You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

357 lines
9.7KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. *
  4. * Copyright (c) 2008 Vitor Sessak
  5. * Copyright (c) 2003 Nick Kurshev
  6. * Based on public domain decoder at http://www.honeypot.net/audio
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "ra144.h"
  27. #include "acelp_filters.h"
  28. #define NBLOCKS 4 ///< number of subblocks within a block
  29. #define BLOCKSIZE 40 ///< subblock size in 16-bit words
  30. #define BUFFERSIZE 146 ///< the size of the adaptive codebook
  31. typedef struct {
  32. unsigned int old_energy; ///< previous frame energy
  33. unsigned int lpc_tables[2][10];
  34. /** LPC coefficients: lpc_coef[0] is the coefficients of the current frame
  35. * and lpc_coef[1] of the previous one */
  36. unsigned int *lpc_coef[2];
  37. unsigned int lpc_refl_rms[2];
  38. /** the current subblock padded by the last 10 values of the previous one*/
  39. int16_t curr_sblock[50];
  40. /** adaptive codebook. Its size is two units bigger to avoid a
  41. * buffer overflow */
  42. uint16_t adapt_cb[148];
  43. } RA144Context;
  44. static int ra144_decode_init(AVCodecContext * avctx)
  45. {
  46. RA144Context *ractx = avctx->priv_data;
  47. ractx->lpc_coef[0] = ractx->lpc_tables[0];
  48. ractx->lpc_coef[1] = ractx->lpc_tables[1];
  49. avctx->sample_fmt = SAMPLE_FMT_S16;
  50. return 0;
  51. }
  52. /**
  53. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  54. * odd way to make the output identical to the binary decoder.
  55. */
  56. static int t_sqrt(unsigned int x)
  57. {
  58. int s = 2;
  59. while (x > 0xfff) {
  60. s++;
  61. x >>= 2;
  62. }
  63. return ff_sqrt(x << 20) << s;
  64. }
  65. /**
  66. * Evaluate the LPC filter coefficients from the reflection coefficients.
  67. * Does the inverse of the eval_refl() function.
  68. */
  69. static void eval_coefs(int *coefs, const int *refl)
  70. {
  71. int buffer[10];
  72. int *b1 = buffer;
  73. int *b2 = coefs;
  74. int i, j;
  75. for (i=0; i < 10; i++) {
  76. b1[i] = refl[i] << 4;
  77. for (j=0; j < i; j++)
  78. b1[j] = ((refl[i] * b2[i-j-1]) >> 12) + b2[j];
  79. FFSWAP(int *, b1, b2);
  80. }
  81. for (i=0; i < 10; i++)
  82. coefs[i] >>= 4;
  83. }
  84. /**
  85. * Copy the last offset values of *source to *target. If those values are not
  86. * enough to fill the target buffer, fill it with another copy of those values.
  87. */
  88. static void copy_and_dup(int16_t *target, const int16_t *source, int offset)
  89. {
  90. source += BUFFERSIZE - offset;
  91. if (offset > BLOCKSIZE) {
  92. memcpy(target, source, BLOCKSIZE*sizeof(*target));
  93. } else {
  94. memcpy(target, source, offset*sizeof(*target));
  95. memcpy(target + offset, source, (BLOCKSIZE - offset)*sizeof(*target));
  96. }
  97. }
  98. /** inverse root mean square */
  99. static int irms(const int16_t *data)
  100. {
  101. unsigned int i, sum = 0;
  102. for (i=0; i < BLOCKSIZE; i++)
  103. sum += data[i] * data[i];
  104. if (sum == 0)
  105. return 0; /* OOPS - division by zero */
  106. return 0x20000000 / (t_sqrt(sum) >> 8);
  107. }
  108. static void add_wav(int16_t *dest, int n, int skip_first, int *m,
  109. const int16_t *s1, const int8_t *s2, const int8_t *s3)
  110. {
  111. int i;
  112. int v[3];
  113. v[0] = 0;
  114. for (i=!skip_first; i<3; i++)
  115. v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1);
  116. for (i=0; i < BLOCKSIZE; i++)
  117. dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
  118. }
  119. static unsigned int rescale_rms(unsigned int rms, unsigned int energy)
  120. {
  121. return (rms * energy) >> 10;
  122. }
  123. static unsigned int rms(const int *data)
  124. {
  125. int i;
  126. unsigned int res = 0x10000;
  127. int b = 10;
  128. for (i=0; i < 10; i++) {
  129. res = (((0x1000000 - data[i]*data[i]) >> 12) * res) >> 12;
  130. if (res == 0)
  131. return 0;
  132. while (res <= 0x3fff) {
  133. b++;
  134. res <<= 2;
  135. }
  136. }
  137. return t_sqrt(res) >> b;
  138. }
  139. static void do_output_subblock(RA144Context *ractx, const uint16_t *lpc_coefs,
  140. int gval, GetBitContext *gb)
  141. {
  142. uint16_t buffer_a[40];
  143. uint16_t *block;
  144. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  145. int gain = get_bits(gb, 8);
  146. int cb1_idx = get_bits(gb, 7);
  147. int cb2_idx = get_bits(gb, 7);
  148. int m[3];
  149. if (cba_idx) {
  150. cba_idx += BLOCKSIZE/2 - 1;
  151. copy_and_dup(buffer_a, ractx->adapt_cb, cba_idx);
  152. m[0] = (irms(buffer_a) * gval) >> 12;
  153. } else {
  154. m[0] = 0;
  155. }
  156. m[1] = (cb1_base[cb1_idx] * gval) >> 8;
  157. m[2] = (cb2_base[cb2_idx] * gval) >> 8;
  158. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  159. (BUFFERSIZE - BLOCKSIZE) * sizeof(*ractx->adapt_cb));
  160. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  161. add_wav(block, gain, cba_idx, m, buffer_a,
  162. cb1_vects[cb1_idx], cb2_vects[cb2_idx]);
  163. memcpy(ractx->curr_sblock, ractx->curr_sblock + 40,
  164. 10*sizeof(*ractx->curr_sblock));
  165. if (ff_acelp_lp_synthesis_filter(ractx->curr_sblock + 10, lpc_coefs,
  166. block, BLOCKSIZE, 10, 1, 0xfff))
  167. memset(ractx->curr_sblock, 0, 50*sizeof(*ractx->curr_sblock));
  168. }
  169. static void int_to_int16(int16_t *out, const int *inp)
  170. {
  171. int i;
  172. for (i=0; i < 30; i++)
  173. *(out++) = *(inp++);
  174. }
  175. /**
  176. * Evaluate the reflection coefficients from the filter coefficients.
