You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2724 lines
81KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. //#define DEBUG
  26. #include "avcodec.h"
  27. #include "bitstream.h"
  28. #include "dsputil.h"
  29. /*
  30. * TODO:
  31. * - in low precision mode, use more 16 bit multiplies in synth filter
  32. * - test lsf / mpeg25 extensively.
  33. */
  34. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  35. audio decoder */
  36. #ifdef CONFIG_MPEGAUDIO_HP
  37. # define USE_HIGHPRECISION
  38. #endif
  39. #include "mpegaudio.h"
  40. #include "mpegaudiodecheader.h"
  41. #include "mathops.h"
  42. /* WARNING: only correct for posititive numbers */
  43. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  44. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  45. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  46. /****************/
  47. #define HEADER_SIZE 4
  48. /* layer 3 "granule" */
  49. typedef struct GranuleDef {
  50. uint8_t scfsi;
  51. int part2_3_length;
  52. int big_values;
  53. int global_gain;
  54. int scalefac_compress;
  55. uint8_t block_type;
  56. uint8_t switch_point;
  57. int table_select[3];
  58. int subblock_gain[3];
  59. uint8_t scalefac_scale;
  60. uint8_t count1table_select;
  61. int region_size[3]; /* number of huffman codes in each region */
  62. int preflag;
  63. int short_start, long_end; /* long/short band indexes */
  64. uint8_t scale_factors[40];
  65. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  66. } GranuleDef;
  67. #include "mpegaudiodata.h"
  68. #include "mpegaudiodectab.h"
  69. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  70. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  71. /* vlc structure for decoding layer 3 huffman tables */
  72. static VLC huff_vlc[16];
  73. static VLC_TYPE huff_vlc_tables[
  74. 0+128+128+128+130+128+154+166+
  75. 142+204+190+170+542+460+662+414
  76. ][2];
  77. static const int huff_vlc_tables_sizes[16] = {
  78. 0, 128, 128, 128, 130, 128, 154, 166,
  79. 142, 204, 190, 170, 542, 460, 662, 414
  80. };
  81. static VLC huff_quad_vlc[2];
  82. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  83. static const int huff_quad_vlc_tables_sizes[2] = {
  84. 128, 16
  85. };
  86. /* computed from band_size_long */
  87. static uint16_t band_index_long[9][23];
  88. /* XXX: free when all decoders are closed */
  89. #define TABLE_4_3_SIZE (8191 + 16)*4
  90. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  91. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  92. static uint32_t exp_table[512];
  93. static uint32_t expval_table[512][16];
  94. /* intensity stereo coef table */
  95. static int32_t is_table[2][16];
  96. static int32_t is_table_lsf[2][2][16];
  97. static int32_t csa_table[8][4];
  98. static float csa_table_float[8][4];
  99. static int32_t mdct_win[8][36];
  100. /* lower 2 bits: modulo 3, higher bits: shift */
  101. static uint16_t scale_factor_modshift[64];
  102. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  103. static int32_t scale_factor_mult[15][3];
  104. /* mult table for layer 2 group quantization */
  105. #define SCALE_GEN(v) \
  106. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  107. static const int32_t scale_factor_mult2[3][3] = {
  108. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  109. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  110. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  111. };
  112. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  113. /**
  114. * Convert region offsets to region sizes and truncate
  115. * size to big_values.
  116. */
  117. void ff_region_offset2size(GranuleDef *g){
  118. int i, k, j=0;
  119. g->region_size[2] = (576 / 2);
  120. for(i=0;i<3;i++) {
  121. k = FFMIN(g->region_size[i], g->big_values);
  122. g->region_size[i] = k - j;
  123. j = k;
  124. }
  125. }
  126. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  127. if (g->block_type == 2)
  128. g->region_size[0] = (36 / 2);
  129. else {
  130. if (s->sample_rate_index <= 2)
  131. g->region_size[0] = (36 / 2);
  132. else if (s->sample_rate_index != 8)
  133. g->region_size[0] = (54 / 2);
  134. else
  135. g->region_size[0] = (108 / 2);
  136. }
  137. g->region_size[1] = (576 / 2);
  138. }
  139. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  140. int l;
  141. g->region_size[0] =
  142. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  143. /* should not overflow */
  144. l = FFMIN(ra1 + ra2 + 2, 22);
  145. g->region_size[1] =
  146. band_index_long[s->sample_rate_index][l] >> 1;
  147. }
  148. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  149. if (g->block_type == 2) {
  150. if (g->switch_point) {
  151. /* if switched mode, we handle the 36 first samples as
  152. long blocks. For 8000Hz, we handle the 48 first
  153. exponents as long blocks (XXX: check this!) */
  154. if (s->sample_rate_index <= 2)
  155. g->long_end = 8;
  156. else if (s->sample_rate_index != 8)
  157. g->long_end = 6;
  158. else
  159. g->long_end = 4; /* 8000 Hz */
  160. g->short_start = 2 + (s->sample_rate_index != 8);
  161. } else {
  162. g->long_end = 0;
  163. g->short_start = 0;
  164. }
  165. } else {
  166. g->short_start = 13;
  167. g->long_end = 22;
  168. }
  169. }
  170. /* layer 1 unscaling */
  171. /* n = number of bits of the mantissa minus 1 */
  172. static inline int l1_unscale(int n, int mant, int scale_factor)
  173. {
  174. int shift, mod;
  175. int64_t val;
  176. shift = scale_factor_modshift[scale_factor];
  177. mod = shift & 3;
  178. shift >>= 2;
  179. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  180. shift += n;
  181. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  182. return (int)((val + (1LL << (shift - 1))) >> shift);
  183. }
  184. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  185. {
  186. int shift, mod, val;
  187. shift = scale_factor_modshift[scale_factor];
  188. mod = shift & 3;
  189. shift >>= 2;
  190. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  191. /* NOTE: at this point, 0 <= shift <= 21 */
  192. if (shift > 0)
  193. val = (val + (1 << (shift - 1))) >> shift;
  194. return val;
  195. }
  196. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  197. static inline int l3_unscale(int value, int exponent)
  198. {
  199. unsigned int m;
  200. int e;
  201. e = table_4_3_exp [4*value + (exponent&3)];
  202. m = table_4_3_value[4*value + (exponent&3)];
  203. e -= (exponent >> 2);
  204. assert(e>=1);
  205. if (e > 31)
  206. return 0;
  207. m = (m + (1 << (e-1))) >> e;
  208. return m;
  209. }
  210. /* all integer n^(4/3) computation code */
  211. #define DEV_ORDER 13
  212. #define POW_FRAC_BITS 24
  213. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  214. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  215. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  216. static int dev_4_3_coefs[DEV_ORDER];
  217. #if 0 /* unused */
  218. static int pow_mult3[3] = {
  219. POW_FIX(1.0),
  220. POW_FIX(1.25992104989487316476),
  221. POW_FIX(1.58740105196819947474),
  222. };
  223. #endif
  224. static void int_pow_init(void)
  225. {
  226. int i, a;
  227. a = POW_FIX(1.0);
  228. for(i=0;i<DEV_ORDER;i++) {
  229. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  230. dev_4_3_coefs[i] = a;
  231. }
  232. }
  233. #if 0 /* unused, remove? */
  234. /* return the mantissa and the binary exponent */
  235. static int int_pow(int i, int *exp_ptr)
  236. {
  237. int e, er, eq, j;
  238. int a, a1;
  239. /* renormalize */
  240. a = i;
  241. e = POW_FRAC_BITS;
  242. while (a < (1 << (POW_FRAC_BITS - 1))) {
  243. a = a << 1;
  244. e--;
  245. }
  246. a -= (1 << POW_FRAC_BITS);
  247. a1 = 0;
  248. for(j = DEV_ORDER - 1; j >= 0; j--)
  249. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  250. a = (1 << POW_FRAC_BITS) + a1;
  251. /* exponent compute (exact) */
  252. e = e * 4;
  253. er = e % 3;
  254. eq = e / 3;
  255. a = POW_MULL(a, pow_mult3[er]);
  256. while (a >= 2 * POW_FRAC_ONE) {
  257. a = a >> 1;
  258. eq++;
  259. }
  260. /* convert to float */
  261. while (a < POW_FRAC_ONE) {
  262. a = a << 1;
  263. eq--;
  264. }
  265. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  266. #if POW_FRAC_BITS > FRAC_BITS
  267. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  268. /* correct overflow */
  269. if (a >= 2 * (1 << FRAC_BITS)) {
  270. a = a >> 1;
  271. eq++;
  272. }
  273. #endif
  274. *exp_ptr = eq;
  275. return a;
  276. }
  277. #endif
  278. static int decode_init(AVCodecContext * avctx)
  279. {
  280. MPADecodeContext *s = avctx->priv_data;
  281. static int init=0;
  282. int i, j, k;
  283. s->avctx = avctx;
  284. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  285. avctx->sample_fmt= SAMPLE_FMT_S32;
  286. #else
  287. avctx->sample_fmt= SAMPLE_FMT_S16;
  288. #endif
  289. s->error_resilience= avctx->error_resilience;
  290. if(avctx->antialias_algo != FF_AA_FLOAT)
  291. s->compute_antialias= compute_antialias_integer;
  292. else
  293. s->compute_antialias= compute_antialias_float;
  294. if (!init && !avctx->parse_only) {
  295. int offset;
  296. /* scale factors table for layer 1/2 */
  297. for(i=0;i<64;i++) {
  298. int shift, mod;
  299. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  300. shift = (i / 3);
  301. mod = i % 3;
  302. scale_factor_modshift[i] = mod | (shift << 2);
  303. }
  304. /* scale factor multiply for layer 1 */
  305. for(i=0;i<15;i++) {
  306. int n, norm;
  307. n = i + 2;
  308. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  309. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  310. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  311. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  312. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  313. i, norm,
