2369. } else {
  2370. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2371. }
  2372. if (dcdiff < 0){
  2373. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2374. return -1;
  2375. }
  2376. if (dcdiff)
  2377. {
  2378. if (dcdiff == 119 /* ESC index value */)
  2379. {
  2380. /* TODO: Optimize */
  2381. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2382. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2383. else dcdiff = get_bits(gb, 8);
  2384. }
  2385. else
  2386. {
  2387. if (mquant == 1)
  2388. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2389. else if (mquant == 2)
  2390. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2391. }
  2392. if (get_bits1(gb))
  2393. dcdiff = -dcdiff;
  2394. }
  2395. /* Prediction */
  2396. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2397. *dc_val = dcdiff;
  2398. /* Store the quantized DC coeff, used for prediction */
  2399. if (n < 4) {
  2400. block[0] = dcdiff * s->y_dc_scale;
  2401. } else {
  2402. block[0] = dcdiff * s->c_dc_scale;
  2403. }
  2404. /* Skip ? */
  2405. run_diff = 0;
  2406. i = 0;
  2407. //AC Decoding
  2408. i = 1;
  2409. /* check if AC is needed at all */
  2410. if(!a_avail && !c_avail) use_pred = 0;
  2411. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2412. ac_val2 = ac_val;
  2413. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2414. if(dc_pred_dir) //left
  2415. ac_val -= 16;
  2416. else //top
  2417. ac_val -= 16 * s->block_wrap[n];
  2418. q1 = s->current_picture.qscale_table[mb_pos];
  2419. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2420. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2421. if(dc_pred_dir && n==1) q2 = q1;
  2422. if(!dc_pred_dir && n==2) q2 = q1;
  2423. if(n==3) q2 = q1;
  2424. if(coded) {
  2425. int last = 0, skip, value;
  2426. const int8_t *zz_table;
  2427. int k;
  2428. if(v->s.ac_pred) {
  2429. if(!dc_pred_dir)
  2430. zz_table = wmv1_scantable[2];
  2431. else
  2432. zz_table = wmv1_scantable[3];
  2433. } else
  2434. zz_table = wmv1_scantable[1];
  2435. while (!last) {
  2436. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2437. i += skip;
  2438. if(i > 63)
  2439. break;
  2440. block[zz_table[i++]] = value;
  2441. }
  2442. /* apply AC prediction if needed */
  2443. if(use_pred) {
  2444. /* scale predictors if needed*/
  2445. if(q2 && q1!=q2) {
  2446. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2447. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2448. if(dc_pred_dir) { //left
  2449. for(k = 1; k < 8; k++)
  2450. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2451. } else { //top
  2452. for(k = 1; k < 8; k++)
  2453. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2454. }
  2455. } else {
  2456. if(dc_pred_dir) { //left
  2457. for(k = 1; k < 8; k++)
  2458. block[k << 3] += ac_val[k];
  2459. } else { //top
  2460. for(k = 1; k < 8; k++)
  2461. block[k] += ac_val[k + 8];
  2462. }
  2463. }
  2464. }
  2465. /* save AC coeffs for further prediction */
  2466. for(k = 1; k < 8; k++) {
  2467. ac_val2[k] = block[k << 3];
  2468. ac_val2[k + 8] = block[k];
  2469. }
  2470. /* scale AC coeffs */
  2471. for(k = 1; k < 64; k++)
  2472. if(block[k]) {
  2473. block[k] *= scale;
  2474. if(!v->pquantizer)
  2475. block[k] += (block[k] < 0) ? -mquant : mquant;
  2476. }
  2477. if(use_pred) i = 63;
  2478. } else { // no AC coeffs
  2479. int k;
  2480. memset(ac_val2, 0, 16 * 2);
  2481. if(dc_pred_dir) {//left
  2482. if(use_pred) {
  2483. memcpy(ac_val2, ac_val, 8 * 2);
  2484. if(q2 && q1!=q2) {
  2485. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2486. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2487. for(k = 1; k < 8; k++)
  2488. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2489. }
  2490. }
  2491. } else {//top
  2492. if(use_pred) {
  2493. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2494. if(q2 && q1!=q2) {
  2495. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2496. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2497. for(k = 1; k < 8; k++)
  2498. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2499. }
  2500. }
  2501. }
  2502. /* apply AC prediction if needed */
  2503. if(use_pred) {
  2504. if(dc_pred_dir) { //left
  2505. for(k = 1; k < 8; k++) {
  2506. block[k << 3] = ac_val2[k] * scale;
  2507. if(!v->pquantizer && block[k << 3])
  2508. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2509. }
  2510. } else { //top
  2511. for(k = 1; k < 8; k++) {
  2512. block[k] = ac_val2[k + 8] * scale;
  2513. if(!v->pquantizer && block[k])
  2514. block[k] += (block[k] < 0) ? -mquant : mquant;
  2515. }
  2516. }
  2517. i = 63;
  2518. }
  2519. }
  2520. s->block_last_index[n] = i;
  2521. return 0;
  2522. }
  2523. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2524. * @param v VC1Context
  2525. * @param block block to decode
  2526. * @param coded are AC coeffs present or not
  2527. * @param mquant block quantizer
  2528. * @param codingset set of VLC to decode data
  2529. */
  2530. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2531. {
  2532. GetBitContext *gb = &v->s.gb;
  2533. MpegEncContext *s = &v->s;
  2534. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2535. int run_diff, i;
  2536. int16_t *dc_val;
  2537. int16_t *ac_val, *ac_val2;
  2538. int dcdiff;
  2539. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2540. int a_avail = v->a_avail, c_avail = v->c_avail;
  2541. int use_pred = s->ac_pred;
  2542. int scale;
  2543. int q1, q2 = 0;
  2544. /* XXX: Guard against dumb values of mquant */
  2545. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2546. /* Set DC scale - y and c use the same */
  2547. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2548. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2549. /* Get DC differential */
  2550. if (n < 4) {
  2551. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2552. } else {
  2553. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2554. }
  2555. if (dcdiff < 0){
  2556. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2557. return -1;
  2558. }
  2559. if (dcdiff)
  2560. {
  2561. if (dcdiff == 119 /* ESC index value */)
  2562. {
  2563. /* TODO: Optimize */
  2564. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2565. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2566. else dcdiff = get_bits(gb, 8);
  2567. }
  2568. else
  2569. {
  2570. if (mquant == 1)
  2571. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2572. else if (mquant == 2)
  2573. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2574. }
  2575. if (get_bits1(gb))
  2576. dcdiff = -dcdiff;
  2577. }
  2578. /* Prediction */
  2579. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2580. *dc_val = dcdiff;