  177. * Does the inverse of the eval_coefs() function.
  178. *
  179. * @return 1 if one of the reflection coefficients is of magnitude greater than
  180. * 4095, 0 if not.
  181. */
  182. static int eval_refl(int *refl, const int16_t *coefs, RA144Context *ractx)
  183. {
  184. int b, i, j;
  185. int buffer1[10];
  186. int buffer2[10];
  187. int *bp1 = buffer1;
  188. int *bp2 = buffer2;
  189. for (i=0; i < 10; i++)
  190. buffer2[i] = coefs[i];
  191. refl[9] = bp2[9];
  192. if ((unsigned) bp2[9] + 0x1000 > 0x1fff) {
  193. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  194. return 1;
  195. }
  196. for (i=8; i >= 0; i--) {
  197. b = 0x1000-((bp2[i+1] * bp2[i+1]) >> 12);
  198. if (!b)
  199. b = -2;
  200. for (j=0; j <= i; j++)
  201. bp1[j] = ((bp2[j] - ((refl[i+1] * bp2[i-j]) >> 12)) * (0x1000000 / b)) >> 12;
  202. refl[i] = bp1[i];
  203. if ((unsigned) bp1[i] + 0x1000 > 0x1fff)
  204. return 1;
  205. FFSWAP(int *, bp1, bp2);
  206. }
  207. return 0;
  208. }
  209. static int interp(RA144Context *ractx, int16_t *out, int block_num,
  210. int copyold, int energy)
  211. {
  212. int work[10];
  213. int a = block_num + 1;
  214. int b = NBLOCKS - a;
  215. int i;
  216. // Interpolate block coefficients from the this frame forth block and
  217. // last frame forth block
  218. for (i=0; i<30; i++)
  219. out[i] = (a * ractx->lpc_coef[0][i] + b * ractx->lpc_coef[1][i])>> 2;
  220. if (eval_refl(work, out, ractx)) {
  221. // The interpolated coefficients are unstable, copy either new or old
  222. // coefficients
  223. int_to_int16(out, ractx->lpc_coef[copyold]);
  224. return rescale_rms(ractx->lpc_refl_rms[copyold], energy);
  225. } else {
  226. return rescale_rms(rms(work), energy);
  227. }
  228. }
  229. /** Uncompress one block (20 bytes -> 160*2 bytes) */
  230. static int ra144_decode_frame(AVCodecContext * avctx, void *vdata,
  231. int *data_size, const uint8_t *buf, int buf_size)
  232. {
  233. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  234. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  235. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  236. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  237. int i, j;
  238. int16_t *data = vdata;
  239. unsigned int energy;
  240. RA144Context *ractx = avctx->priv_data;
  241. GetBitContext gb;
  242. if (*data_size < 2*160)
  243. return -1;
  244. if(buf_size < 20) {
  245. av_log(avctx, AV_LOG_ERROR,
  246. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  247. *data_size = 0;
  248. return buf_size;
  249. }
  250. init_get_bits(&gb, buf, 20 * 8);
  251. for (i=0; i<10; i++)
  252. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i])];
  253. eval_coefs(ractx->lpc_coef[0], lpc_refl);
  254. ractx->lpc_refl_rms[0] = rms(lpc_refl);
  255. energy = energy_tab[get_bits(&gb, 5)];
  256. refl_rms[0] = interp(ractx, block_coefs[0], 0, 1, ractx->old_energy);
  257. refl_rms[1] = interp(ractx, block_coefs[1], 1, energy <= ractx->old_energy,
  258. t_sqrt(energy*ractx->old_energy) >> 12);
  259. refl_rms[2] = interp(ractx, block_coefs[2], 2, 0, energy);
  260. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms[0], energy);
  261. int_to_int16(block_coefs[3], ractx->lpc_coef[0]);
  262. for (i=0; i < 4; i++) {
  263. do_output_subblock(ractx, block_coefs[i], refl_rms[i], &gb);
  264. for (j=0; j < BLOCKSIZE; j++)
  265. *data++ = av_clip_int16(ractx->curr_sblock[j + 10] << 2);
  266. }
  267. ractx->old_energy = energy;
  268. ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
  269. FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
  270. *data_size = 2*160;
  271. return 20;
  272. }
  273. AVCodec ra_144_decoder =
  274. {
  275. "real_144",
  276. CODEC_TYPE_AUDIO,
  277. CODEC_ID_RA_144,
  278. sizeof(RA144Context),
  279. ra144_decode_init,
  280. NULL,
  281. NULL,
  282. ra144_decode_frame,
  283. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  284. };