  314. scale_factor_mult[i][0],
  315. scale_factor_mult[i][1],
  316. scale_factor_mult[i][2]);
  317. }
  318. ff_mpa_synth_init(window);
  319. /* huffman decode tables */
  320. offset = 0;
  321. for(i=1;i<16;i++) {
  322. const HuffTable *h = &mpa_huff_tables[i];
  323. int xsize, x, y;
  324. unsigned int n;
  325. uint8_t tmp_bits [512];
  326. uint16_t tmp_codes[512];
  327. memset(tmp_bits , 0, sizeof(tmp_bits ));
  328. memset(tmp_codes, 0, sizeof(tmp_codes));
  329. xsize = h->xsize;
  330. n = xsize * xsize;
  331. j = 0;
  332. for(x=0;x<xsize;x++) {
  333. for(y=0;y<xsize;y++){
  334. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  335. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  336. }
  337. }
  338. /* XXX: fail test */
  339. huff_vlc[i].table = huff_vlc_tables+offset;
  340. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  341. init_vlc(&huff_vlc[i], 7, 512,
  342. tmp_bits, 1, 1, tmp_codes, 2, 2,
  343. INIT_VLC_USE_NEW_STATIC);
  344. offset += huff_vlc_tables_sizes[i];
  345. }
  346. assert(offset == sizeof(huff_vlc_tables)/(sizeof(VLC_TYPE)*2));
  347. offset = 0;
  348. for(i=0;i<2;i++) {
  349. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  350. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  351. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  352. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  353. INIT_VLC_USE_NEW_STATIC);
  354. offset += huff_quad_vlc_tables_sizes[i];
  355. }
  356. assert(offset == sizeof(huff_quad_vlc_tables)/(sizeof(VLC_TYPE)*2));
  357. for(i=0;i<9;i++) {
  358. k = 0;
  359. for(j=0;j<22;j++) {
  360. band_index_long[i][j] = k;
  361. k += band_size_long[i][j];
  362. }
  363. band_index_long[i][22] = k;
  364. }
  365. /* compute n ^ (4/3) and store it in mantissa/exp format */
  366. int_pow_init();
  367. for(i=1;i<TABLE_4_3_SIZE;i++) {
  368. double f, fm;
  369. int e, m;
  370. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  371. fm = frexp(f, &e);
  372. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  373. e+= FRAC_BITS - 31 + 5 - 100;
  374. /* normalized to FRAC_BITS */
  375. table_4_3_value[i] = m;
  376. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  377. table_4_3_exp[i] = -e;
  378. }
  379. for(i=0; i<512*16; i++){
  380. int exponent= (i>>4);
  381. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  382. expval_table[exponent][i&15]= llrint(f);
  383. if((i&15)==1)
  384. exp_table[exponent]= llrint(f);
  385. }
  386. for(i=0;i<7;i++) {
  387. float f;
  388. int v;
  389. if (i != 6) {
  390. f = tan((double)i * M_PI / 12.0);
  391. v = FIXR(f / (1.0 + f));
  392. } else {
  393. v = FIXR(1.0);
  394. }
  395. is_table[0][i] = v;
  396. is_table[1][6 - i] = v;
  397. }
  398. /* invalid values */
  399. for(i=7;i<16;i++)
  400. is_table[0][i] = is_table[1][i] = 0.0;
  401. for(i=0;i<16;i++) {
  402. double f;
  403. int e, k;
  404. for(j=0;j<2;j++) {
  405. e = -(j + 1) * ((i + 1) >> 1);
  406. f = pow(2.0, e / 4.0);
  407. k = i & 1;
  408. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  409. is_table_lsf[j][k][i] = FIXR(1.0);
  410. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  411. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  412. }
  413. }
  414. for(i=0;i<8;i++) {
  415. float ci, cs, ca;
  416. ci = ci_table[i];
  417. cs = 1.0 / sqrt(1.0 + ci * ci);
  418. ca = cs * ci;
  419. csa_table[i][0] = FIXHR(cs/4);
  420. csa_table[i][1] = FIXHR(ca/4);
  421. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  422. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  423. csa_table_float[i][0] = cs;
  424. csa_table_float[i][1] = ca;
  425. csa_table_float[i][2] = ca + cs;
  426. csa_table_float[i][3] = ca - cs;
  427. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  428. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  429. }
  430. /* compute mdct windows */
  431. for(i=0;i<36;i++) {
  432. for(j=0; j<4; j++){
  433. double d;
  434. if(j==2 && i%3 != 1)
  435. continue;
  436. d= sin(M_PI * (i + 0.5) / 36.0);
  437. if(j==1){
  438. if (i>=30) d= 0;
  439. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  440. else if(i>=18) d= 1;
  441. }else if(j==3){
  442. if (i< 6) d= 0;
  443. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  444. else if(i< 18) d= 1;
  445. }
  446. //merge last stage of imdct into the window coefficients
  447. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  448. if(j==2)
  449. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  450. else
  451. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  452. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  453. }
  454. }
  455. /* NOTE: we do frequency inversion adter the MDCT by changing
  456. the sign of the right window coefs */
  457. for(j=0;j<4;j++) {
  458. for(i=0;i<36;i+=2) {
  459. mdct_win[j + 4][i] = mdct_win[j][i];
  460. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  461. }
  462. }
  463. #if defined(DEBUG)
  464. for(j=0;j<8;j++) {
  465. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  466. for(i=0;i<36;i++)
  467. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  468. av_log(avctx, AV_LOG_DEBUG, "\n");
  469. }
  470. #endif
  471. init = 1;
  472. }
  473. #ifdef DEBUG
  474. s->frame_count = 0;
  475. #endif
  476. if (avctx->codec_id == CODEC_ID_MP3ADU)
  477. s->adu_mode = 1;
  478. return 0;
  479. }
  480. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  481. /* cos(i*pi/64) */
  482. #define COS0_0 FIXHR(0.50060299823519630134/2)
  483. #define COS0_1 FIXHR(0.50547095989754365998/2)
  484. #define COS0_2 FIXHR(0.51544730992262454697/2)
  485. #define COS0_3 FIXHR(0.53104259108978417447/2)
  486. #define COS0_4 FIXHR(0.55310389603444452782/2)
  487. #define COS0_5 FIXHR(0.58293496820613387367/2)
  488. #define COS0_6 FIXHR(0.62250412303566481615/2)
  489. #define COS0_7 FIXHR(0.67480834145500574602/2)
  490. #define COS0_8 FIXHR(0.74453627100229844977/2)
  491. #define COS0_9 FIXHR(0.83934964541552703873/2)
  492. #define COS0_10 FIXHR(0.97256823786196069369/2)
  493. #define COS0_11 FIXHR(1.16943993343288495515/4)
  494. #define COS0_12 FIXHR(1.48416461631416627724/4)
  495. #define COS0_13 FIXHR(2.05778100995341155085/8)
  496. #define COS0_14 FIXHR(3.40760841846871878570/8)
  497. #define COS0_15 FIXHR(10.19000812354805681150/32)
  498. #define COS1_0 FIXHR(0.50241928618815570551/2)
  499. #define COS1_1 FIXHR(0.52249861493968888062/2)
  500. #define COS1_2 FIXHR(0.56694403481635770368/2)
  501. #define COS1_3 FIXHR(0.64682178335999012954/2)
  502. #define COS1_4 FIXHR(0.78815462345125022473/2)
  503. #define COS1_5 FIXHR(1.06067768599034747134/4)
  504. #define COS1_6 FIXHR(1.72244709823833392782/4)
  505. #define COS1_7 FIXHR(5.10114861868916385802/16)
  506. #define COS2_0 FIXHR(0.50979557910415916894/2)
  507. #define COS2_1 FIXHR(0.60134488693504528054/2)
  508. #define COS2_2 FIXHR(0.89997622313641570463/2)
  509. #define COS2_3 FIXHR(2.56291544774150617881/8)
  510. #define COS3_0 FIXHR(0.54119610014619698439/2)
  511. #define COS3_1 FIXHR(1.30656296487637652785/4)
  512. #define COS4_0 FIXHR(0.70710678118654752439/2)
  513. /* butterfly operator */
  514. #define BF(a, b, c, s)\
  515. {\
  516. tmp0 = tab[a] + tab[b];\
  517. tmp1 = tab[a] - tab[b];\
  518. tab[a] = tmp0;\
  519. tab[b] = MULH(tmp1<<(s), c);\
  520. }
  521. #define BF1(a, b, c, d)\
  522. {\
  523. BF(a, b, COS4_0, 1);\
  524. BF(c, d,-COS4_0, 1);\
  525. tab[c] += tab[d];\
  526. }
  527. #define BF2(a, b, c, d)\
  528. {\
  529. BF(a, b, COS4_0, 1);\
  530. BF(c, d,-COS4_0, 1);\
  531. tab[c] += tab[d];\
  532. tab[a] += tab[c];\
  533. tab[c] += tab[b];\
  534. tab[b] += tab[d];\
  535. }
  536. #define ADD(a, b) tab[a] += tab[b]
  537. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  538. static void dct32(int32_t *out, int32_t *tab)
  539. {
  540. int tmp0, tmp1;
  541. /* pass 1 */
  542. BF( 0, 31, COS0_0 , 1);
  543. BF(15, 16, COS0_15, 5);
  544. /* pass 2 */
  545. BF( 0, 15, COS1_0 , 1);
  546. BF(16, 31,-COS1_0 , 1);
  547. /* pass 1 */
  548. BF( 7, 24, COS0_7 , 1);
  549. BF( 8, 23, COS0_8 , 1);
  550. /* pass 2 */
  551. BF( 7, 8, COS1_7 , 4);
  552. BF(23, 24,-COS1_7 , 4);
  553. /* pass 3 */
  554. BF( 0, 7, COS2_0 , 1);
  555. BF( 8, 15,-COS2_0 , 1);
  556. BF(16, 23, COS2_0 , 1);
  557. BF(24, 31,-COS2_0 , 1);
  558. /* pass 1 */
  559. BF( 3, 28, COS0_3 , 1);
  560. BF(12, 19, COS0_12, 2);
  561. /* pass 2 */
  562. BF( 3, 12, COS1_3 , 1);
  563. BF(19, 28,-COS1_3 , 1);
  564. /* pass 1 */
  565. BF( 4, 27, COS0_4 , 1);
  566. BF(11, 20, COS0_11, 2);
  567. /* pass 2 */
  568. BF( 4, 11, COS1_4 , 1);
  569. BF(20, 27,-COS1_4 , 1);
  570. /* pass 3 */
  571. BF( 3, 4, COS2_3 , 3);
  572. BF(11, 12,-COS2_3 , 3);
  573. BF(19, 20, COS2_3 , 3);
  574. BF(27, 28,-COS2_3 , 3);
  575. /* pass 4 */
  576. BF( 0, 3, COS3_0 , 1);
  577. BF( 4, 7,-COS3_0 , 1);
  578. BF( 8, 11, COS3_0 , 1);
  579. BF(12, 15,-COS3_0 , 1);
  580. BF(16, 19, COS3_0 , 1);
  581. BF(20, 23,-COS3_0 , 1);
  582. BF(24, 27, COS3_0 , 1);
  583. BF(28, 31,-COS3_0 , 1);
  584. /* pass 1 */
  585. BF( 1, 30, COS0_1 , 1);
  586. BF(14, 17, COS0_14, 3);
  587. /* pass 2 */
  588. BF( 1, 14, COS1_1 , 1);
  589. BF(17, 30,-COS1_1 , 1);
  590. /* pass 1 */
  591. BF( 6, 25, COS0_6 , 1);
  592. BF( 9, 22, COS0_9 , 1);
  593. /* pass 2 */
  594. BF( 6, 9, COS1_6 , 2);
  595. BF(22, 25,-COS1_6 , 2);
  596. /* pass 3 */
  597. BF( 1, 6, COS2_1 , 1);
  598. BF( 9, 14,-COS2_1 , 1);
  599. BF(17, 22, COS2_1 , 1);
  600. BF(25, 30,-COS2_1 , 1);
  601. /* pass 1 */
  602. BF( 2, 29, COS0_2 , 1);
  603. BF(13, 18, COS0_13, 3);