  2581. /* Store the quantized DC coeff, used for prediction */
  2582. if (n < 4) {
  2583. block[0] = dcdiff * s->y_dc_scale;
  2584. } else {
  2585. block[0] = dcdiff * s->c_dc_scale;
  2586. }
  2587. /* Skip ? */
  2588. run_diff = 0;
  2589. i = 0;
  2590. //AC Decoding
  2591. i = 1;
  2592. /* check if AC is needed at all and adjust direction if needed */
  2593. if(!a_avail) dc_pred_dir = 1;
  2594. if(!c_avail) dc_pred_dir = 0;
  2595. if(!a_avail && !c_avail) use_pred = 0;
  2596. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2597. ac_val2 = ac_val;
  2598. scale = mquant * 2 + v->halfpq;
  2599. if(dc_pred_dir) //left
  2600. ac_val -= 16;
  2601. else //top
  2602. ac_val -= 16 * s->block_wrap[n];
  2603. q1 = s->current_picture.qscale_table[mb_pos];
  2604. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2605. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2606. if(dc_pred_dir && n==1) q2 = q1;
  2607. if(!dc_pred_dir && n==2) q2 = q1;
  2608. if(n==3) q2 = q1;
  2609. if(coded) {
  2610. int last = 0, skip, value;
  2611. const int8_t *zz_table;
  2612. int k;
  2613. zz_table = wmv1_scantable[0];
  2614. while (!last) {
  2615. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2616. i += skip;
  2617. if(i > 63)
  2618. break;
  2619. block[zz_table[i++]] = value;
  2620. }
  2621. /* apply AC prediction if needed */
  2622. if(use_pred) {
  2623. /* scale predictors if needed*/
  2624. if(q2 && q1!=q2) {
  2625. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2626. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2627. if(dc_pred_dir) { //left
  2628. for(k = 1; k < 8; k++)
  2629. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2630. } else { //top
  2631. for(k = 1; k < 8; k++)
  2632. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2633. }
  2634. } else {
  2635. if(dc_pred_dir) { //left
  2636. for(k = 1; k < 8; k++)
  2637. block[k << 3] += ac_val[k];
  2638. } else { //top
  2639. for(k = 1; k < 8; k++)
  2640. block[k] += ac_val[k + 8];
  2641. }
  2642. }
  2643. }
  2644. /* save AC coeffs for further prediction */
  2645. for(k = 1; k < 8; k++) {
  2646. ac_val2[k] = block[k << 3];
  2647. ac_val2[k + 8] = block[k];
  2648. }
  2649. /* scale AC coeffs */
  2650. for(k = 1; k < 64; k++)
  2651. if(block[k]) {
  2652. block[k] *= scale;
  2653. if(!v->pquantizer)
  2654. block[k] += (block[k] < 0) ? -mquant : mquant;
  2655. }
  2656. if(use_pred) i = 63;
  2657. } else { // no AC coeffs
  2658. int k;
  2659. memset(ac_val2, 0, 16 * 2);
  2660. if(dc_pred_dir) {//left
  2661. if(use_pred) {
  2662. memcpy(ac_val2, ac_val, 8 * 2);
  2663. if(q2 && q1!=q2) {
  2664. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2665. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2666. for(k = 1; k < 8; k++)
  2667. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2668. }
  2669. }
  2670. } else {//top
  2671. if(use_pred) {
  2672. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2673. if(q2 && q1!=q2) {
  2674. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2675. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2676. for(k = 1; k < 8; k++)
  2677. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2678. }
  2679. }
  2680. }
  2681. /* apply AC prediction if needed */
  2682. if(use_pred) {
  2683. if(dc_pred_dir) { //left
  2684. for(k = 1; k < 8; k++) {
  2685. block[k << 3] = ac_val2[k] * scale;
  2686. if(!v->pquantizer && block[k << 3])
  2687. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2688. }
  2689. } else { //top
  2690. for(k = 1; k < 8; k++) {
  2691. block[k] = ac_val2[k + 8] * scale;
  2692. if(!v->pquantizer && block[k])
  2693. block[k] += (block[k] < 0) ? -mquant : mquant;
  2694. }
  2695. }
  2696. i = 63;
  2697. }
  2698. }
  2699. s->block_last_index[n] = i;
  2700. return 0;
  2701. }
  2702. /** Decode P block
  2703. */
  2704. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2705. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2706. {
  2707. MpegEncContext *s = &v->s;
  2708. GetBitContext *gb = &s->gb;
  2709. int i, j;
  2710. int subblkpat = 0;
  2711. int scale, off, idx, last, skip, value;
  2712. int ttblk = ttmb & 7;
  2713. int pat = 0;
  2714. if(ttmb == -1) {
  2715. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2716. }
  2717. if(ttblk == TT_4X4) {
  2718. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2719. }
  2720. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2721. subblkpat = decode012(gb);
  2722. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2723. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2724. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2725. }
  2726. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2727. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2728. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2729. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2730. ttblk = TT_8X4;
  2731. }
  2732. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2733. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2734. ttblk = TT_4X8;
  2735. }
  2736. switch(ttblk) {
  2737. case TT_8X8:
  2738. pat = 0xF;
  2739. i = 0;
  2740. last = 0;
  2741. while (!last) {
  2742. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2743. i += skip;
  2744. if(i > 63)
  2745. break;
  2746. idx = wmv1_scantable[0][i++];
  2747. block[idx] = value * scale;
  2748. if(!v->pquantizer)
  2749. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2750. }
  2751. if(!skip_block){
  2752. s->dsp.vc1_inv_trans_8x8(block);
  2753. s->dsp.add_pixels_clamped(block, dst, linesize);
  2754. if(apply_filter && cbp_top & 0xC)
  2755. vc1_loop_filter(dst, 1, linesize, 8, mquant);
  2756. if(apply_filter && cbp_left & 0xA)
  2757. vc1_loop_filter(dst, linesize, 1, 8, mquant);
  2758. }
  2759. break;
  2760. case TT_4X4:
  2761. pat = ~subblkpat & 0xF;
  2762. for(j = 0; j < 4; j++) {
  2763. last = subblkpat & (1 << (3 - j));
  2764. i = 0;
  2765. off = (j & 1) * 4 + (j & 2) * 16;
  2766. while (!last) {
  2767. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2768. i += skip;
  2769. if(i > 15)
  2770. break;
  2771. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2772. block[idx + off] = value * scale;
  2773. if(!v->pquantizer)
  2774. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2775. }
  2776. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2777. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2778. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2779. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
  2780. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2781. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
  2782. }
  2783. }
  2784. break;