  604. /* pass 2 */
  605. BF( 2, 13, COS1_2 , 1);
  606. BF(18, 29,-COS1_2 , 1);
  607. /* pass 1 */
  608. BF( 5, 26, COS0_5 , 1);
  609. BF(10, 21, COS0_10, 1);
  610. /* pass 2 */
  611. BF( 5, 10, COS1_5 , 2);
  612. BF(21, 26,-COS1_5 , 2);
  613. /* pass 3 */
  614. BF( 2, 5, COS2_2 , 1);
  615. BF(10, 13,-COS2_2 , 1);
  616. BF(18, 21, COS2_2 , 1);
  617. BF(26, 29,-COS2_2 , 1);
  618. /* pass 4 */
  619. BF( 1, 2, COS3_1 , 2);
  620. BF( 5, 6,-COS3_1 , 2);
  621. BF( 9, 10, COS3_1 , 2);
  622. BF(13, 14,-COS3_1 , 2);
  623. BF(17, 18, COS3_1 , 2);
  624. BF(21, 22,-COS3_1 , 2);
  625. BF(25, 26, COS3_1 , 2);
  626. BF(29, 30,-COS3_1 , 2);
  627. /* pass 5 */
  628. BF1( 0, 1, 2, 3);
  629. BF2( 4, 5, 6, 7);
  630. BF1( 8, 9, 10, 11);
  631. BF2(12, 13, 14, 15);
  632. BF1(16, 17, 18, 19);
  633. BF2(20, 21, 22, 23);
  634. BF1(24, 25, 26, 27);
  635. BF2(28, 29, 30, 31);
  636. /* pass 6 */
  637. ADD( 8, 12);
  638. ADD(12, 10);
  639. ADD(10, 14);
  640. ADD(14, 9);
  641. ADD( 9, 13);
  642. ADD(13, 11);
  643. ADD(11, 15);
  644. out[ 0] = tab[0];
  645. out[16] = tab[1];
  646. out[ 8] = tab[2];
  647. out[24] = tab[3];
  648. out[ 4] = tab[4];
  649. out[20] = tab[5];
  650. out[12] = tab[6];
  651. out[28] = tab[7];
  652. out[ 2] = tab[8];
  653. out[18] = tab[9];
  654. out[10] = tab[10];
  655. out[26] = tab[11];
  656. out[ 6] = tab[12];
  657. out[22] = tab[13];
  658. out[14] = tab[14];
  659. out[30] = tab[15];
  660. ADD(24, 28);
  661. ADD(28, 26);
  662. ADD(26, 30);
  663. ADD(30, 25);
  664. ADD(25, 29);
  665. ADD(29, 27);
  666. ADD(27, 31);
  667. out[ 1] = tab[16] + tab[24];
  668. out[17] = tab[17] + tab[25];
  669. out[ 9] = tab[18] + tab[26];
  670. out[25] = tab[19] + tab[27];
  671. out[ 5] = tab[20] + tab[28];
  672. out[21] = tab[21] + tab[29];
  673. out[13] = tab[22] + tab[30];
  674. out[29] = tab[23] + tab[31];
  675. out[ 3] = tab[24] + tab[20];
  676. out[19] = tab[25] + tab[21];
  677. out[11] = tab[26] + tab[22];
  678. out[27] = tab[27] + tab[23];
  679. out[ 7] = tab[28] + tab[18];
  680. out[23] = tab[29] + tab[19];
  681. out[15] = tab[30] + tab[17];
  682. out[31] = tab[31];
  683. }
  684. #if FRAC_BITS <= 15
  685. static inline int round_sample(int *sum)
  686. {
  687. int sum1;
  688. sum1 = (*sum) >> OUT_SHIFT;
  689. *sum &= (1<<OUT_SHIFT)-1;
  690. if (sum1 < OUT_MIN)
  691. sum1 = OUT_MIN;
  692. else if (sum1 > OUT_MAX)
  693. sum1 = OUT_MAX;
  694. return sum1;
  695. }
  696. /* signed 16x16 -> 32 multiply add accumulate */
  697. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  698. /* signed 16x16 -> 32 multiply */
  699. #define MULS(ra, rb) MUL16(ra, rb)
  700. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  701. #else
  702. static inline int round_sample(int64_t *sum)
  703. {
  704. int sum1;
  705. sum1 = (int)((*sum) >> OUT_SHIFT);
  706. *sum &= (1<<OUT_SHIFT)-1;
  707. if (sum1 < OUT_MIN)
  708. sum1 = OUT_MIN;
  709. else if (sum1 > OUT_MAX)
  710. sum1 = OUT_MAX;
  711. return sum1;
  712. }
  713. # define MULS(ra, rb) MUL64(ra, rb)
  714. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  715. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  716. #endif
  717. #define SUM8(op, sum, w, p) \
  718. { \
  719. op(sum, (w)[0 * 64], p[0 * 64]); \
  720. op(sum, (w)[1 * 64], p[1 * 64]); \
  721. op(sum, (w)[2 * 64], p[2 * 64]); \
  722. op(sum, (w)[3 * 64], p[3 * 64]); \
  723. op(sum, (w)[4 * 64], p[4 * 64]); \
  724. op(sum, (w)[5 * 64], p[5 * 64]); \
  725. op(sum, (w)[6 * 64], p[6 * 64]); \
  726. op(sum, (w)[7 * 64], p[7 * 64]); \
  727. }
  728. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  729. { \
  730. int tmp;\
  731. tmp = p[0 * 64];\
  732. op1(sum1, (w1)[0 * 64], tmp);\
  733. op2(sum2, (w2)[0 * 64], tmp);\
  734. tmp = p[1 * 64];\
  735. op1(sum1, (w1)[1 * 64], tmp);\
  736. op2(sum2, (w2)[1 * 64], tmp);\
  737. tmp = p[2 * 64];\
  738. op1(sum1, (w1)[2 * 64], tmp);\
  739. op2(sum2, (w2)[2 * 64], tmp);\
  740. tmp = p[3 * 64];\
  741. op1(sum1, (w1)[3 * 64], tmp);\
  742. op2(sum2, (w2)[3 * 64], tmp);\
  743. tmp = p[4 * 64];\
  744. op1(sum1, (w1)[4 * 64], tmp);\
  745. op2(sum2, (w2)[4 * 64], tmp);\
  746. tmp = p[5 * 64];\
  747. op1(sum1, (w1)[5 * 64], tmp);\
  748. op2(sum2, (w2)[5 * 64], tmp);\
  749. tmp = p[6 * 64];\
  750. op1(sum1, (w1)[6 * 64], tmp);\
  751. op2(sum2, (w2)[6 * 64], tmp);\
  752. tmp = p[7 * 64];\
  753. op1(sum1, (w1)[7 * 64], tmp);\
  754. op2(sum2, (w2)[7 * 64], tmp);\
  755. }
  756. void ff_mpa_synth_init(MPA_INT *window)
  757. {
  758. int i;
  759. /* max = 18760, max sum over all 16 coefs : 44736 */
  760. for(i=0;i<257;i++) {
  761. int v;
  762. v = ff_mpa_enwindow[i];
  763. #if WFRAC_BITS < 16
  764. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  765. #endif
  766. window[i] = v;
  767. if ((i & 63) != 0)
  768. v = -v;
  769. if (i != 0)
  770. window[512 - i] = v;
  771. }
  772. }
  773. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  774. 32 samples. */
  775. /* XXX: optimize by avoiding ring buffer usage */
  776. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  777. MPA_INT *window, int *dither_state,
  778. OUT_INT *samples, int incr,
  779. int32_t sb_samples[SBLIMIT])
  780. {
  781. int32_t tmp[32];
  782. register MPA_INT *synth_buf;
  783. register const MPA_INT *w, *w2, *p;
  784. int j, offset, v;
  785. OUT_INT *samples2;
  786. #if FRAC_BITS <= 15
  787. int sum, sum2;
  788. #else
  789. int64_t sum, sum2;
  790. #endif
  791. dct32(tmp, sb_samples);
  792. offset = *synth_buf_offset;
  793. synth_buf = synth_buf_ptr + offset;
  794. for(j=0;j<32;j++) {
  795. v = tmp[j];
  796. #if FRAC_BITS <= 15
  797. /* NOTE: can cause a loss in precision if very high amplitude
  798. sound */
  799. v = av_clip_int16(v);
  800. #endif
  801. synth_buf[j] = v;
  802. }
  803. /* copy to avoid wrap */
  804. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  805. samples2 = samples + 31 * incr;
  806. w = window;
  807. w2 = window + 31;
  808. sum = *dither_state;
  809. p = synth_buf + 16;
  810. SUM8(MACS, sum, w, p);
  811. p = synth_buf + 48;
  812. SUM8(MLSS, sum, w + 32, p);
  813. *samples = round_sample(&sum);
  814. samples += incr;
  815. w++;
  816. /* we calculate two samples at the same time to avoid one memory
  817. access per two sample */
  818. for(j=1;j<16;j++) {
  819. sum2 = 0;
  820. p = synth_buf + 16 + j;
  821. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  822. p = synth_buf + 48 - j;
  823. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  824. *samples = round_sample(&sum);
  825. samples += incr;
  826. sum += sum2;
  827. *samples2 = round_sample(&sum);
  828. samples2 -= incr;
  829. w++;
  830. w2--;
  831. }
  832. p = synth_buf + 32;
  833. SUM8(MLSS, sum, w + 32, p);
  834. *samples = round_sample(&sum);
  835. *dither_state= sum;
  836. offset = (offset - 32) & 511;
  837. *synth_buf_offset = offset;
  838. }
  839. #define C3 FIXHR(0.86602540378443864676/2)
  840. /* 0.5 / cos(pi*(2*i+1)/36) */
  841. static const int icos36[9] = {
  842. FIXR(0.50190991877167369479),
  843. FIXR(0.51763809020504152469), //0
  844. FIXR(0.55168895948124587824),
  845. FIXR(0.61038729438072803416),
  846. FIXR(0.70710678118654752439), //1
  847. FIXR(0.87172339781054900991),
  848. FIXR(1.18310079157624925896),
  849. FIXR(1.93185165257813657349), //2
  850. FIXR(5.73685662283492756461),
  851. };
  852. /* 0.5 / cos(pi*(2*i+1)/36) */
  853. static const int icos36h[9] = {
  854. FIXHR(0.50190991877167369479/2),
  855. FIXHR(0.51763809020504152469/2), //0
  856. FIXHR(0.55168895948124587824/2),
  857. FIXHR(0.61038729438072803416/2),
  858. FIXHR(0.70710678118654752439/2), //1
  859. FIXHR(0.87172339781054900991/2),
  860. FIXHR(1.18310079157624925896/4),
  861. FIXHR(1.93185165257813657349/4), //2
  862. // FIXHR(5.73685662283492756461),
  863. };
  864. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  865. cases. */
  866. static void imdct12(int *out, int *in)
  867. {
  868. int in0, in1, in2, in3, in4, in5, t1, t2;
  869. in0= in[0*3];
  870. in1= in[1*3] + in[0*3];
  871. in2= in[2*3] + in[1*3];
  872. in3= in[3*3] + in[2*3];
  873. in4= in[4*3] + in[3*3];
  874. in5= in[5*3] + in[4*3];
  875. in5 += in3;
  876. in3 += in1;
  877. in2= MULH(2*in2, C3);
  878. in3= MULH(4*in3, C3);
  879. t1 = in0 - in4;
  880. t2 = MULH(2*(in1 - in5), icos36h[4]);
  881. out[ 7]=
  882. out[10]= t1 + t2;
  883. out[ 1]=
  884. out[ 4]= t1 - t2;
  885. in0 += in4>>1;
  886. in4 = in0 + in2;
  887. in5 += 2*in1;
  888. in1 = MULH(in5 + in3, icos36h[1]);
  889. out[ 8]=
  890. out[ 9]= in4 + in1;
  891. out[ 2]=
  892. out[ 3]= in4 - in1;
  893. in0 -= in2;
  894. in5 = MULH(2*(in5 - in3), icos36h[7]);
  895. out[ 0]=
  896. out[ 5]= in0 - in5;
  897. out[ 6]=
  898. out[11]= in0 + in5;
  899. }
  900. /* cos(pi*i/18) */
  901. #define C1 FIXHR(0.98480775301220805936/2)
  902. #define C2 FIXHR(0.93969262078590838405/2)
  903. #define C3 FIXHR(0.86602540378443864676/2)
  904. #define C4 FIXHR(0.76604444311897803520/2)
  905. #define C5 FIXHR(0.64278760968653932632/2)
  906. #define C6 FIXHR(0.5/2)
  907. #define C7 FIXHR(0.34202014332566873304/2)
  908. #define C8 FIXHR(0.17364817766693034885/2)
  909. /* using Lee like decomposition followed by hand coded 9 points DCT */
  910. static void imdct36(int *out, int *buf, int *in, int *win)
  911. {
  912. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  913. int tmp[18], *tmp1, *in1;
  914. for(i=17;i>=1;i--)
  915. in[i] += in[i-1];
  916. for(i=17;i>=3;i-=2)
  917. in[i] += in[i-2];
  918. for(j=0;j<2;j++) {
  919. tmp1 = tmp + j;
  920. in1 = in + j;
  921. #if 0
  922. //more accurate but slower
  923. int64_t t0, t1, t2, t3;