  2785. case TT_8X4:
  2786. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2787. for(j = 0; j < 2; j++) {
  2788. last = subblkpat & (1 << (1 - j));
  2789. i = 0;
  2790. off = j * 32;
  2791. while (!last) {
  2792. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2793. i += skip;
  2794. if(i > 31)
  2795. break;
  2796. idx = v->zz_8x4[i++]+off;
  2797. block[idx] = value * scale;
  2798. if(!v->pquantizer)
  2799. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2800. }
  2801. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2802. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2803. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2804. vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
  2805. if(apply_filter && cbp_left & (2 << j))
  2806. vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
  2807. }
  2808. }
  2809. break;
  2810. case TT_4X8:
  2811. pat = ~(subblkpat*5) & 0xF;
  2812. for(j = 0; j < 2; j++) {
  2813. last = subblkpat & (1 << (1 - j));
  2814. i = 0;
  2815. off = j * 4;
  2816. while (!last) {
  2817. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2818. i += skip;
  2819. if(i > 31)
  2820. break;
  2821. idx = v->zz_4x8[i++]+off;
  2822. block[idx] = value * scale;
  2823. if(!v->pquantizer)
  2824. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2825. }
  2826. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2827. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2828. if(apply_filter && cbp_top & (2 << j))
  2829. vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
  2830. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2831. vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
  2832. }
  2833. }
  2834. break;
  2835. }
  2836. return pat;
  2837. }
  2838. /** Decode one P-frame MB (in Simple/Main profile)
  2839. */
  2840. static int vc1_decode_p_mb(VC1Context *v)
  2841. {
  2842. MpegEncContext *s = &v->s;
  2843. GetBitContext *gb = &s->gb;
  2844. int i, j;
  2845. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2846. int cbp; /* cbp decoding stuff */
  2847. int mqdiff, mquant; /* MB quantization */
  2848. int ttmb = v->ttfrm; /* MB Transform type */
  2849. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2850. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2851. int mb_has_coeffs = 1; /* last_flag */
  2852. int dmv_x, dmv_y; /* Differential MV components */
  2853. int index, index1; /* LUT indexes */
  2854. int val, sign; /* temp values */
  2855. int first_block = 1;
  2856. int dst_idx, off;
  2857. int skipped, fourmv;
  2858. int block_cbp = 0, pat;
  2859. mquant = v->pq; /* Loosy initialization */
  2860. if (v->mv_type_is_raw)
  2861. fourmv = get_bits1(gb);
  2862. else
  2863. fourmv = v->mv_type_mb_plane[mb_pos];
  2864. if (v->skip_is_raw)
  2865. skipped = get_bits1(gb);
  2866. else
  2867. skipped = v->s.mbskip_table[mb_pos];
  2868. s->dsp.clear_blocks(s->block[0]);
  2869. if (!fourmv) /* 1MV mode */
  2870. {
  2871. if (!skipped)
  2872. {
  2873. GET_MVDATA(dmv_x, dmv_y);
  2874. if (s->mb_intra) {
  2875. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2876. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2877. }
  2878. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2879. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2880. /* FIXME Set DC val for inter block ? */
  2881. if (s->mb_intra && !mb_has_coeffs)
  2882. {
  2883. GET_MQUANT();
  2884. s->ac_pred = get_bits1(gb);
  2885. cbp = 0;
  2886. }
  2887. else if (mb_has_coeffs)
  2888. {
  2889. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2890. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2891. GET_MQUANT();
  2892. }
  2893. else
  2894. {
  2895. mquant = v->pq;
  2896. cbp = 0;
  2897. }
  2898. s->current_picture.qscale_table[mb_pos] = mquant;
  2899. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2900. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2901. VC1_TTMB_VLC_BITS, 2);
  2902. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2903. dst_idx = 0;
  2904. for (i=0; i<6; i++)
  2905. {
  2906. s->dc_val[0][s->block_index[i]] = 0;
  2907. dst_idx += i >> 2;
  2908. val = ((cbp >> (5 - i)) & 1);
  2909. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2910. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2911. if(s->mb_intra) {
  2912. /* check if prediction blocks A and C are available */
  2913. v->a_avail = v->c_avail = 0;
  2914. if(i == 2 || i == 3 || !s->first_slice_line)
  2915. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2916. if(i == 1 || i == 3 || s->mb_x)
  2917. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2918. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2919. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2920. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2921. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2922. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2923. if(v->pq >= 9 && v->overlap) {
  2924. if(v->c_avail)
  2925. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2926. if(v->a_avail)
  2927. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2928. }
  2929. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2930. int left_cbp, top_cbp;
  2931. if(i & 4){
  2932. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2933. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2934. }else{
  2935. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2936. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2937. }
  2938. if(left_cbp & 0xC)
  2939. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2940. if(top_cbp & 0xA)
  2941. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2942. }
  2943. block_cbp |= 0xF << (i << 2);
  2944. } else if(val) {
  2945. int left_cbp = 0, top_cbp = 0, filter = 0;
  2946. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2947. filter = 1;
  2948. if(i & 4){
  2949. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2950. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2951. }else{
  2952. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2953. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2954. }
  2955. }
  2956. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2957. block_cbp |= pat << (i << 2);
  2958. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2959. first_block = 0;
  2960. }
  2961. }
  2962. }
  2963. else //Skipped
  2964. {
  2965. s->mb_intra = 0;
  2966. for(i = 0; i < 6; i++) {
  2967. v->mb_type[0][s->block_index[i]] = 0;
  2968. s->dc_val[0][s->block_index[i]] = 0;
  2969. }
  2970. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2971. s->current_picture.qscale_table[mb_pos] = 0;
  2972. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2973. vc1_mc_1mv(v, 0);
  2974. return 0;
  2975. }
  2976. } //1MV mode
  2977. else //4MV mode
  2978. {
  2979. if (!skipped /* unskipped MB */)
  2980. {
  2981. int intra_count = 0, coded_inter = 0;
  2982. int is_intra[6], is_coded[6];
  2983. /* Get CBPCY */
  2984. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2985. for (i=0; i<6; i++)
  2986. {
  2987. val = ((cbp >> (5 - i)) & 1);
  2988. s->dc_val[0][s->block_index[i]] = 0;
  2989. s->mb_intra = 0;
  2990. if(i < 4) {
  2991. dmv_x = dmv_y = 0;
  2992. s->mb_intra = 0;
  2993. mb_has_coeffs = 0;
  2994. if(val) {
  2995. GET_MVDATA(dmv_x, dmv_y);
  2996. }
  2997. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2998. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2999. intra_count += s->mb_intra;
  3000. is_intra[i] = s->mb_intra;
  3001. is_coded[i] = mb_has_coeffs;
  3002. }
  3003. if(i&4){
  3004. is_intra[i] = (intra_count >= 3);
  3005. is_coded[i] = val;
  3006. }
  3007. if(i == 4) vc1_mc_4mv_chroma(v);
  3008. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3009. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3010. }
  3011. // if there are no coded blocks then don't do anything more
  3012. if(!intra_count && !coded_inter) return 0;
  3013. dst_idx = 0;
  3014. GET_MQUANT();
  3015. s->current_picture.qscale_table[mb_pos] = mquant;
  3016. /* test if block is intra and has pred */
  3017. {
  3018. int intrapred = 0;
  3019. for(i=0; i<6; i++)
  3020. if(is_intra[i]) {
  3021. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3022. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3023. intrapred = 1;
  3024. break;
  3025. }
  3026. }
  3027. if(intrapred)s->ac_pred = get_bits1(gb);
  3028. else s->ac_pred = 0;
  3029. }
  3030. if (!v->ttmbf && coded_inter)
  3031. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3032. for (i=0; i<6; i++)
  3033. {
  3034. dst_idx += i >> 2;
  3035. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3036. s->mb_intra = is_intra[i];
  3037. if (is_intra[i]) {
  3038. /* check if prediction blocks A and C are available */
  3039. v->a_avail = v->c_avail = 0;
  3040. if(i == 2 || i == 3 || !s->first_slice_line)
  3041. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3042. if(i == 1 || i == 3 || s->mb_x)
  3043. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3044. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3045. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3046. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3047. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3048. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3049. if(v->pq >= 9 && v->overlap) {
  3050. if(v->c_avail)
  3051. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3052. if(v->a_avail)
  3053. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3054. }
  3055. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3056. int left_cbp, top_cbp;
  3057. if(i & 4){
  3058. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3059. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3060. }else{
  3061. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3062. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3063. }
  3064. if(left_cbp & 0xC)
  3065. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3066. if(top_cbp & 0xA)
  3067. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3068. }
  3069. block_cbp |= 0xF << (i << 2);
  3070. } else if(is_coded[i]) {
  3071. int left_cbp = 0, top_cbp = 0, filter = 0;
  3072. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3073. filter = 1;
  3074. if(i & 4){
  3075. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3076. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3077. }else{
  3078. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3079. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3080. }
  3081. }
  3082. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3083. block_cbp |= pat << (i << 2);
  3084. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3085. first_block = 0;
  3086. }
  3087. }
  3088. return 0;
  3089. }
  3090. else //Skipped MB
  3091. {
  3092. s->mb_intra = 0;
  3093. s->current_picture.qscale_table[mb_pos] = 0;
  3094. for (i=0; i<6; i++) {
  3095. v->mb_type[0][s->block_index[i]] = 0;
  3096. s->dc_val[0][s->block_index[i]] = 0;
  3097. }
  3098. for (i=0; i<4; i++)
  3099. {
  3100. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3101. vc1_mc_4mv_luma(v, i);
  3102. }
  3103. vc1_mc_4mv_chroma(v);
  3104. s->current_picture.qscale_table[mb_pos] = 0;
  3105. return 0;
  3106. }
  3107. }
  3108. v->cbp[s->mb_x] = block_cbp;
  3109. /* Should never happen */
  3110. return -1;
  3111. }
  3112. /** Decode one B-frame MB (in Main profile)
  3113. */
  3114. static void vc1_decode_b_mb(VC1Context *v)
  3115. {
  3116. MpegEncContext *s = &v->s;
  3117. GetBitContext *gb = &s->gb;
  3118. int i, j;
  3119. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3120. int cbp = 0; /* cbp decoding stuff */
  3121. int mqdiff, mquant; /* MB quantization */
  3122. int ttmb = v->ttfrm; /* MB Transform type */
  3123. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3124. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3125. int mb_has_coeffs = 0; /* last_flag */
  3126. int index, index1; /* LUT indexes */
  3127. int val, sign; /* temp values */
  3128. int first_block = 1;
  3129. int dst_idx, off;
  3130. int skipped, direct;
  3131. int dmv_x[2], dmv_y[2];
  3132. int bmvtype = BMV_TYPE_BACKWARD;
  3133. mquant = v->pq; /* Loosy initialization */
  3134. s->mb_intra = 0;
  3135. if (v->dmb_is_raw)
  3136. direct = get_bits1(gb);
  3137. else
  3138. direct = v->direct_mb_plane[mb_pos];
  3139. if (v->skip_is_raw)
  3140. skipped = get_bits1(gb);
  3141. else
  3142. skipped = v->s.mbskip_table[mb_pos];
  3143. s->dsp.clear_blocks(s->block[0]);
  3144. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3145. for(i = 0; i < 6; i++) {
  3146. v->mb_type[0][s->block_index[i]] = 0;
  3147. s->dc_val[0][s->block_index[i]] = 0;
  3148. }
  3149. s->current_picture.qscale_table[mb_pos] = 0;
  3150. if (!direct) {
  3151. if (!skipped) {
  3152. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3153. dmv_x[1] = dmv_x[0];
  3154. dmv_y[1] = dmv_y[0];
  3155. }
  3156. if(skipped || !s->mb_intra) {
  3157. bmvtype = decode012(gb);
  3158. switch(bmvtype) {
  3159. case 0:
  3160. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3161. break;
  3162. case 1:
  3163. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3164. break;
  3165. case 2:
  3166. bmvtype = BMV_TYPE_INTERPOLATED;
  3167. dmv_x[0] = dmv_y[0] = 0;
  3168. }
  3169. }
  3170. }
  3171. for(i = 0; i < 6; i++)
  3172. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3173. if (skipped) {