  924. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  925. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  926. t1 = in1[2*0] - in1[2*6];
  927. tmp1[ 6] = t1 - (t2>>1);
  928. tmp1[16] = t1 + t2;
  929. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  930. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  931. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  932. tmp1[10] = (t3 - t0 - t2) >> 32;
  933. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  934. tmp1[14] = (t3 + t2 - t1) >> 32;
  935. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  936. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  937. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  938. t0 = MUL64(2*in1[2*3], C3);
  939. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  940. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  941. tmp1[12] = (t2 + t1 - t0) >> 32;
  942. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  943. #else
  944. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  945. t3 = in1[2*0] + (in1[2*6]>>1);
  946. t1 = in1[2*0] - in1[2*6];
  947. tmp1[ 6] = t1 - (t2>>1);
  948. tmp1[16] = t1 + t2;
  949. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  950. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  951. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  952. tmp1[10] = t3 - t0 - t2;
  953. tmp1[ 2] = t3 + t0 + t1;
  954. tmp1[14] = t3 + t2 - t1;
  955. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  956. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  957. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  958. t0 = MULH(2*in1[2*3], C3);
  959. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  960. tmp1[ 0] = t2 + t3 + t0;
  961. tmp1[12] = t2 + t1 - t0;
  962. tmp1[ 8] = t3 - t1 - t0;
  963. #endif
  964. }
  965. i = 0;
  966. for(j=0;j<4;j++) {
  967. t0 = tmp[i];
  968. t1 = tmp[i + 2];
  969. s0 = t1 + t0;
  970. s2 = t1 - t0;
  971. t2 = tmp[i + 1];
  972. t3 = tmp[i + 3];
  973. s1 = MULH(2*(t3 + t2), icos36h[j]);
  974. s3 = MULL(t3 - t2, icos36[8 - j]);
  975. t0 = s0 + s1;
  976. t1 = s0 - s1;
  977. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  978. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  979. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  980. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  981. t0 = s2 + s3;
  982. t1 = s2 - s3;
  983. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  984. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  985. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  986. buf[ + j] = MULH(t0, win[18 + j]);
  987. i += 4;
  988. }
  989. s0 = tmp[16];
  990. s1 = MULH(2*tmp[17], icos36h[4]);
  991. t0 = s0 + s1;
  992. t1 = s0 - s1;
  993. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  994. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  995. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  996. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  997. }
  998. /* return the number of decoded frames */
  999. static int mp_decode_layer1(MPADecodeContext *s)
  1000. {
  1001. int bound, i, v, n, ch, j, mant;
  1002. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1003. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1004. if (s->mode == MPA_JSTEREO)
  1005. bound = (s->mode_ext + 1) * 4;
  1006. else
  1007. bound = SBLIMIT;
  1008. /* allocation bits */
  1009. for(i=0;i<bound;i++) {
  1010. for(ch=0;ch<s->nb_channels;ch++) {
  1011. allocation[ch][i] = get_bits(&s->gb, 4);
  1012. }
  1013. }
  1014. for(i=bound;i<SBLIMIT;i++) {
  1015. allocation[0][i] = get_bits(&s->gb, 4);
  1016. }
  1017. /* scale factors */
  1018. for(i=0;i<bound;i++) {
  1019. for(ch=0;ch<s->nb_channels;ch++) {
  1020. if (allocation[ch][i])
  1021. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1022. }
  1023. }
  1024. for(i=bound;i<SBLIMIT;i++) {
  1025. if (allocation[0][i]) {
  1026. scale_factors[0][i] = get_bits(&s->gb, 6);
  1027. scale_factors[1][i] = get_bits(&s->gb, 6);
  1028. }
  1029. }
  1030. /* compute samples */
  1031. for(j=0;j<12;j++) {
  1032. for(i=0;i<bound;i++) {
  1033. for(ch=0;ch<s->nb_channels;ch++) {
  1034. n = allocation[ch][i];
  1035. if (n) {
  1036. mant = get_bits(&s->gb, n + 1);
  1037. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1038. } else {
  1039. v = 0;
  1040. }
  1041. s->sb_samples[ch][j][i] = v;
  1042. }
  1043. }
  1044. for(i=bound;i<SBLIMIT;i++) {
  1045. n = allocation[0][i];
  1046. if (n) {
  1047. mant = get_bits(&s->gb, n + 1);
  1048. v = l1_unscale(n, mant, scale_factors[0][i]);
  1049. s->sb_samples[0][j][i] = v;
  1050. v = l1_unscale(n, mant, scale_factors[1][i]);
  1051. s->sb_samples[1][j][i] = v;
  1052. } else {
  1053. s->sb_samples[0][j][i] = 0;
  1054. s->sb_samples[1][j][i] = 0;
  1055. }
  1056. }
  1057. }
  1058. return 12;
  1059. }
  1060. static int mp_decode_layer2(MPADecodeContext *s)
  1061. {
  1062. int sblimit; /* number of used subbands */
  1063. const unsigned char *alloc_table;
  1064. int table, bit_alloc_bits, i, j, ch, bound, v;
  1065. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1066. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1067. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1068. int scale, qindex, bits, steps, k, l, m, b;
  1069. /* select decoding table */
  1070. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1071. s->sample_rate, s->lsf);
  1072. sblimit = ff_mpa_sblimit_table[table];
  1073. alloc_table = ff_mpa_alloc_tables[table];
  1074. if (s->mode == MPA_JSTEREO)
  1075. bound = (s->mode_ext + 1) * 4;
  1076. else
  1077. bound = sblimit;
  1078. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1079. /* sanity check */
  1080. if( bound > sblimit ) bound = sblimit;
  1081. /* parse bit allocation */
  1082. j = 0;
  1083. for(i=0;i<bound;i++) {
  1084. bit_alloc_bits = alloc_table[j];
  1085. for(ch=0;ch<s->nb_channels;ch++) {
  1086. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1087. }
  1088. j += 1 << bit_alloc_bits;
  1089. }
  1090. for(i=bound;i<sblimit;i++) {
  1091. bit_alloc_bits = alloc_table[j];
  1092. v = get_bits(&s->gb, bit_alloc_bits);
  1093. bit_alloc[0][i] = v;
  1094. bit_alloc[1][i] = v;
  1095. j += 1 << bit_alloc_bits;
  1096. }
  1097. #ifdef DEBUG
  1098. {
  1099. for(ch=0;ch<s->nb_channels;ch++) {
  1100. for(i=0;i<sblimit;i++)
  1101. dprintf(s->avctx, " %d", bit_alloc[ch][i]);
  1102. dprintf(s->avctx, "\n");
  1103. }
  1104. }
  1105. #endif
  1106. /* scale codes */
  1107. for(i=0;i<sblimit;i++) {
  1108. for(ch=0;ch<s->nb_channels;ch++) {
  1109. if (bit_alloc[ch][i])
  1110. scale_code[ch][i] = get_bits(&s->gb, 2);
  1111. }
  1112. }
  1113. /* scale factors */
  1114. for(i=0;i<sblimit;i++) {
  1115. for(ch=0;ch<s->nb_channels;ch++) {
  1116. if (bit_alloc[ch][i]) {
  1117. sf = scale_factors[ch][i];
  1118. switch(scale_code[ch][i]) {
  1119. default:
  1120. case 0:
  1121. sf[0] = get_bits(&s->gb, 6);
  1122. sf[1] = get_bits(&s->gb, 6);
  1123. sf[2] = get_bits(&s->gb, 6);
  1124. break;
  1125. case 2:
  1126. sf[0] = get_bits(&s->gb, 6);
  1127. sf[1] = sf[0];
  1128. sf[2] = sf[0];
  1129. break;
  1130. case 1:
  1131. sf[0] = get_bits(&s->gb, 6);
  1132. sf[2] = get_bits(&s->gb, 6);
  1133. sf[1] = sf[0];
  1134. break;
  1135. case 3:
  1136. sf[0] = get_bits(&s->gb, 6);
  1137. sf[2] = get_bits(&s->gb, 6);
  1138. sf[1] = sf[2];
  1139. break;
  1140. }
  1141. }
  1142. }
  1143. }
  1144. #ifdef DEBUG
  1145. for(ch=0;ch<s->nb_channels;ch++) {
  1146. for(i=0;i<sblimit;i++) {
  1147. if (bit_alloc[ch][i]) {
  1148. sf = scale_factors[ch][i];
  1149. dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
  1150. } else {
  1151. dprintf(s->avctx, " -");
  1152. }
  1153. }
  1154. dprintf(s->avctx, "\n");
  1155. }
  1156. #endif
  1157. /* samples */
  1158. for(k=0;k<3;k++) {
  1159. for(l=0;l<12;l+=3) {
  1160. j = 0;
  1161. for(i=0;i<bound;i++) {
  1162. bit_alloc_bits = alloc_table[j];
  1163. for(ch=0;ch<s->nb_channels;ch++) {
  1164. b = bit_alloc[ch][i];
  1165. if (b) {
  1166. scale = scale_factors[ch][i][k];
  1167. qindex = alloc_table[j+b];
  1168. bits = ff_mpa_quant_bits[qindex];
  1169. if (bits < 0) {
  1170. /* 3 values at the same time */
  1171. v = get_bits(&s->gb, -bits);
  1172. steps = ff_mpa_quant_steps[qindex];
  1173. s->sb_samples[ch][k * 12 + l + 0][i] =
  1174. l2_unscale_group(steps, v % steps, scale);
  1175. v = v / steps;
  1176. s->sb_samples[ch][k * 12 + l + 1][i] =
  1177. l2_unscale_group(steps, v % steps, scale);
  1178. v = v / steps;
  1179. s->sb_samples[ch][k * 12 + l + 2][i] =
  1180. l2_unscale_group(steps, v, scale);
  1181. } else {
  1182. for(m=0;m<3;m++) {
  1183. v = get_bits(&s->gb, bits);
  1184. v = l1_unscale(bits - 1, v, scale);
  1185. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1186. }
  1187. }
  1188. } else {
  1189. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1190. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1191. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1192. }
  1193. }
  1194. /* next subband in alloc table */
  1195. j += 1 << bit_alloc_bits;
  1196. }
  1197. /* XXX: find a way to avoid this duplication of code */
  1198. for(i=bound;i<sblimit;i++) {
  1199. bit_alloc_bits = alloc_table[j];
  1200. b = bit_alloc[0][i];
  1201. if (b) {
  1202. int mant, scale0, scale1;
  1203. scale0 = scale_factors[0][i][k];
  1204. scale1 = scale_factors[1][i][k];
  1205. qindex = alloc_table[j+b];
  1206. bits = ff_mpa_quant_bits[qindex];
  1207. if (bits < 0) {
  1208. /* 3 values at the same time */
  1209. v = get_bits(&s->gb, -bits);
  1210. steps = ff_mpa_quant_steps[qindex];
  1211. mant = v % steps;
  1212. v = v / steps;
  1213. s->sb_samples[0][k * 12 + l + 0][i] =