  3174. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3175. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3176. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3177. return;
  3178. }
  3179. if (direct) {
  3180. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3181. GET_MQUANT();
  3182. s->mb_intra = 0;
  3183. mb_has_coeffs = 0;
  3184. s->current_picture.qscale_table[mb_pos] = mquant;
  3185. if(!v->ttmbf)
  3186. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3187. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3188. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3189. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3190. } else {
  3191. if(!mb_has_coeffs && !s->mb_intra) {
  3192. /* no coded blocks - effectively skipped */
  3193. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3194. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3195. return;
  3196. }
  3197. if(s->mb_intra && !mb_has_coeffs) {
  3198. GET_MQUANT();
  3199. s->current_picture.qscale_table[mb_pos] = mquant;
  3200. s->ac_pred = get_bits1(gb);
  3201. cbp = 0;
  3202. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3203. } else {
  3204. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3205. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3206. if(!mb_has_coeffs) {
  3207. /* interpolated skipped block */
  3208. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3209. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3210. return;
  3211. }
  3212. }
  3213. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3214. if(!s->mb_intra) {
  3215. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3216. }
  3217. if(s->mb_intra)
  3218. s->ac_pred = get_bits1(gb);
  3219. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3220. GET_MQUANT();
  3221. s->current_picture.qscale_table[mb_pos] = mquant;
  3222. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3223. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3224. }
  3225. }
  3226. dst_idx = 0;
  3227. for (i=0; i<6; i++)
  3228. {
  3229. s->dc_val[0][s->block_index[i]] = 0;
  3230. dst_idx += i >> 2;
  3231. val = ((cbp >> (5 - i)) & 1);
  3232. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3233. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3234. if(s->mb_intra) {
  3235. /* check if prediction blocks A and C are available */
  3236. v->a_avail = v->c_avail = 0;
  3237. if(i == 2 || i == 3 || !s->first_slice_line)
  3238. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3239. if(i == 1 || i == 3 || s->mb_x)
  3240. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3241. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3242. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3243. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3244. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3245. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3246. } else if(val) {
  3247. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3248. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3249. first_block = 0;
  3250. }
  3251. }
  3252. }
  3253. /** Decode blocks of I-frame
  3254. */
  3255. static void vc1_decode_i_blocks(VC1Context *v)
  3256. {
  3257. int k, j;
  3258. MpegEncContext *s = &v->s;
  3259. int cbp, val;
  3260. uint8_t *coded_val;
  3261. int mb_pos;
  3262. /* select codingmode used for VLC tables selection */
  3263. switch(v->y_ac_table_index){
  3264. case 0:
  3265. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3266. break;
  3267. case 1:
  3268. v->codingset = CS_HIGH_MOT_INTRA;
  3269. break;
  3270. case 2:
  3271. v->codingset = CS_MID_RATE_INTRA;
  3272. break;
  3273. }
  3274. switch(v->c_ac_table_index){
  3275. case 0:
  3276. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3277. break;
  3278. case 1:
  3279. v->codingset2 = CS_HIGH_MOT_INTER;
  3280. break;
  3281. case 2:
  3282. v->codingset2 = CS_MID_RATE_INTER;
  3283. break;
  3284. }
  3285. /* Set DC scale - y and c use the same */
  3286. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3287. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3288. //do frame decode
  3289. s->mb_x = s->mb_y = 0;
  3290. s->mb_intra = 1;
  3291. s->first_slice_line = 1;
  3292. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3293. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3294. ff_init_block_index(s);
  3295. ff_update_block_index(s);
  3296. s->dsp.clear_blocks(s->block[0]);
  3297. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3298. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3299. s->current_picture.qscale_table[mb_pos] = v->pq;
  3300. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3301. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3302. // do actual MB decoding and displaying
  3303. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3304. v->s.ac_pred = get_bits1(&v->s.gb);
  3305. for(k = 0; k < 6; k++) {
  3306. val = ((cbp >> (5 - k)) & 1);
  3307. if (k < 4) {
  3308. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3309. val = val ^ pred;
  3310. *coded_val = val;
  3311. }
  3312. cbp |= val << (5 - k);
  3313. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3314. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3315. if(v->pq >= 9 && v->overlap) {
  3316. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3317. }
  3318. }
  3319. vc1_put_block(v, s->block);
  3320. if(v->pq >= 9 && v->overlap) {
  3321. if(s->mb_x) {
  3322. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3323. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3324. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3325. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3326. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3327. }
  3328. }
  3329. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3330. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3331. if(!s->first_slice_line) {
  3332. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3333. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3334. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3335. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3336. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3337. }
  3338. }
  3339. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3340. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3341. }
  3342. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3343. if(get_bits_count(&s->gb) > v->bits) {
  3344. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3345. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3346. return;
  3347. }
  3348. }
  3349. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3350. s->first_slice_line = 0;
  3351. }
  3352. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3353. }
  3354. /** Decode blocks of I-frame for advanced profile
  3355. */
  3356. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3357. {
  3358. int k, j;
  3359. MpegEncContext *s = &v->s;
  3360. int cbp, val;
  3361. uint8_t *coded_val;
  3362. int mb_pos;
  3363. int mquant = v->pq;
  3364. int mqdiff;
  3365. int overlap;
  3366. GetBitContext *gb = &s->gb;
  3367. /* select codingmode used for VLC tables selection */
  3368. switch(v->y_ac_table_index){
  3369. case 0:
  3370. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3371. break;
  3372. case 1:
  3373. v->codingset = CS_HIGH_MOT_INTRA;
  3374. break;
  3375. case 2:
  3376. v->codingset = CS_MID_RATE_INTRA;
  3377. break;
  3378. }
  3379. switch(v->c_ac_table_index){
  3380. case 0:
  3381. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3382. break;
  3383. case 1:
  3384. v->codingset2 = CS_HIGH_MOT_INTER;
  3385. break;
  3386. case 2:
  3387. v->codingset2 = CS_MID_RATE_INTER;
  3388. break;
  3389. }
  3390. //do frame decode
  3391. s->mb_x = s->mb_y = 0;
  3392. s->mb_intra = 1;
  3393. s->first_slice_line = 1;
  3394. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3395. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3396. ff_init_block_index(s);
  3397. ff_update_block_index(s);
  3398. s->dsp.clear_blocks(s->block[0]);
  3399. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3400. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3401. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3402. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3403. // do actual MB decoding and displaying
  3404. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3405. if(v->acpred_is_raw)
  3406. v->s.ac_pred = get_bits1(&v->s.gb);
  3407. else
  3408. v->s.ac_pred = v->acpred_plane[mb_pos];
  3409. if(v->condover == CONDOVER_SELECT) {
  3410. if(v->overflg_is_raw)
  3411. overlap = get_bits1(&v->s.gb);
  3412. else
  3413. overlap = v->over_flags_plane[mb_pos];
  3414. } else
  3415. overlap = (v->condover == CONDOVER_ALL);
  3416. GET_MQUANT();
  3417. s->current_picture.qscale_table[mb_pos] = mquant;
  3418. /* Set DC scale - y and c use the same */
  3419. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3420. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3421. for(k = 0; k < 6; k++) {
  3422. val = ((cbp >> (5 - k)) & 1);
  3423. if (k < 4) {
  3424. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3425. val = val ^ pred;
  3426. *coded_val = val;
  3427. }
  3428. cbp |= val << (5 - k);
  3429. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3430. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3431. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3432. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3433. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3434. }
  3435. vc1_put_block(v, s->block);
  3436. if(overlap) {
  3437. if(s->mb_x) {
  3438. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3439. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3440. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3441. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3442. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3443. }
  3444. }
  3445. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3446. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3447. if(!s->first_slice_line) {
  3448. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3449. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3450. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3451. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3452. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3453. }
  3454. }
  3455. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3456. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3457. }
  3458. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3459. if(get_bits_count(&s->gb) > v->bits) {
  3460. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3461. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3462. return;
  3463. }
  3464. }
  3465. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3466. s->first_slice_line = 0;
  3467. }
  3468. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3469. }
  3470. static void vc1_decode_p_blocks(VC1Context *v)
  3471. {
  3472. MpegEncContext *s = &v->s;
  3473. /* select codingmode used for VLC tables selection */
  3474. switch(v->c_ac_table_index){
  3475. case 0:
  3476. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3477. break;
  3478. case 1:
  3479. v->codingset = CS_HIGH_MOT_INTRA;
  3480. break;
  3481. case 2:
  3482. v->codingset = CS_MID_RATE_INTRA;
  3483. break;
  3484. }
  3485. switch(v->c_ac_table_index){
  3486. case 0:
  3487. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3488. break;
  3489. case 1:
  3490. v->codingset2 = CS_HIGH_MOT_INTER;
  3491. break;
  3492. case 2:
  3493. v->codingset2 = CS_MID_RATE_INTER;
  3494. break;
  3495. }
  3496. s->first_slice_line = 1;
  3497. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3498. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3499. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3500. ff_init_block_index(s);
  3501. ff_update_block_index(s);
  3502. s->dsp.clear_blocks(s->block[0]);
  3503. vc1_decode_p_mb(v);
  3504. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3505. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3506. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3507. return;
  3508. }
  3509. }
  3510. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3511. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3512. s->first_slice_line = 0;
  3513. }
  3514. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3515. }
  3516. static void vc1_decode_b_blocks(VC1Context *v)
  3517. {
  3518. MpegEncContext *s = &v->s;
  3519. /* select codingmode used for VLC tables selection */
  3520. switch(v->c_ac_table_index){
  3521. case 0:
  3522. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3523. break;
  3524. case 1:
  3525. v->codingset = CS_HIGH_MOT_INTRA;
  3526. break;
  3527. case 2:
  3528. v->codingset = CS_MID_RATE_INTRA;
  3529. break;
  3530. }
  3531. switch(v->c_ac_table_index){
  3532. case 0:
  3533. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3534. break;
  3535. case 1:
  3536. v->codingset2 = CS_HIGH_MOT_INTER;
  3537. break;
  3538. case 2:
  3539. v->codingset2 = CS_MID_RATE_INTER;
  3540. break;
  3541. }
  3542. s->first_slice_line = 1;
  3543. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3544. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3545. ff_init_block_index(s);
  3546. ff_update_block_index(s);
  3547. s->dsp.clear_blocks(s->block[0]);
  3548. vc1_decode_b_mb(v);