  1214. l2_unscale_group(steps, mant, scale0);
  1215. s->sb_samples[1][k * 12 + l + 0][i] =
  1216. l2_unscale_group(steps, mant, scale1);
  1217. mant = v % steps;
  1218. v = v / steps;
  1219. s->sb_samples[0][k * 12 + l + 1][i] =
  1220. l2_unscale_group(steps, mant, scale0);
  1221. s->sb_samples[1][k * 12 + l + 1][i] =
  1222. l2_unscale_group(steps, mant, scale1);
  1223. s->sb_samples[0][k * 12 + l + 2][i] =
  1224. l2_unscale_group(steps, v, scale0);
  1225. s->sb_samples[1][k * 12 + l + 2][i] =
  1226. l2_unscale_group(steps, v, scale1);
  1227. } else {
  1228. for(m=0;m<3;m++) {
  1229. mant = get_bits(&s->gb, bits);
  1230. s->sb_samples[0][k * 12 + l + m][i] =
  1231. l1_unscale(bits - 1, mant, scale0);
  1232. s->sb_samples[1][k * 12 + l + m][i] =
  1233. l1_unscale(bits - 1, mant, scale1);
  1234. }
  1235. }
  1236. } else {
  1237. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1238. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1239. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1240. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1241. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1242. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1243. }
  1244. /* next subband in alloc table */
  1245. j += 1 << bit_alloc_bits;
  1246. }
  1247. /* fill remaining samples to zero */
  1248. for(i=sblimit;i<SBLIMIT;i++) {
  1249. for(ch=0;ch<s->nb_channels;ch++) {
  1250. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1251. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1252. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1253. }
  1254. }
  1255. }
  1256. }
  1257. return 3 * 12;
  1258. }
  1259. static inline void lsf_sf_expand(int *slen,
  1260. int sf, int n1, int n2, int n3)
  1261. {
  1262. if (n3) {
  1263. slen[3] = sf % n3;
  1264. sf /= n3;
  1265. } else {
  1266. slen[3] = 0;
  1267. }
  1268. if (n2) {
  1269. slen[2] = sf % n2;
  1270. sf /= n2;
  1271. } else {
  1272. slen[2] = 0;
  1273. }
  1274. slen[1] = sf % n1;
  1275. sf /= n1;
  1276. slen[0] = sf;
  1277. }
  1278. static void exponents_from_scale_factors(MPADecodeContext *s,
  1279. GranuleDef *g,
  1280. int16_t *exponents)
  1281. {
  1282. const uint8_t *bstab, *pretab;
  1283. int len, i, j, k, l, v0, shift, gain, gains[3];
  1284. int16_t *exp_ptr;
  1285. exp_ptr = exponents;
  1286. gain = g->global_gain - 210;
  1287. shift = g->scalefac_scale + 1;
  1288. bstab = band_size_long[s->sample_rate_index];
  1289. pretab = mpa_pretab[g->preflag];
  1290. for(i=0;i<g->long_end;i++) {
  1291. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1292. len = bstab[i];
  1293. for(j=len;j>0;j--)
  1294. *exp_ptr++ = v0;
  1295. }
  1296. if (g->short_start < 13) {
  1297. bstab = band_size_short[s->sample_rate_index];
  1298. gains[0] = gain - (g->subblock_gain[0] << 3);
  1299. gains[1] = gain - (g->subblock_gain[1] << 3);
  1300. gains[2] = gain - (g->subblock_gain[2] << 3);
  1301. k = g->long_end;
  1302. for(i=g->short_start;i<13;i++) {
  1303. len = bstab[i];
  1304. for(l=0;l<3;l++) {
  1305. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1306. for(j=len;j>0;j--)
  1307. *exp_ptr++ = v0;
  1308. }
  1309. }
  1310. }
  1311. }
  1312. /* handle n = 0 too */
  1313. static inline int get_bitsz(GetBitContext *s, int n)
  1314. {
  1315. if (n == 0)
  1316. return 0;
  1317. else
  1318. return get_bits(s, n);
  1319. }
  1320. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1321. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1322. s->gb= s->in_gb;
  1323. s->in_gb.buffer=NULL;
  1324. assert((get_bits_count(&s->gb) & 7) == 0);
  1325. skip_bits_long(&s->gb, *pos - *end_pos);
  1326. *end_pos2=
  1327. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1328. *pos= get_bits_count(&s->gb);
  1329. }
  1330. }
  1331. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1332. int16_t *exponents, int end_pos2)
  1333. {
  1334. int s_index;
  1335. int i;
  1336. int last_pos, bits_left;
  1337. VLC *vlc;
  1338. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1339. /* low frequencies (called big values) */
  1340. s_index = 0;
  1341. for(i=0;i<3;i++) {
  1342. int j, k, l, linbits;
  1343. j = g->region_size[i];
  1344. if (j == 0)
  1345. continue;
  1346. /* select vlc table */
  1347. k = g->table_select[i];
  1348. l = mpa_huff_data[k][0];
  1349. linbits = mpa_huff_data[k][1];
  1350. vlc = &huff_vlc[l];
  1351. if(!l){
  1352. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1353. s_index += 2*j;
  1354. continue;
  1355. }
  1356. /* read huffcode and compute each couple */
  1357. for(;j>0;j--) {
  1358. int exponent, x, y, v;
  1359. int pos= get_bits_count(&s->gb);
  1360. if (pos >= end_pos){
  1361. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1362. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1363. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1364. if(pos >= end_pos)
  1365. break;
  1366. }
  1367. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1368. if(!y){
  1369. g->sb_hybrid[s_index ] =
  1370. g->sb_hybrid[s_index+1] = 0;
  1371. s_index += 2;
  1372. continue;
  1373. }
  1374. exponent= exponents[s_index];
  1375. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1376. i, g->region_size[i] - j, x, y, exponent);
  1377. if(y&16){
  1378. x = y >> 5;
  1379. y = y & 0x0f;
  1380. if (x < 15){
  1381. v = expval_table[ exponent ][ x ];
  1382. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1383. }else{
  1384. x += get_bitsz(&s->gb, linbits);
  1385. v = l3_unscale(x, exponent);
  1386. }
  1387. if (get_bits1(&s->gb))
  1388. v = -v;
  1389. g->sb_hybrid[s_index] = v;
  1390. if (y < 15){
  1391. v = expval_table[ exponent ][ y ];
  1392. }else{
  1393. y += get_bitsz(&s->gb, linbits);
  1394. v = l3_unscale(y, exponent);
  1395. }
  1396. if (get_bits1(&s->gb))
  1397. v = -v;
  1398. g->sb_hybrid[s_index+1] = v;
  1399. }else{
  1400. x = y >> 5;
  1401. y = y & 0x0f;
  1402. x += y;
  1403. if (x < 15){
  1404. v = expval_table[ exponent ][ x ];
  1405. }else{
  1406. x += get_bitsz(&s->gb, linbits);
  1407. v = l3_unscale(x, exponent);
  1408. }
  1409. if (get_bits1(&s->gb))
  1410. v = -v;
  1411. g->sb_hybrid[s_index+!!y] = v;
  1412. g->sb_hybrid[s_index+ !y] = 0;
  1413. }
  1414. s_index+=2;
  1415. }
  1416. }
  1417. /* high frequencies */
  1418. vlc = &huff_quad_vlc[g->count1table_select];
  1419. last_pos=0;
  1420. while (s_index <= 572) {
  1421. int pos, code;
  1422. pos = get_bits_count(&s->gb);
  1423. if (pos >= end_pos) {
  1424. if (pos > end_pos2 && last_pos){
  1425. /* some encoders generate an incorrect size for this
  1426. part. We must go back into the data */
  1427. s_index -= 4;
  1428. skip_bits_long(&s->gb, last_pos - pos);
  1429. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1430. if(s->error_resilience >= FF_ER_COMPLIANT)
  1431. s_index=0;
  1432. break;
  1433. }
  1434. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1435. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1436. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1437. if(pos >= end_pos)
  1438. break;
  1439. }
  1440. last_pos= pos;
  1441. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1442. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1443. g->sb_hybrid[s_index+0]=
  1444. g->sb_hybrid[s_index+1]=
  1445. g->sb_hybrid[s_index+2]=
  1446. g->sb_hybrid[s_index+3]= 0;
  1447. while(code){
  1448. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1449. int v;
  1450. int pos= s_index+idxtab[code];
  1451. code ^= 8>>idxtab[code];
  1452. v = exp_table[ exponents[pos] ];
  1453. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1454. if(get_bits1(&s->gb))
  1455. v = -v;
  1456. g->sb_hybrid[pos] = v;
  1457. }
  1458. s_index+=4;
  1459. }
  1460. /* skip extension bits */
  1461. bits_left = end_pos2 - get_bits_count(&s->gb);
  1462. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1463. if (bits_left < 0/* || bits_left > 500*/) {
  1464. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1465. s_index=0;
  1466. }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
  1467. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1468. s_index=0;
  1469. }
  1470. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1471. skip_bits_long(&s->gb, bits_left);
  1472. i= get_bits_count(&s->gb);
  1473. switch_buffer(s, &i, &end_pos, &end_pos2);
  1474. return 0;
  1475. }
  1476. /* Reorder short blocks from bitstream order to interleaved order. It
  1477. would be faster to do it in parsing, but the code would be far more
  1478. complicated */
  1479. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1480. {
  1481. int i, j, len;
  1482. int32_t *ptr, *dst, *ptr1;
  1483. int32_t tmp[576];
  1484. if (g->block_type != 2)
  1485. return;
  1486. if (g->switch_point) {
  1487. if (s->sample_rate_index != 8) {
  1488. ptr = g->sb_hybrid + 36;
  1489. } else {
  1490. ptr = g->sb_hybrid + 48;
  1491. }
  1492. } else {
  1493. ptr = g->sb_hybrid;
  1494. }
  1495. for(i=g->short_start;i<13;i++) {
  1496. len = band_size_short[s->sample_rate_index][i];
  1497. ptr1 = ptr;
  1498. dst = tmp;
  1499. for(j=len;j>0;j--) {
  1500. *dst++ = ptr[0*len];
  1501. *dst++ = ptr[1*len];
  1502. *dst++ = ptr[2*len];
  1503. ptr++;
  1504. }
  1505. ptr+=2*len;
  1506. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1507. }
  1508. }
  1509. #define ISQRT2 FIXR(0.70710678118654752440)
  1510. static void compute_stereo(MPADecodeContext *s,
  1511. GranuleDef *g0, GranuleDef *g1)
  1512. {
  1513. int i, j, k, l;
  1514. int32_t v1, v2;
  1515. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1516. int32_t (*is_tab)[16];
  1517. int32_t *tab0, *tab1;
  1518. int non_zero_found_short[3];
  1519. /* intensity stereo */
  1520. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1521. if (!s->lsf) {
  1522. is_tab = is_table;
  1523. sf_max = 7;
  1524. } else {
  1525. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1526. sf_max = 16;
  1527. }
  1528. tab0 = g0->sb_hybrid + 576;
  1529. tab1 = g1->sb_hybrid + 576;
  1530. non_zero_found_short[0] = 0;
  1531. non_zero_found_short[1] = 0;
  1532. non_zero_found_short[2] = 0;
  1533. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1534. for(i = 12;i >= g1->short_start;i--) {
  1535. /* for last band, use previous scale factor */
  1536. if (i != 11)
  1537. k -= 3;
  1538. len = band_size_short[s->sample_rate_index][i];
  1539. for(l=2;l>=0;l--) {
  1540. tab0 -= len;
  1541. tab1 -= len;
  1542. if (!non_zero_found_short[l]) {
  1543. /* test if non zero band. if so, stop doing i-stereo */
  1544. for(j=0;j<len;j++) {
  1545. if (tab1[j] != 0) {
  1546. non_zero_found_short[l] = 1;
  1547. goto found1;
  1548. }
  1549. }
  1550. sf = g1->scale_factors[k + l];
  1551. if (sf >= sf_max)
  1552. goto found1;
  1553. v1 = is_tab[0][sf];
  1554. v2 = is_tab[1][sf];
  1555. for(j=0;j<len;j++) {
  1556. tmp0 = tab0[j];
  1557. tab0[j] = MULL(tmp0, v1);
  1558. tab1[j] = MULL(tmp0, v2);
  1559. }
  1560. } else {
  1561. found1:
  1562. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1563. /* lower part of the spectrum : do ms stereo
  1564. if enabled */
  1565. for(j=0;j<len;j++) {
  1566. tmp0 = tab0[j];
  1567. tmp1 = tab1[j];
  1568. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1569. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1570. }
  1571. }
  1572. }
  1573. }
  1574. }
  1575. non_zero_found = non_zero_found_short[0] |
  1576. non_zero_found_short[1] |
  1577. non_zero_found_short[2];
  1578. for(i = g1->long_end - 1;i >= 0;i--) {
  1579. len = band_size_long[s->sample_rate_index][i];
  1580. tab0 -= len;
  1581. tab1 -= len;
  1582. /* test if non zero band. if so, stop doing i-stereo */
  1583. if (!non_zero_found) {
  1584. for(j=0;j<len;j++) {
  1585. if (tab1[j] != 0) {
  1586. non_zero_found = 1;
  1587. goto found2;
  1588. }
  1589. }
  1590. /* for last band, use previous scale factor */
  1591. k = (i == 21) ? 20 : i;
  1592. sf = g1->scale_factors[k];
  1593. if (sf >= sf_max)
  1594. goto found2;
  1595. v1 = is_tab[0][sf];
  1596. v2 = is_tab[1][sf];
  1597. for(j=0;j<len;j++) {
  1598. tmp0 = tab0[j];
  1599. tab0[j] = MULL(tmp0, v1);
  1600. tab1[j] = MULL(tmp0, v2);
  1601. }
  1602. } else {
  1603. found2:
  1604. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1605. /* lower part of the spectrum : do ms stereo
  1606. if enabled */
  1607. for(j=0;j<len;j++) {
  1608. tmp0 = tab0[j];
  1609. tmp1 = tab1[j];
  1610. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1611. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1612. }
  1613. }
  1614. }
  1615. }
  1616. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1617. /* ms stereo ONLY */
  1618. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1619. global gain */
  1620. tab0 = g0->sb_hybrid;
  1621. tab1 = g1->sb_hybrid;
  1622. for(i=0;i<576;i++) {
  1623. tmp0 = tab0[i];
  1624. tmp1 = tab1[i];
  1625. tab0[i] = tmp0 + tmp1;
  1626. tab1[i] = tmp0 - tmp1;
  1627. }
  1628. }
  1629. }
  1630. static void compute_antialias_integer(MPADecodeContext *s,
  1631. GranuleDef *g)
  1632. {
  1633. int32_t *ptr, *csa;
  1634. int n, i;
  1635. /* we antialias only "long" bands */
  1636. if (g->block_type == 2) {
  1637. if (!g->switch_point)
  1638. return;
  1639. /* XXX: check this for 8000Hz case */
  1640. n = 1;
  1641. } else {
  1642. n = SBLIMIT - 1;
  1643. }
  1644. ptr = g->sb_hybrid + 18;
  1645. for(i = n;i > 0;i--) {
  1646. int tmp0, tmp1, tmp2;
  1647. csa = &csa_table[0][0];
  1648. #define INT_AA(j) \
  1649. tmp0 = ptr[-1-j];\
  1650. tmp1 = ptr[ j];\
  1651. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1652. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1653. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1654. INT_AA(0)
  1655. INT_AA(1)
  1656. INT_AA(2)
  1657. INT_AA(3)
  1658. INT_AA(4)
  1659. INT_AA(5)
  1660. INT_AA(6)
  1661. INT_AA(7)
  1662. ptr += 18;
  1663. }
  1664. }
  1665. static void compute_antialias_float(MPADecodeContext *s,
  1666. GranuleDef *g)
  1667. {
  1668. int32_t *ptr;
  1669. int n, i;
  1670. /* we antialias only "long" bands */
  1671. if (g->block_type == 2) {
  1672. if (!g->switch_point)
  1673. return;
  1674. /* XXX: check this for 8000Hz case */
  1675. n = 1;
  1676. } else {
  1677. n = SBLIMIT - 1;
  1678. }
  1679. ptr = g->sb_hybrid + 18;
  1680. for(i = n;i > 0;i--) {
  1681. float tmp0, tmp1;
  1682. float *csa = &csa_table_float[0][0];
  1683. #define FLOAT_AA(j)\
  1684. tmp0= ptr[-1-j];\
  1685. tmp1= ptr[ j];\
  1686. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1687. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1688. FLOAT_AA(0)
  1689. FLOAT_AA(1)
  1690. FLOAT_AA(2)
  1691. FLOAT_AA(3)
  1692. FLOAT_AA(4)
  1693. FLOAT_AA(5)
  1694. FLOAT_AA(6)
  1695. FLOAT_AA(7)
  1696. ptr += 18;
  1697. }
  1698. }
  1699. static void compute_imdct(MPADecodeContext *s,
  1700. GranuleDef *g,
  1701. int32_t *sb_samples,
  1702. int32_t *mdct_buf)
  1703. {
  1704. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1705. int32_t out2[12];
  1706. int i, j, mdct_long_end, v, sblimit;
  1707. /* find last non zero block */
  1708. ptr = g->sb_hybrid + 576;
  1709. ptr1 = g->sb_hybrid + 2 * 18;
  1710. while (ptr >= ptr1) {
  1711. ptr -= 6;
  1712. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1713. if (v != 0)
  1714. break;
  1715. }
  1716. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1717. if (g->block_type == 2) {
  1718. /* XXX: check for 8000 Hz */
  1719. if (g->switch_point)
  1720. mdct_long_end = 2;
  1721. else
  1722. mdct_long_end = 0;
  1723. } else {
  1724. mdct_long_end = sblimit;
  1725. }
  1726. buf = mdct_buf;
  1727. ptr = g->sb_hybrid;
  1728. for(j=0;j<mdct_long_end;j++) {
  1729. /* apply window & overlap with previous buffer */
  1730. out_ptr = sb_samples + j;
  1731. /* select window */
  1732. if (g->switch_point && j < 2)
  1733. win1 = mdct_win[0];
  1734. else
  1735. win1 = mdct_win[g->block_type];
  1736. /* select frequency inversion */
  1737. win = win1 + ((4 * 36) & -(j & 1));
  1738. imdct36(out_ptr, buf, ptr, win);
  1739. out_ptr += 18*SBLIMIT;
  1740. ptr += 18;
  1741. buf += 18;
  1742. }
  1743. for(j=mdct_long_end;j<sblimit;j++) {
  1744. /* select frequency inversion */
  1745. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1746. out_ptr = sb_samples + j;
  1747. for(i=0; i<6; i++){
  1748. *out_ptr = buf[i];
  1749. out_ptr += SBLIMIT;
  1750. }
  1751. imdct12(out2, ptr + 0);
  1752. for(i=0;i<6;i++) {
  1753. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1754. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1755. out_ptr += SBLIMIT;
  1756. }
  1757. imdct12(out2, ptr + 1);
  1758. for(i=0;i<6;i++) {
  1759. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1760. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1761. out_ptr += SBLIMIT;
  1762. }
  1763. imdct12(out2, ptr + 2);
  1764. for(i=0;i<6;i++) {
  1765. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1766. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1767. buf[i + 6*2] = 0;
  1768. }
  1769. ptr += 18;
  1770. buf += 18;
  1771. }
  1772. /* zero bands */
  1773. for(j=sblimit;j<SBLIMIT;j++) {
  1774. /* overlap */
  1775. out_ptr = sb_samples + j;
  1776. for(i=0;i<18;i++) {
  1777. *out_ptr = buf[i];
  1778. buf[i] = 0;
  1779. out_ptr += SBLIMIT;
  1780. }
  1781. buf += 18;
  1782. }
  1783. }
  1784. #if defined(DEBUG)
  1785. void sample_dump(int fnum, int32_t *tab, int n)
  1786. {
  1787. static FILE *files[16], *f;
  1788. char buf[512];
  1789. int i;
  1790. int32_t v;
  1791. f = files[fnum];
  1792. if (!f) {
  1793. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1794. fnum,
  1795. #ifdef USE_HIGHPRECISION
  1796. "hp"
  1797. #else
  1798. "lp"
  1799. #endif
  1800. );
  1801. f = fopen(buf, "w");
  1802. if (!f)
  1803. return;
  1804. files[fnum] = f;
  1805. }
  1806. if (fnum == 0) {
  1807. static int pos = 0;
  1808. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1809. for(i=0;i<n;i++) {
  1810. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1811. if ((i % 18) == 17)
  1812. av_log(NULL, AV_LOG_DEBUG, "\n");
  1813. }
  1814. pos += n;
  1815. }
  1816. for(i=0;i<n;i++) {
  1817. /* normalize to 23 frac bits */
  1818. v = tab[i] << (23 - FRAC_BITS);
  1819. fwrite(&v, 1, sizeof(int32_t), f);
  1820. }
  1821. }
  1822. #endif
  1823. /* main layer3 decoding function */
  1824. static int mp_decode_layer3(MPADecodeContext *s)
  1825. {
  1826. int nb_granules, main_data_begin, private_bits;
  1827. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1828. GranuleDef granules[2][2], *g;
  1829. int16_t exponents[576];
  1830. /* read side info */
  1831. if (s->lsf) {
  1832. main_data_begin = get_bits(&s->gb, 8);
  1833. private_bits = get_bits(&s->gb, s->nb_channels);
  1834. nb_granules = 1;
  1835. } else {
  1836. main_data_begin = get_bits(&s->gb, 9);
  1837. if (s->nb_channels == 2)
  1838. private_bits = get_bits(&s->gb, 3);
  1839. else
  1840. private_bits = get_bits(&s->gb, 5);
  1841. nb_granules = 2;
  1842. for(ch=0;ch<s->nb_channels;ch++) {
  1843. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1844. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1845. }
  1846. }
  1847. for(gr=0;gr<nb_granules;gr++) {
  1848. for(ch=0;ch<s->nb_channels;ch++) {
  1849. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1850. g = &granules[ch][gr];