  3549. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3550. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3551. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3552. return;
  3553. }
  3554. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
  3555. }
  3556. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3557. s->first_slice_line = 0;
  3558. }
  3559. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3560. }
  3561. static void vc1_decode_skip_blocks(VC1Context *v)
  3562. {
  3563. MpegEncContext *s = &v->s;
  3564. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3565. s->first_slice_line = 1;
  3566. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3567. s->mb_x = 0;
  3568. ff_init_block_index(s);
  3569. ff_update_block_index(s);
  3570. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3571. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3572. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3573. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3574. s->first_slice_line = 0;
  3575. }
  3576. s->pict_type = FF_P_TYPE;
  3577. }
  3578. static void vc1_decode_blocks(VC1Context *v)
  3579. {
  3580. v->s.esc3_level_length = 0;
  3581. if(v->x8_type){
  3582. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3583. }else{
  3584. switch(v->s.pict_type) {
  3585. case FF_I_TYPE:
  3586. if(v->profile == PROFILE_ADVANCED)
  3587. vc1_decode_i_blocks_adv(v);
  3588. else
  3589. vc1_decode_i_blocks(v);
  3590. break;
  3591. case FF_P_TYPE:
  3592. if(v->p_frame_skipped)
  3593. vc1_decode_skip_blocks(v);
  3594. else
  3595. vc1_decode_p_blocks(v);
  3596. break;
  3597. case FF_B_TYPE:
  3598. if(v->bi_type){
  3599. if(v->profile == PROFILE_ADVANCED)
  3600. vc1_decode_i_blocks_adv(v);
  3601. else
  3602. vc1_decode_i_blocks(v);
  3603. }else
  3604. vc1_decode_b_blocks(v);
  3605. break;
  3606. }
  3607. }
  3608. }
  3609. /** Find VC-1 marker in buffer
  3610. * @return position where next marker starts or end of buffer if no marker found
  3611. */
  3612. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3613. {
  3614. uint32_t mrk = 0xFFFFFFFF;
  3615. if(end-src < 4) return end;
  3616. while(src < end){
  3617. mrk = (mrk << 8) | *src++;
  3618. if(IS_MARKER(mrk))
  3619. return src-4;
  3620. }
  3621. return end;
  3622. }
  3623. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3624. {
  3625. int dsize = 0, i;
  3626. if(size < 4){
  3627. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3628. return size;
  3629. }
  3630. for(i = 0; i < size; i++, src++) {
  3631. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3632. dst[dsize++] = src[1];
  3633. src++;
  3634. i++;
  3635. } else
  3636. dst[dsize++] = *src;
  3637. }
  3638. return dsize;
  3639. }
  3640. /** Initialize a VC1/WMV3 decoder
  3641. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3642. * @todo TODO: Decypher remaining bits in extra_data
  3643. */
  3644. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3645. {
  3646. VC1Context *v = avctx->priv_data;
  3647. MpegEncContext *s = &v->s;
  3648. GetBitContext gb;
  3649. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3650. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3651. avctx->pix_fmt = PIX_FMT_YUV420P;
  3652. else
  3653. avctx->pix_fmt = PIX_FMT_GRAY8;
  3654. v->s.avctx = avctx;
  3655. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3656. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3657. if(avctx->idct_algo==FF_IDCT_AUTO){
  3658. avctx->idct_algo=FF_IDCT_WMV2;
  3659. }
  3660. if(ff_h263_decode_init(avctx) < 0)
  3661. return -1;
  3662. if (vc1_init_common(v) < 0) return -1;
  3663. avctx->coded_width = avctx->width;
  3664. avctx->coded_height = avctx->height;
  3665. if (avctx->codec_id == CODEC_ID_WMV3)
  3666. {
  3667. int count = 0;
  3668. // looks like WMV3 has a sequence header stored in the extradata
  3669. // advanced sequence header may be before the first frame
  3670. // the last byte of the extradata is a version number, 1 for the
  3671. // samples we can decode
  3672. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3673. if (decode_sequence_header(avctx, &gb) < 0)
  3674. return -1;
  3675. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3676. if (count>0)
  3677. {
  3678. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3679. count, get_bits(&gb, count));
  3680. }
  3681. else if (count < 0)
  3682. {
  3683. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3684. }
  3685. } else { // VC1/WVC1
  3686. const uint8_t *start = avctx->extradata;
  3687. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3688. const uint8_t *next;
  3689. int size, buf2_size;
  3690. uint8_t *buf2 = NULL;
  3691. int seq_initialized = 0, ep_initialized = 0;
  3692. if(avctx->extradata_size < 16) {
  3693. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3694. return -1;
  3695. }
  3696. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3697. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3698. next = start;
  3699. for(; next < end; start = next){
  3700. next = find_next_marker(start + 4, end);
  3701. size = next - start - 4;
  3702. if(size <= 0) continue;
  3703. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3704. init_get_bits(&gb, buf2, buf2_size * 8);
  3705. switch(AV_RB32(start)){
  3706. case VC1_CODE_SEQHDR:
  3707. if(decode_sequence_header(avctx, &gb) < 0){
  3708. av_free(buf2);
  3709. return -1;
  3710. }
  3711. seq_initialized = 1;
  3712. break;
  3713. case VC1_CODE_ENTRYPOINT:
  3714. if(decode_entry_point(avctx, &gb) < 0){
  3715. av_free(buf2);
  3716. return -1;
  3717. }
  3718. ep_initialized = 1;
  3719. break;
  3720. }
  3721. }
  3722. av_free(buf2);
  3723. if(!seq_initialized || !ep_initialized){
  3724. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3725. return -1;
  3726. }
  3727. }
  3728. avctx->has_b_frames= !!(avctx->max_b_frames);
  3729. s->low_delay = !avctx->has_b_frames;
  3730. s->mb_width = (avctx->coded_width+15)>>4;
  3731. s->mb_height = (avctx->coded_height+15)>>4;
  3732. /* Allocate mb bitplanes */
  3733. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3734. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3735. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3736. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3737. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3738. v->cbp = v->cbp_base + s->mb_stride;
  3739. /* allocate block type info in that way so it could be used with s->block_index[] */
  3740. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3741. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3742. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3743. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3744. /* Init coded blocks info */