  1851. g->part2_3_length = get_bits(&s->gb, 12);
  1852. g->big_values = get_bits(&s->gb, 9);
  1853. if(g->big_values > 288){
  1854. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1855. return -1;
  1856. }
  1857. g->global_gain = get_bits(&s->gb, 8);
  1858. /* if MS stereo only is selected, we precompute the
  1859. 1/sqrt(2) renormalization factor */
  1860. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1861. MODE_EXT_MS_STEREO)
  1862. g->global_gain -= 2;
  1863. if (s->lsf)
  1864. g->scalefac_compress = get_bits(&s->gb, 9);
  1865. else
  1866. g->scalefac_compress = get_bits(&s->gb, 4);
  1867. blocksplit_flag = get_bits1(&s->gb);
  1868. if (blocksplit_flag) {
  1869. g->block_type = get_bits(&s->gb, 2);
  1870. if (g->block_type == 0){
  1871. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1872. return -1;
  1873. }
  1874. g->switch_point = get_bits1(&s->gb);
  1875. for(i=0;i<2;i++)
  1876. g->table_select[i] = get_bits(&s->gb, 5);
  1877. for(i=0;i<3;i++)
  1878. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1879. ff_init_short_region(s, g);
  1880. } else {
  1881. int region_address1, region_address2;
  1882. g->block_type = 0;
  1883. g->switch_point = 0;
  1884. for(i=0;i<3;i++)
  1885. g->table_select[i] = get_bits(&s->gb, 5);
  1886. /* compute huffman coded region sizes */
  1887. region_address1 = get_bits(&s->gb, 4);
  1888. region_address2 = get_bits(&s->gb, 3);
  1889. dprintf(s->avctx, "region1=%d region2=%d\n",
  1890. region_address1, region_address2);
  1891. ff_init_long_region(s, g, region_address1, region_address2);
  1892. }
  1893. ff_region_offset2size(g);
  1894. ff_compute_band_indexes(s, g);
  1895. g->preflag = 0;
  1896. if (!s->lsf)
  1897. g->preflag = get_bits1(&s->gb);
  1898. g->scalefac_scale = get_bits1(&s->gb);
  1899. g->count1table_select = get_bits1(&s->gb);
  1900. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1901. g->block_type, g->switch_point);
  1902. }
  1903. }
  1904. if (!s->adu_mode) {
  1905. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1906. assert((get_bits_count(&s->gb) & 7) == 0);
  1907. /* now we get bits from the main_data_begin offset */
  1908. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1909. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1910. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1911. s->in_gb= s->gb;
  1912. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1913. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1914. }
  1915. for(gr=0;gr<nb_granules;gr++) {
  1916. for(ch=0;ch<s->nb_channels;ch++) {
  1917. g = &granules[ch][gr];
  1918. if(get_bits_count(&s->gb)<0){
  1919. av_log(s->avctx, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1920. main_data_begin, s->last_buf_size, gr);
  1921. skip_bits_long(&s->gb, g->part2_3_length);
  1922. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1923. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1924. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1925. s->gb= s->in_gb;
  1926. s->in_gb.buffer=NULL;
  1927. }
  1928. continue;
  1929. }
  1930. bits_pos = get_bits_count(&s->gb);
  1931. if (!s->lsf) {
  1932. uint8_t *sc;
  1933. int slen, slen1, slen2;
  1934. /* MPEG1 scale factors */
  1935. slen1 = slen_table[0][g->scalefac_compress];
  1936. slen2 = slen_table[1][g->scalefac_compress];
  1937. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1938. if (g->block_type == 2) {
  1939. n = g->switch_point ? 17 : 18;
  1940. j = 0;
  1941. if(slen1){
  1942. for(i=0;i<n;i++)
  1943. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1944. }else{
  1945. for(i=0;i<n;i++)
  1946. g->scale_factors[j++] = 0;
  1947. }
  1948. if(slen2){
  1949. for(i=0;i<18;i++)
  1950. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1951. for(i=0;i<3;i++)
  1952. g->scale_factors[j++] = 0;
  1953. }else{
  1954. for(i=0;i<21;i++)
  1955. g->scale_factors[j++] = 0;
  1956. }
  1957. } else {
  1958. sc = granules[ch][0].scale_factors;
  1959. j = 0;
  1960. for(k=0;k<4;k++) {
  1961. n = (k == 0 ? 6 : 5);
  1962. if ((g->scfsi & (0x8 >> k)) == 0) {
  1963. slen = (k < 2) ? slen1 : slen2;
  1964. if(slen){
  1965. for(i=0;i<n;i++)
  1966. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1967. }else{
  1968. for(i=0;i<n;i++)
  1969. g->scale_factors[j++] = 0;
  1970. }
  1971. } else {
  1972. /* simply copy from last granule */
  1973. for(i=0;i<n;i++) {
  1974. g->scale_factors[j] = sc[j];
  1975. j++;
  1976. }
  1977. }
  1978. }
  1979. g->scale_factors[j++] = 0;
  1980. }
  1981. #if defined(DEBUG)
  1982. {
  1983. dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
  1984. g->scfsi, gr, ch);
  1985. for(i=0;i<j;i++)
  1986. dprintf(s->avctx, " %d", g->scale_factors[i]);
  1987. dprintf(s->avctx, "\n");
  1988. }
  1989. #endif
  1990. } else {
  1991. int tindex, tindex2, slen[4], sl, sf;
  1992. /* LSF scale factors */
  1993. if (g->block_type == 2) {
  1994. tindex = g->switch_point ? 2 : 1;
  1995. } else {
  1996. tindex = 0;
  1997. }
  1998. sf = g->scalefac_compress;
  1999. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2000. /* intensity stereo case */
  2001. sf >>= 1;
  2002. if (sf < 180) {
  2003. lsf_sf_expand(slen, sf, 6, 6, 0);
  2004. tindex2 = 3;
  2005. } else if (sf < 244) {
  2006. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2007. tindex2 = 4;
  2008. } else {
  2009. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2010. tindex2 = 5;
  2011. }
  2012. } else {
  2013. /* normal case */
  2014. if (sf < 400) {
  2015. lsf_sf_expand(slen, sf, 5, 4, 4);
  2016. tindex2 = 0;
  2017. } else if (sf < 500) {
  2018. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2019. tindex2 = 1;
  2020. } else {
  2021. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2022. tindex2 = 2;
  2023. g->preflag = 1;
  2024. }
  2025. }
  2026. j = 0;
  2027. for(k=0;k<4;k++) {
  2028. n = lsf_nsf_table[tindex2][tindex][k];
  2029. sl = slen[k];
  2030. if(sl){
  2031. for(i=0;i<n;i++)
  2032. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2033. }else{
  2034. for(i=0;i<n;i++)
  2035. g->scale_factors[j++] = 0;
  2036. }
  2037. }
  2038. /* XXX: should compute exact size */
  2039. for(;j<40;j++)
  2040. g->scale_factors[j] = 0;
  2041. #if defined(DEBUG)
  2042. {
  2043. dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
  2044. gr, ch);
  2045. for(i=0;i<40;i++)
  2046. dprintf(s->avctx, " %d", g->scale_factors[i]);
  2047. dprintf(s->avctx, "\n");
  2048. }
  2049. #endif
  2050. }
  2051. exponents_from_scale_factors(s, g, exponents);
  2052. /* read Huffman coded residue */
  2053. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  2054. #if defined(DEBUG)
  2055. sample_dump(0, g->sb_hybrid, 576);
  2056. #endif
  2057. } /* ch */
  2058. if (s->nb_channels == 2)
  2059. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2060. for(ch=0;ch<s->nb_channels;ch++) {
  2061. g = &granules[ch][gr];
  2062. reorder_block(s, g);
  2063. #if defined(DEBUG)
  2064. sample_dump(0, g->sb_hybrid, 576);
  2065. #endif
  2066. s->compute_antialias(s, g);
  2067. #if defined(DEBUG)
  2068. sample_dump(1, g->sb_hybrid, 576);
  2069. #endif
  2070. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2071. #if defined(DEBUG)
  2072. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2073. #endif
  2074. }
  2075. } /* gr */
  2076. if(get_bits_count(&s->gb)<0)
  2077. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  2078. return nb_granules * 18;
  2079. }
  2080. static int mp_decode_frame(MPADecodeContext *s,
  2081. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2082. {
  2083. int i, nb_frames, ch;
  2084. OUT_INT *samples_ptr;
  2085. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2086. /* skip error protection field */
  2087. if (s->error_protection)
  2088. skip_bits(&s->gb, 16);
  2089. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  2090. switch(s->layer) {
  2091. case 1:
  2092. s->avctx->frame_size = 384;
  2093. nb_frames = mp_decode_layer1(s);
  2094. break;
  2095. case 2:
  2096. s->avctx->frame_size = 1152;
  2097. nb_frames = mp_decode_layer2(s);
  2098. break;
  2099. case 3:
  2100. s->avctx->frame_size = s->lsf ? 576 : 1152;
  2101. default:
  2102. nb_frames = mp_decode_layer3(s);
  2103. s->last_buf_size=0;
  2104. if(s->in_gb.buffer){
  2105. align_get_bits(&s->gb);
  2106. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2107. if(i >= 0 && i <= BACKSTEP_SIZE){
  2108. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2109. s->last_buf_size=i;
  2110. }else
  2111. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2112. s->gb= s->in_gb;
  2113. s->in_gb.buffer= NULL;
  2114. }
  2115. align_get_bits(&s->gb);
  2116. assert((get_bits_count(&s->gb) & 7) == 0);
  2117. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2118. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2119. av_log(s->avctx, AV_LOG_WARNING, "invalid new backstep %d\n", i);
  2120. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2121. }
  2122. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2123. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2124. s->last_buf_size += i;
  2125. break;
  2126. }
  2127. #if defined(DEBUG)
  2128. for(i=0;i<nb_frames;i++) {
  2129. for(ch=0;ch<s->nb_channels;ch++) {
  2130. int j;
  2131. dprintf(s->avctx, "%d-%d:", i, ch);
  2132. for(j=0;j<SBLIMIT;j++)
  2133. dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2134. dprintf(s->avctx, "\n");
  2135. }
  2136. }
  2137. #endif
  2138. /* apply the synthesis filter */
  2139. for(ch=0;ch<s->nb_channels;ch++) {
  2140. samples_ptr = samples + ch;
  2141. for(i=0;i<nb_frames;i++) {
  2142. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2143. window, &s->dither_state,
  2144. samples_ptr, s->nb_channels,
  2145. s->sb_samples[ch][i]);
  2146. samples_ptr += 32 * s->nb_channels;
  2147. }
  2148. }
  2149. #ifdef DEBUG
  2150. s->frame_count++;
  2151. #endif
  2152. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2153. }
  2154. static int decode_frame(AVCodecContext * avctx,
  2155. void *data, int *data_size,
  2156. const uint8_t * buf, int buf_size)
  2157. {
  2158. MPADecodeContext *s = avctx->priv_data;
  2159. uint32_t header;
  2160. int out_size;
  2161. OUT_INT *out_samples = data;
  2162. retry:
  2163. if(buf_size < HEADER_SIZE)
  2164. return -1;
  2165. header = AV_RB32(buf);
  2166. if(ff_mpa_check_header(header) < 0){
  2167. buf++;
  2168. // buf_size--;
  2169. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2170. goto retry;
  2171. }
  2172. if (ff_mpegaudio_decode_header(s, header) == 1) {
  2173. /* free format: prepare to compute frame size */
  2174. s->frame_size = -1;
  2175. return -1;
  2176. }
  2177. /* update codec info */
  2178. avctx->channels = s->nb_channels;
  2179. avctx->bit_rate = s->bit_rate;
  2180. avctx->sub_id = s->layer;
  2181. if(s->frame_size<=0 || s->frame_size > buf_size){
  2182. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2183. return -1;
  2184. }else if(s->frame_size < buf_size){
  2185. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2186. buf_size= s->frame_size;
  2187. }
  2188. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2189. if(out_size>=0){
  2190. *data_size = out_size;
  2191. avctx->sample_rate = s->sample_rate;
  2192. //FIXME maybe move the other codec info stuff from above here too
  2193. }else
  2194. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2195. s->frame_size = 0;
  2196. return buf_size;
  2197. }
  2198. static void flush(AVCodecContext *avctx){
  2199. MPADecodeContext *s = avctx->priv_data;
  2200. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2201. s->last_buf_size= 0;
  2202. }
  2203. #ifdef CONFIG_MP3ADU_DECODER
  2204. static int decode_frame_adu(AVCodecContext * avctx,
  2205. void *data, int *data_size,
  2206. const uint8_t * buf, int buf_size)
  2207. {
  2208. MPADecodeContext *s = avctx->priv_data;
  2209. uint32_t header;
  2210. int len, out_size;
  2211. OUT_INT *out_samples = data;
  2212. len = buf_size;
  2213. // Discard too short frames
  2214. if (buf_size < HEADER_SIZE) {
  2215. *data_size = 0;
  2216. return buf_size;
  2217. }
  2218. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2219. len = MPA_MAX_CODED_FRAME_SIZE;
  2220. // Get header and restore sync word
  2221. header = AV_RB32(buf) | 0xffe00000;
  2222. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2223. *data_size = 0;
  2224. return buf_size;
  2225. }
  2226. ff_mpegaudio_decode_header(s, header);
  2227. /* update codec info */
  2228. avctx->sample_rate = s->sample_rate;
  2229. avctx->channels = s->nb_channels;
  2230. avctx->bit_rate = s->bit_rate;
  2231. avctx->sub_id = s->layer;
  2232. s->frame_size = len;
  2233. if (avctx->parse_only) {
  2234. out_size = buf_size;
  2235. } else {
  2236. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2237. }
  2238. *data_size = out_size;
  2239. return buf_size;
  2240. }
  2241. #endif /* CONFIG_MP3ADU_DECODER */
  2242. #ifdef CONFIG_MP3ON4_DECODER
  2243. /**
  2244. * Context for MP3On4 decoder
  2245. */
  2246. typedef struct MP3On4DecodeContext {
  2247. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2248. int syncword; ///< syncword patch
  2249. const uint8_t *coff; ///< channels offsets in output buffer
  2250. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2251. } MP3On4DecodeContext;
  2252. #include "mpeg4audio.h"
  2253. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2254. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2255. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2256. static const uint8_t chan_offset[8][5] = {
  2257. {0},
  2258. {0}, // C
  2259. {0}, // FLR
  2260. {2,0}, // C FLR
  2261. {2,0,3}, // C FLR BS
  2262. {4,0,2}, // C FLR BLRS
  2263. {4,0,2,5}, // C FLR BLRS LFE
  2264. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2265. };
  2266. static int decode_init_mp3on4(AVCodecContext * avctx)
  2267. {
  2268. MP3On4DecodeContext *s = avctx->priv_data;
  2269. MPEG4AudioConfig cfg;
  2270. int i;
  2271. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2272. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2273. return -1;
  2274. }
  2275. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2276. if (!cfg.chan_config || cfg.chan_config > 7) {
  2277. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2278. return -1;
  2279. }
  2280. s->frames = mp3Frames[cfg.chan_config];
  2281. s->coff = chan_offset[cfg.chan_config];
  2282. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2283. if (cfg.sample_rate < 16000)
  2284. s->syncword = 0xffe00000;
  2285. else
  2286. s->syncword = 0xfff00000;
  2287. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2288. * We replace avctx->priv_data with the context of the first decoder so that
  2289. * decode_init() does not have to be changed.
  2290. * Other decoders will be initialized here copying data from the first context
  2291. */
  2292. // Allocate zeroed memory for the first decoder context
  2293. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2294. // Put decoder context in place to make init_decode() happy
  2295. avctx->priv_data = s->mp3decctx[0];
  2296. decode_init(avctx);
  2297. // Restore mp3on4 context pointer
  2298. avctx->priv_data = s;
  2299. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2300. /* Create a separate codec/context for each frame (first is already ok).
  2301. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2302. */
  2303. for (i = 1; i < s->frames; i++) {
  2304. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2305. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2306. s->mp3decctx[i]->adu_mode = 1;
  2307. s->mp3decctx[i]->avctx = avctx;
  2308. }
  2309. return 0;
  2310. }
  2311. static int decode_close_mp3on4(AVCodecContext * avctx)
  2312. {
  2313. MP3On4DecodeContext *s = avctx->priv_data;
  2314. int i;
  2315. for (i = 0; i < s->frames; i++)
  2316. if (s->mp3decctx[i])
  2317. av_free(s->mp3decctx[i]);
  2318. return 0;
  2319. }
  2320. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2321. void *data, int *data_size,
  2322. const uint8_t * buf, int buf_size)
  2323. {
  2324. MP3On4DecodeContext *s = avctx->priv_data;
  2325. MPADecodeContext *m;
  2326. int fsize, len = buf_size, out_size = 0;
  2327. uint32_t header;
  2328. OUT_INT *out_samples = data;
  2329. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2330. OUT_INT *outptr, *bp;
  2331. int fr, j, n;
  2332. *data_size = 0;
  2333. // Discard too short frames
  2334. if (buf_size < HEADER_SIZE)
  2335. return -1;
  2336. // If only one decoder interleave is not needed
  2337. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2338. avctx->bit_rate = 0;
  2339. for (fr = 0; fr < s->frames; fr++) {
  2340. fsize = AV_RB16(buf) >> 4;
  2341. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2342. m = s->mp3decctx[fr];
  2343. assert (m != NULL);
  2344. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2345. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2346. break;
  2347. ff_mpegaudio_decode_header(m, header);
  2348. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2349. buf += fsize;
  2350. len -= fsize;
  2351. if(s->frames > 1) {
  2352. n = m->avctx->frame_size*m->nb_channels;
  2353. /* interleave output data */
  2354. bp = out_samples + s->coff[fr];
  2355. if(m->nb_channels == 1) {
  2356. for(j = 0; j < n; j++) {
  2357. *bp = decoded_buf[j];
  2358. bp += avctx->channels;
  2359. }
  2360. } else {
  2361. for(j = 0; j < n; j++) {
  2362. bp[0] = decoded_buf[j++];
  2363. bp[1] = decoded_buf[j];
  2364. bp += avctx->channels;
  2365. }
  2366. }
  2367. }
  2368. avctx->bit_rate += m->bit_rate;
  2369. }
  2370. /* update codec info */
  2371. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2372. *data_size = out_size;
  2373. return buf_size;
  2374. }
  2375. #endif /* CONFIG_MP3ON4_DECODER */
  2376. #ifdef CONFIG_MP2_DECODER
  2377. AVCodec mp2_decoder =
  2378. {
  2379. "mp2",
  2380. CODEC_TYPE_AUDIO,
  2381. CODEC_ID_MP2,
  2382. sizeof(MPADecodeContext),
  2383. decode_init,
  2384. NULL,
  2385. NULL,
  2386. decode_frame,
  2387. CODEC_CAP_PARSE_ONLY,
  2388. .flush= flush,
  2389. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2390. };
  2391. #endif
  2392. #ifdef CONFIG_MP3_DECODER
  2393. AVCodec mp3_decoder =
  2394. {
  2395. "mp3",
  2396. CODEC_TYPE_AUDIO,
  2397. CODEC_ID_MP3,
  2398. sizeof(MPADecodeContext),
  2399. decode_init,
  2400. NULL,
  2401. NULL,
  2402. decode_frame,
  2403. CODEC_CAP_PARSE_ONLY,
  2404. .flush= flush,
  2405. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2406. };
  2407. #endif
  2408. #ifdef CONFIG_MP3ADU_DECODER
  2409. AVCodec mp3adu_decoder =
  2410. {
  2411. "mp3adu",
  2412. CODEC_TYPE_AUDIO,
  2413. CODEC_ID_MP3ADU,
  2414. sizeof(MPADecodeContext),
  2415. decode_init,
  2416. NULL,
  2417. NULL,
  2418. decode_frame_adu,
  2419. CODEC_CAP_PARSE_ONLY,
  2420. .flush= flush,
  2421. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2422. };
  2423. #endif
  2424. #ifdef CONFIG_MP3ON4_DECODER
  2425. AVCodec mp3on4_decoder =
  2426. {
  2427. "mp3on4",
  2428. CODEC_TYPE_AUDIO,
  2429. CODEC_ID_MP3ON4,
  2430. sizeof(MP3On4DecodeContext),
  2431. decode_init_mp3on4,
  2432. NULL,
  2433. decode_close_mp3on4,
  2434. decode_frame_mp3on4,
  2435. .flush= flush,
  2436. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2437. };
  2438. #endif