  3745. if (v->profile == PROFILE_ADVANCED)
  3746. {
  3747. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3748. // return -1;
  3749. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3750. // return -1;
  3751. }
  3752. ff_intrax8_common_init(&v->x8,s);
  3753. return 0;
  3754. }
  3755. /** Decode a VC1/WMV3 frame
  3756. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3757. */
  3758. static int vc1_decode_frame(AVCodecContext *avctx,
  3759. void *data, int *data_size,
  3760. const uint8_t *buf, int buf_size)
  3761. {
  3762. VC1Context *v = avctx->priv_data;
  3763. MpegEncContext *s = &v->s;
  3764. AVFrame *pict = data;
  3765. uint8_t *buf2 = NULL;
  3766. /* no supplementary picture */
  3767. if (buf_size == 0) {
  3768. /* special case for last picture */
  3769. if (s->low_delay==0 && s->next_picture_ptr) {
  3770. *pict= *(AVFrame*)s->next_picture_ptr;
  3771. s->next_picture_ptr= NULL;
  3772. *data_size = sizeof(AVFrame);
  3773. }
  3774. return 0;
  3775. }
  3776. /* We need to set current_picture_ptr before reading the header,
  3777. * otherwise we cannot store anything in there. */
  3778. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3779. int i= ff_find_unused_picture(s, 0);
  3780. s->current_picture_ptr= &s->picture[i];
  3781. }
  3782. //for advanced profile we may need to parse and unescape data
  3783. if (avctx->codec_id == CODEC_ID_VC1) {
  3784. int buf_size2 = 0;
  3785. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3786. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3787. const uint8_t *start, *end, *next;
  3788. int size;
  3789. next = buf;
  3790. for(start = buf, end = buf + buf_size; next < end; start = next){
  3791. next = find_next_marker(start + 4, end);
  3792. size = next - start - 4;
  3793. if(size <= 0) continue;
  3794. switch(AV_RB32(start)){
  3795. case VC1_CODE_FRAME:
  3796. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3797. break;
  3798. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3799. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3800. init_get_bits(&s->gb, buf2, buf_size2*8);
  3801. decode_entry_point(avctx, &s->gb);
  3802. break;
  3803. case VC1_CODE_SLICE:
  3804. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3805. av_free(buf2);
  3806. return -1;
  3807. }
  3808. }
  3809. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3810. const uint8_t *divider;
  3811. divider = find_next_marker(buf, buf + buf_size);
  3812. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3813. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3814. av_free(buf2);
  3815. return -1;
  3816. }
  3817. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3818. // TODO
  3819. av_free(buf2);return -1;
  3820. }else{
  3821. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3822. }
  3823. init_get_bits(&s->gb, buf2, buf_size2*8);
  3824. } else
  3825. init_get_bits(&s->gb, buf, buf_size*8);
  3826. // do parse frame header
  3827. if(v->profile < PROFILE_ADVANCED) {
  3828. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3829. av_free(buf2);
  3830. return -1;
  3831. }
  3832. } else {
  3833. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3834. av_free(buf2);
  3835. return -1;
  3836. }
  3837. }
  3838. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3839. av_free(buf2);
  3840. return -1;
  3841. }
  3842. // for hurry_up==5
  3843. s->current_picture.pict_type= s->pict_type;
  3844. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3845. /* skip B-frames if we don't have reference frames */
  3846. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3847. av_free(buf2);
  3848. return -1;//buf_size;
  3849. }
  3850. /* skip b frames if we are in a hurry */
  3851. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3852. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3853. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3854. || avctx->skip_frame >= AVDISCARD_ALL) {
  3855. av_free(buf2);
  3856. return buf_size;
  3857. }
  3858. /* skip everything if we are in a hurry>=5 */
  3859. if(avctx->hurry_up>=5) {
  3860. av_free(buf2);
  3861. return -1;//buf_size;
  3862. }
  3863. if(s->next_p_frame_damaged){
  3864. if(s->pict_type==FF_B_TYPE)
  3865. return buf_size;
  3866. else
  3867. s->next_p_frame_damaged=0;
  3868. }
  3869. if(MPV_frame_start(s, avctx) < 0) {
  3870. av_free(buf2);
  3871. return -1;
  3872. }
  3873. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3874. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3875. ff_er_frame_start(s);
  3876. v->bits = buf_size * 8;
  3877. vc1_decode_blocks(v);
  3878. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3879. // if(get_bits_count(&s->gb) > buf_size * 8)
  3880. // return -1;
  3881. ff_er_frame_end(s);
  3882. MPV_frame_end(s);
  3883. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3884. assert(s->current_picture.pict_type == s->pict_type);
  3885. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3886. *pict= *(AVFrame*)s->current_picture_ptr;
  3887. } else if (s->last_picture_ptr != NULL) {
  3888. *pict= *(AVFrame*)s->last_picture_ptr;
  3889. }
  3890. if(s->last_picture_ptr || s->low_delay){
  3891. *data_size = sizeof(AVFrame);
  3892. ff_print_debug_info(s, pict);
  3893. }
  3894. /* Return the Picture timestamp as the frame number */
  3895. /* we subtract 1 because it is added on utils.c */
  3896. avctx->frame_number = s->picture_number - 1;
  3897. av_free(buf2);
  3898. return buf_size;
  3899. }
  3900. /** Close a VC1/WMV3 decoder
  3901. * @warning Initial try at using MpegEncContext stuff
  3902. */
  3903. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3904. {
  3905. VC1Context *v = avctx->priv_data;
  3906. av_freep(&v->hrd_rate);
  3907. av_freep(&v->hrd_buffer);
  3908. MPV_common_end(&v->s);
  3909. av_freep(&v->mv_type_mb_plane);
  3910. av_freep(&v->direct_mb_plane);
  3911. av_freep(&v->acpred_plane);
  3912. av_freep(&v->over_flags_plane);
  3913. av_freep(&v->mb_type_base);
  3914. av_freep(&v->cbp_base);
  3915. ff_intrax8_common_end(&v->x8);
  3916. return 0;
  3917. }
  3918. AVCodec vc1_decoder = {
  3919. "vc1",
  3920. CODEC_TYPE_VIDEO,
  3921. CODEC_ID_VC1,
  3922. sizeof(VC1Context),
  3923. vc1_decode_init,
  3924. NULL,
  3925. vc1_decode_end,
  3926. vc1_decode_frame,
  3927. CODEC_CAP_DELAY,
  3928. NULL,
  3929. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3930. };
  3931. AVCodec wmv3_decoder = {
  3932. "wmv3",
  3933. CODEC_TYPE_VIDEO,
  3934. CODEC_ID_WMV3,
  3935. sizeof(VC1Context),
  3936. vc1_decode_init,
  3937. NULL,
  3938. vc1_decode_end,
  3939. vc1_decode_frame,
  3940. CODEC_CAP_DELAY,
  3941. NULL,
  3942. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3943. };